
Improve the image loading pipeline
GSOC 2018 PROPOSAL

Name​​ : Aashish Gaba
Email​​ : aashishgaba097@gmail.com​, ​ aashish.gaba@students.iiit.ac.in
Github handle​​ : ​ishucr7
University​​ : ​International Institute of Information Technology, Hyderabad
Program​​ : Btech in Computer Science

I am currently pursuing my 2nd year of BTech in Computer
Science. IIIT Hyderabad is among the ​ best institutions for
computer science in India.

Project Details

Name of the project​ ​:-​ ​Improve the image loading pipeline

Why are you interested in working with Oppia?
I am very fond of online learning platforms. Be it college exams, other
competitive exams and improving knowledge, these educational platforms are
always helpful. I found Oppia while I was searching for the orgs to begin my open
source journey. Oppia is one of the reasons I learned angularjs and now I feel
very comfortable in using it. Teaching using explorations and that too with the
audio translations available in various languages makes teaching interactive.
Humans learn better when they are allowed to make mistakes and correct them
which is exactly what explorations help them with. The team members are very
welcoming and helpful. The members are very responsive to any queries
regarding the org or the codebase or the contributions. Since the platform helps
children to learn better, helping in such a cause is satisfying in itself.

https://github.com/ishucr7
http://www.iiit.ac.in/

What interests you about this project? Why is it worth
doing?
We currently have a system for loading audio that preloads and caches audio
files. But there is no such system in the case of images. Currently, the images in
lessons take a while to load. This results in students (especially those with poor
connectivity) seeing no images for an extended period, which causes them to
misinterpret questions and select incorrect answers, leading to frustration.
Currently, there is no loading indication (if the image is in the process of loading),
which results in a poor user experience as learners would be reading a card with
important information missing.
The audio files are there on the Google Cloud Storage whereas the images data
still exists on App Engine Datastore. Google Cloud Storage is better than App
Engine Storage for storing immutable objects (images,audio). After completing
this project, not only the existing image files will sit along the audio files but
upcoming image files in future will be saved on Google Cloud Storage.

Prior experience (especially with regards to technical
skills that are needed for the project).
I have been coding in python from my first semester in college.(present semester

-- 4th) I :-
1) had built a image gallery app (using python and javascript) similar to

JuiceBox as a part of my course, which allowed users to upload, share,
like and comment on images.

2) made an ultimate tic tac toe bot in python.
a) Using the Alpha Beta pruning and an evaluator function.

3) have some experience with Django (Blog app).
4) have worked with ​VLEAD​ as a part of our course project which involved

developing the visualization of the Data Structure algorithms so as to
make the learning experience for the students in the labs interesting.

5) made a game(without using any pygame module) which runs on terminal.

My experience with angular began when I started contributing to Oppia. I have
been contributing to Oppia from October 2017 and have submitted nearly 20
PR’s, filed some issues. I have implemented the correctness footer feature. I am
familiar with the frontend and backend code of the Oppia.

http://iiith.vlab.co.in/

Source code for some of my work can be found on my ​github profile

Links to 1-5 PRs you've made that showcase your best
work, especially any Oppia ones.

○ #4270
○ #4363
○ #4456
○ #4724
○ #4702

Project plan and implementation strategy​.
The project aims on extending the existing caching and preloading functionality
of the audio files to the image files. Along with that, the project plan involves
shifting the storage of image files from App Engine Datastore to Google Cloud
Storage, so that the audio and image files sit along.

❖ The reasons why we should preload and cache the image files :-

➢ It increases responsiveness, decreases noticeable time lags.
➢ Preloading the images rather than loading later helps ensure that

users have a great experience in viewing the exploration.
➢ With caching, all the files will be loaded beforehand in the actual

order as they are in an exploration.

❖ Why Google Cloud storage over App Engine Datastore for storing
images?

➢ Google Cloud Storage is for storing immutable blob objects
(images, and static files).

➢ App Engine Datastore is for storing structured application data that
are mutable (User entity, Blog post, etc).

➢ Since the project is about storing the images, therefore GCS turns
out to be the best option amongst App Engine Datastore and GCS.

❖ I intend on using mapreducers in one off migration jobs (to move the

storage of images from app engine datastore to google cloud storage).

https://github.com/ishucr7/
https://github.com/oppia/oppia/pull/4270/files
https://github.com/oppia/oppia/pull/4363
https://github.com/oppia/oppia/pull/4456
https://github.com/oppia/oppia/pull/4724
https://github.com/oppia/oppia/pull/4702

➢ Why mapreducers?
■ Because there are already existing one off jobs in Oppia’s

codebase which use mapreducers.

❖ Testing in Milestone 2 and Milestone 3
➢ The tests in these milestones include the code which tests the

storage and upload of images files from App Engine Datastore in
dev mode and from GCS in production mode. Since I will be writing
code in dev mode, the tests written would not be able to use the
GCS system. But we have to test the GCS system before getting
the code merged. For that, ​we need a way to get the GCS locally.
Since there’s no way to do so, I will have to deploy my branch
of Oppia to Google Cloud Platform and test it there​.(​reference​)

➢ This way of testing needs to be done before the PRs in the

milestone 2 and milestone 3 get merged.

Overview of the AssetsBackendApiService and caching
and preloading service for audio.

➔ Currently there is only one ​AssetsBackendApiService
◆ It serves as an interface for fetching and uploading the audio.

➔ I will create a service ​AssetsBackendApiServiceForImage​ and rename

AssetsBackendApiService​ to ​AssetsBackendApiServiceForAudio​.
The ​AssetsBackendserviceForImage​ will follow a similar pattern as it is
in case of audio.

◆ It’s better to ​create two separate services​ because of the

following reasons:-
● restartAudioPreloader()​ in the ​AudioBarDirective.js

calls the
AssetsBackendApiService.abortAllDownloads()​ which
aborts all the downloads. Therefore ​if we have a common
service, then ​restartAudioPreloader()​ would actually
abort the downloading for both audio and image instead
of stopping the download for just audio.

https://cloud.google.com/appengine/docs/standard/python/console/

● Also, the functions ​fetchImage()​ and ​saveImage()​ are
going to be different from the ​fetchAudio()​ and
saveAudio()

● This would allow having a separate cache for image.

➔ How Audio preloader works now

◆ The loading of Exploration is initiated in the PlayerServices.js, it
calls the ​kickOffAudioPreloader()​.

➔ We will use a similar approach for preloading the images. This is how the
workflow will be :-

➔ The ​AudioPreloaderService​ and ​ImagePreloaderService​ start
preloading and caching the audio and image files respectively.

➔ They load the files using their ​AssetsBackendApiService​ by checking if

the files are there in the cache.

◆ If they are in the cache then
return the data

◆ else
Audio (using ​fetchAudio()​) is fetched from the Google
Cloud Storage or App Engine Datastore whereas the images
(using fetchImage) are fetched only from the latter.

Timeline for implementation

1st May - 13th May :-

● Interact with the mentors, discuss the project.
● Solve some issues (if already there) related to the project.
● Prepare a separate doc for refactoring of code. This would help in keeping

refactoring of code in a clean and clear manner.

Milestone 1

❖ Create AssetsBackendApiServiceForImage​ and rename
AssetsBackendApiService​ to ​AssetsBackendApiServiceForAudio​.

❖ Create an ​ImagePreloaderService​ and implement the tests for it.

❖ Create ​ImageDisplayService and implement loading indicator​ functionality in the

ImageDirective.js​. Implement the tests for it.

Create AssetsBackendApiServiceForImage

➔ Rename ​AssetsBackendApiService​ to
AssetsBackendApiServiceForAudio​.

➔ Create the ​AssetsBackendApiServiceForImage​ similar to the one for

audio.

◆ It will be similar to the current ​AssetsBackendApiService​.​js
● Just do not include the part where the download url template

uses the GCS bucket -- since that is for fetching file from the
GCS. We have not yet implemented the code for storing or
fetching images from GCS. (It will be implemented later later
in milestone 2)

● AssetsBackendApiService​.​js
Line 30 - 34

var AUDIO_DOWNLOAD_URL_TEMPLATE = (

 GLOBALS.GCS_RESOURCE_BUCKET_NAME ?

 (​'https://storage.googleapis.com/'​ +
GLOBALS.GCS_RESOURCE_BUCKET_NAME +

'/<exploration_id>/assets/audio/<filename>'​) :

'/audiohandler/<exploration_id>/audio/<filename

>'​);

➔ Create ​AssetsBackendApiServiceForImageSpec.js
■ The file tests the ​AssetsBackendApiServiceForImage​ created

above. It checks that the image is being uploaded and fetched
properly.

Create an ImagePreloaderService
➔ Create exploration_player/​ImagePreloaderService.js

○ Name of the service :- “​ImagePreloaderService​”
○ Purpose :- “Service​ to preload image into

AssetsBackendApiServiceForImage's cache​”
○ Usage :- The service will be used in the

exploration_player/​PlayerService.js​ every time the exploration is being
loaded (in editor preview or normally)

CODE

Functions
kickOffimagePreloader, restartImagePreloader, isLoadingImageFile,
getFilenamesOfImageCurrentlyDownloading , loadImage

● kickoffImagePreloader
○ Input​ :- sourceStateName
○ Starts pre-loading of the images​.

○ Gets filenames in required order as per the exploration using
getImageFilenamesInBfsOrder function.

○ Starts loading the images in the same order using the
AssetsBackendApiServiceForImage​.

● getImageFilenamesInBfsOrder

○ Input​ :- null
○ Gets the image filenames in order using the

ComputeGraphService.computeBfsTraversalOfStates()

● loadImage
○ Input​ :- filename
○ Loads the image using the

AssetsBackendApiServiceForImage.loadImage()

● restartImagePreloader
○ Input​ :- sourceStateName
○ Aborts the current downloading of image files.
○ Starts the kickOffImagePreloader again.

● isLoadingImageFile

○ Input​ :- filename
○ Checks if the given filename is being loaded.
○ Returns a boolean.

● getFilenamesOfImageCurrentlyDownloading

○ Input​ :- null
○ Returns the image filenames which are currently being

downloaded

➔ Create​ ImagePreloaderServiceSpec.js​.

○ Tests the ​ImagePreloaderService​ created above. It checks :-
■ that the image is preloaded using the

AssetsBackendApiServiceForImage​.
■ that the image gets loaded in case it was not preloaded.

Display a loading indicator
➔ Display a ​loading gif​, if the image is currently unavailable (is not yet downloaded

or is being downloaded), so that the user experience is not affected.
○ Below is the gif to be used(​link​)

The gif is taken from ​loading.io​ under ​CCO license​ for free. ​CCO license
allows us to use it freely for any purpose without any attribution.

○ Below is the mock design. Here is the ​link​ for full size image.

○ Currently there is no condition for checking that the image is loaded or not.
If it’s there in the cache then display the image else the ‘loading’ gif must
be shown.

➔ For the above functionality (Display a loading indicator) :-
○ Create ​ImageDisplayService.js
○ Name of the service:- ​‘ImageDisplayService’

https://drive.google.com/file/d/1bF_QY0JEXucuqebEieN95na0B77-eQT4/view?usp=sharing
https://loading.io/
https://loading.io/tos/
https://drive.google.com/file/d/1fgO4nE6WDqc0SKqvLgXGcdnhHzPBV4LY/view?usp=sharing

○ Purpose :- “Service which ​decides whether to display the image or
loading indicator​”

CODE

Variables

showLoadingIndicator

Boolean
Whether the Loading Indicator should be shown or not.

Functions

● loadAndDisplay
○ Input​ :- filename
○ Sets the showLoadingIndicator to true
○ If the image is in the cache

 Set showLoadingIndicator to false
○ else

 AssetsBackendApiForImage.loadImage(filename)
i.e load the image from the ​AssetsBackendApiServiceForImage

➔ Edit​ ImageDirective.js

In the ​ImageDirective.js

Add the following elements

Functions

● showLoadingIndicator
○ Input​ :- null
○ If ImageDisplayService.showLoadingIndicator is true then

 call ImageDisplayService.loadAndDisplay()
○ else

 return false;

➔ Create ​ImageDisplayServiceSpec.js
○ It tests that

■ Loading indicator is shown when the image is loading.

➔ Add a ​Try again​ button
○ Below is the mock design of the try again. Here is the ​link​ of full sized

image.

○ If the http request (for getting the image) returns timeout or some other
error then

■ display the ​Try Again​ button. This would benefit in a manner that
only the image will have to be reloaded instead of the whole page.

■ The http request is sent from the ​AssetsBackendApiService​,
below is the code.

● Line 42 - 50

var canceler = $q.defer();

 _filesCurrentlyBeingRequested.push(

FileDownloadRequestObjectFactory.createNew(filename,

canceler));

 $http({

 method: ​'GET'​,
 responseType: ​'blob'​,

https://drive.google.com/file/d/1DK3leHYTKueLITgi4LcQGfjzT3c_kYaR/view?usp=sharing

 url: _getAudioDownloadUrl(explorationId,

filename),

 timeout: canceler.promise

 }).success(function(data) {

■ I will use ​setTimeout()​ function. It creates a timeout timer end

emits a ​Timeout-event​ whenever there is an error due to
● No data read or write in the given timeout after connection.

(when http request does not succeed). In the above http
request timeout is set by using promise.

That Timeout-event occurrence can be used to show the try again
button.

BreakDown

Date Work to be done

13 May - 21 May PR1 --
● Create ​AssetsBackendApiServiceForImage

○ Serves as an ​interface to fetch and upload the
images from the DataStore

➔ Create ​AssetsBackendApiServiceForImageSpec​.​js
○ Includes ​tests​ for the

AssetsBackendApiServiceForImage​.
● Rename ​AssetsBackendApiService​ to

AssetsBackendApiServiceForAudio
○ Serves as an ​interface to fetch from and

upload the audio to Datastore or GCS​.
➔ Rename ​AssetsBackendApiServiceSpec.js​ to

AssetsBackendApiServiceForAudioSpec.js
○ Includes ​tests​ for the

AssetsBackendApiServiceForAudio​.
● Include the above services in the files where they are

required

This ​AssetsBackendApiServiceForImage​ and
AssetsBackendApiServiceForAudio​ ​are used by the
preloading services for downloading and caching the
image and audio respectively​.

22 May - 30 May PR2 --
● Create​ ImagePreloaderService.js

○ Service to ​preload the images in the
AssetsBackendApiServiceForImage’s cache​.

● Create​ ImagePreloaderServiceSpec.js
○ Includes ​tests​ for the ​ImagePrelaoderService

● Include the above service in the files where it is
required.

The ​images will be preloaded and cached after completion
of above two PRs​ (PR1 and PR2).

31 May - 5 June PR3 --
● Add a ​loading indicator gif​.
● Add a ​try again button
● Create ​ImageDisplayService.js

○ This handles the displaying of the images in the
exploration.

○ If an image is being loaded
■ A ​loading indicator​ will be shown.

○ else if timeout occurs
■ show ​try again button

○ else
■ The ​image​ is displayed.

● Include the above service in the files where it is required

● Implement the tests

6 June - 9 June Buffer for milestone 1

MileStone 2

❖ Implement ​one-off​ job and write tests for it.

❖ Edit the ImageUploadHandler​ such that the images get uploaded to only GCS in
production mode, and to only App Engine Datastore in dev mode. Write tests to
check it.

❖ Edit AssetsBackendApiServiceForImage​ so that the images are fetched from the
GCS in production mode and from App Engine Datastore in dev mode. Write
tests to check the same.

One-off Job

➔ Before implementing the One-off-Job, implement

◆ isfile(self,filepath)​ in the ​GcsFileSystem​ in the ​fs_domain.py
● It checks if the file with the filepath given in the argument, exists in

the GCS under the current exploration.
● i.e there exists an instance with id ​'*/exp_id/assets/filepath'

in GCS

➔ We will have to do the migration of the existing image data in the App Engine
Datastore to Google Cloud Storage.

➔ Procedure :-

The job will take each ​FileMetadataSnapshotModel​ instance from existing
schema.

● If the instance corresponds to the storing of image files then
○ Extract the filename, exp_id from the snapshot_id.
○ If the file which is a part of the given exploration exp_id does not

exist in GCS [use the isfile(filepath) in the​ GcsFileSystem​] then

This means that the file does not exist in the GCS and hence we can
add it.

■ use the snapshot_id, fetch the corresponding
FileContentSnapshotModel to get the content of the file.

■ Create a file using the ​GcsFileSystem​, make the commit for
saving the file to GCS.

➔ The ​FileContentSnapshotModel​ / ​FileMetadataSnapshotModel​ instance has

the id of the form :-
(snapshot_id)

'exp_id/assets/filename-vI'

Term Meaning

exp_id id of the exploration

vI the version number of the file

➔ The file (created using the ​GcsFileSystem​ in the ​fs_domain.py​) will be stored

in GCS as

'<bucket>/<exploration-id>/assets/<filepath>'

<filepath> = ​'images/filename'

➔ NOTE

◆ the version number of the files doesn’t matter, since we don’t allow editing

of the images or the audio files. Same is the case with the audio files, they
are being added to the GCS without any version number.

➔ Extracting filename (the filename without its version) out of the snapshot_id, for

checking the valid image type.

● Use get_unversioned_instance_id() of ​FileMetadataSnapshotModel​ to
get the instance_id from snapshot_id.

instance_id = exp_id/assets/filename

➔ Code

Create ​image_data_migration_jobs_one_off.py

Create class ​ImageDataMigrationJob​ (jobs.BaseMapReduceJobManager)

● entity_classes_to_map_over
○ returns all from ​FileMetaDataSnapshotModel

● map(item)
○ If the instance corresponds to valid image type extensions then

■ Extract the exp_id, filename from the instance_id
■ If there does not exist an instance in GCS with the id

'<bucket>/exp_id/assets/images/filename'​ then

This checks that even if job is run again it won’t copy the data
which is already there in GCS.

● Query the FileSnapshotContentModel with the same

snapshot_id from App Engine Datastore. Get the
image content from it.

Now we have instance.user_id and the content

fs = fs_domain.AbstractFileSystem(

fs_domain.GcsFileSystem(exploration_id))

fs.commit(instance.user_id, ​'%s/%s'​ %(
'images'​ , filename, content)

This basically adds the file to the GCS, it is similar to
how the audio files are added to GCS in ​editor.py.
It will be stored in GCS with id as
'<bucket>/<exploration-id>/assets/<filepath

>'

Where ​<filepath> = ​'images/filename'
● reduce(user_id, values)

○ pass
Register job in ​jobs_registry.py

NOTE
● There is another way of doing the data migration i.e by extracting the images

from the rich text content of an exploration
○ This method would be specifically to an exploration.
○ We will use this method later for testing one off job (migrating the image

data from App Engine Datastore to Google Cloud Storage).

● Why the method used, over the method which extracts the images from the rich
text content of an exploration?

○ The method used considers the instances of all the image files that have
been uploaded and adds them to the GCS.

○ This covers all the images that had been uploaded (added to an
exploration), so we don’t have to worry about the images in the different
versions of an exploration.

➔ Testing :-

● Create​ Image_data_migration_jobs_one_off_test.py
○ In the one off job above, we added the files to the GCS by getting

all the FileSnapshotModel (of image type) instances.
○ We can test it the other way around. The exploration which has

some images to display will be used for testing. Image from an
exploration has to be there in the GCS.

○ We have an exploration id and the current version. For all versions
of the exploration get the image filenames, check if the same exist
in the GCS.

This ensures that whether the image files of all the exploration
with all their versions are being transferred to the GCS or not.

Edit ImageUploadHandler
➔ The ImageUploadHandler in controllers/​editor.py​ handles the uploading of the

image to the App Engine Datastore.

➔ Since it uses ​ExplorationFileSystem​ (“a datastore-backend read write file
system for a single exploration”), the image gets stored to Datastore in both
cases -- dev and production mode.

➔ controllers/​editor.py
❖ In the class ​ImageUploadHandler

➢ Line 852 - 853

fs = fs_domain.AbstractFileSystem(

fs_domain.​ExplorationFileSystem​(exploration_id))

We need to make the image upload handling in such a manner that
images get uploaded to only GCS in production mode, and to only App
Engine Datastore in dev mode.

This will be similar to what we have for audio in controllers/​editor.py

❖ In the class ​AudioUploadHandler

➢ Line 941 - 944

 file_system_class = (

 fs_domain.​ExplorationFileSystem​ ​if
feconf.DEV_MODE

 ​else​ fs_domain.​GcsFileSystem​)
 fs =

fs_domain.​AbstractFileSystem​(file_system_class(exploration
_id))

➢ Line 945 - 948

fs.commit(

 self.user_id, ​'%s/%s'​ % (self._FILENAME_PREFIX,
filename),

 raw_audio_file, mimetype=mimetype)

This calls the commit function of the file system used (either
ExplorationFileSystem​ or ​GcsFileSystem​).

self._FILENAME_PREFIX is ‘audio’ here. In case of the
ImageUploadHandler it will be set to ‘images’.

➔ In the ​resources_test.py​ there is a class​ ImageHandlerTest​ which already
tests the uploading and downloading of the images.

Why use the already existing ​GcsFileSystem​ for storing images in GCS?

● Because the audios are already being stored to the GCS using the
GcsFileSystem.

● domain/fs_domain.py

○ A file created using the ​GcsFileSystem​ will get stored to the GCS,
since its commit function adds the file to the GCS.

○ Line 480 - 497
■ The commit function of the ​GcsFileSystem​.

def​ ​commit​(self, unused_user_id, filepath, raw_bytes,
mimetype):

 ​"""Args:
 unused_user_id: str. Unused argument.

 filepath: str. The path to the relevant file

within the exploration.

 raw_bytes: str. The content to be stored in the

file.

 mimetype: str. The content-type of the cloud

file.

 """

 bucket_name =

app_identity_services.get_gcs_resource_bucket_name()

 ​# Upload to GCS bucket with filepath
 ​# "<bucket>/<exploration-id>/assets/<filepath>".
 gcs_file_url = (

 ​'/%s/%s/assets/%s'​ % (
 bucket_name, self._exploration_id,

filepath))

 gcs_file = cloudstorage.open(

 gcs_file_url, ​'w'​, content_type=mimetype)
 gcs_file.write(raw_bytes)

 gcs_file.close()

Edit AssetsBackendApiServiceForImage

➔ The service will be similar to the existing​ AssetsBackendApiService
which currently serves as an interface for fetching and uploading the audio
files from either the Datastore or GCS.

➔ templates​/​dev​/​head​/​services​/​AssetsBackendApiService.js

◆ Line 30 - 34

var AUDIO_DOWNLOAD_URL_TEMPLATE = (

 GLOBALS.GCS_RESOURCE_BUCKET_NAME ?

 (​'https://storage.googleapis.com/'​ +
GLOBALS.GCS_RESOURCE_BUCKET_NAME +

 ​'/<exploration_id>/assets/audio/<filename>'​) :
 ​'/audiohandler/<exploration_id>/audio/<filename>'​);

◆ In case of ​AssetsBackendServiceApiForImage​, image download
url template will be assigned the value such that it later fetches
from:-

● GCS --- In production mode
● App Engine Datastore --- In dev mode

 ​BreakDown

Date Work to be Done

10 June - 24 June

PR1 --
● Implement one off job

(image_data_migration_jobs_one_off.py)
○ For ​migrating the image data from App

Engine Datastore to GCS​.

● Create
image_data_migration_jobs_one_off_tests.py

○ The ​tests​ for the above one-off job.

● Additional testing by deploying my version of Oppia

25 June - 30 June PR2 --
● Edit the ImageUploadHandler in ​editor.py

○ The ​images will be uploaded to GCS in
production mode and to App Engine
Datastore in dev mode​.

■ This is similar to AudioUploadHandler

● Write ​tests​ to check that images get uploaded to
GCS.

● Additional testing by deploying my version of Oppia

1 July - 4 July PR3 --
● Edit the ​AssetsBackendApiServiceForImage​.js

○ The ​images will be fetched from GCS in
production mode and from App Engine
Datastore in dev mode​.

● Write ​tests​ to check that the images are fetched from

the GCS.

● Additional testing by deploying my version of Oppia

5 July - 10 July Buffer for milestone 2

ONE OFF JOB SHOULD BE RUN IN JULY’S RELEASE (around 15th).

Points supporting the above breakdown of tasks.
● Adding the above PRs (Milestone 2) in the specified order won’t affect the

develop branch because
○ the [“PR1”] migration job will be run only during release.
○ the [“PR2”] uploading and [“PR3”] fetching of images, in the develop

mode, will still be from the App Engine DataStore.
○ The GCS system would come into effect after the migration --- release

time (when the code gets into the production).

● All the above PRs would be merged in the given order at least a week before the
release date(15th usually). So there won’t be a problem in cutting a release from
develop branch.

● Also, I will be testing them by deploying my branch version of Oppia (similar to

production mode). So all of the PRs --- work data migration, changing uploading
system of images, changing fetching system of images will each be merged only
after this “deploying my branch” testing.

● Keeping in mind the importance of the above PRs I have kept buffer time of 5

days.

● After getting them merged, and running the one-off job:-
○ Existing images will be copied from App Engine Datastore to GCS.
○ Image will get uploaded to and fetched from GCS.

Pitfalls that can happen Reason why they won’t

Incomplete transfer of files from the
old system to the new system

● Since one off job creates an instance in
GCS corresponding to every image
found in the App Engine Datastore.

○ Images are stored in App Engine
Datastore as the
FileContentSnapshotModel
instance and its corresponding
FileMetaDataSnapshotModel
instance

Therefore, the incomplete transfer of files
from the old system to the new system is
not possible.

● Moreover the one off job tests ensure
that all the images from an exploration
are there in the GCS.

New files get written to both
systems at once

● No, the files get written to only App
Engine Datastore in dev mode and to
only GCS in production mode.

● The tests in
controllers/​resources_test.py​ check
that the images are uploaded to the
either GCS or dev. It’s not possible that
the files get written to both the systems.

New files don’t get written to any
system at all

● As explained above, the file gets written
to either App Engine Datastore or GCS
based on the conditions
specified(whether its dev mode or
production mode). It’s not possible that
the image files don’t get written to any
system at all.

Milestone 3

❖ Write a ​one off job​ to remove the images from the App Engine Datastore.

❖ Refactor the code​, i.e safely remove the code that relates to old system.

❖ Compress images​ automatically when large images are uploaded to the server.

One off job

➔ The deprecation of the old system requires deletion of the images from the App
Engine DataStore. So this one off job deletes the images from the App Engine
Datastore.

➔ Procedure :- The job will take each ​FileMetadataSnapshotModel​ instance from

existing schema.
● If the instance corresponds to the storing of image files then

○ Query the FileContentSnapshotModel with the same snapshot_id.
○ Delete both the instances (​FileMetadataSnapshotModel​ as well

as ​FileContentSnapshotModel​)
○ Deleting here means setting the deleted property of the instance to

true (which is false by default)

➔ Code
◆ Create ​delete_image_from_datastore_jobs_one_off.py

● Create class
DeleteImageFromDatastoreJob​(jobs.BaseMapReduceJobManag
er)

○ entity_classes_to_map_over
■ returns all from ​FileMetaDataSnapShotModel

○ map(item)
■ If the instance corresponds to valid image type

extensions then
● Query the FileContentSnapshotModel with the

same snapshot_id from App Engine Datastore
and set the ​instance.deleted = true.​ This
deletes the instance corresponding to
FileContentSnapShotModel

● item.deleted = true.​ This deletes the
instance corresponding to
FileMetaDataSnapShotModel

● item.put(), instance.put()

○ reduce(key, stringified_values)
■ pass

● Register job in ​jobs_registry.py

➔ Tests :- Create ​delete_image_from_database_jobs_one_off_test.py
◆ Create a service that counts the number of images (which are a part of an

exploration) in the App Engine Datastore

Term Meaning

No_deleted number of such images with the deleted set to
true

No_not_deleted number of such images with deleted set to false

◆ Now run the job, since all the images(which are a part of an exploration)

will have the deleted property set to true.
◆ The [No_deleted + No_not_deleted] before running the one off job must

be equal to No_deleted after running the job.
◆ Other tests to be added along with the implementation of the one off job.

Refactor the code
Content to be added as the project proceeds.

Line no What does it do? Action to be taken Why?

controllers/​resources_test.py

43 - 61 It tests the uploading and
downloading of the
images.

Remove the
downloading part of
the tests

The downloading
part will be tested in
the
AssetsBackendApiS
erviceForImage

controllers/​resources.py

63 - 64 It tells that the
ImageHandler class is for
returning an image.

Replace the comment
with the following text
:-
“It handles image
retrievals only in dev”.

In case of production
mode images will be
fetched from GCS.

Compress images

➔ There is library called ​pillow​. ​Pillow​ ​is a fork of the the Python Imaging Library,
which builds on PIL by adding more features and support for Python 3. It can be
used to compress images without losing much quality. I have gone through
multiple references and found some of them as relevant and efficient.(​Reduce
image sizes without loss of quality​, ​Image Compression​).

○ It supports different file formats, such as​ PNG, JPEG, GIF, PPM, TIFF
and BMP​.

○ The primary types we are concerned with are ​PNG, JPEG, JPG, GIF​.
■ This is so because the allowed image formats and extensions in the

uploading of images are these 4 only.
■ In ImageUploadHandler class in editor.py

Line 823 - 824

allowed_formats = ​', '​.join(

feconf.ACCEPTED_IMAGE_FORMATS_AND_EXTENSIONS.keys())

■ feconf.py
Line 213 - 217

ACCEPTED_IMAGE_FORMATS_AND_EXTENSIONS = {

 ​'jpeg'​: [​'jpg'​, ​'jpeg'​],
 ​'png'​: [​'png'​],
 ​'gif'​: [​'gif'​],
}

➔ Currently in Oppia, user is allowed to upload the images with size less than 1

MB.

➔ In controllers/​editor.py
○ Implement the code to include the feature that checks the size of the

image file uploaded, if the image size is greater than or equal to the
SIZE_LIMIT (1 MB) then

■ it compresses the image automatically and then checks the size of

the compressed image.

https://pillow.readthedocs.io/en/4.1.x/
https://www.softwariness.com/articles/reduce-image-file-sizes-using-python/
https://www.softwariness.com/articles/reduce-image-file-sizes-using-python/
https://shantanujoshi.github.io/python-image-compression/

■ if size of compressed image < 1 MB then
uploads the image to the GCS or App Engine Datastore.

■ else
Tells the user to upload image with smaller size than the one
uploaded user currently uploaded.

➔ In controllers/​resources_test.py
○ Implement the code that uploads the image of size > 1 MB and checks

that the file gets compressed or not.

➔ The maximum size of the image file to be uploaded will be such that after
performing compression, the size of the compressed file is less than 1 MB.

BreakDown

Date Work to be Done

12 July - 22 July PR1 --
● Implement one-off job

(​delete_image_from_datastore_jobs_one_off.py​)
○ Deletes the images in the app engine

datastore​.

● Write ​tests​ for the above one off job.
(
delete_image_from_datastore_jobs_one_off_test
s.py​)

22 July - 31 July PR2 --
● Refactoring​ the code

1 August - 10 August PR3 --
● Edit ​editor.py

○ to include the feature to ​automatically
compress the image above the SIZE_LIMIT

● Implement ​tests​ in the controllers/​resources_test.py

○ Write tests to check that the images get
compressed automatically.

11 August - 15
August

Buffer for milestone 3

Summer Plans

Time Zone
IST (India Standard Time)

How much time will you be able to commit to this project?

During May to July, I will be able to spend 7-8 hours a day, 6 days a week i.e
roughly 40-48 hours a week. I’ll make sure to put at least 40 hours a week during
this time. After that (i.e during August) I will be able to spend 4-5 hours a day 7
days a week i.e 28-35 hours a week.

What jobs, summer classes, and other obligations might you
need to work around? Please be upfront about any existing
commitments you may have.

Our college has vacations from May to July so I have no commitments during
that time. My classes begin from 3rd August (* can change, will update
accordingly).

Communication

What is your contact information, and preferred method of
communication?

E-mail​ : ​aashishgaba097@gmail.com​, ​aashish.gaba@students.iiit.ac.in
Mobile no. :​ +91-8437740902
Github handle (gitter) : ​ishucr7

Oppia is very active on ​gitter​, so preferred method for most of the
communication and meetings will be gitter. I will maintain daily devlogs as
recommended by mentors to document the daily work.

How often do you plan on communicating with your mentor?
We’ll remain in touch over gitter(or Hangouts) twice a week to discuss the
workflow to be followed or whenever I need advice.

mailto:aashishgaba097@gmail.com
mailto:aashish.gaba@students.iiit.ac.in
https://github.com/ishucr7

