diff --git a/OpenProblemLibrary/Wiley/setAnton_Section_10.4/Anton10_4Q21.pg b/OpenProblemLibrary/Wiley/setAnton_Section_10.4/Anton10_4Q21.pg index 9f50c6f7b5..bad2ce5acc 100644 --- a/OpenProblemLibrary/Wiley/setAnton_Section_10.4/Anton10_4Q21.pg +++ b/OpenProblemLibrary/Wiley/setAnton_Section_10.4/Anton10_4Q21.pg @@ -49,6 +49,11 @@ $y1=non_zero_random(1,8,1); $n1=$as1*$y1**2; $d1=($as1-$x1**2); ($n1,$d1)=reduce($n1,$d1); +if ($as1 > $n1/$d1) { + $majorminor = "major"; +} else { + $majorminor = "minor"; +} $f1=Formula("x^2/$as1 +y^2/(b)^2"); $xs1=$x1**2; $ys1=$y1**2; @@ -86,7 +91,7 @@ Context()->texStrings; BEGIN_TEXT Find an equation for the ellipse that satisfies the following conditions. $PAR -(a) Ends of major axis \((\pm $a1,0)\) and passes through \(($x1,$y1)\). +(a) Ends of $majorminor axis \((\pm $a1,0)\) and passes through \(($x1,$y1)\). $PAR \(1=\) \{ ans_rule(50) \} @@ -103,7 +108,7 @@ ANS( $ans2->cmp ); Context()->texStrings; SOLUTION(EV3(<<'END_SOLUTION')); $PAR SOLUTION $PAR -(a) The major axis lies on the \(x\)-axis and \(a=$a1\) will have the form\[$f1=1\]. Substituting in the point \(($x1,$y1)\) gives +(a) The $majorminor axis lies on the \(x\)-axis and \(a=$a1\) will have the form\[$f1=1\]. Substituting in the point \(($x1,$y1)\) gives \[$f1v=1\] which solves to give \(b^2=$bs1\). Our final equation is then \[1=$F1\] $PAR