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How tightly tuned are the synaptic and intrinsic properties 
that give rise to neuron and circuit function? Experimental 
work shows that these properties vary considerably across 
identified neurons in different animals. Given this variability 
in experimental data, this review describes some of the 
complications of building computational models to aid in 
understanding how system dynamics arise from the interaction 
of system components. We argue that instead of trying to build 
a single model that captures the generic behavior of a neuron 
or circuit, it is beneficial to construct a population of models 
that captures the behavior of the population that provided 
the experimental data. Studying a population of models 
with different underlying structure and similar behaviors 
provides opportunities to discover unsuspected compensatory 
mechanisms that contribute to neuron and network function.

Almost 60 years ago, Hodgkin and Huxley constructed their classic  
model of the action potential, starting from voltage-clamp mea
surements in the squid giant axon1. Hodgkin and Huxley’s work 
established a paradigm: to describe the contribution of each con-
ductance to the dynamics of a neuron or network, the investigator  
(i) isolates each conductance found in the cell and determines 
its maximal conductance and activation/inactivation properties,  
(ii) assembles the conductances with the cell’s capacitance, and then 
(iii) numerically integrates the resulting differential equations to 
produce traces of voltage versus time. When a model is successfully 
constructed, then the effects of changing any of the parameters 
on the ensuing dynamics can be easily studied. This procedure is 
deceptively simple in concept, and many investigators have tried to 
use this paradigm to construct models that capture the dynamics of 
a large variety of neurons2–4.

Despite the apparent simplicity of the Hodgkin-Huxley program, its 
implementation is fraught with a number of difficulties, many of which 
have been either ignored or minimized as investigators have tried to 
build models that describe the behavior of the neurons they study. 
In this review, we will discuss some of these issues and then present 
a new paradigm, in which large populations of model neurons are 
constructed. This newer approach solves some, but not all, of the prob-
lems encountered in the past when trying to construct conductance- 
based models of neurons.

Problem 1: biological data are variable
Even genetically identical single-cell organisms display variability 
in their responses to environmental stimuli and in the expression 
of mRNA and protein5. This can be attributed to the accrued influ-
ence of the stochastic nature of every molecular biological process6 as 
well as activity-dependent and environmentally influenced changes 
in channel, neurotransmitter or receptor expression7. Consequently, 
genetically identical animals, be they Caenorhabditis elegans, flies or 
human identical twins, are nonetheless individuals, who often gen-
erate substantially different behaviors in response to similar condi-
tions. If we were magically able to look into each of those nervous 
systems and measure the numbers and properties of the synapses, ion 
channels, receptors and enzymes in all of the individuals across the 
population, we would find real biological variation in most, if not all, 
of these parameters. And, presumably, this variation would be even 
larger in genetically diverse natural populations.

How consistent is a given behavior across individuals of the same 
species? Some of the most stereotyped behaviors are those produced 
by central pattern generators, networks that produce rhythmic motor 
patterns8. The pyloric rhythm of the crustacean stomatogastric gan-
glion is highly robust and reliable. One study examined the range of 
pyloric motor patterns of the lobster stomatogastric ganglion recorded 
from 99 preparations under the same conditions (Fig. 1)9. Although 
each of these animals produced characteristic triphasic rhythms in 
which the lateral pyloric (LP), pyloric (PY) and pyloric dilator (PD) 
neurons fired in sequence (Fig. 1a,b), the frequency varied over a 
twofold range (Fig. 1c). Although the phase relationships were, on 
average, constant as a function of frequency across the population9, 
individual animals showed variability in the extent to which they were 
phase constant over a range of frequencies. Additionally, the number 
of LP and PD neuron spikes per burst varied two- to threefold over 
the population9.

A series of recent studies has shown that individual stomato-
gastric ganglion neurons of the same cell type show considerable 
neuron-to-neuron variability (characteristically two- to sixfold) in 
the mRNA expression for ion-channel genes and in their maximal 
conductances measured in voltage clamp10–15. Interestingly, there 
are significant correlations in the expression of some of these ion 
channels12–14 and between some of these underlying parameters of 
the neurons in the pyloric network and properties of pyloric motor 
patterns themselves10.

The variability across animals seen in the stomatogastric ganglion 
data is similar to that seen in many other preparations16,17, although 
this is often hidden when data are presented as means and standard 
errors. This sort of variability will be familiar to any experimental 
biologist, but until recently, most investigators in neuroscience have 

Multiple models to capture the variability  
in biological neurons and networks
Eve Marder1,2 & Adam L Taylor1,2

1Biology Department, Brandeis University, Waltham, Massachusetts, USA. 2Volen 
Center, Brandeis University, Waltham, Massachusetts, USA. Correspondence 
should be addressed to E.M. (marder@brandeis.edu).

Published online 26 January 2011; doi:10.1038/nn.2735

Co m p u tat i o n  a n d  S y st e m s
	 p e r s p e c t i v e

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.

http://www.nature.com/natureneuroscience/
http://www.nature.com/doifinder/10.1038/nn.2735


134	 VOLUME 14 | NUMBER 2 | FEBRUARY 2011  nature neuroscience

p e r s p e c t i v e

used a single model to describe the ‘typical’ behavior of the system  
being studied. Obviously, a single model will be unable to capture  
the variability of a natural population. Furthermore, neglecting biolog-
ical variability has several other deleterious effects, described below.  
Of course, there is a component of measurement error in all experi-
mental studies, and it can be difficult in many cases to estimate the 
extent to which it contributes to apparent variability.

Problem 2: should one use ‘best’ data or mean data?
It is not uncommon for an electrophysiologist to measure the prop-
erties of one voltage-dependent conductance in 10–20 neurons, a 
second conductance in another 10–20 neurons, and so on. What 
values should be fit to describe the conductance in a model? In the 
past, some investigators chose their fastest and largest currents to fit, 
as most voltage-clamp measurement errors would tend to make the 
currents appear smaller and slower than they are. Alternatively, some 
investigators were uncomfortable with using a single measurement 
and instead fit the mean currents. Both decisions are problematic. The 
first is problematic because it ignores the possibility of correlated vari-
ability between measured quantities. If two maximal conductances 
are variable but negatively correlated, then making a model that has 
large values of both will not yield a realistic model. The second is 
troublesome because it makes the tacit assumption that a neuron with 

all parameters equal to their mean values would be typical. But in fact 
a neuron with mean parameters can fail to have properties shared by 
all of the neurons in the population18.

To illustrate these ideas, one can imagine a population of neurons 
with a given target behavior, with each neuron described by two 
parameters (Fig. 2). One can then consider the properties of a model 
with mean parameters or with ‘best’ (that is, largest) parameters. In 
some cases, the mean neuron will fall within the regime of typical 
neuron behavior (Fig. 2a). Even in such a case, however, a neuron that 
had the largest observed values for each parameter would not neces-
sarily be representative of the population (Fig. 2a). In other cases, the 
mean neuron may not be a typical neuron but rather may lie outside 
the population itself (Fig. 2b)18. In still other cases, the mean may 
be a typical neuron, but the ‘best’ model may fall at the boundary of 
the population (Fig. 2c) or outside of the population of the typical 
neurons (Fig. 2d). In more fanciful but still possible scenarios, the 
mean neuron may not be a typical neuron at all (Fig. 2e,f).

Even in well-studied systems, there are some conductances that 
have not been experimentally well characterized. Some of the common 
tactics for dealing with this are (i) to use the properties of the same 
conductance measured in a different system, or (ii) to incorporate any 
available data into a model of the conductance, and then to adjust the 
unknown parameters such that the emergent behavior of the model 
is reasonable. Because models are never made with full knowledge of 
all the relevant parameters, good biological intuition is invaluable in 
guiding decisions about how to handle or ignore missing data.

That insights into how systems of neurons, conductances or mol-
ecules work may not necessarily come from studying the properties 
of system components one by one is important, not only for modelers, 
but for experimentalists wishing to understand how system perform-
ance depends on the interaction of the system’s components10.

Problem 3: what behavior to model?
One begins any modeling effort with a long list of behaviors one would 
like a model to capture. But as one realizes how difficult it is to build a 
model that exhibits all of these behaviors, inevitably one pares down 
the list to those that are most interesting, at least at that moment.

Even the Hodgkin-Huxley model1 is only a good description of the 
squid axon within a limited domain. Although it explains many fea-
tures of the action potential (including making an accurate quantitative 
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Figure 1  The pyloric rhythm has a variable period but phase relationships 
are held invariant. (a) Extracellular recordings from a slow pyloric rhythm 
showing its characteristic repeating pattern of PD, LP and PY neuron 
activity (on the LP and PY traces, only the largest spikes correspond 
to spikes from the LP and PY neurons respectively). Arrows indicate 
measurements made on each pyloric cycle. Gray arrow indicates pyloric 
period, measured as the latency from the onset of one PD neuron burst 
to the next. Colored arrows indicate latencies measured from the onset 
of the PD neuron burst. The dark blue arrow indicates the latency of PD 
neuron offset. The red arrow indicates the latency of LP neuron onset. 
The light blue arrow indicates the latency of LP neuron offset. The purple 
arrow indicates the latency of PY neuron onset. The pink arrow indicates 
the latency of PY neuron offset. These latencies were then divided by 
the period to give the phase relationships shown in c. (b) Extracellular 
recordings from a fast pyloric rhythm. Data are presented as in a.  
(c) Phase of burst onset/offset versus pyloric period. Each point represents 
one of 99 animals. Period is a mean period calculated over many cycles, 
as are phases. Dark blue points, phase of PD neuron offset; red points, 
phase of LP neuron onset; light blue points, phase of LP neuron offset; 
purple points, phase of PY neuron onset; pink points, phase of PY neuron 
offset. The histograms on top of the plot show the distribution of pyloric 
rhythm periods. The histograms on the right show the distributions of each 
of the phases, coded in color as for the data points. Adapted from ref. 9.
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prediction of its velocity), it fails to exhibit the spike-frequency adap-
tation seen in recordings from real squid axons19. In theory, of course, 
it should be possible to build models that capture all of a neuron’s  
behaviors, but given the variability across individuals, this may require 
constructing a model for each individual neuron.

A population of models can mimic biological variability
To capture the range of pyloric rhythm behaviors (Fig. 1), a popula-
tion of more than 20,000,000 model networks was created20 and then 

searched for those that produced outputs that fit within the ranges of the 
biological data. This process produced about 400,000 pyloric-network 
models that varied considerably in the maximal conductances of the 
intrinsic and synaptic currents. This variability is similar to the ranges 
seen in experimental measurements of these same properties10–15,21. 
One important part of this process was that it sidestepped any potential 
complications of choosing ‘typical’ data or concerns associated with 
the use of mean data to constrain the model. The resultant population 
of models can be studied to determine how the intrinsic and synaptic 
currents in the models contribute to its behaviors22.

Degeneracy: multiple solutions produce similar outputs
An increasing number of studies have shown that the relationship 
between the parameters of a model and its output can be degenerate; 
that is, there can be multiple sets of parameters that give rise to the same 
(or similar) behaviors5,11,18,20,23–29. (Note that we are using this term 
in the biological but not the mathematical sense5; Fig. 3.) Figure 3a,b  
shows two model LP neurons, drawn from a large population, that are 
producing very similar firing patterns in response to rhythmic inhibi-
tion27. Nonetheless, the maximal conductances in these two models 
are quite different (Fig. 3c). For example, the axonal Na+ conductance 
is large in model A and small in model B, while the reverse is true of 
the axonal leak conductance27.

There are many possible relationships between system parameters 
and system output (Fig. 4). If the spike rate of a neuron is a function of 
one of its maximal conductances, and the spike rate has a range of tol-
erated values, this implies a range of acceptable values of the maximal 
conductance (Fig. 4a). The shallower the slope of this relationship, 
the wider the range of acceptable values of the maximal conduct-
ance (Fig. 4b). In the limit of a zero slope, the maximal conductance 
can take on any value (Fig. 4c). This is one kind of degeneracy: an 
unconstrained parameter that does not contribute to the behavior of 
the studied system.

If multiple parameters affect a given neuronal output, another form 
of degeneracy is possible (Fig. 4d)30. In this case, each firing rate can 
be achieved by a large range of parameters, and one could observe 
constant spike rate in a population despite high variability of both 
conductance 1 and conductance 2 as long as they compensate for 
one another. For the functional relationship illustrated (Fig. 4d), this 
might be apparent as a strong positive correlation between the two 
conductances when measured across the population. (This form of 
degeneracy is not mutually exclusive of the zero-slope degeneracy 
discussed above.) Likewise, constant function in a population can 
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Figure 2  Example distributions of neuron parameters for neurons that all 
share a common behavior or set of behaviors. In all panels, dark blue dots 
represent individual neurons, the red cross represents the mean of the 
distribution and the light blue triangle represents the hypothetical neuron 
with all parameters set to their largest, or ‘best’, values. (a) A population 
with statistically independent parameters. (b) A population in which 
the mean is not representative. (c) A population with a strong positive 
correlation between parameters. (d) A population with a strong negative 
correlation between parameters. (e) A population with two very different 
subpopulations. (f) A population with a donut-shaped distribution.
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Figure 3  Model LP neurons with similar behavior but substantially 
different parameters. (a,b) Traces from two randomly generated model LP 
neurons receiving ongoing pyloric-like synaptic input. (c) The parameters 
for the two models, which are quite different. Red and blue bars show 
the parameters of the model that generated the red/blue trace in a. For 
each parameter, a red and blue bar are superimposed, with their region of 
overlap shown as purple. Parameters are sorted by the absolute difference 
between them in the two models. g– parameters are maximal conductances 
of different currents, E parameters are reversal potentials, P

–
Ca is the 

maximal permeability of the Ca2+ current and V½,pr is the half-activation 
voltage of a modulatory inward current. Max, maximum; min, minimum. 
The model is described in ref. 27.
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arise from compensatory mechanisms that are seen as negative cor-
relations between processes that are important for system function16. 
Within an individual neuron or individual animal, alterations in one 
conductance (or other parameter) may produce little change in sys-
tem behavior if there are mechanisms that cause changes in another 
conductance that compensates for the first change.

Some of the most interesting examples of compensation come 
from studies of genetic knockouts of ion-channel genes that show 
little or no phenotype although acute blockade of the same channel 
does show strong effects16,21,31. Another example of compensation is 
seen in experiments in which the mRNA encoding the fast transient 
potassium current (IA) was overexpressed in single stomatogastric 
ganglion neurons, with no obvious change in function because it 
was accompanied by an increase in the hyperpolarization-activated 
inward current (Ih)15,32.

Robustness of degenerate solutions
The measured variability in synaptic and intrinsic conductances in 
individual animals with similar outputs10–13,17,21 argues that biologi-
cal nervous systems have degenerate solutions to producing similar 
behaviors5. The advantage of this is obvious: it is not necessary to 
specify the exact number of ion channels or receptors that each neuron 
should express, either during development or 
over the lifetime of the neuron and animal. 
Instead, ongoing activity-dependent rules of 
various kinds can be used to modify channel 
and receptor numbers and distributions to 
maintain target-circuit performance despite 
ongoing channel and receptor turnover33–37.

At the same time, it is clear that although 
there may be degenerate solutions to the 
production of a given circuit output, animals 
with these different solutions will not respond 
identically to all perturbations. Nonetheless, 
biological networks can be far more reliable 
in response to perturbations than might be 
expected38,39. This may indicate that the set 
of degenerate solutions found in a given bio-
logical population may be enriched for those 
with the ability to respond reliably to the 
normal environmental perturbations seen 

by animals39 but not necessarily included during model selection. 
Moreover, homeostatic and other compensatory mechanisms are 
likely to be continuously at work, allowing a variety of adaptations to 
environmental and activity perturbations7,14,40.

More global forms of sensitivity analysis
Sensitivity analysis is often used to determine how changes in one 
parameter influence a model’s behavior41–44. A population of models  
can illuminate other aspects of the relationship between parameters and 
behavior. In traditional sensitivity analysis, one takes a single model, var-
ies one parameter at a time, and examines how that changes the model’s  
output41–44. But with a large population of models, one can perform a 
more global sensitivity analysis, in which the variation in parameters, 
and the resulting variation in behavior, is described over the full popu-
lation. This was done in the LP neuron population described above27, 
and this generated a compact description of how strongly each param-
eter influenced each behavior of the model (Fig. 5). The take-home 
lesson from this study is that almost every behavior of the neuron arises 
from the contribution of many conductances, and that each behavior 
is determined by a different subset of the underlying conductances27. 
Additionally, this global sensitivity analysis describes these influences 
for the entire population, not just in the vicinity of a single model27.

Although it is possible for models of similar behavior to be found 
in separate islands of parameter space (Fig. 2e), in several large popu-
lations of models we have found that models with similar behavior 
are found in connected regions of parameter space11,26,27,45. It seems 
plausible that as the number of conductances in a model increases, 
so does the likelihood that there will be some path that can connect 
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models with the same behavior in a high-dimensional parameter 
space. If neurons with a particular type of behavior are in a connected 
region of parameter space, this may allow relatively simple homeo-
static tuning rules to work to maintain stable neuronal and network 
function despite ongoing turnover of receptors and channels33–37.

Generating many models to capture the individual
As the computational power available to all of us has increased, it 
has become possible to generate large populations of models rela-
tively easily. A number of different methods are available to generate a 
population of models with a target set of behaviors, without resorting 
to hand-tuning. Evolutionary algorithms have been used extensively 
and successfully to generate conductance-based models by investiga-
tors wishing to avoid hand-tuning23,46,47. Evolutionary algorithms 
can converge onto very specific target-activity patterns but have the 
potential disadvantage that, in general, they do not uniformly sample 
the region of parameter space where acceptable models lie.

As an alternative to evolutionary algorithms, a number of investiga-
tors have instead generated populations of models either by sampling 
large volumes of parameter space on a multidimensional grid20,26,48 or 
by randomly sampling large volumes of parameter space11,27. These 
methods have the advantage that they uniformly sample the region 
of parameter space in which acceptable models lie. However, they 
have the disadvantage that if the acceptable models lie in a very small 
volume of parameter space, finding them may require a prohibitive 
number of samples. This problem grows exponentially worse as the 
number of parameters increases.

In addition to the methods described above, there is a large body 
of established Monte Carlo techniques for sampling from an arbitrary 
distribution when only the probability density at an arbitrary point is 
easy to calculate49. This body of techniques could profitably be used to 
generate populations of models that conform to a probability distri-
bution that mimics chosen aspects of the biological distribution. The 
random-sampling technique above could be seen as an example of the 
rejection-sampling technique49 with a probability density that is flat over 
the region of acceptable models. Applying Monte Carlo techniques to 
generate populations of neuronal models has promise for future work.

The ideal solution to many of the concerns addressed above would 
be to build a model of every individual neuron or circuit studied, 
rather than building a population of models with statistics that are 
similar to those of the biological population. This would presum-
ably involve subjecting each neuron or circuit to a battery of stimuli, 
varied and numerous enough that the preparation’s response to them  
would provide enough information to determine all of the para
meters of the model. Some initial attempts along these lines have 
been made46, but achieving these goals requires much additional 
work, both experimentally and computationally. Recent results have 
shown that given accurate descriptions of channel kinetics, one can 
use wideband stimuli to determine the maximal conductances of  
isopotential model neurons46. However, the method seems to be  
sensitive to errors in the channel kinetics and to the presence of unan-
ticipated conductances. Thus, this kind of method will need to be 
generalized to account for cell-specific differences in both channel 
density and other channel properties.

Conclusions
Molecular techniques will soon enable us to determine routinely the 
genomic sequences of individual flies, crabs and humans. Therefore, it is 
time to ask how much the brains of normal, healthy animals differ. There 
are excellent historical reasons why experimentalists have typically focused 
on mean data and neglected to some extent the ranges and variances of 

their data. Nonetheless, there are newer studies that argue that variation 
in neuronal function might be computationally advantageous50.

In the past, limited computational resources significantly con-
strained the kinds of models that could be built. Today, we are entering 
an era in which we should attempt to collect as much data as possi-
ble on each individual10, to attempt to see the correlations between 
underlying mechanisms and system behavior. At the same time, as 
the computational power available increases, it is now possible to 
construct and study large populations of models, to understand bet-
ter the ranges of synaptic and intrinsic parameters consistent with 
healthy brain function, and in turn, to understand where the bounda-
ries between health and disease are found.
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