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Recall 1. If Q is a refinement of P, then L(P, f , α) ≤ L(Q, f , α) and U(Q, f , α) ≤ U(P, f , α).

Theorem 1.
∫ b

a
f dα ≤

∫̄ b

a
f dα.

Proof. Let P1, P2 be partitions of [a, b]. Consider P = P1 ∪ P2, their common refinement. Then:

L(P1, f , α) ≤ L(P, f , α) ≤ U(P, f , α) ≤ U(P2, f , α).

So L(P1, f , α) ≤ U(P2, f , α). Thus it follows that:∫ b

a
f dα = sup{L(P1, f , α|P1} ≤ U(P2, f , α).

Then taking the infimum with respect to P2, we have:

∫ b

a
f dα ≤

∫̄ b

a
f dα.

�

Theorem 2. f ∈ R(α) on [a, b] if and only if for all ε > 0 there exists a partition P such that:

U(P, f , α)− L(P, f , α) < ε.

Proof. (⇐) Let ε > 0. We know:

L(P, f , α) ≤
∫

f dα ≤
∫̄

f dα ≤ U(P, f , α).

Thus it follows: ∫̄
f dα−

∫
f dα < ε.

�

Since this holds for all ε > 0, we have equality.

(⇒) Let ε > 0. Then there exist partitions P1, P2 such that:

U(P2, f , α)−
∫

f dα <
ε

2
,∫

f dα− L(P1, f , α) <
ε

2
.
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Let P = P1 ∪ P2. Then:

U(P, f , α) ≤ U(P2, f , α)

<
∫

f dα +
ε

2
< L(P1, f , α) + ε

≤ L(P, f , α) + ε.

Therefore there exists some P such that U(P, f , α)− L(P, f , α) < ε.

Theorem 3. f is continuous o [a, b] if and only if f ∈ R(α) on [a, b].

Proof. at Let ε > 0. We wish to show that there exist some partition P such that U(P, f , α)−
L(P, f , α) < ε. Notice that for any partition P,

U(P, f , α)− L(P, f , α) =
n

∑
i=1

(Mi −mi)∆αi

Note that there exists η > 0 such that [α(b)− α(a)]η < ε. Since f is continuous on this inter-
val, then f is uniformly continuous on [a, b] (since the domain of the continuous function is
compact). Thus there exists δ > 0 such that:

|x− t| < δ =⇒ | f (x)− f (t)| < η.

Choose P such that ∆xi < δ. Then Mi −mi ≤ η. Thus

U(P, f , α)− L(P, f , α) =
n

∑
i=1

(Mi −mi)∆αi

≤ η
n

∑
i=1

∆αi

= η((α(b)− α(a)) < ε.

�

Theorem 4. If f is monotonic on [a, b], and α is continuous, monotonically increasing, then f ∈ R(α).

Proof. Without loss of generality assume f is monotonically increasing. Let ε > 0. We show
there exists a partition P such that U(P, f , α)− L(P, f , α) < ε.

Fix n ∈N. Then there exists a partition P such that ∆αi = α(b)−α(a)
n . Then it follows:

U(P, f , α)− L(P, f , α) =
n

∑
i=1

(Mi −mi)∆αi

=
α(b)− α(a)

n

n

∑
i=1

( f (xi)− f (xi−1))

=
α(b)− α(a)

n
( f (b)− f (a)).

Then choose n ∈N such that the above expression is less than ε. �

Theorem 5. Let f be bounded on [a, b] with only finitely many discontinuities. If α is continuous at
each discontinuity of f , then f ∈ R(α).
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Definition 1. Let I(x) =

{
0 x ≤ 0
1 x > 0

.

Theorem 6. Suppose ∑ cn converges, cn ≥ 0 and let {sn} be a sequence in [a, b] such that sn 6= sm if

n 6= m. Let α(x) =
∞

∑
i=1

cn I(x− sn). If f is continuous on [a, b], then
∫

f dα = ∑ cn f (sn).

Theorem 7. Let α be monotonically increasing and α′ ∈ R on [a, b]. If f is bounded, then f ∈ R(a)
if and only if f α′ ∈ R. Moreover ∫ b

a
f dα =

∫ b

a
f (x)α′(x)dx.

Example 1. When calculating the moment of inertia of a rod with mass, it’s given by a Riemann-
Stieltjies integral. If x represents the distance from the point of rotation, I =

∫
x2dm. If

m′(x) = ρ(x), then I =
∫

x2ρ(x)dx.
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