

Google Summer of Code 2018
Improving the development workflow

(Oppia)

Personal Details:
Name: Apurv Bajaj
Email: apurvabajaj007@gmail.com
GitHub Handle: apb7
University: Birla Institute of Technology and Science, Pilani, Pilani Campus
Program: B.E. in Computer Science (Dual Degree)

I am currently in the second year of my degree in Computer Science at BITS Pilani,
Pilani Campus. BITS Pilani is one of the premier engineering institutes in India. I have a
cumulative GPA of 9.83 out of 10 (Top 1% in a batch of ~950 students). I am also a
merit scholar at my university. I have been working with Python for the last two years. I
am a backend developer and work around primarily with Django and Node.js. I have
been involved in web development since the past year.

Project Details:
Project Name: Improving the development workflow (Link).
Why I am interested in working with Oppia:
Oppia’s mission is “to help anyone learn anything they want in an effective and
enjoyable way”. I want to contribute to this mission in my own small way and work for a
better educational scenario where each student has access to quality education, across
the world. I find the explorations very interactive in a way that they stimulate the natural
thinking process which most schools lack today.
Also, the team at Oppia is very friendly. I have been warmly helped at each step of my
contributions, whether be it with the code, the release testing or the audio translations
for the RCT. I have tried to pick up this “always helping” attitude since I became a
member of the organization. The workflow is completely dynamic and I always get to
learn new skills. The best part for all first-time contributors would surely be getting a
personal mail from Sean and the Oppia team before they begin their journey!

What interests me about this project and why it is worth doing:
The project, improving the development workflow, as the name suggests, emphasizes
on the following aspects:

● Reducing the reviewer time by automating lint checks and tests for developers
and code reviewers.

mailto:apurvabajaj007@gmail.com
https://github.com/apb7
https://github.com/oppia/oppia/wiki/Google-Summer-of-Code-2018#improving-the-development-workflow

● Catching errors with the help of non-flaky and thorough end-to-end tests before
they end up in production as well as incorporating multiple browsers and mobile
viewports.

● Automating routine processes like CLA checking, closing stale PRs and helping
resolve merge conflicts and build failures by notifying the maintainer-on-duty and
the pull request authors.

This project needs a variety of skills, namely, proficiency in Python, bash scripting as
well as fair amount of Javascript knowledge. The project also requires the creation of a
bot for automating routine tasks. Since the bot would be hosted on a server, it would
require decent knowledge about server functioning. Therefore, I feel that I would get to
learn a lot of things while working on this project. It would be challenging but at the
same time, attainable for me. Also, having participated in a few code reviews, I
understand the importance of the above mentioned points.
This project, when completed, would produce a noticeable difference in the review time
and would ease the lives of all members of the organization, including the maintainers.
It would also help in maintaining a standard coding style for Oppia which would be
followed by everyone, including the first-time contributors.

Prior Experience:
I have worked on the following projects:

● Developed a simulation of the stock market for an event in the technical fest of
BITS Pilani, APOGEE 2018. The simulation used Django as the backend
framework and was hosted on Pythonanywhere.

● Worked as a backend developer for a startup, Qbox which ventures into
competitive blogging. I implemented the backend using Node.js for their website.

● Wrote solutions to standard problems on Kaggle using the python scikit-learn
library.

● Wrote python scripts to solve Project Euler problems. I am currently on level 2.
● Created a bot-enabled Tic-Tac-Toe GUI. The bot worked on the minimax

algorithm and also utilised alpha-beta pruning.
● Headed a Special Interest Group for backend development at my college. I

conducted a lecture explaining the basics of requests and APIs.

Source code for all my projects can be found at my GitHub profile.

Links to important PRs:
I have been contributing to Oppia since the past 5 months and have had a number of
pull requests (24 PRs) merged into the codebase. The most important ones include:

https://github.com/apb7?tab=repositories

1. Implement isort: PR #4343.
2. Add check for trailing white spaces in HTML: PR #4704.
3. Add eqeqeq rule: PR #4573.
4. Add space checks for definitions in Python: PR #4522.
5. Add check for keyword arguments in Python: PR #4752.

All PRs authored by me can be found here: Merged and Open. I have also opened the
following issues: Issue #4429, Issue #4450 and Issue #4835.

Project Plan and implementation strategy:
Milestones:
Milestone 1 (May 14 - June 11):
Complete all Python, Javascript, CSS and HTML related lint checks by the end of this
milestone. This also includes the lint checks for AngularJS.

1.0: (Start during bonding period: April 23 - May 14) Finalize the technical document
containing all the rules, extensions and custom checks which are likely to be useful in
case of code reviews.
1.1: Implement the Python lint checks including both Pylint and Pycodestyle rules,
extensions and custom checks. Also, perform fixes in the codebase as and when the lint
checks are enabled. (~ 1 week: May 15 - May 22)

1.1.1: Cover all Pycodestyle rules.
1.1.2: Implement all in-built Pylint rules.
1.1.3: Write custom rules using Pylint and the corresponding tests.

1.2: Implement Javascript and AngularJS checks. Also, perform fixes in the codebase
as and when the lint checks are enabled. (~ 10 days: May 23 - June 2)

1.2.1: Enable all in-built eslint rules.
1.2.2: Enable all in-built eslint/angular plugin rules.
1.2.3: Write and implement custom rules. (This has been discussed later in the

doc under the Custom Rules section.)
1.3: Implement CSS and HTML related lint checks. Also, perform fixes in the codebase
as and when the lint checks are enabled. (~ 10 days: June 3 - June 12)

a. CSS lint checks:
1.3.1: Separate the CSS for different HTML pages from oppia.css and structure it

under various related folders (Discussed in PR #4654).
1.3.2: Enable Stylelint for all CSS files (Implemented in PR #4643).
1.3.3: Employ the HTML processor so that it can lint CSS within our HTML files.

(Discussed in Issue #1977).
 b. HTML lint checks:

1.3.4: Enable htmllint with the selected rules.

https://github.com/oppia/oppia/pull/4329
https://github.com/oppia/oppia/pull/4704
https://github.com/oppia/oppia/pull/4573
https://github.com/oppia/oppia/pull/4522
https://github.com/oppia/oppia/pull/4752
https://github.com/oppia/oppia/pulls?q=is%3Apr+is%3Aclosed+author%3Aapb7
https://github.com/oppia/oppia/issues?q=is%3Apr+author%3Aapb7+is%3Aopen
https://github.com/oppia/oppia/issues/4429
https://github.com/oppia/oppia/issues/4450
https://github.com/oppia/oppia/issues/4835
https://github.com/oppia/oppia/pull/4654
https://github.com/oppia/oppia/pull/4643
https://github.com/mapbox/stylelint-processor-arbitrary-tags
https://github.com/oppia/oppia/issues/1977

June 11 - June 15: Buffer time for Milestone 1

Milestone 2 (June 15 - July 9):
This milestone comprises of documenting, extending and organizing end-to-end tests.

2.1: Fix the flakiness occuring in end-to-end tests, focussing primarily on stateEditor.js
and editorAndPlayer.js. (See issue #4044). (~ 2 weeks: June 15 - June 29)
2.2: Extend the end-to-end tests for Firefox as well as mobile viewports: (~ 1 week:
June 29 - July 6)
 2.1.1: Extend the tests to work on Firefox version 47. Version 47 is preferred over
other versions (Please see this answer on StackOverflow and the browser support
documentation for Protractor).
 2.1.2: Extend the tests for Android/Chrome.
 2.1.3: Extend the tests for iOS/Safari.
2.3: Document the process of writing new tests and specify the components which
should be emphasized in case of new tests. (~ 3 days: July 6 - July 8)
2.4: Organize (Please see PR #4896 [comment]) and structure the tests so that the
end-to-end tests can be easily extended by developers. (~ 4 days: July 8 - July 11)

July 9 - July 13: Buffer time for Milestone 2

Milestone 3 (July 13 - August 6):
Implement our Oppia-bot to the main repository. I plan to do most of the work pertaining
to this milestone during the pre-GSoC time so that there is no rush in the last few days.

3.0: (Start during bonding period: April 23 - May 14) Finalize the response of the bot for
each particular action. Here I will be focusing on a few particular questions:

a. When should the bot respond, that is, which actions will trigger the bot?
b. What should be the response message/comment of the bot in different

situations?
3.1: Design the Oppia-bot. (~ 12 days: July 13 - July 24)
3.2: Test the bot intensively and ensure its comments matches the action of the user:
This can be done using the Jest framework. The probot documentation explains writing
tests using an example (Please refer to the tests section). (~ 1 week: July 24 - July 31)
3.3: Create a manual of the Oppia-bot for the developers with the following sections:
(~ 2 days: July 31 - August 2)

● Response of the bot to various actions.
● Instructions for deployment on Heroku.

https://github.com/oppia/oppia/issues/4044
https://stackoverflow.com/questions/43189784/whats-are-the-protractor-supported-versions-of-firefox-ie-and-safari/43192078#43192078
http://www.protractortest.org/#/browser-support
https://github.com/oppia/oppia/pull/4896#issuecomment-382668989
https://facebook.github.io/jest/
https://probot.github.io/docs/testing/
https://probot.github.io/docs/testing/

● Adding plugins to the existing bot.
● FAQ section.

3.4: Install the Oppia-bot as a GitHub app on the main repository, “oppia”. (~ 1 day:
August 3)
3.5: Fix any problems/errors, if any. (~ 6 days: August 3 -August 9)
3.6: Install it on other active repositories as well, such as, “oppia-ml”, if time permits.
3.7: Implement JSON lint checks , if time permits.

August 6 - August 14: Buffer time for Milestone 3

Technical Design and Implementation:

1. Lint Checks:

I will be dividing this into 4 sections, one each for Python, Javascript, CSS and

HTML and a section for JSON (which will be implemented if time permits).

a. Python :
Currently in use: Pylint and Pycodestyle

Details:
We have almost exploited all of the apt rules provided by Pylint except for few

rules, extensions and custom checkers (discussed later). Pycodestyle had been added
relatively recently to the repository in PR #4522.

I’ll first cover up the in-built Pycodestyle rules which we can use and then move
on to custom checkers using Pylint, covering the in-built Pylint rules towards the end.

● Pycodestyle:
This module is currently being used in _check_spacing in the pre-commit linter.

The enabled pycodestyle rules are specified in tox.ini. Currently enabled rules are E231
(missing whitespace after ‘,’, ‘;’, or ‘:’), E301 (expected 1 blank line, found 0), E302
(expected 2 blank lines, found 0) and E305 (expected 2 blank lines after end of function
or class).
The complete set of rules can be found here.

The ones we can implement are:
(The rules have been assigned a priority based on their occurrence in pull requests as
observed during code reviews).

https://github.com/oppia/oppia/pull/4522
https://github.com/oppia/oppia/blob/develop/scripts/pre_commit_linter.py#L502:L553
http://pycodestyle.pycqa.org/en/latest/intro.html#error-codes

Code Sample Message Priority (as
observed during
code reviews)

E1 Indentation

E101 indentation contains mixed spaces and tabs Medium

E111 indentation is not a multiple of four Medium

E112 expected an indented block High

E113 unexpected indentation High

E114 indentation is not a multiple of four (comment) Medium

E115 expected an indented block (comment) High

E116 unexpected indentation (comment) High

E121 continuation line under-indented for hanging indent High

E122 continuation line missing indentation or outdented High

E126 continuation line over-indented for hanging indent High

E131 continuation line unaligned for hanging indent High

E133 closing bracket is missing indentation High

E2 Whitespace

E201 whitespace after ‘(‘ High

E202 whitespace before ‘)’ High

E203 whitespace before ‘:’ High

E211 whitespace before ‘(‘ High

E221 multiple spaces before operator High

E222 multiple spaces after operator High

E223 tab before operator Medium

E224 tab after operator Medium

E225 missing whitespace around operator High

E226 missing whitespace around arithmetic operator High

E227 missing whitespace around bitwise or shift operator Medium

E228 missing whitespace around modulo operator High

E231 Already in use

E241 multiple spaces after ‘,’ High

E242 tab after ‘,’ Medium

E251 unexpected spaces around keyword / parameter
equals

High

E266 too many leading ‘#’ for block comment Medium

E271 multiple spaces after keyword High

E272 multiple spaces before keyword High

E273 tab after keyword Medium

E274 tab before keyword Medium

E275 missing whitespace after keyword High

E3 Blank Line

E301 Already in use

E302 Already in use

E303 too many blank lines (3) Low

E304 blank lines found after function decorator Low

E305 Already in use

E306 expected 1 blank line before a nested definition Low

E7 Statement

E701 multiple statements on one line (colon) Low

E702 multiple statements on one line (semicolon) Low

E703 statement ends with a semicolon Low

E714 test for object identity should be ‘is not’ High; See here.

E722 do not use bare except, specify exception instead Medium

W2 Whitespace warning

W292 no newline at end of file High

W293 blank line contains whitespace High

W3 Blank line warning High

W391 blank line at end of file High

The above table states all the rules we need to implement using pycodestyle.

Another thing is that we can do away with _check_newline_character function for all
types of files since there already exists some rule or the other to check for newline at
end of file. (W292 in Pycodestyle for python files and eol-last in Eslint for javascript
files). This will increase the efficiency and reduce the time taken to check files.

def _check_newline_character(all_files):
 """This function is used to check that each file
 ends with a single newline character.

https://github.com/oppia/oppia/pull/4752#issuecomment-369166286
https://eslint.org/docs/rules/eol-last

 """

● Pylint:
We are currently using Pylint version 1.7.1 which was released on 17/04/2017. The
latest version is 2.0.0. The 2.0 is a major release and therefore here is what I plan to do:

1. Update the Pylint version to 2.0.0
2. Ensure proper migration and working of the previous rules in the 2.0.0 version.
3. Implement other rules, enable new extensions and write custom checkers

wherever necessary.

Steps 1 and 2:
Updating to version 2.0.0 will not be much of a problem. We need to change the version
in install_third_party.sh, something like this:

echo Checking if pylint is installed in $TOOLS_DIR/pip_packages
if [! -d "$TOOLS_DIR/pylint-2.0.0"]; then
 echo Installing Pylint

 pip install pylint==2.0.0 --target="$TOOLS_DIR/pylint-2.0.0"
 # Add __init__.py file so that pylint dependency backports are resolved
 # correctly.
 touch $TOOLS_DIR/pylint-2.0.0/backports/__init__.py
fi

This will take care of the updation part. We can check the rules by running them over
the complete files.

Step 3:
In-built Rules:
All in-built rules can be found out here.
Some specific rules are mentioned in .pylintrc:

TODO(sll): Consider re-enabling the following checks:
abstract-method
arguments-differ
broad-except
duplicate-code
fixme
missing-docstring

https://pylint.readthedocs.io/en/latest/whatsnew/changelog.html#what-s-new-in-pylint-1-7-1
https://pylint.readthedocs.io/en/latest/whatsnew/changelog.html#what-s-new-in-pylint-2-0
http://pylint-messages.wikidot.com/all-codes

no-member
no-self-use
redefined-variable-type
too-many-arguments
too-many-boolean-expressions
too-many-branches
too-many-instance-attributes
too-many-lines
too-many-locals
too-many-public-methods
too-many-statements
and fix those issues.

These rules need to be considered.

Code Name Explanation Priority (as
observed during
code reviews)

W0223 abstract-method Used when an abstract method (i.e. one that raises
NotImplementedError) is not overridden in concrete
class.

Low

W0221 arguments-differ Used when a method has a different number of
arguments than in the implemented interface or in an
overridden method.

Low

W0703 broad-except Used when an except catches Exception instances.
(Same as E722 of Pycodestyle)

Medium

R0801 duplicate-code Used when same lines of code are repeated. (There is
some problem with this rule. See here.)

Low

C0111 missing-docstring Used when a module, function, class or method has no
docstring. Some special methods like __init__() don't
require a docstring and for those, this message is not
raised if they have no docstring.
Note: This rule will be enabled once we resolve Issue
#4374 completely.

High

https://github.com/PyCQA/pylint/issues/214
https://github.com/oppia/oppia/issues/4374

E1101 no-member Used when an object (variable, function, …) is accessed
for a non-existent member.

Medium

R0201 no-self-use Used when there is no reference to the class,
suggesting that the method could be used as a static
function instead.

High; This might
turn out to be a
good check.

R0204 redefined-variable
-type

Used when the type of a variable changes inside a
method or a function.

Medium; Again a
good check.

R0914 too-many-locals Used when a method or function uses more than 15
variables in the namespace.

Low

C0302 too-many-lines Used when a module has more lines than the limit
specified in the max-module-lines option.

Low; Not preferred

I will be picking up the High and Medium priority checks from the above table.

Pylint Extensions:
Optional Pylint checkers are documented here. This is the complete list of the
extensions which will be in place after this project is completed:
 1. Parameter Documentation Checker:

Need: See PR #4604 where the author has missed the “Raises” part of the
docstring and PR #4605 where the author had initially missed “Returns”.

Priority: High
This checker verifies that all function, method, and constructor docstrings include

documentation of the:
● parameters and their types
● return value and its type
● exceptions raised

and can handle docstrings in
● Sphinx Style
● Google Style
● Numpy Style

Since our docstrings follow Google style, I will be choosing that style.

 2. Docstyle-Checker:

This checker is already in use. See PR #4572 for implementation.
Need: See PR #4458 where a blank line has been wrongly placed.
Priority: High

https://pylint.readthedocs.io/en/latest/technical_reference/extensions.html#pylint-extensions-check-elif
https://pylint.readthedocs.io/en/latest/technical_reference/extensions.html#parameter-documentation-checker
https://github.com/oppia/oppia/pull/4604/files#r167409230
https://github.com/oppia/oppia/pull/4605#discussion_r163837101
https://pylint.readthedocs.io/en/latest/technical_reference/extensions.html#docstyle-checker
https://github.com/oppia/oppia/pull/4572
https://github.com/oppia/oppia/pull/4458#discussion_r160585990

This checker checks for two things: first, that each docstring ends in triple quotes
and second, that there is no blank line at the start of each docstring.

Custom Checkers:
We need to design a few custom checkers for certain issues which might spring up
during code reviews. We also need to write certain tests for these to ensure that they
work properly. These tests need to be automatically detected by the bash script written
for backend tests, run_backend_tests.sh.
We will shape the tests similar to the one in PR #4752.

Issue Solution Tests Priority Status

Keyword args
should be
explicitly named in
calling functions.

A custom check using astroid,
pylint.checkers and pylint.interfaces.

(I have already implemented this. See PR
#4752)

Completed High Completed

Args parts of
docstrings should
match the actual
arg names passed
to the
method/function.

A custom check using astroid,
pylint.checkers and pylint.interfaces.

Required High

Args, Returns and
Raises parts of
docstrings should
include type
information.

A custom check using astroid,
pylint.checkers and pylint.interfaces. This
might be accomplished using
pylint.extensions.docparams (Stated
above under Parameter Documentation
Checker)

Required Low (if the
inbuilt
extension
works else
High)

If something within
parens extends
across multiple
lines, break after
the opening '('.

A custom check using astroid,
pylint.checkers and pylint.interfaces.

Required High

https://github.com/oppia/oppia/pull/4752
https://github.com/oppia/oppia/pull/4752

Do not import
classes directly.
Use modules
instead to refer to
the required
classes.

A custom check using astroid,
pylint.checkers and pylint.interfaces.
(Please see this discussion in PR #4752)

Required Medium

b. Javascript (including checks for AngularJS):
For Javascript, I had collaboratively worked with Sandeep. We had created a plan of
action and divided this task into four sub-milestones.
b.0 Upgrade Eslint from version 3.18.0 to version 4.18.2:

We currently use Eslint 3.18.0. This version is behind the current (4.x) by one
major release, but uses the same rule format. Rules written for this version will not
require changes if updated to 4.x in the future.
b.1 Enable built-in rules provided by Eslint.
b.2 Enable built-in rules provided by eslint-plugin-angular (and also eslint-plugin-html).
b.3 Write custom rules for some checks.

1. AngularJS:

Issue Solution Status

Missing semicolons at end
of lines

Enable built-in rule: semi Done
#4576

Use of ‘==’ rather than
‘===’

Enable built-in rule: eqeqeq Done
PR #4573

Spurious console.log()
statements

Enable built-in rule: no-console Done
#4564

Directives should have an
explicit scope key and it
should not be scope: true
since this leads to
hard-to-maintain
direct-from-parent imports

Custom rule.

All directives should have
restrict: 'E'

Already available with
eslint-plugin-angular
directive-restrict

https://github.com/oppia/oppia/pull/4752#discussion_r174705056
https://eslint.org/docs/rules/semi
https://eslint.org/docs/rules/eqeqeq
https://eslint.org/docs/rules/no-console
https://github.com/Gillespie59/eslint-plugin-angular/blob/HEAD/docs/rules/directive-restrict.md

For function args within
parens, indent follow-on
lines by 2 additional
spaces

Enable built-in rule: Indent with
FunctionExpression
(This rule becomes more strict in
V4.0.0 and might cause errors: see
indent-legacy in that case.)

Done
PR #4588

Always use templateUrl
instead of template

Eslint-plugin-angular:
no-inline-template

Align line breaks of angular
dependencies with those in
the stringified list just
below them, and check
that the dependencies
match exactly

Eslint-plugin-angular: di

Unused Angular
dependencies injected into
a controller

Eslint-plugin-angular: di-unused

If something within parens
extends across multiple
lines, break after the
opening ‘(‘

Enable built-in rule:
function-paren-newline
This rule was introduced from 4.6.0
and is not available for 3.18.0

Injected dependencies
should be sorted
alphabetically

Eslint-plugin-angular: di-ordered

Use ‘$log’ instead of
console methods

Eslint-plugin-angular: log

All of the file names should
match the angular
component name

Eslint-plugin-angular: file-name
(need some modification)

2. Javascript:

enforce consistent spacing
inside array brackets

Enable built-in rule:
array-bracket-spacing

enforce consistent brace
style for blocks

Enable built-in rule: brace-style

https://github.com/Gillespie59/eslint-plugin-angular/blob/master/docs/rules/no-inline-template.md#no-inline-template---disallow-the-use-of-inline-templates
https://github.com/Gillespie59/eslint-plugin-angular/blob/HEAD/docs/rules/di.md
https://github.com/Gillespie59/eslint-plugin-angular/blob/HEAD/docs/rules/di-unused.md
https://eslint.org/docs/rules/function-paren-newline
https://github.com/Gillespie59/eslint-plugin-angular/blob/HEAD/docs/rules/di-order.md
https://github.com/Gillespie59/eslint-plugin-angular/blob/HEAD/docs/rules/log.md
https://github.com/Gillespie59/eslint-plugin-angular/blob/HEAD/docs/rules/file-name.md
https://eslint.org/docs/rules/array-bracket-spacing
https://eslint.org/docs/rules/brace-style

require or disallow newline
at the end of files

Enable built-in rule: eol-last

enforce consistent spacing
between keys and values
in object literal properties

Enable built-in rule: key-spacing

enforce consistent spacing
before and after keywords

Enable built-in rule: keyword-spacing

disallow multiple empty
lines

Enable built-in rule:
no-multiple-empty-lines

disallow all tabs Enable built-in rule: no-tabs

disallow trailing whitespace
at the end of lines

Enable built-in rule: no-trailing-spaces

disallow whitespace before
properties

Enable built-in rule:
no-whitespace-before-property

enforce the consistent use
of either backticks, double,
or single quotes

Enable built-in rule: quotes

require quotes around
object literal property
names

Enable built-in rule: quote-props

enforce consistent spacing
after the // or /* in a
comment

Enable built-in rule: spaced-comment

require object keys to be
sorted

Enable built-in rule: sort-keys

Indent the continuation line
by two spaces

Custom rule (Please see this
discussion in PR #4820)

Custom Rules:
As of now, we have two cases where we need custom rules. Both are related to
AngularJS. So I think it would be better to write these rules using eslint-plugin-angular
framework that way it would be simple to extend to any rules we might need because

https://eslint.org/docs/rules/eol-last
https://eslint.org/docs/rules/key-spacing
https://eslint.org/docs/rules/keyword-spacing
https://eslint.org/docs/rules/no-multiple-empty-lines
https://eslint.org/docs/rules/no-tabs
https://eslint.org/docs/rules/no-trailing-spaces
https://eslint.org/docs/rules/no-whitespace-before-property
https://eslint.org/docs/rules/quotes
https://eslint.org/docs/rules/quote-props
https://eslint.org/docs/rules/spaced-comment
https://eslint.org/docs/rules/sort-keys
https://github.com/oppia/oppia/pull/4820/files/8f3c058847577ff9370c921c80a92118c2b64348#r175572492
https://github.com/oppia/oppia/pull/4820/files/8f3c058847577ff9370c921c80a92118c2b64348#r175572492
https://github.com/oppia/oppia/pull/4820

eslint-plugin-angular is an open source project and provides detailed documentation for
writing such rules.
Let’s take an example of directive-name rule, which says that all directives should have
a name starting with the parameter defined in the config object:

/**

 * require and specify a prefix for all directive names

 *

 * All your directives should have a name starting with the parameter

you can define in your config object.

 * The second parameter can be a Regexp wrapped in quotes.

 * You can not prefix your directives by "ng" (reserved keyword for

AngularJS directives) ("directive-name": [2, "ng"])

 *

 * @styleguideReference {johnpapa} `y073` Provide a Unique Directive

Prefix

 * @styleguideReference {johnpapa} `y126` Directive Component Names

 * @version 0.1.0

 * @category naming

 * @sinceAngularVersion 1.x

 */

'use strict';

var utils = require('./utils/utils');

module.exports = {
 meta: {
 docs: {
 url:
'https://github.com/Gillespie59/eslint-plugin-angular/blob/master/doc

s/rules/directive-name.md'

 },

 schema: [{
 type: ['string', 'object']
 }]

 },

 create: function(context) {
 if (context.settings.angular === 2) {

https://github.com/Gillespie59/eslint-plugin-angular#how-to-create-a-new-rule
https://github.com/Gillespie59/eslint-plugin-angular/blob/master/docs/rules/directive-name.md

 return {};
 }

 return {

 CallExpression: function(node) {
 var prefix = context.options[0];
 var convertedPrefix; // convert string from JSON
.eslintrc to regex

 if (prefix === undefined) {
 return;
 }

 convertedPrefix = utils.convertPrefixToRegex(prefix);

 if (utils.isAngularDirectiveDeclaration(node)) {
 var name = node.arguments[0].value;

 if (name !== undefined && name.indexOf('ng') ===
0) {
 context.report(node, 'The {{directive}}
directive should not start with "ng". This is reserved for AngularJS

directives', {
 directive: name
 });

 } else if (name !== undefined &&
!convertedPrefix.test(name)) {

 if (typeof prefix === 'string' &&
!utils.isStringRegexp(prefix)) {

 context.report(node, 'The {{directive}}
directive should be prefixed by {{prefix}}', {
 directive: name,
 prefix: prefix
 });

 } else {
 context.report(node, 'The {{directive}}
directive should follow this pattern: {{prefix}}', {

 directive: name,
 prefix: prefix.toString()
 });

 }

 }

 }

 }

 };

 }

};

All the custom rules will be built around these lines. Each rule will use the utilities
provided by the context object.

c. CSS and HTML:

I had already prepared a design document for CSS linting (Issue #1977). The design
doc is complete in itself and has been reviewed by Sean. I’ll be following the exact
document with the given milestones.

c.1 CSS:
We will be using Stylelint for the process (discussed in the issue thread).
As suggested by Sean, we should “bite off small pieces at a time, instead of a big one!”,
we’ll divide the process into three sub-milestones:

c.1.0:
Lay down the rules for CSS linting which need to be followed by all developers. These
rules need to be compliant with the current CSS files.
(Discussed in detail later on in the document)

c.1.1:
Separate selectors used in different pages from oppia.css. (Please see PR #4654 for
the approach to be followed here).

c.1.2:
Setup Stylelint and implement the laid out rules only for the main css file, that is,
oppia.css for now.

https://docs.google.com/document/d/1QfiIQIu3JveyOJan3c4soRvjy0qoFPzkz4hQ8OgLvQ4/edit?usp=sharing
https://github.com/oppia/oppia/issues/1977
https://stylelint.io/#getting-started
https://github.com/oppia/oppia/pull/4654

Steps involved:
1. Install stylelint by using the stylelint cli process in third_party.sh.
2. Create a .stylelintrc file (at the project level) with the decided rules.
3. Design a function: _lint_css_files in pre_commit_linter.py.

These are the broad steps involved in this milestone.

c.1.3:

● Expand the lint check all other files as well.
● Take care of the threading issues (if any).
● Employ the HTML processor following the steps as given here.

Rules for CSS linting:

In Stylelint, all rules are turned off by default. We’ll have to set them up manually
according to our requirements.
Stylelint also provides us with a set of recommended as well as standard rules which we
can extend using our .stylelintrc file:

Recommended Rules:

Rule Explanation Priority

at-rule-no-unknown Disallow unknown at-rules. High

block-no-empty Disallow empty blocks. High

color-no-invalid-hex Disallow hex colors. High

comment-no-empty Disallow empty comments. High

declaration-block-no-
duplicate-properties

Disallow duplicate properties
within declaration blocks.

High

declaration-block-no-s
horthand-properties-o
verrides

Disallow shorthand properties
that override related longhand
properties within declaration
blocks.

Medium

font-family-no-duplicat
e-names

Disallow duplicate font family
names.

High

https://github.com/mapbox/stylelint-processor-arbitrary-tags
https://stylelint.io/user-guide/configuration/#processors
https://github.com/stylelint/stylelint/blob/master/lib/rules/at-rule-no-unknown/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/block-no-empty/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/color-no-hex/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/comment-no-empty/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/declaration-block-no-duplicate-properties/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/declaration-block-no-duplicate-properties/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/declaration-block-no-shorthand-property-overrides/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/declaration-block-no-shorthand-property-overrides/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/declaration-block-no-shorthand-property-overrides/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/font-family-no-duplicate-names/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/font-family-no-duplicate-names/README.md

font-family-no-missing
-generic-family-keywo
rd

Disallow missing generic families
in lists of font family names.

High

function-calc-no-unsp
aced-operator

Disallow an unspaced operator
within calc functions.

High

function-linear-gradie
nt-no-nonstandard-dir
ection

Disallow direction values in
linear-gradient() calls that are not
valid according to the standard
syntax.

Medium

keyframe-declaration-
no-important

Disallow !important within
keyframe declarations.

High

no-descending-specifi
city

Disallow selectors of lower
specificity from coming after
overriding selectors of higher
specificity.

High

no-duplicate-at-import
-rules

Disallow duplicate @import rules
within a stylesheet.

Medium

no-duplicate-selectors Disallow duplicate selectors. High

no-empty-source Disallow empty sources. High

no-extra-semicolons Disallow extra semicolons. High

no-invalid-double-slas
h-comments

Disallow double-slash comments
(//...) which are not supported by
CSS.

Medium

property-no-unknown Disallow unknown properties. High

selector-pseudo-class
-no-unknown

Disallow unknown pseudo-class
selectors.

High

selector-pseudo-elem
ent-no-unknown

Disallow unknown
pseudo-element selectors.

High

selector-type-no-unkn
own

Disallow unknown type selectors. High

https://github.com/stylelint/stylelint/blob/master/lib/rules/font-family-no-missing-generic-family-keyword/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/font-family-no-missing-generic-family-keyword/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/font-family-no-missing-generic-family-keyword/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/function-calc-no-unspaced-operator/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/function-calc-no-unspaced-operator/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/function-linear-gradient-no-nonstandard-direction/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/function-linear-gradient-no-nonstandard-direction/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/function-linear-gradient-no-nonstandard-direction/README.md
https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient#Syntax
https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient#Syntax
https://github.com/stylelint/stylelint/blob/master/lib/rules/keyframe-declaration-no-important/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/keyframe-declaration-no-important/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-descending-specificity/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-descending-specificity/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-duplicate-at-import-rules/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-duplicate-at-import-rules/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-duplicate-selectors/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-empty-source/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-extra-semicolons/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-invalid-double-slash-comments/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/no-invalid-double-slash-comments/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/property-no-unknown/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/selector-pseudo-class-no-unknown/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/selector-pseudo-class-no-unknown/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/selector-pseudo-element-no-unknown/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/selector-pseudo-element-no-unknown/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/selector-type-no-unknown/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/selector-type-no-unknown/README.md

string-no-newline Disallow (unescape) newlines in
strings.

High

Custom rule For CSS in directive HTML files,
each CSS selector should be
prefixed by the name of the
directive, in order to make sure
that the CSS selector is scoped
correctly and doesn't affect other
parts of the codebase.

High

unit-no-unknown Disallow unknown units. Medium

These can be found here.

Standard Rules:
These rules are build upon the recommended rules and are available here.

I suggest, we should go by the recommended rules, make necessary changes to the
rules, add more rules, turn off unpreferred rules, so that we have more flexibility.

Also, there is an interesting website, which can help us understand which rules refer to
which CSS element: CSS Vocabulary.

Status:
Completed: c.1.0
I’ve setup Stylelint locally and enabled the recommended configuration. Our main css
file: oppia.css produces the following errors:

1. No-descending-specificity:
● Major cause of errors with recommended settings.
● This rule disallows selectors of lower specificity from coming after

overriding selectors of higher specificity.
● Currently, we have around 1073 such errors to be precise.
● Fix all the errors first and then enable the rule.

https://github.com/stylelint/stylelint/blob/master/lib/rules/string-no-newline/README.md
https://github.com/stylelint/stylelint/blob/master/lib/rules/unit-no-unknown/README.md
https://github.com/stylelint/stylelint-config-recommended/blob/master/index.js
https://github.com/stylelint/stylelint-config-standard/blob/master/index.js
http://apps.workflower.fi/vocabs/css/en
https://stylelint.io/user-guide/rules/no-descending-specificity/

(I am attaching the error report pertaining to this error for reference)[Link]

2. Selector-type-no-unknown:

● Enable this rule with ignore: ["custom-elements”]
○ Reasons:

■ We currently use a number of custom type-selectors:
md-input-group, md-card, md-content, oppia-parameter,
oppia-expression-error-tag, create-activity-button,
uib-accordion, md-chip, md-chips and profile-link-image. If
we chose not to ignore custom templates, "Unexpected
unknown type selector" error is produced. Also, we can do
away with "default-namespace" in ignore.

 3. No-duplicate-selectors:

● Does not allows duplication of a selector within a stylesheet.
● Caused due to repetition of navbar-nav, oppia-delete-interaction-button,

md-card.oppia-dashboard-title, oppia-clickable-navbar-element:hover.

Sample Fix:
Current code:
.oppia-delete-interaction-button,
.oppia-close-popover-button {
 background: none;
 border: 0;
 color: #000;
 cursor: pointer;
 height: 30px;
 opacity: 0.5;
 width: 30px;
}
.oppia-delete-interaction-button,
.oppia-close-popover-button {
 position: absolute;
}
.oppia-delete-interaction-button,
.oppia-close-popover-button {

https://docs.google.com/document/d/1_KlFH707ZfpMUZE5LQi0ChQL3A2EnbfvuD5edF9JDrM/edit?usp=sharing
https://stylelint.io/user-guide/rules/selector-type-no-unknown/
https://stylelint.io/user-guide/rules/no-duplicate-selectors/

 right: 8px;
 top: 8px;
}

Proposed Fix:

.oppia-delete-interaction-button,
.oppia-close-popover-button{
 background: none;
 border: 0;
 color: #000;
 cursor: pointer;
 height: 30px;
 opacity: 0.5;
 width: 30px;
 position: absolute;
 right: 8px;
 top: 8px;

}

Current code:
.oppia-clickable-navbar-element: hover {
 display: inline-block;
 }

.oppia-clickable-navbar-element: hover {
 display: block;
 }

Proposed code:
 .oppia-clickable-navbar-element: hover {
 display: block;
 }

 4. Declaration-block-no-shorthand-property-overrides:
● Fixed
● Changed order of “padding” and “padding-right”

 5. Function-calc-no-unspaced-operator;

● Fixed
● Added space before and after “/” operator

 6. Font-family-no-missing-generic-family-keyword:

● Fixed
● Added generic-family name (sans-serif)

(The end result after milestone c.1.2 will be similar in structure to PR #4643).

c.2 HTML:
I plan to use htmllint for linting HTML. Since htmllint does not provide any built-in
interface, I will be using htmllint-cli to work with it.
This process will involve the following steps:

Step 1:
Create a .htmllintrc file as specified here.

Step 2:
Decide the rules which need to be implemented. The complete set of rules can be found
here. The following table lists the set of rules I will be implementing here:

Rule Explanation/Solution Priority

attr-name-style Attribute names must conform to the “dash” naming style format. High

attr-no-dup The same attribute cannot be repeated within a single tag. High

attr-validate Attributes in a tag must be well formed. High

indent-style Set to “spaces”; Only spaces should be used for indentation. High

indent-width Spaces used to indent must in multiples of the set number. Set to:
2

High

line-max-len The length of each line must not exceed the set number. Set to: High

https://stylelint.io/user-guide/rules/declaration-block-no-shorthand-property-overrides/
https://stylelint.io/user-guide/rules/function-calc-no-unspaced-operator/
https://stylelint.io/user-guide/rules/font-family-no-missing-generic-family-keyword/
https://github.com/oppia/oppia/pull/4643
https://github.com/htmllint/htmllint
https://github.com/htmllint/htmllint-cli
https://github.com/htmllint/htmllint-cli#installing
https://github.com/htmllint/htmllint/wiki/Options
https://github.com/htmllint/htmllint/wiki/Options#attr-name-style
https://github.com/htmllint/htmllint/wiki/Options#attr-no-dup
https://github.com/htmllint/htmllint/wiki/Options#attr-validate
https://github.com/htmllint/htmllint/wiki/Options#indent-style
https://github.com/htmllint/htmllint/wiki/Options#indent-width
https://github.com/htmllint/htmllint/wiki/Options#line-max-len

80 to be in conformity with the codebase.

tag-close All opening tags must be closed. High

tag-name-lowerca
se

Tag names must be lowercase. Medium

tag-name-match Tag names must match (including the case). Medium

title-no-dup The title tag should not be repeated within the head. Medium

All directive files
need to end with
_directive.html

Custom rule. The approach to be followed here will be to write a
function in pre_commit_linter.py which scans the JS files, extract
the HTML directive files from them and then check their names.

High

d. JSON:
 To implement JSON lint checks, I plan to use the jsonlint npm package and the
jsonlint-cli. The rules will be placed in a .jsonlintrc file:

{

 "validate": "", // a JSON schema to use for validation
 "ignore": ["node_modules/**/*"], // glob patterns to ignore
 "indent": "", // indent to use for pretty-printed output
 "pretty": true // pretty-print formatted json if quiet is false
}

(This is a sample configuration file. Since we do not require a json schema, we can
leave that option out. For indent, we can specify the indent according to our
requirements. Also, the pretty option does not modify the file. It “pretty” prints the output
to STDOUT. If quiet is set to true, no output is printed to STDOUT).

2. Documenting, Extending and Organizing End-to-End Tests:

Here is what I plan to do:

1. Extension:
We need to extend the e2e tests to Firefox and mobile viewports. We currently

use Selenium 2.53.2, Chromedriver 2.36 and Geckodriver 0.20.0. The protractor

https://github.com/htmllint/htmllint/wiki/Options#tag-close
https://github.com/htmllint/htmllint/wiki/Options#tag-name-lowercase
https://github.com/htmllint/htmllint/wiki/Options#tag-name-lowercase
https://github.com/htmllint/htmllint/wiki/Options#tag-name-match
https://github.com/htmllint/htmllint/wiki/Options#title-no-dup
https://www.npmjs.com/package/jsonlint
https://www.npmjs.com/package/jsonlint-cli

documentation provides a browser setup guide for several browsers including Chrome,
Firefox and mobile browsers.
Since the browser support guide recommends using Firefox version 47 for testing with
Protractor, we will be using the same version. To accommodate the Firefox browser
along with Chrome, we will have to modify multiCapabilities in protractor.conf.js (as
stated in the documentation):

multiCapabilities: [{
 browserName: 'chrome',
 chromeOptions: {
 args: ['lang=en-EN'],
 prefs: {
 intl: {
 accept_languages: 'en-EN'
 }
 }
 },
 loggingPrefs: {
 driver: 'INFO',
 browser: 'INFO'
 }
 }, {
 browserName: 'firefox',
 }],

For mobile viewports, there exists a mobile setup guide. Here I plan to go for Appium -
Android/Chrome. We can also extend all the existing tests further to iOS/Safari. The
Appium - Android/Chrome documentation provides a step-by-step process to setup
protractor. To summarize, we will add another capability object to the multicapabilities
array:

capabilities: {
 browserName: 'chrome',
 platformName: 'Android',
 platformVersion: '7.0',
 deviceName: 'Android Emulator',
 },

There are two things we need to take care of incase of mobile viewports:

http://www.protractortest.org/#/browser-setup
http://www.protractortest.org/#/browser-support
http://www.protractortest.org/#/browser-setup#testing-against-multiple-browsers
http://www.protractortest.org/#/mobile-setup
http://www.protractortest.org/#/mobile-setup#setting-up-protractor-with-appium-android-chrome
http://www.protractortest.org/#/mobile-setup#setting-up-protractor-with-appium-ios-safari

● baseUrl is 10.0.2.2 instead of localhost because it is used to access the localhost
of the host machine in the android emulator.

● Selenium address is using port 4723.

Some end-to-end tests sometimes fail without any specific reason. I will also fix this
flakiness occuring in end-to-end tests, focussing primarily on stateEditor.js and
editorAndPlayer.js (Please see issue #4044).

2. Documentation:

Present Scenario:
We have two Wiki pages, one which focuses on writing end-to-end tests and

another page which explains how to write end-to-end tests for a new interaction. These
pages offer an extremely clear step-by-step explanation and/or process for the same.

Plan:
Documentation for writing new end-to-end tests will be updated in the existing

Wiki page on how to write end-to-end tests comprising of the following sections:
● What should a new end-to-end test necessarily comprise of?
● The parts that need to be stressed while designing such a test, namely, console

errors and testing the complete workflow.
● How should any new test be integrated into the existing framework?

For documentation, Wiki pages seem to be a better choice here as compared to Google
Docs as we already have two Wiki pages for the end-to-end tests. Also, accessing a
Wiki page for quick reference is easier as compared to a Doc.

 3. Organization:
 Present Scenario:

The present end-to-end tests structure is:

● core/tests/protractor/: This directory comprises of the actual tests.
● core/tests/protractor_utils/: This directory comprises of all the utilities used to

perform actions based on the elements from the core components of Oppia
(found in core/templates/dev/head/)

● extensions/**/protractor.js: These files comprise of utilities for actions related to
a specific extension.

 Plan:

https://github.com/oppia/oppia/issues/4044
https://github.com/oppia/oppia/wiki/Writing-End-to-End-Tests
https://github.com/oppia/oppia/wiki/Creating-Interactions
https://github.com/oppia/oppia/wiki/Creating-Interactions#testing
https://github.com/oppia/oppia/wiki/Writing-End-to-End-Tests

I intend to keep the structure same for the tests since there seem to be no
problems in the current arrangement. Any new developer can easily get familiar with the
organization of the tests by going through the Wiki pages once. Existing developers are
already familiar with this arrangement and therefore it would be a bit difficult for them to
adjust if we change the structure of the tests. Also, the present organization makes
adding new tests quite easy - the developer loads up the utilities from the
“protractor_utils” directory in a newly created file for writing the test, in “protractor”
directory.
Any developer who wishes to write an end-to-end should do so before the first Saturday
of each month so that they can be pushed to the release branch and can be used to test
the added functionality and fix bugs. This is in accordance with our release process.
The tests should strongly emphasize on checking console errors and the complete
workflow or sequence of actions which all possible users can perform.

 3. Oppia-bot:
 Present Scenario:
 Oppia requires that contributors sign a CLA before they begin taking part in the
development process, that is, resolving issues by submitting pull requests for them.
Some first-time contributors forget to sign the CLA or skip the signing part completely.
Then, when they ping on issue threads, it becomes difficult for the maintainer-on-duty or
any other member to know whether they have signed the CLA. They have to wait for
someone to confirm the CLA status.

The maintainer-on-duty also needs to manually keep an eye for stale PRs and
ping the author to know the status. Sometimes the build fails and the author of the PR is
unaware of it. The maintainer-on-duty has to ping the author telling him/her that the
build has failed. This again is all manually done.

 Plan:
I intend to lay the foundation for our very own, Oppia-bot. This bot will be developed
over the Probot framework as an independent Oppia application. The bot will automate
all the above mentioned processes and will ease the work of the maintainer as well as
the members of Oppia.

The Probot framework is built on Node.js and is highly configurable. Also, another good
point regarding this framework is that it is continuously under development. One more
fact is that, it already has some extensions ready-to-use.
The complete initial setup process can be found in the official documentation of Probot.
In short, to create any GitHub app, one needs to register the app and get a private key.

https://github.com/oppia/oppia/wiki/Release-Schedule#schedule
https://github.com/apps/oppia-bot
https://github.com/probot/probot
https://probot.github.io/apps/
https://probot.github.io/docs/#getting-started

Since the oppia-bot application is under development, I have not made it public, that is,
it cannot be yet installed by other GitHub users. The oppia-bot repository also is private
at the moment but I will make it public in the future.

Heroku VS GAE: The bot is currently deployed on Heroku. Another framework which we
can go for, to host the bot is GAE.
The official Probot documentation provides an intuitive way to deploy the bot on Heroku.
We can easily monitor the bot’s activity using the heroku-cli.
Suppose any user comments on a issue thread, then heroku-cli highlights the bot
activity as well:

Here, the image clearly shows the “event” which has triggered the bot, namely,
“issue_comment.created” on the “repository”: “apb7/hello-world”.
Hosting on Heroku is free of cost since the bot does not require much server
computations and can be hosted on a free account.
I have hosted the app since the past ~30 days (as of March 2018) and have not faced
any problem with heroku.
GAE, on the other hand, is favored since the Oppia website has been deployed using it.
Since the server of the bot does not affect its working or performance, I have decided to
go for Heroku.
Access Control: Another concern which springs up in case of any such application is the
amount of access or control. This will not be a problem in case of the Oppia-bot.
The bot requires read and write access to issues, pull requests and repository contents
to function properly:

https://probot.github.io/docs/deployment/#heroku
https://devcenter.heroku.com/articles/heroku-cli

This bot will be completely under our control. It is not a fork of the framework and is an
independent app. Moreover, we can specify the access during installation and can
monitor the data through the heroku-cli (stated above).
The bot will deployed on a free Heroku account. The credentials of the account could be
shared with the Oppia admins. In this way, the running instance of the bot would be
owned by the Oppia admins (and me). The admins would be able to make changes to
the bot and push it onto the server.

Response Time: The response time of the bot when it is active is almost instantaneous
(approximately ~1 to 2 seconds). After 30 minutes of inactivity, the server becomes idle.
In that case the response time of the bot is approximately ~9 seconds, depicted by the
image below.

The oppia-bot repository is private at the moment since it stores the private key as well
as the Google authentication token to access the sheet.

As a starting point, the bot will automate the following processes:

a. CLA checking:
Status:
Completed for sample CLA form and sheet.

Technology:
Google Sheets API v4 (The latest API version for Sheets)

Details:
We need a one-time authentication token from the Gmail account of the user who

stores the Sheet in the Drive. This is mandatory and is required to use the APIs to
access the Sheet. I have set this up in such a way that this token is stored locally on the
server in a directory “.credentials” as a JSON file.

At present, the bot picks the username of the user who has commented on any
issue thread or a pull request using GitHub APIs and then checks it against each
username in the Sheet using Google Sheets APIs.

This picture highlights the logic behind CLA checking:

(In line 3 above, the user names are stored as list of list of strings. This is the

response obtained on reading the values from the sheet. This might be for multiple
comma-separated values in a single cell which might not happen in our case. I’ll do
away with this when we set the CLA sheets).

The above picture displays the list of GitHub handle of individuals who have
signed the CLA. The bot then compares it with the userName extracted from the
issue/pull request and operates the if block when the GitHub handle from the list
matches the userName otherwise else block. It then generates a comment accordingly.

 (I’ve set console.log here to highlight the logic. This will be more clear when
viewed with the complete code.)

The “hasUserSignedCla” variable is a boolean which is set to “true” if it
encounters the userName in the Sheet as well.
In case of a PR, if a user has not signed the CLA, the bot puts up a label “Needs CLA”
along with a comment asking the author to sign the CLA.
Later when the author comments something like “I signed it!”, the bot rechecks the CLA
status and removes the label from the PR.
This works even if the PR has multiple labels attached to it:

This is a video demonstration for the CLA checking done by the Oppia-bot. Also,
the Oppia-bot is already installed in one of my repositories and can be tested
here.

I also found some inspiration for CLA checking:

https://drive.google.com/open?id=1bjIYrWonNwteUEehoVQp-q1HYMLAuNT3
https://github.com/apb7/hello-world/

Googlebot:

b. Stale Pull Requests and Issues:
Status: Completed.

Technology: Probot’s existing application, stale.

Details:
The framework already has an application for this purpose, stale. We can directly

add this as a “plugin” to our Oppia-bot. I have read the documentation regarding this
and will try implementing it. There are other bots too which extend a number of plugins
together. So it is quite feasible.
To specify the the exact definition of stale, we create a “.github/stale.yml” file as
explained here. There are two things we need to specify, “daysUntilStale”, which is used
to label the PR stale and “daysUntilClose”, which closes the PR after a specific number
of days, after the “daysUntilStale” has passed. I suggest we set “daysUntilStale” as 60
and “daysUntilClose” as 7. “daysUntilClose” are counted after the PR is labelled as
“stale”. Therefore any PR will be closed after 67 days (It will marked as stale after 60
days and then closed a week after that).

https://github.com/probot/stale
https://github.com/probot/stale
https://github.com/probot/stale#usage

 c. Mentioning Maintainer on-duty and the PR author:
Status: Under development.

Technology: Travis CI npm package or Travis CI API V3 directly. For merge

conflicts, we can use the metadata of a PR using GitHub APIs.

Details:
In case of build failure or merge conflicts, the Oppia-bot will post a comment on

the thread, with @ mention to the maintainer and/or the author. This will automatically
trigger an email to the involved individuals (by GitHub itself). Regarding the maintainers
list, it can be stored as a Sheet and the bot can directly access it. The comment will
contain a link to redirect individuals to the appropriate wiki pages -- the first to “If your
build fails” and the second to the relevant part of the PR instructions (Second sub-point
of the fifth point in Instructions for making a code change).

 d. Automating routine update of translations (if time permits):

Status: Under development.

Technology: GitHub APIs

Details:

https://www.npmjs.com/package/travis-ci
https://docs.travis-ci.com/user/developer/#API-V3
https://github.com/oppia/oppia/wiki/If-your-build-fails
https://github.com/oppia/oppia/wiki/If-your-build-fails

At the moment, we have to manually generate PRs from the translatewiki branch
to the develop branch whenever the translatewiki branch changes, once a month.
This process could be automated by the Oppia-bot. The bot could generate a PR once
a month and the maintainer-on-duty could then review and merge it accordingly.

Testing the bot: We will use the jest framework to test the bot. Jest can be installed by
npm install jest (Detailed installation instructions can be found here).
The tests would be placed in the __tests__ folder.
The tests will be built along the same lines as shown in the below example:

// Requiring probot allows us to mock out a robot instance

const {createRobot} = require('probot')
// Requiring our app

const app = require('')
// Create a fixtures folder in your test folder

// Then put any larger testing payloads in there

const payload = require('./fixtures/payload')

describe('your-app', () => {
 let robot
 let github

 beforeEach(() => {

 // Here we create a robot instance
 robot = createRobot()

 // Here we initialize the app on the robot instance
 app(robot)

 // This is an easy way to mock out the GitHub API
 github = {

 issues: {

 createComment: jest.fn().mockReturnValue(Promise.resolve({
 // Whatever the GitHub API should return
 }))

 }

 }

 // Passes the mocked out GitHub API into out robot instance
 robot.auth = () => Promise.resolve(github)
 })

https://github.com/oppia/oppia/pulls?q=is%3Apr+routine+is%3Aclosed
https://facebook.github.io/jest/
https://facebook.github.io/jest/docs/en/getting-started.html

 describe('your functionality', () => {
 it('performs an action', async () => {
 // Simulates delivery of a payload
 // payload.event is the X-GitHub-Event header sent by GitHub
(for example "push")

 // payload.payload is the actual payload body
 await robot.receive(payload)
 // This test would pass if in your main code you called
`context.github.issues.createComment`

 expect(github.issues.createComment).toHaveBeenCalled()

 })

 })

})

Time Zone where I will primarily be during the summer:
Indian Standard Time (IST) which is ahead of UTC by 5 hours and 30 minutes.

Time which I will be able to commit to the project:
I will be able to devote approximately at least 7 to 9 hours a day on an average
throughout the project and aim for 55 to 60 hours a week. The time devoted to the
project may increase but will never fall below 7 hours per day on an average.

Other obligations during the summers:
I have my summer vacations from mid of May to end of July. I might have some classes
for a few days (the exact date is not known as of now) but that will not affect the time I
devote to the project. There might be two days of travelling, one in May, around 21st
and the other in July, around 15th. Since I am already familiar with the community, I
plan to begin early during the community bonding period so that I have ample of buffer
time for each milestone. Also, I have planned the milestones in such a way so that I can
directly begin with their implementation.

Prefered mode of communication: I am comfortable with all modes, be it Gitter or
Hangouts and am willing to chose any mode used by the mentors.

How often I plan to communicate with my mentors and through which channels:

I will be in continuous touch with the mentors via email, Gitter or Hangouts. There could
be biweekly (or as preferred by the mentors) meetings on Hangouts to discuss about
the workflow to be followed ahead. I would also love to maintain daily logs of my
progress to keep a track of everything.

Thanks!

