diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub1.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub1.pg
new file mode 100644
index 0000000000..0d2542dc2c
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub1.pg
@@ -0,0 +1,217 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('1')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+
+$funct = FormulaUpToConstant("x/2*sqrt($a2+x^2)+$a2/2*ln(x+sqrt($a2+x^2))");
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \sqrt{$a2 + x^2}\; dx \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->normalStrings;
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+So:
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+Therefore:
+\[\int \sqrt{$a2 + x^2} \;dx=\int \sqrt{$a2+$a2\tan\theta}($a\sec^2\theta) \; d\theta\]
+\[=\int $a2\sec^3\theta \; d\theta\]
+
+$BR$BR
+Before proceeding to the several methods we can use to evaluate the integral of \(\sec^3\theta\), note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{$a2+x^2}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+$BR
+From this point, we have several choices as to how to evaluate the integral of \(\sec^3\theta\).
+
+$BR$BR
+Method 1:
+
+$BR
+Look up the antiderivative of \(\int\sec^3\theta d\theta\). It is
+
+\[\int\sec^3\theta d\theta=\frac{1}{2}\sec\theta\tan\theta+\frac{1}{2}\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+$BR$BR
+so
+\[ \int \sqrt{$a2 + x^2}\; dx=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C \]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[\frac{$a2}{2}\frac{\sqrt{$a2+x^2}}{$a}\frac{x}{$a}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+Simplifying:
+\[\frac{x\sqrt{$a2+x^2}}{2}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+
+
+$BR$BR
+Method 2:
+
+$BR
+Use the rule for substitution for products of sines and cosines. If sine is to an odd power, use a cosine substitution. If cosine is to an odd power, use a sine substitution. \(\sec^3\theta=\cos^{-3}\theta\), and -3 is an odd number, so we use a sine substitution.
+
+$BR
+Let \(u=\sin\theta\), then \(du=\cos\theta d\theta\) so
+\[\int $a2\sec^3\theta \; d\theta=$a2\int\frac{1}{\cos^3\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{\cos^4\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{(1-\sin^2\theta)^2}d\theta\]
+\[=$a2\int\frac{du}{(1-u^2)^2}du\]
+From here, we use a partial fractions decomposition:
+\[$a2\int\frac{du}{(1-u^2)^2}du=$a2\int\left[\frac{A}{(1-u)^2}+\frac{B}{1-u}+\frac{C}{(1+u)^2}+\frac{D}{1+u}\right]du\]
+
+$BR
+Solving for the constants \(A\), \(B\), \(C\) and \(D\) we find that \(A=B=C=D=\frac{1}{4}\).
+
+$BR$BR
+\[\int $a2\sec^3\theta \; d\theta=\frac{$a2}{4}\int\frac{1}{(1-u)^2}+\frac{1}{1-u}+\frac{1}{(1+u)^2}+\frac{1}{1+u}du \]
+\[=\frac{$a2}{4}\left(\frac{1}{1-u}-\ln|1-u|-\frac{1}{1+u}+\ln|1+u|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2u}{1-u^2}+\ln\left|\frac{1+u}{1-u}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{1-\sin^2\theta}+\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{\cos^2\theta}+\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(2\sec\theta\tan\theta+\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln|\sec\theta+\tan\theta|+C \]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[\frac{$a2}{2}\frac{\sqrt{$a2+x^2}}{$a}\frac{x}{$a}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+Simplifying:
+\[\frac{x\sqrt{$a2+x^2}}{2}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+
+$BR$BR
+Method 3:
+
+$BR
+Use the secant reduction formula. The secant reduction formula is given by
+\[\int \sec^n\theta d\theta=\frac{1}{n-1}\tan\theta\sec^{n-2}\theta+\frac{n-2}{n-1}\int\sec^{n-2}\theta d\theta.\]
+
+$BR$BR
+so
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+
+$BR$BR
+We can evaluate \(\int\sec\theta d\theta\) by looking the antiderivative up in a table (\(\int\sec\theta d\theta=\ln|\sec\theta+\tan\theta|+C\)) or we can derive this antiderivative using the substitution rule for products of sines and cosines. We have an odd power of the cosine, we use a sine substitution.
+
+$BR$BR
+\[\int\sec\theta d\theta=\int\frac{\cos\theta}{\cos^2\theta}d\theta\]
+\[=\int\frac{\cos\theta}{1-\sin^2\theta}d\theta\]
+\[=\int\frac{1}{1-u^2}du\]
+
+$BR
+Do a partial fractions decomposition.
+\[\int\frac{1}{1-u^2}du=\frac{1}{2}\int\left(\frac{1}{1-u}+\frac{1}{1+u}\right)du\]
+\[=\frac{1}{2}\left(-\ln|1-u|+\ln|1+u|\right)+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|+C\]
+\[=\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C\]
+\[=\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+so \[\int\sec\theta d\theta=\ln\left|\sec\theta+\tan\theta\right|+C\] and
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C.\]
+
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+
+COMMENT('MathObject version. Uses Flash applet.');
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub10.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub10.pg
new file mode 100644
index 0000000000..4c2e1f1cbb
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub10.pg
@@ -0,0 +1,149 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('10')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("x/({$a2}*($a2-x^2)^(1/2))");
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+
+###################################
+# Main text
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{ dx}{($a2 - x^2)^{3/2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+#ANS(fun_cmp($ans, limits=>[$lend,$rend], mode=>"antider", vars=>"x"));
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{ dx}{($a2 - x^2)^{3/2}}=
+\int \frac{{$a}\cos\theta }{($a2 - $a2\sin^2\theta)^{3/2}}\;d\theta\]
+\[=
+\int \frac{{$a}\cos\theta }{$a3\cos^3\theta}\;d\theta\]
+\[=
+\frac{1 }{$a2}\int \sec^2\theta\;d\theta\]
+\[=
+\frac{1 }{$a2}\tan\theta+C\]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[=
+\frac{1 }{$a2}\tan\theta+C
+=
+\frac{ x}{{$a2}\sqrt{$a2-x^2} } +C \]
+so
+\[ \int \frac{ dx}{($a2- x^2)^{3/2}}=\frac{ x}{{$a2}\sqrt{$a2-x^2} } +C \]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub12.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub12.pg
new file mode 100644
index 0000000000..389e724ae5
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub12.pg
@@ -0,0 +1,140 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('12')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("-sqrt{$a2 - x^2}/($a2*x)");
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{ dx}{x^2\sqrt{$a2 - x^2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+#ANS(fun_cmp($ans, limits=>[$lend,$rend], mode=>"antider", vars=>"x"));
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{ dx}{x^2\sqrt{$a2 - x^2}}=
+\int \frac{ {$a}\cos\theta \; d\theta}{{$a2}\sin^2\theta\sqrt{$a2 - {$a2}\sin^2\theta}}\]
+\[=\int \frac{ {$a}\cos\theta \; d\theta}{{$a3}\sin^2\theta\cos\theta}\]
+\[=
+\int\frac{ d\theta}{{$a2}\sin^2\theta}\]
+\[=
+-\frac{1 }{$a2}\cot\theta+C\]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[
+-\frac{1 }{$a2}\cot\theta+C
+=
+-\frac{\sqrt{$a2-x^2} }{{$a2}x} +C \]
+so
+\[ \int\frac{ dx}{x^2\sqrt{$a2 - x^2}}=-\frac{\sqrt{$a2-x^2} }{{$a2}x} +C \]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub13.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub13.pg
new file mode 100644
index 0000000000..4378a1e724
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub13.pg
@@ -0,0 +1,141 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('13')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("1/($a)*ln(abs($a/x -sqrt($a2-x^2)/x))");
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{ dx}{x\sqrt{$a2 - x^2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{ dx}{x\sqrt{$a2 - x^2}}=
+\int \frac{ {$a}\cos\theta \; d\theta}{{$a}\sin\theta\sqrt{$a2 - {$a2}\sin^2\theta}}\]
+\[=\int \frac{ {$a}\cos\theta \; d\theta}{{$a2}\sin\theta\cos\theta}\]
+\[=
+\int\frac{ d\theta}{{$a}\sin\theta}\]
+\[=
+\frac{1}{$a}\ln|\csc\theta-\cot\theta|+C\]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[
+\frac{1}{$a}\ln|\csc\theta-\cot\theta|+C
+=
+\frac{1}{$a}\ln\left|\frac{$a}{x}-\frac{\sqrt{$a2-x^2}}{x}\right|+C\]
+so
+\[ \int \frac{ dx}{x\sqrt{$a2 - x^2}}
+=\frac{1}{$a}\ln\left|\frac{$a}{x}-\frac{\sqrt{$a2-x^2}}{x}\right|+C \]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub15.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub15.pg
new file mode 100644
index 0000000000..3462901efa
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub15.pg
@@ -0,0 +1,151 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('15')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("($a2)/2*asin(x/($a))-x*sqrt($a2-x^2)/2");
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{x^2 dx}{\sqrt{$a2 - x^2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp());
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{x^2 dx}{\sqrt{$a2 - x^2}}=
+\int \frac{ {$a3}\sin^2\theta\cos\theta \; d\theta}{\sqrt{$a2 - {$a2}\sin^2\theta}}\]
+\[=\int \frac{ {$a3}\sin^2\theta\cos\theta \; d\theta}{$a\cos\theta}\]
+\[=
+\int {$a2}\sin^2\theta \; d\theta\]
+\[=
+\frac{$a2}{2}\int (1-\cos(2\theta)) \; d\theta\]
+\[=
+\frac{$a2\theta}{2}-\frac{$a2\sin(2\theta)}{4} +C\]
+\[=
+\frac{$a2\theta}{2}-\frac{$a2\sin\theta\cos\theta}{2} +C\]
+
+$BR
+Substituting back in terms of \(x\) yields:
+\[=
+\frac{$a2\theta}{2}-\frac{$a2\sin\theta\cos\theta}{2} +C\
+=\frac{$a2}{2}\sin^{-1}\left(\frac{x}{$a}\right)-
+\frac{$a2}{2}\frac{x}{$a}\frac{\sqrt{$a2-x^2}}{$a}+C\]
+\[=\frac{$a2}{2}\sin^{-1}\left(\frac{x}{$a}\right)-
+\frac{x\sqrt{$a2-x^2}}{2}+C\]
+so
+\[ \int \frac{x^2 dx}{\sqrt{$a2 - x^2}}
+=\frac{$a2}{2}\sin^{-1}\left(\frac{x}{$a}\right)-
+\frac{x\sqrt{$a2-x^2}}{2}+C\]
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub16.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub16.pg
new file mode 100644
index 0000000000..b06869a25b
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub16.pg
@@ -0,0 +1,149 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('16')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("-(1/4)*x*($a2-x^2)^(3/2)+(1/8)*$a2*x*sqrt($a2-x^2)+(1/8)*$a4*arctan(x/sqrt($a2-x^2))");
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int x^2 \sqrt{$a2 - x^2}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int x^2 \sqrt{$a2 - x^2}dx=
+\int {$a3}\sin^2\theta\cos\theta\sqrt{$a2 - {$a2}\sin^2\theta} \; d\theta\]
+\[=\int {$a4}\sin^2\theta\cos^2\theta \; d\theta\]
+\[=
+\frac{$a4}{4}\int \sin^2(2\theta) \; d\theta\]
+\[=
+\frac{$a4}{8}\int(1- \cos(4\theta)) \; d\theta\]
+\[=
+\frac{$a4\theta}{8}- \frac{$a4}{32}\sin(4\theta) +C\]
+\[=
+\frac{$a4\theta}{8}- \frac{$a4}{16}\sin(2\theta)\cos(2\theta) +C\]
+\[=
+\frac{$a4\theta}{8}- \frac{$a4}{8}\sin\theta\cos\theta(\cos^2\theta-\sin^2\theta) +C\]
+
+$BR
+Substituting back in terms of \(x\) yields:
+\[\frac{$a4\theta}{8}- \frac{$a4}{8}\sin\theta\cos\theta(\cos^2\theta-\sin^2\theta) +C
+=\frac{$a4\theta}{8}- \frac{$a4}{8}\frac{x}{$a}\frac{\sqrt{$a2-x^2}}{$a}\left(\frac{{$a2-x^2}}{$a2}-\frac{x^2}{$a2}\right) +C\]
+\[=\frac{$a4\theta}{8}- \frac{x\sqrt{$a2-x^2}}{8}\left($a2-2x^2\right) +C\]
+
+so
+\[ \int x^2 \sqrt{$a2 - x^2}dx
+=\frac{$a4\theta}{8}- \frac{x\sqrt{$a2-x^2}}{8}\left($a2-2x^2\right) +C\]
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub17.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub17.pg
new file mode 100644
index 0000000000..577156a1cf
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub17.pg
@@ -0,0 +1,188 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('17')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("(1/4)*x*($a2-x^2)^(3/2)+(3/8)*{$a2}*x*sqrt({$a2}-x^2)+(3/8)*{$a4}*atan(x/sqrt({$a2}-x^2))");
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int($a2 - x^2)^{3/2}dx \]
+$BR \{ans_rule( 70) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int($a2 - x^2)^{3/2}dx=
+\int {$a}\cos\theta($a2 - {$a2}\sin^2\theta)^{3/2} \; d\theta\]
+\[=\int {$a4}\cos^4\theta \; d\theta\]
+\[=\int
+\frac{$a4}{4}(1+\cos(2\theta))^2 \; d\theta\]
+\[=
+int\frac{$a4}{4}(1+2\cos(2\theta)+\cos^2(2\theta)) \; d\theta\]
+\[=
+\int\frac{$a4}{4}\left(1+2\cos(2\theta)+\frac{1}{2}+\frac{\cos(4\theta)}{2}\right) \; d\theta\]
+\[=
+\int\frac{$a4}{4}\left(1+2\cos(2\theta)+\frac{1}{2}+\frac{\cos(4\theta)}{2}\right) \; d\theta\]
+\[=
+\int\frac{$a4}{4}\left(\frac{3}{2}+2\cos(2\theta)+\frac{\cos(4\theta)}{2}\right) \; d\theta\]
+\[=
+\frac{$a4(3)\theta}{8}+\frac{$a4}{4}\sin(2\theta)+\frac{$a4}{32}\sin(4\theta)
++C\]
+
+$BR$BR
+We can use Euler's formula:
+\[{\rm e}^{i\theta}=\cos\theta+i\sin\theta\]
+to get \(\sin(4\theta)\) in terms of products of sines and cosines of \(\theta\) so that we can get our antiderivative back in terms of \(x\).
+
+\[{\rm e}^{4i\theta}=\cos(4\theta)+i\sin(4\theta)\]
+\[{\rm e}^{4i\theta}=\left(\cos\theta_i\sin\theta\right)^4\]
+\[=\cos^4\theta+4i\cos^3\theta\sin\theta-6\cos^2\theta\sin^2\theta-4i\cos\theta\sin^3\theta+\sin^4\theta\]
+
+Since both of these quantities equal \({\rm e}^{4i\theta}\), they are equal to each other. This means that the real parts equal the real parts and the imaginary parts equal the imaginary parts, so
+
+\[\sin(4\theta)=4\cos^3\theta\sin\theta-4\cos\theta\sin^3\theta\]
+
+\[
+\frac{$a4(3)\theta}{8}+\frac{$a4}{4}\sin(2\theta)+\frac{$a4}{32}\sin(4\theta)
++C\]
+\[=
+\frac{$a4(3)\theta}{8}+\frac{$a4}{2}\sin\theta\cos\theta+\frac{$a4}{8}(\cos^3\theta\sin\theta-\sin^3\theta\cos\theta)
++C\]
+
+$BR$BR
+Substituting back in terms of \(x\) yields:
+\[
+\frac{$a4(3)\theta}{8}+\frac{$a4}{2}\sin\theta\cos\theta+\frac{$a4}{8}(\cos^3\theta\sin\theta-\sin^3\theta\cos\theta)
++C\]
+\[
+=\frac{$a4(3)}{8}\sin^{-1}\left(\frac{x}{$a}\right)
++\frac{$a4}{2}\frac{x}{$a}\frac{\sqrt{$a2-x^2}}{$a}\]
+\[+\frac{$a4}{8}\left(\left(\frac{\sqrt{$a2-x^2}}{$a}\right)^3\left(\frac{x}{$a}\right)-\left(\frac{x}{$a}\right)^3\left(\frac{\sqrt{$a2-x^2}}{$a}\right)\right)
++C\]
+\[
+=\frac{$a4(3)}{8}\sin^{-1}\left(\frac{x}{$a}\right)
++\frac{{$a2}x\sqrt{$a2-x^2}}{2}\]
+\[+\frac{x\sqrt{$a2-x^2}}{8}\left($a2-2x^2\right)
++C\]
+\[
+=\frac{$a4_3}{8}\sin^{-1}\left(\frac{x}{$a}\right)
++\frac{{$a2_5}x\sqrt{$a2-x^2}}{8}-\frac{x^3\sqrt{$a2-x^2}}{4}
++C\]
+
+so
+\[ \int($a2 - x^2)^{3/2}dx
+=\frac{$a4_3}{8}\sin^{-1}\left(\frac{x}{$a}\right)
++\frac{{$a2_5}x\sqrt{$a2-x^2}}{8}-\frac{x^3\sqrt{$a2-x^2}}{4}
++C\]
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub18.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub18.pg
new file mode 100644
index 0000000000..64f4ef8d36
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub18.pg
@@ -0,0 +1,149 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('18')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("x/2*($a2-x^2)^(1/2)+{$a2}/2*asin(x/{$a})");
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int\sqrt{$a2 - x^2}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int\sqrt{$a2 - x^2}dx=
+\int {$a}\cos\theta\sqrt{$a2 - {$a2}\sin^2\theta} \; d\theta\]
+\[=\int {$a2}\cos^2\theta \; d\theta\]
+\[=\frac{$a2}{2}\int (1+ \cos(2\theta)) \; d\theta\]
+\[=
+\frac{$a2\theta}{2}+\frac{$a2}{4}\sin(2\theta)) +C\]
+\[=
+\frac{$a2\theta}{2}+\frac{$a2}{2}\sin\theta\cos\theta +C\]
+
+
+$BR$BR
+Substituting back in terms of \(x\) yields:
+\[\frac{$a2\theta}{2}+\frac{$a2}{2}\sin\theta\cos\theta +C\]
+\[
+=\frac{$a2}{2}\sin^{-1}\left(\frac{x}{$a}\right)
++\frac{$a2}{2}\frac{x}{$a}\frac{\sqrt{$a2-x^2}}{$a}+C\]
+\[=\frac{$a2}{2}\sin^{-1}\left(\frac{x}{$a}\right)
++\frac{ x\sqrt{$a2-x^2}}{2}+C\]
+
+so
+\[ \int\sqrt{$a2 - x^2}dx
+=\frac{$a2}{2}\sin^{-1}\left(\frac{x}{$a}\right)
++\frac{ x\sqrt{$a2-x^2}}{2}+C\]
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub2.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub2.pg
new file mode 100644
index 0000000000..dbcc4565b2
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub2.pg
@@ -0,0 +1,158 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('2')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("x/4*($a2+x^2)^(3/2)-$a4/8*ln(x+sqrt($a2+x^2))-$a2/8*x*sqrt(x^2+$a2)")->with(limits => [$a+1,$a+2]);
+
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+###################################
+# Main text
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int x^2\sqrt{$a2 + x^2}\; dx \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+So:
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+Therefore:
+\[\int x^2\sqrt{$a2 + x^2} \;dx=\int $a2\tan^2\theta\sqrt{$a2+$a2\tan\theta}($a\sec^2\theta) \; d\theta\]
+\[=\int $a4\tan^2\theta\sec^3\theta \; d\theta\]
+\[=$a4\int (\sec^2\theta-1)\sec^3\theta \; d\theta\]
+\[=$a4\int (\sec^5\theta-\sec^3\theta) \; d\theta\]
+
+$BR$BR
+Before proceeding to the several methods we can use to evaluate the integral of \(\sec^3\theta\), note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+$BR$BR
+From this point, we apply the secant reduction formula to evaluate the integral.
+
+$BR
+Use the secant reduction formula. The secant reduction formula is given by
+\[\int \sec^n\theta d\theta=\frac{1}{n-1}\tan\theta\sec^{n-2}\theta+\frac{n-2}{n-1}\int\sec^{n-2}\theta d\theta.\]
+
+$BR$BR
+so
+\[\int\sec^5\theta d\theta=\frac{1}{5-1}\tan\theta\sec^{5-2}\theta+\frac{5-2}{5-1}\int\sec^{5-2}\theta d\theta\]
+\[=\frac{1}{4}\tan\theta\sec^{3}\theta+\frac{3}{4}\int\sec^{3}\theta d\theta\]
+and
+\[\int\sec^3\theta d\theta=\frac{1}{3-1}\tan\theta\sec^{3-2}\theta+\frac{3-2}{3-1}\int\sec^{3-2}\theta d\theta\]
+\[=\frac{1}{2}\tan\theta\sec\theta+\frac{1}{2}\int\sec\theta d\theta\]
+
+$BR
+Substituting back in,
+\[$a4\int (\sec^5\theta-\sec^3\theta) \; d\theta
+=\frac{{$a4}}{4}\tan\theta\sec^{3}\theta-\frac{{$a4}}{4}\int\sec^{3}\theta d\theta \]
+\[=\frac{{$a4}}{4}\tan\theta\sec^{3}\theta-\frac{{$a4}}{4}\left(\frac{1}{2}\tan\theta\sec\theta+\frac{1}{2}\int\sec\theta d\theta\right) \]
+
+\[=\frac{{$a4}}{4}\tan\theta\sec^{3}\theta-\frac{{$a4}}{8}\tan\theta\sec\theta-\frac{{$a4}}{8}\int\sec\theta d\theta \]
+
+\[=\frac{{$a4}}{4}\left(\frac{x}{$a}\right)\left(\frac{\sqrt{$a2+x^2}}{$a}\right)^3-\frac{{$a4}}{8}\left(\frac{x}{$a}\right)\left(\frac{\sqrt{$a2+x^2}}{$a}\right)-\frac{{$a4}}{8}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+
+\[=\frac{x($a2+x^2)^{3/2}}{4}-\frac{{$a2 x\sqrt{$a2+x^2}}}{8}-\frac{{$a4}}{8}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+
+
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub20.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub20.pg
new file mode 100644
index 0000000000..cfc783a843
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub20.pg
@@ -0,0 +1,172 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('20')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("sqrt{$a2-x^2}+{$a}*ln(abs({$a}/{x}-sqrt{$a2-x^2}/{x}))")->with(limits => [0,$a]);
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int\frac{\sqrt{$a2 - x^2}}{x}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int\frac{\sqrt{$a2 - x^2}}{x}dx=
+\int \frac{{$a}\cos\theta\sqrt{$a2 - {$a2}\sin^2\theta}}{{$a}\sin\theta} \; d\theta\]
+\[=\int \frac{{$a}\cos^2\theta}{\sin\theta} \; d\theta\]
+
+$BR$BR
+For integrals that are products of sines and cosines if sine is raised to an odd power, we use a cosine substitution. Let \(u=\cos\theta\), then \(du=-\sin\theta d\theta\).
+
+
+\[\int \frac{{$a}\cos^2\theta}{\sin\theta} \; d\theta\]
+\[=
+\int \frac{{$a}\cos^2\theta\sin\theta}{\sin^2\theta} \; d\theta\]
+\[=
+\int \frac{{$a}\cos^2\theta\sin\theta}{1-\cos^2\theta} \; d\theta\]
+\[=
+-\int\frac{{$a}u^2}{1-u^2} \; du\]
+
+$BR$BR
+We use a partial fractions decomposition.
+\[
+-\int\frac{{$a}u^2}{1-u^2} \; du
+=$a\int \left(1-\frac{1/2}{1-u}-\frac{1/2}{1+u}\right)du\]
+so
+\[
+-\int\frac{{$a}u^2}{1-u^2} \; du
+=$a \left(u+\frac{1}{2}\ln\left|\frac{1-u}{1+u}\right|\right)+C\]
+\[
+=$a \left(\cos\theta+\frac{1}{2}\ln\left|\frac{1-\cos\theta}{1+\cos\theta}\right|\right)+C\]
+\[
+=$a \left(\cos\theta+\frac{1}{2}\ln\left|\frac{(1-\cos\theta)^2}{1-\cos^2\theta}\right|\right)+C\]
+\[
+=$a \left(\cos\theta+\frac{1}{2}\ln\left|\frac{(1-\cos\theta)^2}{\sin^2\theta}\right|\right)+C\]
+\[
+=$a \left(\cos\theta+\ln\left|\frac{1-\cos\theta}{\sin\theta}\right|\right)+C\]
+\[
+=$a \left(\cos\theta+\ln\left|\csc\theta-\cot\theta\right|\right)+C\]
+
+$BR$BR
+Substituting back in terms of \(x\) yields:
+\[$a \left(\cos\theta+\ln\left|\csc\theta-\cot\theta\right|\right)+C\]
+\[
+=\sqrt{$a2-x^2}+{$a}\ln\left|\frac{$a}{x}-\frac{\sqrt{$a2-x^2}}{x}\right|+C
+\]
+
+so
+\[ \int\frac{\sqrt{$a2 - x^2}}{x}dx
+=\sqrt{$a2-x^2}+{$a}\ln\left|\frac{$a}{x}-\frac{\sqrt{$a2-x^2}}{x}\right|+C\]
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub21.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub21.pg
new file mode 100644
index 0000000000..cdf5a65e94
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub21.pg
@@ -0,0 +1,142 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('21')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("-sqrt{$a2-x^2}/{x}-asin({x}/{$a})")->with(limits => [$a-1,$a]);
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sin});
+ $applet->initialState(qq{sin});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int\frac{\sqrt{$a2 - x^2}}{x^2}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the sine substitution. \[x = {$a}\sin(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\sin\theta=\frac{x}{$a}\), and \(\cos\theta=\frac{\sqrt{$a2-x^2}}{$a}\). To see this, label a right triangle so that the sine is \(x/$a\). We will have the opposite side with length \(x\), and the hypotenuse with length \($a\), so the adjacent side has length \(\sqrt{$a2-x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sin\theta\]
+\[dx = {$a}\cos\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int\frac{\sqrt{$a2 - x^2}}{x^2}dx=
+\int \frac{{$a}\cos\theta\sqrt{$a2 - {$a2}\sin^2\theta}}{{$a2}\sin^2\theta} \; d\theta\]
+\[=\int \frac{\cos^2\theta}{\sin^2\theta} \; d\theta\]
+\[=\int \cot^2\theta \; d\theta\]
+\[=\int \csc^2\theta-1 \; d\theta\]
+\[=-\cot\theta-\theta+C\]
+
+$BR$BR
+Substituting back in terms of \(x\) yields:
+\[-\cot\theta-\theta+C
+=-\frac{\sqrt{$a2-x^2}}{x}-\sin^{-1}\left(\frac{x}{$a}\right)+C
+\]
+
+so
+\[ \int\frac{\sqrt{$a2 - x^2}}{x^2}dx
+=-\frac{\sqrt{$a2-x^2}}{x}-\sin^{-1}\left(\frac{x}{$a}\right)+C\]
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub22.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub22.pg
new file mode 100644
index 0000000000..bac5a256ad
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub22.pg
@@ -0,0 +1,251 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('22')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$func = FormulaUpToConstant("x/2*sqrt{x^2-$a2}-{$a2}/{2}*ln(abs(sqrt{x^2-$a2}/{$a}+{x}/{$a}))")->with(limits => [$a+1,$a+2]);
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int\sqrt{ x^2-$a2}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+###################################
+# Answers
+###################################
+
+ANS($func->cmp());
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the secant substitution. \[x = {$a}\sec\theta\]
+
+$BR$BR
+We are motivated by the trigonometric identity
+\[\sec^2\theta-1=\tan^2\theta.\]
+With the substitution \(x = {$a}\sec\theta\), \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}={$a}\tan\theta\) for \(x>{$a}\), where \(0\le \theta<\pi/2\) and \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}=-{$a}\tan\theta\) for \(x<-{$a}\), where \(\pi/2<\theta\le\pi\).
+Note that \(\sec\theta=\frac{x}{$a}\), and \(\sin\theta=\frac{\sqrt{x^2-$a2}}{x}\). To see this, label a right triangle so that the secant is \(x/$a\). We will have the adjacent side of length \($a\), and the hypotenuse with length \(x\), so the opposite side has length \(\sqrt{x^2-$a2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sec\theta\]
+\[dx = {$a}\sec\theta\tan\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int\sqrt{ x^2-$a2}dx=
+\int {$a}\sec\theta\tan\theta\sqrt{{$a2}\sec^2\theta - {$a2}} \; d\theta\]
+\[=\int {$a2}\tan^2\theta\sec\theta\; d\theta\]
+\[=\int {$a2}(\sec^2\theta-1)\sec\theta\; d\theta\]
+\[=\int {$a2}(\sec^3\theta-\sec\theta)\; d\theta\]
+
+$BR
+From this point, we have several choices as to how to evaluate the integral of \(\sec^3\theta\).
+
+$BR$BR
+Method 1:
+
+$BR
+Look up the antiderivative of \(\int\sec^3\theta d\theta\). It is
+
+\[\int\sec^3\theta d\theta=\frac{1}{2}\sec\theta\tan\theta+\frac{1}{2}\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+$BR
+The antiderivative of \(\sec\theta\) is given by
+\[\int\sec\theta d\theta=\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+
+$BR$BR
+so
+\[=\int {$a2}(\sec^3\theta-\sec\theta)\; d\theta\]
+
+\[ \int \sqrt{ x^2-$a2}\; dx=
+\frac{$a2}{2}\sec\theta\tan\theta-\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C \]
+
+$BR
+Substituting back in terms of \(x\) yields:
+\[\frac{$a2}{2}\sec\theta\tan\theta-\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C
+=\frac{$a2}{2}\frac{x}{$a}\frac{\sqrt{x^2-{$a2}}}{$a}-\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-{$a2}}}{$a}\right|+C \]
+Simplifying:
+\[\frac{1}{2}x\sqrt{x^2-{$a2}}-\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-{$a2}}}{$a}\right|+C \]
+
+
+$BR$BR
+Method 2:
+
+$BR
+Use the rule for substitution for products of sines and cosines. If sine is to an odd power, use a cosine substitution. If cosine is to an odd power, use a sine substitution. \(\sec^3\theta=\cos^{-3}\theta\), and -3 is an odd number, so we use a sine substitution.
+
+$BR
+Let \(u=\sin\theta\), then \(du=\cos\theta d\theta\) so
+\[\int $a2\sec^3\theta \; d\theta=$a2\int\frac{1}{\cos^3\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{\cos^4\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{(1-\sin^2\theta)^2}d\theta\]
+\[=$a2\int\frac{du}{(1-u^2)^2}du\]
+From here, we use a partial fractions decomposition:
+\[$a2\int\frac{du}{(1-u^2)^2}du=$a2\int\left[\frac{A}{(1-u)^2}+\frac{B}{1-u}+\frac{C}{(1+u)^2}+\frac{D}{1+u}\right]du\]
+
+$BR
+Solving for the constants \(A\), \(B\), \(C\) and \(D\) we find that \(A=B=C=D=\frac{1}{4}\).
+
+$BR$BR
+\[\int $a2\sec^3\theta \; d\theta=\frac{$a2}{4}\int\frac{1}{(1-u)^2}+\frac{1}{1-u}+\frac{1}{(1+u)^2}+\frac{1}{1+u}du \]
+\[=\frac{$a2}{4}\left(\frac{1}{1-u}-\ln|1-u|-\frac{1}{1+u}+\ln|1+u|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2u}{1-u^2}+\ln\left|\frac{1+u}{1-u}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{1-\sin^2\theta}+\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{\cos^2\theta}+\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(2\sec\theta\tan\theta+\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln|\sec\theta+\tan\theta|+C \]
+
+$BR
+Substituting back in terms of \(x\) yields:
+\[ \int \sqrt{ x^2-$a2}\; dx=
+\frac{$a2}{2}\sec\theta\tan\theta-\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C \]
+
+\[\frac{$a2}{2}\frac{\sqrt{x^2-{$a2}}}{$a}\frac{x}{$a}+\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-{$a2}}}{$a}\right|+C \]
+Simplifying:
+\[\frac{1}{2}x\sqrt{x^2-{$a2}}-\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-{$a2}}}{$a}\right|+C \]
+
+$BR$BR
+Method 3:
+
+$BR
+Use the secant reduction formula. The secant reduction formula is given by
+\[\int \sec^n\theta d\theta=\frac{1}{n-1}\tan\theta\sec^{n-2}\theta+\frac{n-2}{n-1}\int\sec^{n-2}\theta d\theta.\]
+
+$BR$BR
+so
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+
+$BR$BR
+We can evaluate \(\int\sec\theta d\theta\) by looking the antiderivative up in a table (\(\int\sec\theta d\theta=\ln|\sec\theta+\tan\theta|+C\)) or we can derive this antiderivative using the substitution rule for products of sines and cosines. We have an odd power of the cosine, we use a sine substitution.
+
+$BR$BR
+\[\int\sec\theta d\theta=\int\frac{\cos\theta}{\cos^2\theta}d\theta\]
+\[=\int\frac{\cos\theta}{1-\sin^2\theta}d\theta\]
+\[=\int\frac{1}{1-u^2}du\]
+
+$BR
+Do a partial fractions decomposition.
+\[\int\frac{1}{1-u^2}du=\frac{1}{2}\int\left(\frac{1}{1-u}+\frac{1}{1+u}\right)du\]
+\[=\frac{1}{2}\left(-\ln|1-u|+\ln|1+u|\right)+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|+C\]
+\[=\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C\]
+\[=\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+so \[\int\sec\theta d\theta=\ln\left|\sec\theta+\tan\theta\right|+C\] and
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C.\]
+
+$BR$BR
+Putting this all together, we have that
+\[=
+\int {$a2}(\sec^3\theta-\sec\theta) \;d\theta\]
+\[=
+\frac{1}{2}x\sqrt{x^2-{$a2}}-\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-{$a2}}}{$a}\right|+C
+\]
+
+so
+\[ \int\sqrt{ x^2-$a2}dx
+=\frac{1}{2}x\sqrt{x^2-{$a2}}-\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-{$a2}}}{$a}\right|+C\]
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub23.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub23.pg
new file mode 100644
index 0000000000..e8112b7566
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub23.pg
@@ -0,0 +1,172 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('23')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("x^3/4*sqrt{x^2-$a2}-{$a2}*x/{8}*sqrt{x^2-$a2}-{$a4}/{8}*ln(abs(sqrt{x^2-$a2}/{$a}+{x}/{$a}))")->with(limits => [$a+1,$a+2]);
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int x^2\sqrt{ x^2-$a2}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+###################################
+# Answers
+###################################
+
+ANS($funct->cmp());
+##################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the secant substitution. \[x = {$a}\sec\theta\]
+
+$BR$BR
+We are motivated by the trigonometric identity
+\[\sec^2\theta-1=\tan^2\theta.\]
+With the substitution \(x = {$a}\sec\theta\), \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}={$a}\tan\theta\) for \(x>{$a}\), where \(0\le \theta<\pi/2\) and \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}=-{$a}\tan\theta\) for \(x<-{$a}\), where \(\pi/2<\theta\le\pi\).
+Note that \(\sec\theta=\frac{x}{$a}\), and \(\sin\theta=\frac{\sqrt{x^2-$a2}}{x}\). To see this, label a right triangle so that the secant is \(x/$a\). We will have the adjacent side of length \($a\), and the hypotenuse with length \(x\), so the opposite side has length \(\sqrt{x^2-$a2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sec\theta\]
+\[dx = {$a}\sec\theta\tan\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int x^2\sqrt{ x^2-$a2}dx=
+\int {$a3}\sec^3\theta\tan\theta\sqrt{{$a2}\sec^2\theta - {$a2}} \; d\theta\]
+\[=\int {$a4}\tan^2\theta\sec^3\theta\; d\theta\]
+\[=\int {$a4}(\sec^2\theta-1)\sec^3\theta\; d\theta\]
+\[=\int {$a4}(\sec^5\theta-\sec^3\theta)\; d\theta\]
+
+$BR$BR
+From this point, we apply the secant reduction formula to evaluate the integral.
+
+$BR
+The secant reduction formula is given by
+\[\int \sec^n\theta d\theta=\frac{1}{n-1}\tan\theta\sec^{n-2}\theta+\frac{n-2}{n-1}\int\sec^{n-2}\theta d\theta.\]
+
+$BR$BR
+so
+\[\int\sec^5\theta d\theta=\frac{1}{5-1}\tan\theta\sec^{5-2}\theta+\frac{5-2}{5-1}\int\sec^{5-2}\theta d\theta\]
+\[=\frac{1}{4}\tan\theta\sec^{3}\theta+\frac{3}{4}\int\sec^{3}\theta d\theta\]
+and
+\[\int\sec^3\theta d\theta=\frac{1}{3-1}\tan\theta\sec^{3-2}\theta+\frac{3-2}{3-1}\int\sec^{3-2}\theta d\theta\]
+\[=\frac{1}{2}\tan\theta\sec\theta+\frac{1}{2}\int\sec\theta d\theta\]
+
+$BR
+Substituting back in,
+\[$a4\int (\sec^5\theta-\sec^3\theta) \; d\theta
+=\frac{{$a4}}{4}\tan\theta\sec^{3}\theta-\frac{{$a4}}{4}\int\sec^{3}\theta d\theta \]
+\[=\frac{{$a4}}{4}\tan\theta\sec^{3}\theta-\frac{{$a4}}{4}\left(\frac{1}{2}\tan\theta\sec\theta+\frac{1}{2}\int\sec\theta d\theta\right) \]
+
+\[=\frac{{$a4}}{4}\tan\theta\sec^{3}\theta-\frac{{$a4}}{8}\tan\theta\sec\theta-\frac{{$a4}}{8}\int\sec\theta d\theta \]
+
+$BR$BR
+Substituting back in terms of \(x\):
+
+\[\frac{{$a4}}{4}\tan\theta\sec^{3}\theta-\frac{{$a4}}{8}\tan\theta\sec\theta-\frac{{$a4}}{8}\ln\left|\sec\theta+\tan\theta\right|+C \]
+\[=\frac{{$a4}}{4}\frac{\sqrt{x^2-$a2}}{$a}\left(\frac{x}{$a}\right)^{3}-\frac{{$a4}}{8}\frac{\sqrt{x^2-$a2}}{$a}\left(\frac{x}{$a}\right)-\frac{{$a4}}{8}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C \]
+\[=\frac{x^{3}}{4}\sqrt{x^2-$a2}-\frac{{$a2}x}{8}\sqrt{x^2-$a2}-\frac{{$a4}}{8}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C \]
+
+$BR$BR
+so
+\[\int x^2\sqrt{ x^2-$a2}dx =
+\frac{x^{3}}{4}\sqrt{x^2-$a2}-\frac{{$a2}x}{8}\sqrt{x^2-$a2}-\frac{{$a4}}{8}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub24.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub24.pg
new file mode 100644
index 0000000000..ca62a4eb36
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub24.pg
@@ -0,0 +1,146 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('24')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("sqrt{x^2-{$a2}}-{$a}*atan(sqrt{x^2-{$a2}}/{$a})")->with(limits => [$a+1,$a+2]);
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{\sqrt{ x^2-$a2}}{x}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the secant substitution. \[x = {$a}\sec\theta\]
+
+$BR$BR
+We are motivated by the trigonometric identity
+\[\sec^2\theta-1=\tan^2\theta.\]
+With the substitution \(x = {$a}\sec\theta\), \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}={$a}\tan\theta\) for \(x>{$a}\), where \(0\le \theta<\pi/2\) and \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}=-{$a}\tan\theta\) for \(x<-{$a}\), where \(\pi/2<\theta\le\pi\).
+Note that \(\sec\theta=\frac{x}{$a}\), and \(\sin\theta=\frac{\sqrt{x^2-$a2}}{x}\). To see this, label a right triangle so that the secant is \(x/$a\). We will have the adjacent side of length \($a\), and the hypotenuse with length \(x\), so the opposite side has length \(\sqrt{x^2-$a2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sec\theta\]
+\[dx = {$a}\sec\theta\tan\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{\sqrt{ x^2-$a2}}{x}dx=
+\int {$a}\sec\theta\tan\theta\frac{\sqrt{{$a2}\sec^2\theta - {$a2}}}{{$a}\sec\theta} \; d\theta\]
+\[=\int {$a}\tan^2\theta \; d\theta\]
+\[=\int {$a}(\sec^2\theta-1)\; d\theta\]
+\[= {$a}\tan\theta-{$a}\theta+C\]
+
+$BR$BR
+Substituting back in terms of \(x\):
+\[{$a}\tan\theta-{$a}\theta+C\]
+\[=\sqrt{x^2-{$a2}}-{$a}\sec^{-1}\left(\frac{x}{$a}\right)+C\]
+
+
+$BR$BR
+so
+\[\int \frac{\sqrt{ x^2-$a2}}{x}dx =\sqrt{x^2-{$a2}}-{$a}\sec^{-1}\left(\frac{x}{$a}\right)+C\]
+
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub25.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub25.pg
new file mode 100644
index 0000000000..9e2009016b
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub25.pg
@@ -0,0 +1,144 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('25')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("1/{$a}*atan(sqrt{x^2-{$a2}}/{$a})")->with(limits => [$a+1,$a+2]);
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{dx}{x\sqrt{ x^2-$a2}} \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the secant substitution. \[x = {$a}\sec\theta\]
+
+$BR$BR
+We are motivated by the trigonometric identity
+\[\sec^2\theta-1=\tan^2\theta.\]
+With the substitution \(x = {$a}\sec\theta\), \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}={$a}\tan\theta\)
+for \(x>{$a}\), where \(0\le \theta<\pi/2\) and \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}=-{$a}\tan\theta\)
+for \(x<-{$a}\), where \(\pi/2<\theta\le\pi\).
+
+$BR$BR
+With the substitution \[x = {$a}\sec\theta\]
+\[dx = {$a}\sec\theta\tan\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{dx}{x\sqrt{ x^2-$a2}}=
+\int \frac{{$a}\sec\theta\tan\theta d\theta}{{$a2}\tan\theta\sec\theta}\]
+\[=\frac{1}{$a}\int \; d\theta\]
+\[=\frac{\theta}{$a}+C\]
+
+$BR$BR
+Substituting back in terms of \(x\):
+\[\frac{\theta}{$a}+C\]
+\[=\frac{1}{$a}\sec^{-1}\left(\frac{x}{$a}\right)+C\]
+
+$BR$BR
+so
+\[\int \frac{\sqrt{ x^2-$a2}}{x}dx =\frac{1}{$a}\sec^{-1}\left(\frac{x}{$a}\right)+C\]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub26.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub26.pg
new file mode 100644
index 0000000000..8d6fd0591f
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub26.pg
@@ -0,0 +1,178 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('26')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("-sqrt{x^2-$a2}/{x}+ln(abs({x}+sqrt{x^2-$a2}))")->with(limits => [$a+1,$a+2]);
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{\sqrt{ x^2-$a2}}{x^2}dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the secant substitution. \[x = {$a}\sec\theta\]
+
+$BR$BR
+We are motivated by the trigonometric identity
+\[\sec^2\theta-1=\tan^2\theta.\]
+With the substitution \(x = {$a}\sec\theta\), \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}={$a}\tan\theta\) for \(x>{$a}\), where \(0\le \theta<\pi/2\) and \(\sqrt{x^2-{$a2}}=\sqrt{{$a2}\sec^2\theta-{$a2}}=-{$a}\tan\theta\) for \(x<-{$a}\), where \(\pi/2<\theta\le\pi\).
+Note that \(\sec\theta=\frac{x}{$a}\), and \(\sin\theta=\frac{\sqrt{x^2-$a2}}{x}\). To see this, label a right triangle so that the secant is \(x/$a\). We will have the adjacent side of length \($a\), and the hypotenuse with length \(x\), so the opposite side has length \(\sqrt{x^2-$a2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sec\theta\]
+\[dx = {$a}\sec\theta\tan\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{\sqrt{ x^2-$a2}}{x^2}dx=
+\int {$a}\sec\theta\tan\theta\frac{\sqrt{{$a2}\sec^2\theta - {$a2}}}{{$a2}\sec^2\theta} \; d\theta\]
+\[=\int \frac{\sin^2\theta}{\cos\theta} \; d\theta\]
+
+$BR$BR
+Since this integral is the product of sines and cosines and the cosine is raised to an odd power, we use a sine substitution.
+
+$BR$BR
+Let \(u=\sin\theta\), then \(du=\cos\theta d\theta.\)
+
+$BR$BR
+\[\int \frac{\sin^2\theta}{\cos\theta} \; d\theta\]
+\[=\int \frac{\sin^2\theta\cos\theta}{\cos^2\theta} \; d\theta\]
+\[=\int \frac{\sin^2\theta\cos\theta}{1-\sin^2\theta} \; d\theta\]
+\[=\int \frac{u^2}{1-u^2} \; du\]
+
+$BR$BR
+We use a partial fractions decomposition:
+\[\int \frac{u^2}{1-u^2} \; du\]
+\[=\int\left(-1-\frac{1}{2(u-1)}+\frac{1}{2(u+1)}\right)du\]
+\[=-u+\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|+C\]
+
+$BR$BR
+Substituting back in terms of \(\theta\):
+\[-u+\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|+C\]
+\[=-\sin\theta+\frac{1}{2}\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|+C\]
+\[=-\sin\theta+\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|+C\]
+\[=-\sin\theta+\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|+C\]
+\[=-\sin\theta+\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C\]
+\[=-\sin\theta+\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+$BR$BR
+Substituting back in terms of \(x\):
+\[-\sin\theta+\ln\left|\sec\theta+\tan\theta\right|+C\]
+\[=-\frac{\sqrt{x^2-$a2}}{x}+\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+
+$BR$BR
+Note that
+\[-\frac{\sqrt{x^2-$a2}}{x}+\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+is equivalent to
+\[-\frac{\sqrt{x^2-$a2}}{x}+\ln\left|{x}+{\sqrt{x^2-$a2}}\right|+C\]
+with a different constant of integration since
+\[\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|=\ln\left|{x}+{\sqrt{x^2-$a2}}\right|-\ln\left|{$a}\right|\]
+and \(\ln\left|{$a}\right|\) is just a constant.
+
+$BR$BR
+so
+\[\int \frac{\sqrt{ x^2-$a2}}{x^2}dx =-\frac{\sqrt{x^2-$a2}}{x}+\ln\left|x+\sqrt{x^2-$a2}\right|+C\]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub28.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub28.pg
new file mode 100644
index 0000000000..35a549a449
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub28.pg
@@ -0,0 +1,245 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('8/20/11')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('2010')
+## AuthorText1('')
+## Section1('')
+## Problem1('28')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("x/2*sqrt(x^2-{$a2})+{$a2}/2*ln(abs({x}+sqrt{x^2-$a2}))")->with(limits => [$a+1,$a+2]);;
+
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{x^2 dx}{\sqrt{ x^2-$a2}} \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the secant substitution. \[x = {$a}\sec\theta\]
+
+$BR$BR
+We are motivated by the trigonometric identity
+\[\sec^2\theta-1=\tan^2\theta.\]
+With the substitution \(x = {$a}\sec\theta\), \(\sqrt{x^2-{$a2}}\)\(=\sqrt{{$a2}\sec^2\theta-{$a2}}\)\(={$a}\tan\theta\) for \(x>{$a}\), where \(0\le \theta<\pi/2\) and \(\sqrt{x^2-{$a2}}\)\(=\sqrt{{$a2}\sec^2\theta-{$a2}}\)
+\(=-{$a}\tan\theta\) for \(x<-{$a}\), where \(\pi/2<\theta\le\pi\).
+Note that \(\sec\theta=\frac{x}{$a}\), and \(\sin\theta=\frac{\sqrt{x^2-$a2}}{x}\). To see this, label a right triangle so that the secant is \(x/$a\). We will have the adjacent side of length \($a\), and the hypotenuse with length \(x\), so the opposite side has length \(\sqrt{x^2-$a2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sec\theta\]
+\[dx = {$a}\sec\theta\tan\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{x^2 dx}{\sqrt{ x^2-$a2}}=
+\int \frac{{$a3}\sec^3\theta\tan\theta}{\sqrt{{$a2}\sec^2\theta - {$a2}}} \; d\theta\]
+\[=\int {$a2}\sec^3\theta \; d\theta\]
+
+$BR
+From this point, we have several choices as to how to evaluate the integral of \(\sec^3\theta\).
+
+$BR$BR
+Method 1:
+
+$BR
+Look up the antiderivative of \(\int\sec^3\theta d\theta\). It is
+
+\[\int\sec^3\theta d\theta=\frac{1}{2}\sec\theta\tan\theta+\frac{1}{2}\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+$BR$BR
+so
+\[\int \frac{x^2 dx}{\sqrt{ x^2-$a2}}=
+\frac{$a2}{2}\frac{x}{$a}\frac{\sqrt{x^2-$a2}}{$a}+\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+\[=
+\frac{x}{2}\sqrt{x^2-$a2}+\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+
+
+$BR$BR
+Method 2:
+
+$BR
+Use the rule for substitution for products of sines and cosines. If sine is to an odd power, use a cosine substitution. If cosine is to an odd power, use a sine substitution. \(\sec^3\theta=\cos^{-3}\theta\), and -3 is an odd number, so we use a sine substitution.
+
+$BR
+Let \(u=\sin\theta\), then \(du=\cos\theta d\theta\) so
+\[\int $a2\sec^3\theta \; d\theta=$a2\int\frac{1}{\cos^3\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{\cos^4\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{(1-\sin^2\theta)^2}d\theta\]
+\[=$a2\int\frac{du}{(1-u^2)^2}du\]
+From here, we use a partial fractions decomposition:
+\[$a2\int\frac{du}{(1-u^2)^2}du=$a2\int\left[\frac{A}{(1-u)^2}+\frac{B}{1-u}+\frac{C}{(1+u)^2}+\frac{D}{1+u}\right]du\]
+
+$BR
+Solving for the constants \(A\), \(B\), \(C\) and \(D\) we find that \(A=B=C=D=\frac{1}{4}\).
+
+$BR$BR
+\[\int $a2\sec^3\theta \; d\theta=\frac{$a2}{4}\int\frac{1}{(1-u)^2}+\frac{1}{1-u}+\frac{1}{(1+u)^2}+\frac{1}{1+u}du \]
+\[=\frac{$a2}{4}\left(\frac{1}{1-u}-\ln|1-u|-\frac{1}{1+u}+\ln|1+u|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2u}{1-u^2}+\ln\left|\frac{1+u}{1-u}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{1-\sin^2\theta}+\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{\cos^2\theta}+\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(2\sec\theta\tan\theta+\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln|\sec\theta+\tan\theta|+C \]
+
+$BR
+Substituting back in terms of \(x\) yields:
+\[\frac{$a2}{2}\frac{x}{$a}\frac{\sqrt{x^2-$a2}}{$a}+\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+
+Simplifying:
+\[
+\frac{x}{2}\sqrt{x^2-$a2}+\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+
+$BR$BR
+Method 3:
+
+$BR
+Use the secant reduction formula. The secant reduction formula is given by
+\[\int \sec^n\theta d\theta=\frac{1}{n-1}\tan\theta\sec^{n-2}\theta+\frac{n-2}{n-1}\int\sec^{n-2}\theta d\theta.\]
+
+$BR$BR
+so
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+
+$BR$BR
+We can evaluate \(\int\sec\theta d\theta\) by looking the antiderivative up in a table (\(\int\sec\theta d\theta=\ln|\sec\theta+\tan\theta|+C\)) or we can derive this antiderivative using the substitution rule for products of sines and cosines. We have an odd power of the cosine, we use a sine substitution.
+
+$BR$BR
+\[\int\sec\theta d\theta=\int\frac{\cos\theta}{\cos^2\theta}d\theta\]
+\[=\int\frac{\cos\theta}{1-\sin^2\theta}d\theta\]
+\[=\int\frac{1}{1-u^2}du\]
+
+$BR
+Do a partial fractions decomposition.
+\[\int\frac{1}{1-u^2}du=\frac{1}{2}\int\left(\frac{1}{1-u}+\frac{1}{1+u}\right)du\]
+\[=\frac{1}{2}\left(-\ln|1-u|+\ln|1+u|\right)+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|+C\]
+\[=\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C\]
+\[=\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+so \[\int\sec\theta d\theta=\ln\left|\sec\theta+\tan\theta\right|+C\] and
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C.\]
+
+$BR$BR
+Substituting back in terms of \(\theta\) yields:
+\[\frac{$a2}{2}\frac{x}{$a}\frac{\sqrt{x^2-$a2}}{$a}+\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+
+Simplifying:
+\[
+\frac{x}{2}\sqrt{x^2-$a2}+\frac{$a2}{2}\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+
+$BR$BR
+Note that
+\[\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|+C\]
+is equivalent to
+\[\ln\left|{x}+{\sqrt{x^2-$a2}}\right|+C\]
+with a different constant of integration since
+\[\ln\left|\frac{x}{$a}+\frac{\sqrt{x^2-$a2}}{$a}\right|=\ln\left|{x}+{\sqrt{x^2-$a2}}\right|-\ln\left|{$a}\right|\]
+and \(\ln\left|{$a}\right|\) is just a constant.
+
+$BR$BR
+so
+\[\int \frac{x^2 dx}{\sqrt{ x^2-$a2}} =\frac{x}{2}\sqrt{x^2-$a2}+\ln\left|x+\sqrt{x^2-$a2}\right|+C\]
+
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub29.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub29.pg
new file mode 100644
index 0000000000..a5286d04d8
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub29.pg
@@ -0,0 +1,139 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('8/20/11')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('2010')
+## AuthorText1('')
+## Section1('')
+## Problem1('29')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+$a4_3 = 3*$a4;
+$a2_5 = 5*$a2;
+
+$funct = FormulaUpToConstant("sqrt(x^2-{$a2})/x/{$a2}")->with(limits => [$a+1,$a+2]);
+###################################
+# Create link to applet
+###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{sec});
+ $applet->initialState(qq{sec});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{ dx}{x^2\sqrt{ x^2-$a2}} \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+ANS( $funct->cmp());
+##################################
+Context()->texStrings;
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the secant substitution. \[x = {$a}\sec\theta\]
+
+$BR$BR
+We are motivated by the trigonometric identity
+\[\sec^2\theta-1=\tan^2\theta.\]
+With the substitution \(x = {$a}\sec\theta\), \(\sqrt{x^2-{$a2}}\)\(=\sqrt{{$a2}\sec^2\theta-{$a2}}\)\(={$a}\tan\theta\) for \(x>{$a}\), where \(0\le \theta<\pi/2\) and \(\sqrt{x^2-{$a2}}\)\(=\sqrt{{$a2}\sec^2\theta-{$a2}}\)
+\(=-{$a}\tan\theta\) for \(x<-{$a}\), where \(\pi/2<\theta\le\pi\).
+Note that \(\sec\theta=\frac{x}{$a}\), and \(\sin\theta=\frac{\sqrt{x^2-$a2}}{x}\). To see this, label a right triangle so that the secant is \(x/$a\). We will have the adjacent side of length \($a\), and the hypotenuse with length \(x\), so the opposite side has length \(\sqrt{x^2-$a2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\sec\theta\]
+\[dx = {$a}\sec\theta\tan\theta \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{ dx}{x^2\sqrt{ x^2-$a2}}=
+\int \frac{{$a}\sec\theta\tan\theta}{{$a2}\sec^2\theta\sqrt{{$a2}\sec^2\theta - {$a2}}} \; d\theta\]
+\[=\int \frac{1}{{$a2}\sec\theta} \; d\theta\]
+\[=\frac{1}{$a2}\int \cos\theta \; d\theta\]
+\[=\frac{1}{$a2} \sin\theta+C\]
+
+$BR
+Substituting back in terms of \(x\) yields:
+\[\int \frac{ dx}{x^2\sqrt{ x^2-$a2}}=
+\frac{\sqrt{x^2-$a2}}{{$a2}x} +C\]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub3.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub3.pg
new file mode 100644
index 0000000000..e29d962ca7
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub3.pg
@@ -0,0 +1,153 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('3')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("-($a2+x^2)^(1/2)/x+ln((x+sqrt($a2+x^2))/$a)");
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+###################################
+# Main text
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{\sqrt{$a2 + x^2}}{x^2}\; dx \]
+$BR \{ans_rule( 60) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+So:
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+Therefore:
+\[\int \frac{\sqrt{$a2 + x^2}}{x^2} \;dx=
+\int \frac{\sqrt{$a2 + $a2\tan^2\theta}}{$a2\tan^2\theta}($a\sec^2\theta) \; d\theta\]
+\[=
+\int \frac{\sec^3\theta}{\tan^2\theta} \; d\theta\]
+\[=
+\int \frac{1}{\cos\theta\sin^2\theta} \; d\theta\]
+
+$BR$BR
+When we have an integrand which is the product of sines and cosines, we let \(u=\sin\theta\) if the cosine is raised to an odd power and let \(u=\cos\theta\) if the sine is raised to an odd power.
+
+Let \(u=\sin\theta\), then \(du=\cos\theta d\theta\).
+
+\[=
+\int \frac{1}{\cos\theta\sin^2\theta} \; d\theta
+=\int \frac{\cos\theta}{\cos^2\theta\sin^2\theta} \; d\theta\]
+\[=\int \frac{\cos\theta}{(1-\sin^2\theta)\sin^2\theta} \; d\theta
+=\int \frac{du}{(1-u^2)u^2} \]
+
+$BR$BR
+We apply a partial fractions decomposition at this stage and obtain:
+\[\int \frac{du}{(1-u^2)u^2}
+= \int \left(\frac{1}{2(1+u)}+\frac{1}{2(1-u)}+\frac{1}{u^2}\right) du\]
+\[=\frac{1}{2}\ln\left|1+u\right|-\frac{1}{2}\ln\left|{1-u}\right|-\frac{1}{u}+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|-\frac{1}{u}+C\]
+
+Since \(u=\sin\theta\),
+\[\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|-\frac{1}{u}+C
+=\frac{1}{2}\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|+\ln|{\sin\theta}|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|-\frac{1}{\sin\theta}+C\]
+\[=\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|-\frac{1}{\sin\theta}+C\]
+\[=\ln\left|\sec\theta+\tan\theta\right|-\frac{1}{\sin\theta}+C\]
+$BR$BR
+\[=\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|-\frac{\sqrt{$a2+x^2}}{x}+C\]
+$BR$BR
+Before proceeding to the method we can use to evaluate the integral of \(\sec^3\theta\), note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub4.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub4.pg
new file mode 100644
index 0000000000..bd5eeceb57
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub4.pg
@@ -0,0 +1,160 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('4')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("($a2+x^2)^(1/2)-$a*ln(($a+sqrt($a2+x^2))/x)");
+
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+###################################
+# Main text
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{\sqrt{$a2 + x^2}}{x}\; dx \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+#ANS(fun_cmp($ans, limits=>[$lend,$rend], mode=>"antider", vars=>"x"));
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+So:
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+Therefore:
+\[\int \frac{\sqrt{$a2 + x^2}}{x} \;dx=
+\int \frac{\sqrt{$a2 + $a2\tan^2\theta}}{$a\tan\theta}($a\sec^2\theta) \; d\theta\]
+\[=
+\int \frac{$a\sec^3\theta}{\tan\theta} \; d\theta\]
+\[=
+\int \frac{$a}{\cos^2\theta\sin\theta} \; d\theta\]
+
+$BR$BR
+When we have an integrand which is the product of sines and cosines, we let \(u=\sin\theta\) if the cosine is raised to an odd power and let \(u=\cos\theta\) if the sine is raised to an odd power.
+
+Let \(u=\cos\theta\), then \(du=-\sin\theta d\theta\).
+
+\[=
+\int \frac{$a}{\cos^2\theta\sin\theta} \; d\theta
+=\int \frac{$a\sin\theta}{\cos^2\theta\sin^2\theta} \; d\theta\]
+\[=$a\int \frac{\sin\theta}{(1-\cos^2\theta)\cos^2\theta} \; d\theta
+=-$a\int \frac{du}{(1-u^2)u^2} \]
+
+$BR$BR
+We apply a partial fractions decomposition at this stage and obtain:
+\[-$a\int \frac{du}{(1-u^2)u^2}
+= -$a\int \left(\frac{1}{2(1+u)}+\frac{1}{2(1-u)}+\frac{1}{u^2}\right) du\]
+\[=-\frac{$a}{2}\ln\left|1+u\right|+\frac{$a}{2}\ln\left|{1-u}\right|+\frac{$a}{u}+C\]
+\[=\frac{$a}{2}\ln\left|\frac{1-u}{1+u}\right|+\frac{$a}{u}+C\]
+
+Since \(u=\cos\theta\),
+\[\frac{$a}{2}\ln\left|\frac{1-u}{1+u}\right|+\frac{$a}{u}+C
+=\frac{$a}{2}\ln\left|\frac{1-\cos\theta}{1+\cos\theta}\right|+\frac{$a}{\cos\theta}+C\]
+\[=\frac{$a}{2}\ln\left|\frac{(1-\cos\theta)^2}{1-\cos^2\theta}\right|+\frac{$a}{\cos\theta}+C\]
+\[=$a\ln\left|\frac{1-\cos\theta}{\sin\theta}\right|+\frac{$a}{\cos\theta}+C\]
+\[=$a\ln\left|\csc\theta-\cot\theta\right|+$a\sec\theta+C\]
+$BR$BR
+\[=$a\ln\left|\frac{\sqrt{$a2+x^2}}{x}-\frac{$a}{x}\right|+\sqrt{$a2+x^2}+C\]
+$BR$BR
+Before proceeding to the method we can use to evaluate the integral of \(\sec^3\theta\), note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub5.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub5.pg
new file mode 100644
index 0000000000..4e71100769
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub5.pg
@@ -0,0 +1,150 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('5')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+
+$funct = FormulaUpToConstant("ln(abs(($a2+x^2)^(1/2)+x))");
+
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+###################################
+# Main text
+
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{dx}{\sqrt{$a2 + x^2}} \]
+$BR \{ans_rule( 50) \}
+
+
+END_TEXT
+
+
+$ans = $funct;
+
+ANS( $ans->cmp() );
+#ANS(fun_cmp($ans, limits=>[$lend,$rend], mode=>"antider", vars=>"x"));
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\tan(\theta)\]
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{dx}{\sqrt{$a2 + x^2}}=
+\int \frac{{$a}\sec^2\theta d\theta}{\sqrt{$a2 + $a2\tan^2\theta}}\]
+\[=
+\int \frac{{$a}\sec^2\theta d\theta}{$a\sec\theta}\]
+\[=
+\int \sec\theta d\theta\]
+
+$BR$BR
+\[=
+\ln\left| \sec\theta+\tan\theta\right|+C\]
+
+\[=\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+
+$BR$BR
+Notice that since \(\ln\left|\frac{a}{b}\right|=\ln|a|-\ln|b|\), so
+\(\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \) is equivalent to the solution \(\ln\left|\sqrt{$a2+x^2}+x\right|+C^\prime \). The \(-\ln|$a|\) is incorporated into the constant of integration.
+
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub6.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub6.pg
new file mode 100644
index 0000000000..6fc17d55c7
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub6.pg
@@ -0,0 +1,175 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('6')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("-1/($a)*ln(abs(($a2+x^2)^(1/2)/x+$a/x))");
+
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+
+###################################
+# Main text
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{dx}{x\sqrt{$a2 + x^2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\tan(\theta)\]
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{dx}{x\sqrt{$a2 + x^2}}=
+\int \frac{{$a}\sec^2\theta d\theta}{$a\tan\theta\sqrt{$a2 + $a2\tan^2\theta}}\]
+\[=
+\int \frac{\sec^2\theta d\theta}{$a\tan\theta\sec\theta}\]
+\[=
+\int \frac{\sec\theta d\theta}{$a\tan\theta}\]
+\[=
+\int \frac{1 }{$a\sin\theta}d\theta\]
+
+$BR$BR
+This is an odd power of the sine so we use a cosine substitution. Let
+\[u=\cos\theta\]
+then
+\[du=-\sin\theta d\theta\]
+\[
+\int \frac{1 }{$a\sin\theta}d\theta
+=\int \frac{\sin\theta }{$a\sin^2\theta}d\theta\]
+\[=\int \frac{\sin\theta }{$a(1-\cos^2\theta)}d\theta\]
+\[=-\frac{1}{$a}\int \frac{du }{1-u^2}\]
+
+$BR$BR
+We do a partial fractions decomposition:
+\[-\frac{1}{$a}\int \frac{du }{1-u^2}=-\frac{1}{2($a)}\int \frac{1}{1-u}+\frac{1}{1+u}du\]
+
+$BR$BR
+So
+\[-\frac{1}{2($a)}\int \frac{1}{1-u}+\frac{1}{1+u}du
+=\frac{1}{2($a)}\ln|1-u|-\frac{1}{2($a)}\ln|1+u|+C\]
+\[=\frac{1}{2($a)}\ln\left|\frac{1-u}{1+u}\right|+C\]
+
+$BR$BR
+Substituting back in
+\[\frac{1}{2($a)}\ln\left|\frac{1-u}{1+u}\right|+C\]
+\[=\frac{1}{2($a)}\ln\left|\frac{1-\cos\theta}{1+\cos\theta}\right|+C\]
+\[=\frac{1}{2($a)}\ln\left|\frac{(1-\cos\theta)^2}{1-\cos^2\theta}\right|+C\]
+\[=\frac{1}{2($a)}\ln\left|\frac{(1-\cos\theta)^2}{\sin^2\theta}\right|+C\]
+\[=\frac{1}{$a}\ln\left|\frac{1-\cos\theta}{\sin\theta}\right|+C\]
+\[=\frac{1}{$a}\ln\left|\csc\theta-\cot\theta\right|+C\]
+
+
+
+$BR$BR
+\[\frac{1}{$a}\ln\left|\csc\theta-\cot\theta\right|+C=\frac{1}{$a}\ln\left|\frac{\sqrt{$a2+x^2}}{x}-\frac{$a}{x}\right|+C\]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub7.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub7.pg
new file mode 100644
index 0000000000..0c4851050b
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub7.pg
@@ -0,0 +1,246 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('7')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("1/2*x*($a2+x^2)^(1/2)-1/2*($a2)*ln(x+($a2+x^2)^(1/2))");
+
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Geogebra applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+###################################
+# Main text
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{x^2 dx}{\sqrt{$a2 + x^2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+In this problem, we have an expression of the form \(\sqrt{a^2+u^2}\)
+where \(a=$a\), and \(u=x\), so we use the tangent substitution,
+\[x = {$a}\tan(\theta)\] and we refer to the middle triangle.
+
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\tan(\theta)\]
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{x^2 dx}{\sqrt{$a2 + x^2}}=
+\int \frac{{$a3}\tan^2\theta\sec^2\theta }{\sqrt{$a2 + $a2\tan^2\theta}}\;d\theta\]
+\[=
+\int \frac{{$a3}\tan^2\theta\sec^2\theta }{{$a}\sec\theta}\;d\theta\]
+\[=
+\int {$a2}\tan^2\theta\sec\theta \;d\theta\]
+\[=
+\int {$a2}(\sec^2\theta-1)\sec\theta \;d\theta\]
+\[=
+\int {$a2}(\sec^3\theta-\sec\theta) \;d\theta\]
+
+$BR
+From this point, we have several choices as to how to evaluate the integral of \(\sec^3\theta\).
+
+$BR$BR
+Method 1:
+
+$BR
+Look up the antiderivative of \(\int\sec^3\theta d\theta\). It is
+
+\[\int\sec^3\theta d\theta=\frac{1}{2}\sec\theta\tan\theta+\frac{1}{2}\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+$BR$BR
+so
+\[ \int \sqrt{$a2 + x^2}\; dx=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C \]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[\frac{$a2}{2}\frac{\sqrt{$a2+x^2}}{$a}\frac{x}{$a}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+Simplifying:
+\[\frac{x\sqrt{$a2+x^2}}{2}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+
+
+$BR$BR
+Method 2:
+
+$BR
+Use the rule for substitution for products of sines and cosines. If sine is to an odd power, use a cosine substitution. If cosine is to an odd power, use a sine substitution. \(\sec^3\theta=\cos^{-3}\theta\), and -3 is an odd number, so we use a sine substitution.
+
+$BR
+Let \(u=\sin\theta\), then \(du=\cos\theta d\theta\) so
+\[\int $a2\sec^3\theta \; d\theta=$a2\int\frac{1}{\cos^3\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{\cos^4\theta}d\theta\]
+\[=$a2\int\frac{\cos\theta}{(1-\sin^2\theta)^2}d\theta\]
+\[=$a2\int\frac{du}{(1-u^2)^2}du\]
+From here, we use a partial fractions decomposition:
+\[$a2\int\frac{du}{(1-u^2)^2}du=$a2\int\left[\frac{A}{(1-u)^2}+\frac{B}{1-u}+\frac{C}{(1+u)^2}+\frac{D}{1+u}\right]du\]
+
+$BR
+Solving for the constants \(A\), \(B\), \(C\) and \(D\) we find that \(A=B=C=D=\frac{1}{4}\).
+
+$BR$BR
+\[\int $a2\sec^3\theta \; d\theta=\frac{$a2}{4}\int\frac{1}{(1-u)^2}+\frac{1}{1-u}+\frac{1}{(1+u)^2}+\frac{1}{1+u}du \]
+\[=\frac{$a2}{4}\left(\frac{1}{1-u}-\ln|1-u|-\frac{1}{1+u}+\ln|1+u|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2u}{1-u^2}+\ln\left|\frac{1+u}{1-u}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{1-\sin^2\theta}+\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(\frac{2\sin\theta}{\cos^2\theta}+\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{4}\left(2\sec\theta\tan\theta+\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|\right)+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C \]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln|\sec\theta+\tan\theta|+C \]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[\frac{$a2}{2}\frac{\sqrt{$a2+x^2}}{$a}\frac{x}{$a}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+Simplifying:
+\[\frac{x\sqrt{$a2+x^2}}{2}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C \]
+
+$BR$BR
+Method 3:
+
+$BR
+Use the secant reduction formula. The secant reduction formula is given by
+\[\int \sec^n\theta d\theta=\frac{1}{n-1}\tan\theta\sec^{n-2}\theta+\frac{n-2}{n-1}\int\sec^{n-2}\theta d\theta.\]
+
+$BR$BR
+so
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+
+$BR$BR
+We can evaluate \(\int\sec\theta d\theta\) by looking the antiderivative up in a table (\(\int\sec\theta d\theta=\ln|\sec\theta+\tan\theta|+C\)) or we can derive this antiderivative using the substitution rule for products of sines and cosines. We have an odd power of the cosine, we use a sine substitution.
+
+$BR$BR
+\[\int\sec\theta d\theta=\int\frac{\cos\theta}{\cos^2\theta}d\theta\]
+\[=\int\frac{\cos\theta}{1-\sin^2\theta}d\theta\]
+\[=\int\frac{1}{1-u^2}du\]
+
+$BR
+Do a partial fractions decomposition.
+\[\int\frac{1}{1-u^2}du=\frac{1}{2}\int\left(\frac{1}{1-u}+\frac{1}{1+u}\right)du\]
+\[=\frac{1}{2}\left(-\ln|1-u|+\ln|1+u|\right)+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+u}{1-u}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{1+\sin\theta}{1-\sin\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{1-\sin^2\theta}\right|+C\]
+\[=\frac{1}{2}\ln\left|\frac{(1+\sin\theta)^2}{\cos^2\theta}\right|+C\]
+\[=\ln\left|\frac{1+\sin\theta}{\cos\theta}\right|+C\]
+\[=\ln\left|\sec\theta+\tan\theta\right|+C\]
+
+so \[\int\sec\theta d\theta=\ln\left|\sec\theta+\tan\theta\right|+C\] and
+\[$a2\int\sec^3\theta d\theta = \frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\int\sec\theta d\theta.\]
+\[=\frac{$a2}{2}\sec\theta\tan\theta+\frac{$a2}{2}\ln\left|\sec\theta+\tan\theta\right|+C.\]
+
+$BR$BR
+Putting this all together, we have that
+\[=
+\int {$a2}(\sec^3\theta-\sec\theta) \;d\theta\]
+\[=
+\frac{x\sqrt{$a2+x^2}}{2}+\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|-{$a2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C\]
+\[=
+\frac{x\sqrt{$a2+x^2}}{2}-\frac{$a2}{2}\ln\left|\frac{\sqrt{$a2+x^2}}{$a}+\frac{x}{$a}\right|+C
+\]
+
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub8.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub8.pg
new file mode 100644
index 0000000000..324a74f3c3
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub8.pg
@@ -0,0 +1,164 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('8')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("-($a2+x^2)^(1/2)/{x*{$a2}}");
+
+
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+###################################
+# Main text
+
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{ dx}{x^2\sqrt{$a2 + x^2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+$ans = $funct;
+ANS( $funct->cmp() );
+#ANS(fun_cmp($ans, limits=>[$lend,$rend], mode=>"antider", vars=>"x"));
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->normalStrings;
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\tan(\theta)\]
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{ dx}{x^2\sqrt{$a2 + x^2}}=
+\int \frac{{$a}\sec^2\theta }{{$a2}\tan^2\theta\sqrt{$a2 + $a2\tan^2\theta}}\;d\theta\]
+\[=
+\int \frac{{$a}\sec^2\theta }{{$a3}\tan^2\theta\sec\theta}\;d\theta\]
+\[=
+\int \frac{\sec\theta }{{$a2}\tan^2\theta}\;d\theta\]
+\[=
+\int \frac{\cos\theta }{{$a2}\sin^2\theta}\;d\theta\]
+
+$BR
+We have an odd power of the cosine, so we use a sine substitution.
+$BR
+Let \(u=\sin\theta\), then \(du=\cos\theta d\theta\).
+\[
+\int \frac{\cos\theta }{{$a2}\sin^2\theta}\;d\theta
+=\int \frac{du }{{$a2}u^2}\]
+\[=-\frac{1}{{$a2}u}+C
+\]
+\[=-\frac{1}{{$a2}\sin\theta}+C
+\]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[-\frac{1}{{$a2}\sin\theta}+C=
+-\frac{\sqrt{$a2+x^2}}{{$a2} x}+C \]
+so
+\[ \int \frac{ dx}{x^2\sqrt{$a2 + x^2}}=-\frac{\sqrt{$a2+x^2}}{{$a2} x}+C \]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub9.pg b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub9.pg
new file mode 100644
index 0000000000..cb1d93f4e4
--- /dev/null
+++ b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigSub9.pg
@@ -0,0 +1,148 @@
+##DESCRIPTION
+##KEYWORDS('integrals', 'trigonometric','substitution')
+
+## DBsubject('Calculus')
+## DBchapter('Techniques of Integration')
+## DBsection('Trigonometric Substitution')
+## Date('2/22/13')
+## Author('Barbara Margolius')
+## Institution('Cleveland State University')
+## TitleText1('')
+## EditionText1('')
+## AuthorText1('')
+## Section1('')
+## Problem1('9')
+##ENDDESCRIPTION
+
+############################################################################
+## development of this problem is supported in part by the National Science#
+## Foundation under the grant DUE-0941388. #
+############################################################################
+
+DOCUMENT(); # This should be the first executable line in the problem.
+
+loadMacros(
+ "PGstandard.pl",
+ "AppletObjects.pl",
+ "MathObjects.pl",
+ "parserFormulaUpToConstant.pl",
+);
+
+TEXT(beginproblem());
+$showPartialCorrectAnswers = 1;
+
+$a = random(2,9,1);
+
+$a2 = $a*$a;
+$a3 = $a2*$a;
+$a4 = $a2*$a2;
+
+$funct = FormulaUpToConstant("x/({$a2}*($a2+x^2)^(1/2))");
+ ###################################
+ # Create link to applet
+ ###################################
+ $appletName = "trigSubWW";
+ $applet = FlashApplet(
+ codebase => findAppletCodebase("$appletName.swf"),
+ appletName => $appletName,
+ appletId => $appletName,
+ setStateAlias => 'setXML',
+ getStateAlias => 'getXML',
+ setConfigAlias => 'setConfig',
+ maxInitializationAttempts => 10, # number of attempts to initialize applet
+ #answerBoxAlias => 'answerBox',
+ height => '550',
+ width => '595',
+ bgcolor => '#e8e8e8',
+ debugMode => 0,
+ );
+
+###################################
+# Configure applet
+###################################
+
+ $applet->configuration(qq{tan});
+ $applet->initialState(qq{tan});
+
+##################################
+# Setup Flash applet -- this does not need to be changed
+###################################
+
+TEXT(MODES(TeX=>"", HTML=><<'END_TEXT'));
+
+END_TEXT
+
+###################################
+# Main text
+
+BEGIN_TEXT
+
+Evaluate the indefinite integral.
+$BR \[ \int \frac{ dx}{($a2 + x^2)^{3/2}} \]
+$BR \{ans_rule( 50) \}
+
+END_TEXT
+
+ANS( $funct->cmp() );
+##################################
+Context()->texStrings;
+
+###################################
+TEXT($PAR, $BBOLD, $BITALIC, "Hi $studentLogin, If you don't get this in 5 tries I'll give you a hint with an applet to help you out.", $EITALIC, $EBOLD, $PAR);
+
+$im = image( "trigsub.png",
+width=>486, height=>306, tex_size=>900 );
+
+$showHint=5;
+Context()->normalStrings;
+TEXT(hint(
+ $PAR, MODES(TeX=>'object code', HTML=>$applet->insertAll(
+ debug =>0, reinitialize_button => 0, includeAnswerBox=>0,
+ ), TeX=>$im),"Follow the step-by-step questions in the hint in the online version of this problem."
+));
+
+##################################
+Context()->texStrings;
+SOLUTION(EV3(<<'END_SOLUTION'));
+$BBOLD Solution: $EBOLD $PAR
+To evaluate this integral use a trigonometric substitution. For this problem use the \(\tan\) substitution. \[x = {$a}\tan(\theta)\]
+
+$BR$BR
+Before proceeding note that \(\tan\theta=\frac{x}{$a}\), and \(\sec\theta=\frac{\sqrt{$a2+x^2}}{$a}\). To see this, label a right triangle so that the tangent is \(x/$a\). We will have the opposite side with length \(x\), and the adjacent side with length \($a\), so the hypotenuse has length \(\sqrt{$a2+x^2}\).
+
+$BR$BR
+With the substitution \[x = {$a}\tan(\theta)\]
+\[dx = {$a}\sec^2(\theta) \; d\theta\]
+$BR$BR
+Therefore:
+\[\int \frac{ dx}{($a2 + x^2)^{3/2}}=
+\int \frac{{$a}\sec^2\theta }{($a2 + $a2\tan^2\theta)^{3/2}}\;d\theta\]
+\[=
+\int \frac{{$a}\sec^2\theta }{$a3\sec^3\theta}\;d\theta\]
+\[=
+\int \frac{1 }{$a2\sec\theta}\;d\theta\]
+\[=
+\frac{1 }{$a2}\int \cos\theta\;d\theta\]
+\[=
+\frac{1 }{$a2} \sin\theta+C\]
+
+$BR
+Substituting back in terms of \(\theta\) yields:
+\[=
+\frac{1 }{$a2} \sin\theta+C
+=
+\frac{ x}{{$a2}\sqrt{$a2+x^2} } +C \]
+so
+\[ \int \frac{ dx}{($a2 + x^2)^{3/2}}=\frac{ x}{{$a2}\sqrt{$a2+x^2} } +C \]
+
+END_SOLUTION
+Context()->normalStrings;
+##################################
+
+COMMENT('MathObject version. Uses Flash applet.');
+
+ENDDOCUMENT(); # This should be the last executable line in the problem.
\ No newline at end of file
diff --git a/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigsub.png b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigsub.png
new file mode 100644
index 0000000000..6d66201d5f
Binary files /dev/null and b/OpenProblemLibrary/CSUOhio/calculus/trigonometric_substitution/trigsub.png differ
diff --git a/OpenProblemLibrary/CSUOhio/htdocs/applets/trigSubWW.swf b/OpenProblemLibrary/CSUOhio/htdocs/applets/trigSubWW.swf
index b22e39bd9d..241ff010c6 100644
Binary files a/OpenProblemLibrary/CSUOhio/htdocs/applets/trigSubWW.swf and b/OpenProblemLibrary/CSUOhio/htdocs/applets/trigSubWW.swf differ