SiteWide ACL ReFactor

(OPPIA)

Name : Yogesh Sharma

Email : yogesh.sharmaakaruler@gmail.com, yogesh.sharma@research.iiit.ac.in
Github handle : 1995YogeshSharma (link to profile)

University : International Institute of Information Technology, Hyderabad
Program : Dual degree (btech + MS) in Computer Science

| am currently pursuing my 3rd year of BTech in Computer Science. IlIT
Hyderabad is among the best institutions for computer science in India. | am
performing well in academics and plan to keep on improving. | have a cgpa of
9.0/10 (top 5% in the batch of 250 students). | am also doing research in
Robotics Research Center at our college. My current research area involves
around scene detection in self driving car.

Project Details

Project name
Sitewide ACL refactor

Why are you interested in working with Oppia?

| found Oppia while searching for the orgs to work on for GSoC17 based on the list
of orgs selected last year for GSoC16. | have following main reasons to work for
Oppia:-

e | find their area of work to be very interesting. | am a fan of online learning
concept. Improvements in this area reach to millions of people across the
globe.

e When | saw oppia.org and a few explorations, | saw a huge potential for it to
grow into an awesome learning platform which may really help people to
learn without losing interactivity. Humans learn better when they are allowed
to make mistakes and correct them which is exactly what explorations help
them with.

mailto:yogesh.sharmaakaruler@gmail.com
https://github.com/1995YogeshSharma
mailto:yogesh.sharma@research.iiit.ac.in

e And | see, with the involvement of machine learning and deep learning, we

may be able to provide better and better experience to the users.

| find Oppia team members to be very friendly, welcoming and helpful. The org
is also very active. Getting a personal mail from Sean himself after
registering on the site is also energy booster for new contributors.

Being a part of such a dynamic team which is trying to make a great impact
in the field of online learning is also very satisfying.

e What interests you about this project? Why is it worth
doing?

Why is the Project worth doing ?

e Access Control is a two step process - authentication(checking who the user

is) and authorization(checking what the user can do). We are handling how
the authorization works in Oppia in this project.

Authorization refers to ‘what a user can do’ in the website.

In Oppia, we currently have a lot of different positions like collection_creator,
viewer, moderator, admin, super_admin.

As the site has grown and will grow, it is necessary to have a flexible
authorization system which handles the permission management in a way
that it can easily be modified and extended. So, this project is very essential
to Oppia.

What interests me about doing this project ?

e The projectisimportant for the Oppia organization. The current

implementation is pseudo role based and will improve greatly if we are able to
shift it to action based access control (some reasons mentioned for
preferring action based approach in other section).

| hadn’t studied much about ACL (only studied a bit in my Operating System
classes) and never implemented one. But | asked Sean and he told that it’s
not a prerequisite. So, | began reading about access controls and got
interested in the topic. | find the project interesting and a great learning
opportunity of an important concept.

The process requires a high amount of logical and analytical skills which got
me all the more interested to do it.

This project is mentored by Sean himself. | like the way he deals with people.
He is always calm and encouraging in his replies and suggestions and has a
great attention to detail while reviewing code. | feel that working under him
over the summer will help me in a lot of ways.

Prior experience (especially with regards to technical
skills that are needed for the project)

| ->

o

have been working with python in some way or the other for the past 2
years.
have worked with some frameworks in python (django and web2py)

m Made ablog app in which bloggers can publish a blog and reviewers
canreview it to improve their writing skills (as a personal project) -
django

m Made a hotel locating app (as a part of course project) - web2py

Worked as an intern for EnhanceEdu (they are making an educational
platform for college students)

m Met them through my course project and they offered me the
internship at the end of project.

m The website is built on moodle platform. | solved some of the existing
issues with the site, added plugins and implemented some features.

m They are working on learning by doing methodology and use
butterfly model (they had published a research paper on this).

worked as an intern for zetagile company (they are working on making a
health care and health monitoring website)

m Siteis based on AngularJS with java as backend.

m | worked on the frontend.

m |Implemented features auto-complete search bar, file upload handling
and worked with some of the APls they made.

Made a bot for playing ultimate tic-tac-toe in python

m Implemented minimax algorithm with alpha beta pruning and an
evaluator function adjusted to the game rules.

Made some games (basic version of donkey kong and fruit ninja) using pygame
module in python.

Have studied courses in Algorithms, Data Structures, Operating Systems etc
which will help with the implementation of the project.

Source code for some of my work can be found at my github profile.

https://github.com/1995YogeshSharma

e PRs made

o

| have got following PRs merged to the Oppia codebase.
- https://github.com/oppia/oppia/pull/3055
- https://github.com/oppia/oppia/pull/3068
- https://github.com/oppia/oppia/pull/3077
- https://github.com/oppia/oppia/pull/3216
- https://github.com/oppia/oppia/pull/3211
- https://github.com/oppia/oppia/pull/3192

e Project plan and implementation strategy

This project will implement Action based access control, removing the current
pseudo role based access control.

Here are some of the reasons for choosing Action based implementation instead of
role based implementation :-

Requirements Growth and Change : With time requirements change. With
role based approach, there is high coupling between authorization and roles.
So, making changes is very difficult. Eg.

86 if not rights_manager.Actor(self.user_id).is_moderator():
87 raise self.UnauthorizedUserException(
88 'You do not have the credentials to access this page.')

209 user_services.record_user_logged_in(self.user_id)

--This is a snippet from base.py.
Suppose, we want to add some other role in such cases, we have to look
through all similar occurrences in codebase and make appropriate changes.
On the other hand, if we want to add new role in the action based setup, we
can add the role in group hierarchy and attach its unique actions to it. There
is no need to modify other code.
Actions give us a more intuitive abstraction and make the authorization and
role management decoupled.
The code can speak for itself representing itself as an activity that can be
performed. Relationships between the roles and permissions can be
modelled separately.

https://github.com/oppia/oppia/pull/3055
https://github.com/oppia/oppia/pull/3216
https://github.com/oppia/oppia/pull/3068
https://github.com/oppia/oppia/pull/3192
https://github.com/oppia/oppia/pull/3077
https://github.com/oppia/oppia/pull/3211

- Relevant informationis in one place, so the code is self documented. Instead
of looking throughout the code to see if arole is checked, we provide a
single, consolidated location for the role’s permission.

With the new implementation, adding a group will have nothing to do with the
existing actions, we would append the group in group hierarchy to the parent whose
actions it inherits and then attach to it unique actions that belong to that group.

Similarly, adding an action requires designing a decorator for it and attaching the
action to the group that will be the least required position to perform that action.

| have read a multitude of sources to come up with the idea for new system. | have
studied various sources for access controls, including a research paper (link to the
research paper) on action based access control. Although they are implementing it
in network layer but the idea still helpful.

The meteor-roles package (https://github.com/alanning/meteor-roles/) and the blog
(link to blog) are very helpful as they support a very similar approach used here
(using strings of actions and attaching them to roles).

Overview of idea of implementing Action based Access Control

-> Actions are strings which define the action to be performed eg.
create_a_collection and so on.

-> Group is a set of actions with its name representing the role. Actions here
pertain to this role which are not inherited from parent.

- Groups will exist in a hierarchical order in a Directed Acyclic Graph (DAG)
where an edge from A to B implies that A inherits all permissions from B.
Edge points towards the parent.

-> Decorators will be hooked on the controllers to do authorization before
performing the action.

A separate module action_decorators.py will be made to store all the new
decorators. When a decorator is applied to a function it will act as wrapper
and extend the functionality to include checking whether the user belongs to
the group having permission to perform this action. This will be done from
services made for the group object.

All the additional checks, like whether user is owner of collection or not, will
also be done here.

-> Anew field will be introduced to the UserSettingsModel model representing
the group/role of user. When a user is registered, he will be assigned with a

https://lostechies.com/derickbailey/2011/05/24/dont-do-role-based-authorization-checks-do-activity-based-checks/
https://github.com/alanning/meteor-roles/
https://pdfs.semanticscholar.org/4f42/5c05fe7ef77e4c4aef6060b82072ee25ba0c.pdf
https://pdfs.semanticscholar.org/4f42/5c05fe7ef77e4c4aef6060b82072ee25ba0c.pdf

role. By default the role is logged in user. Admins can change the role of the
user.

The RoleHierarchy DAG needs to be loaded only once when the server starts
and will suffice for the queries. So, database needs to be queried only when
server starts and when a change is made to actions/groups . Thus saving a lot
of requests to the database. When a change is made to group structure or
actions, changes will be written to database and DAG will be reconstructed
from database to replace the current DAG.

When a user logins, a single call to the service get_actions_for_user() will be
made which returns a list of all the actions the user can perform. We'll store
this list in the user session. Also, we will store the role of user in the session.
This way, we have to traverse the graph and find out actions only once and
can use the actions and role in the session for all further queries of the user.

Initial Structure of Role Hierarchy DAG :-

BANNED LJSED

T

oggedIln Use)

Collection Crea@
(Moderator)

C = D,

(Site Admin)

Here, arrow points to parent/parents. The inheritance of actions take place in
opposite direction of arrow i.e - perm(collection_creator) = perm(logged in user) U
perm(Banned User) U perm(collection_creator).

Y (o) ()

The list of actions which will be finally used and will be kept updated can be found
at below link :-

=> list for actions

Diagrams representing the User and related unique actions :
Blue - no need to check
Green - currently checked

Red - Not checked

https://docs.google.com/document/d/1vIokFN9LAgrlGNRch7ooWarTiBYOVGd4B5c39NxZldg/edit?usp=sharing
https://www.lucidchart.com/documents/edit/e8eb7442-82de-430e-b400-ac371aeaceb2/0?callback=close&name=docs&callback_type=back&v=181&s=612

BANNED USER

LOGGED IN USER

COLLECTION CREATOR

https://www.lucidchart.com/documents/edit/9bedccc3-f912-4abd-936c-e83f6f6a4d86/0?callback=close&name=docs&callback_type=back&v=184&s=612
https://www.lucidchart.com/documents/edit/0144d8cc-a26e-4d61-9eda-fc4bccf50477/0?callback=close&name=docs&callback_type=back&v=398&s=612
https://www.lucidchart.com/documents/edit/9bedccc3-f912-4abd-936c-e83f6f6a4d86/0?callback=close&name=docs&callback_type=back&v=98&s=612
https://www.lucidchart.com/documents/edit/9bedccc3-f912-4abd-936c-e83f6f6a4d86/0?callback=close&name=docs&callback_type=back&v=98&s=612

MODERATOR

ADMIN

SUPER ADMIN

Sidenotes ->
Actions for release_ownership, ResolvedAnswersHandler,

ExplorationResourcesHandler, ImageUploadHandler, EditorAutosaveHandler are
not present.

For a non logged-in user, permissions are similar to that of banned user. We don’t
need to put checks on their actions as those can be performed by any user. So, they
don’t need authorization.

https://www.lucidchart.com/documents/edit/9bedccc3-f912-4abd-936c-e83f6f6a4d86/0?callback=close&name=docs&callback_type=back&v=229&s=612
https://www.lucidchart.com/documents/edit/9bedccc3-f912-4abd-936c-e83f6f6a4d86/0?callback=close&name=docs&callback_type=back&v=269&s=612
https://www.lucidchart.com/documents/edit/9bedccc3-f912-4abd-936c-e83f6f6a4d86/0?callback=close&name=docs&callback_type=back&v=254&s=612

Timeline for implementation :-

April 10 to May 4 :- I'll be free starting April 10. I'll continue my work with pending
issues. Update the list for actions and technical design doc for groups so that they
are complete before the work starts.

May 5 to May 30 :- Although this is mentioned as community bonding period but Ill
start working in this period so that we may easily cover everything in time.

MILESTONE 1:

Complete technical design doc.
Audit the existing rights_manager.py.
Complete the list of actions.

Implement new storage layer, domain objects and services. Implement corresponding
tests.

Implement one-off job to fill the role field to the UserSettingsModel. Give user the
default role when user registers.

Implement one-off job to fill the new tables created (Groups, Actions etc) on the basis of
current roles hierarchy.

The technical design that’ll be used and kept updated can be found on below link

-> link to the tech design for groups and actions

https://docs.google.com/document/d/1Sfhk9rVt5ioRe-uNq1uW-qzywf6cvB_MShbx8QZa8VM/edit?usp=sharing

-M I > Action

Models Required -

Groups - to store the name of the role

Groupld GroupName

Edges - to store the relationship order between connected groups (A -> B)

Edgeld GroupldTo GroupldFrom
(destination) (source)

Actions - to store name of actions

Actionld ActionName

GroupToActionsMap - to map group to the actions it can uniquely perform

Groupld Actionld

https://www.lucidchart.com/documents/edit/6db08f6e-e07d-434a-a5fc-6aa78bf35f61/0?callback=close&name=docs&callback_type=back&v=578&s=612

Afield Role representing the name of the user’s group will be added in
UserSettingsModel

Domain objects to be added -

Group - object for each node in the DAG
RoleHierarchy - object for the DAG

Instance of RoleHierarchy class will be a dictionary of Group objects. This will
represent DAG.
Eg. RoleHierarchylnstance = {

‘Group_name1’ : GroupObijectinstancel,

‘Group_name2’ : GroupObijectinstance2,

Services To Be Added -

Add_group, Remove_group, Attach_user_to_group, Get_user_group,
Add_action_to_group, Delete_action_from_group, Remove_action,
Get_actions_for_user

Add_group :-
Adds a new group to role hierarchy
Input : group_name, parent_name, permissions

Create new Group object with permissions, parent_names
Append it to role hierarchy DAG
Write to database

Get_actions_for_user :-
If present in session:
Return user_actions
Else:
find all paths from source to the target node in the DAG

take union of all the permissions along the path.
Store value in session and return

Remove_group :-
A =[all incoming edges to the group node to be removed]
B =[all outgoing edges from the group to be removed]
Now, remove entries of A and B from the database
remove the group and related permissions from database
insert new group and its permissions and insert edges for all sources in A to
all destinations in B.
Construct the DAG again and replace existing structure with this.
Remove user_actions from session

Attach_user_to_group:
Update the role field of user
Get new permissions for the user from DAG
Update the variables in session

Get_user_group:
If present in session :-
Return user_group
Else
Query database and find user_role
Update session variable and return

Remove_action_from_group:
Traverse DAG to find group
Remove action from the set
Remove groupld - actionld relationship in table GroupToActionsMap
Invalidate session

Audit Strategy :

Go through the existing code file by file checking the use of rights_manager.
Make audit doc mentioning every use of rights_manager and the way in
which it will be replaced by the new system.

e Check if the use case is covered with the existing test cases. If not, design
and implement tests for this.

One Off Jobs to be made:

Two one-off jobs need to be made for migrating the existing role related
data to new system and making the storage for groups and actions.

First, roles_job_one_off.py. This will involve following steps :

Get list ADMIN_IDS, MODERATOR_IDS, BANNED_USERNAMES,
WHITELISTED_COLLECTION_EDITOR_USERNAMES from
config_domain -> Get all the users from database -> update user
entries to fill their role field accordingly.

For testing, make a random entries in the lists -> run the job -> check
whether data stored correctly.

How to run the job -> Stop all the jobs using the userSettingsModel
and then run this job.

second, groups_job_one_off.py. This will involve the following steps :

Have list of actions, list of groups, relationships between actions and
groups and hierarchy between groups in different files.

Load these files -> fill corresponding tables

For testing, make above files with sample data and check for
correctness of insertion.

How to run the job -> This doesn’t have any dependency with any
existing models. So, can be run from admin panel without stopping
other jobs.

Coding Part :

% Backend:
> In oppia/core/storage:
m Implement group/gae_models.py for the storage of Group,
Action, Edges and GroupToActionsMap models explained
above.
m Addtherole field in UserSettingsModel in
user/gae_models.py

> Inoppia/core/domain:

m Implement group_domain.py for the domain objects Group
and RoleHeirarchy.

m Implement group_services.py for the services mentioned
above.

m Implement roles_job_one_off.py to fill the entries in the new
models created. l.e : fill the roles of user based on the current
lists like admin_usernames etc.

m Implement groups_job_one_off.py to fill the Groups, Actions,
Edges and GroupToActionsMap based on the current
hierarchy in roles and list of actions prepared.

m Edit jobs_registry.py to add the jobs.

> Edit the _create_user method in oppia/core/domain/user_services.py
to give role to user at time of register and add the method
get_user_rolein this file.
% Frontend:
> Edit oppia/core/templates/dev/head/pages/admin/jobs_tab to add
the one off jobs in the list.

Testing part :

< Backend:

> /oppia/core/storage/groups/gae_models_test.py -> Make sure the
data gets correctly stored in database.

> /oppia/core/domain/group_domain_test.py -> Make sure empty DAG
doesn’t cause error. Test by creating a random DAG and using
member functions.

> /oppia/core/domain/group_services_test.py -> Make a random DAG
and check each service. Cover cases like removal from empty DAG.
(Attaching actions to multiple group is not a problem here as union is
taken and when the DAG reloads, it is resolved)

> /oppia/core/domain/roles_job_one_off_test.py -> populate models
with random users and roles and run the job to verify whether the
field gets populated properly.

> /oppia/core/domain/groups_job_one_off_test.py -> run the job and
check if database is correctly populated.

> Add test in user_services_test.py for the added service get_user_role.

Breakdown

Date

Work Done

8 May - 11 May

Get Technical doc reviewed and make changes if
required.

12 May - 18 May

Make the audit doc.
Get list of actions and audit doc reviewed and make
changes if required.

16 May - 21 May

Implement the storage layer.
Implement tests for storage layer.
Add role field in UserSettingsModel

22 May - 28 May

I'll not be available for one week around this time
(maybe still be able to work for sometime, but not
sure)*

29 May -4 June

Implement domain objects and services.
Make tests for domain objects and services.

5June-11June

Edit _create_user method to give default role.
Add get_user_role service to user_services.py and
corresponding test in user_services_test.py
Implement roles_job_one_off.py

Implement roles_job_one_off_test.py

12 June - 18 June

Implement groups_job_one_off.py

Implement groups_job_one_off_test.py

Make required edits to add these jobs to job list in
admin panel.

Manually create a sample user set (with all types of
users) and test the one-off jobs.

19 June - 21 June

Getting everything reviewed and merged.

22 June - 25 June

Buffer time for milestone 1

MILESTONE 2:

Make a simple ui to access and modify group/action system.

Implement decorators for actions not currently checked (new actions in list of actions).
Implement tests for above decorators.

Implement any uncovered tests based on audit doc.

Simple Ul for making Changes to groups/actions :-

Right now changes can be made to admin or moderator list through /admin#config.
A simple Ul similar to that will be made to make changes (adding/removing
actions/groups, changing hierarchy) in the new system.

We'll add tabs for update_groups and update_actions in admin_navbar.

/admin#update_groups -> url that will redirect to page for making changes in groups
or user roles.

/admin#update_actions -> url that will redirect to page for making changes in
actions.

Coding Part :

< Backend:
> Make /oppia/core/domain/action_decorators.py - decorators for
each action.
> |n oppia/core/controllers
m Edit admin.py to handle new requests using group_change.py
and action_change.py.
m Implement group_change.py for handling the changes made to
the group structure and role change.
m Implement action_change.py for handling the changes in
actions to be made.
m Along with this edit main.py for redirections for
/admin#update_groups and /admin#update_actions
% Frontend:
> /oppia/core/templates/dev/head/pages/admin:
m Add update_groups/update_groups_directive.html and
update_groups/UpdateGroupsDirective.js for update_groups
tab

m Addupdate_actions/update_actions_directive.html and
update_actions/UpdateActionsDirective.js for update_actions
tab

m Update AdminRouterService.js to add new routes to
ADMIN_TAB_URLS

m Edit other files to add links to these newly created tabs.

Testing Part:

% Backend:
> Make /oppia/core/domain/action_decorators_test.py - test each
action for cases of authorized and unauthorized access.
> /oppia/core/controllers/group_change_test.py and
/oppia/core/controllers/action_change_test.py -> Create random
DAG and apply multiple changes to it using functions in controller
and verify that output is as expected.

Breakdown
Date Work Done
26 June - 2 July Write backend code for the simple UL.
Write tests for this code.
3June -9 July Write frontend code for the simple Ul.
Manually test the working of frontend.
10 July - 16 July Implement the decorators related to each action in the
list.
Implement test corresponding to each decorator.
Implement uncovered tests (if any) based on the audit
doc.
17 July - 21 July Get everything reviewed and merged
22 July - 24 July Buffer time for milestone 2
MILESTONE 3:

Migrate all permissions and functionalities related to rights_manager to new system.

Do refactoring for the code where admin, moderator etc are checked from the lists in
config domain. Replace them by checking from session variable.

Create audit doc for remaining code refactoring that can be done.

This phase will handle migration of code for the rights_manager to new
system.

The audit document created in milestone 2 will have details of each
occurrence of rights_manager

We have the list of actions that will be the replacement of the
rights_manager by now.

So, decorator for each action will be implemented and the occurrence of
rights_manager removed.

After doing this for one file, the tests will be run to check if something went
wrong.

Shift the test to new test suite containing tests for all actions.

Replace the old functionality of adding users to admin, moderators and
others.

Now, the new system is in place. Roles are assigned by the new system. So,
replace all occurrences where role was checked with the help of lists (from
config_domain) with the session variable role.

Also, there are cases where there is redundancy in code that can be solved
eg ExplorationRightsHandler and ExplorationModeratorRightsHandler can be
merged into one.

A doc of all changes that can be performed to refactor the code base will be
made, where in occurrence and possible way of removal has to be
mentioned.

Coding Part :

< Backend:

> Add actions one bye one to action_decorators.py made in previous
milestone.

> Remove the use of rights_manager from corresponding places.

> Replace the code for changing roles that uses config_domain as of
now to using role variable. Eg - update_admins in config_domain or
set_admins in test_utils

> Replace code that uses these lists to know user’s role to checking the
session variable role.

% Frontend:
> Remove the config functionalities to add users to admin_usernames
etc. by editing code in templates/dev/head/pages/admin/

Testing Part :

< Backend:
> Add test one by one to action_decorators_test.py.

Breakdown

Date Work Done

25 July - 3Aug Replacing the current functionalities
performed by rights_manager.

Pick case one by one from doc.
Implement the action for the change.
Remove the existing code.

Run tests to test functionality.
Implement test for new action made.

4 Aug - 10 Aug Replace/remove code mentioned in
backend part and frontend part above
(regarding the config_domain lists).

11 Aug - 14 Aug Getting everything merged

15 Aug- 20 Aug Make doc for further refactorings that
can be performed.

* Apart from this I'll not be available for 3-4 days in June or July but the date is not fixed
yet.

FUTURE WORK::

Do the refactoring that is proposed in the last doc in milestone 3.

Summer Plans

e Time Zone
IST (India Standard Time)

e How much time will you be able to commit to this
project?

During May to July, I will be able to spend 6-8 hours a day 6 days a week i.e 36-48
hours a week. I'll make sure to put at least 40 hours a week during this time.
After that (i.e during august) | will be able to spend 4-5 hours a day 7 days a week
i.e 28-35 hours a week. I'll make sure to put at least 30 hours a week during this
time.

e What jobs, summer classes, and other obligations might
you need to work around? Please be upfront about any
existing commitments you may have.

Our college has vacations from May to July so | have no commitments during that
time and classes start from Aug 10.

Communication

e What is your contact information, and preferred method
of communication?

E-mail : yogesh.sharmaakaruler@gmail.com, yogesh.sharma@research.iiit.ac.in
Mobile no.: +91-9951617335
Github handle (gitter) : 1995YogeshSharma

Oppiais very active on gitter, so preferred method for most of the communication
and meetings will be gitter.
I'll keep daily devlogs as recommended by mentors to document my daily work.

e How often do you plan on communicating with your mentor?

We'll remain in continuous touch with gitter whenever | need advice.
There will be biweekly (or weekly based on mentor’s consent) meetings to discuss
the workflow to be followed. Meetings can be on gitter.

mailto:yogesh.sharmaakaruler@gmail.com
mailto:yogesh.sharma@research.iiit.ac.in

