

Generalized Review System
Nithesh N. Hariharan

 2

Why are you interested in working with Oppia?
I found out about Oppia in November and started working with the team since then.
Among other things, there are two things that I really liked about Oppia. Firstly I like the
goal of the organization. I have used a lot of online courses and play along courses, but
none of them were as innovative and user friendly as the Oppia platform. This platform is
simple enough to use so that it can be given to a student of primary school and the student
will be able to play through the lessons without any issues. This goes to say how much
impact this project could create in the society. It would help students in various parts of the
world, where the education system may not be up to the mark. Also by taking a non
conventional method to teaching than the traditional classroom approach, it would help
students to develop a different mindset to learning.

I was also involved in discussions about the recent RCT that happened in January. The
feedback we obtained got me thinking. Each student is different and their grasping powers
are varied. In order to understand a concept, the student needs to be motivated to think
about it. It is also equally important to catch their attention for that span of time. This is
rarely what happens in school. With a platform like Oppia, the learners can take a lesson at
their own pace, keep trying until they get the solution right, and also get hints to guide
them through their path to learning. This system is very revolutionary and could help
supplement the primary education system throughout the world. I would like to be a part
of such an organisation!

Secondly, the community is just awesome! While working on various issues, testing
releases, and in general, meeting with the community, I have spoken to a lot of members
on the team. All of them are very helpful and always ready to guide you. It had been a great
learning experience for me so far with Oppia. I hope that I can keep contributing and learn
a lot more in the process.

What interests you about this project? Why is it worth doing?
Oppia is an organisation that relies on the community not only for developing the
infrastructure but also to get good quality content on the site. The explorations that are
present on the website are all created by the community for the use of the community. The
key explorations in Oppia are currently created by a smaller set of people mostly a part of
the development team. We would like to allow people from the community to also help out
to create and contribute to key explorations.

 3

But just allowing more number of contributors may not be the best idea. Too many cooks
spoil the broth. To allow valuable contributions by other members of the community while
maintaining quality of content produced, we can have a system where the contributions of
the community are put forth to the creators, and they review the changes. If they are happy
with the changes, they should be able to accept them into the exploration. This allows us to
effectively crowdsource Oppia’s content while maintaining quality.

I feel that adding this system is really important for the organisation. It allows us to
increase our contributor count while also maintaining quality. This will enable us to
produce many more better explorations, at a much faster speed.

Prior experience (especially with regards to technical skills that are
needed for the project)
I have worked on multiple projects involving web development. I have worked as a backend
developer for an educational startup Ylurn, I have also worked on a platform for my school,
to help teachers conduct weekly assignments and tests on an online platform, and the
answers are evaluated immediately. I have worked on some other hobby development
projects where I learnt how to use web development technologies.

I have been contributing to Oppia since November 2017. I have helped to fix some issues
from the issue tracker and also helped in the release testing for the releases starting
January 2018. In the process I have acquainted myself with the structure of the codebase,
the workflow and also the release process.

I have actively participated in programming competitions (including Google Code Jam, ACM
ICPC and Codechef Snackdown). I have also actively participated in weekly and monthly
contests hosted on various online websites. This has enhanced my ability to think about
efficient solutions for problems, and also consider various corner cases while
implementing. Debugging code is another skill that I have improved on while competing in
such events.

Links to PRs to Oppia
● Fractions landing pages: #4758, #4801
● Additions to Fractions interaction: #4387, #4400, #4645, #4648
● Many more PRs for blocking bugs, issues, upgrading libraries etc, For a full list

please click here

https://www.ylurn.com/
https://github.com/oppia/oppia/pull/4758
https://github.com/oppia/oppia/pull/4801
https://github.com/oppia/oppia/pull/4387
https://github.com/oppia/oppia/pull/4400
https://github.com/oppia/oppia/pull/4645
https://github.com/oppia/oppia/pull/4648
https://github.com/oppia/oppia/pulls?q=is%3Apr+author%3Anithusha21

 4

Overview
This project aims to introduce a system to introduce a suggestion-review system which
would allow the community to contribute to the content on Oppia. It also aims to add a
review system to allow easy management of the proposed suggestions and accept or reject
them as appropriate. In order to maintain quality of reviews, we allow reviews from users
who have made above a certain number of contributions in similar kind of suggestions. For
each exploration the creator of the exploration can appoint some trusted reviewers who
will be able to accept (merge) content related suggestions for that exploration. At a
site-wide level, translation reviewers can be selected for each language and they can accept
translations for that particular language.

What is an apt name for the framework: tasks or suggestions?
The dictionary defines a task as “a piece of work to be done or undertaken”. Whereas a
suggestion is defined as “an idea or plan put forward for consideration”. As the proposed
changes would be reviewed before they are accepted, the definition of a suggestion seems
more apt for the context. So we go ahead by calling it the “suggestions framework”.
Possible suggestions include changing or adding content to the website, supplementing the
existing content with translations, images, etc. For some advanced use cases (a possibility),
the options that you get in the admin page (to add new roles, changing the email
properties, etc) suggestions can be created and put forth for review.

Why do we need suggestions?
By making all “ideas put forward for consideration” on Oppia pass through another layer
called suggestions, we have room for more validation. As all of these suggestions will have
a similar base structure, it will allow us to build a general system of validation, which we
term as the generalized review system. For any of the suggestions created, it would be best
to have a second pair of eyes look at and validate what you have done. This will help
ensure quality of products delivered to the learners and also help us widen the user pool
who can actually make changes to content.

Teachers always mention that learning is never brought about effectively by having one
teacher teaching and students getting taught. It is a mutual learning experience. The
suggestions of students are valuable and will help better the educational content on Oppia.
Their suggestions need to be presented to the teachers for review. There may also be

 5

situations where the learner creates a suggestion to make slight wording changes in the
content, or to report that the translations do not match the content.

As we keep adding more and more features to Oppia, it is important that we have a
framework where both the creator and learner sides of the community can work together
to provide better lessons. Also this system should easily be extendable to newly added
features.

Types of suggestions
A general system should be defined in order to manage various different types of
suggestions that could arise. A list of few of the suggestions that can be added are:

● Edit the content of an exploration state, including the concept card, answer groups,
hints, solutions, etc.

● Add or change translation files for some content of the exploration.
● Adding demonstrative images for a lesson.
● Adding a question.
● Edit title, category, tags and other collection properties.
● Make edits to properties of stories and topics (Features that will be added soon to

Oppia!).

These suggestions can be broadly classified into the following:

● Content related suggestions which relate to making edits for the components of a
lesson, the lesson flow, etc.

● Suggestions that create new entities (questions, explorations, collections, etc)
● Suggestions relating to audio (translation) uploads and image uploads.

 6

Technical outline

User control flow upon creating a suggestion

https://www.draw.io/#G1tst4Kygbm7b9svyickGgwJA7suzIAQ3n

 7

Overview of new features
The above flow chart describes the general flow of control during the process of creating a
suggestion and getting it reviewed. A feedback thread for a suggestion would be necessary
where the proposed edit or addition can be discussed about and reviewed before being
accepted. For some situations it can be allowed (though not recommended) to directly
accept the suggestion without a review. This can be used by users with edit access for the
activity or by trusted translators. Bypassing the review system should be used as a last
resort only when running close to deadlines.

A basic scoring system will be implemented for users to keep track of number of
contributions (Each contribution is defined as an accepted suggestion). A good metric
would be to store the number of contributions in a particular language and number of
contributions for a particular category of lessons. Having more than 10 (say) contributions
in a particular category will allow you to review other suggestions within that category.
After making 10 audio translation contributions for a particular language, you will be
allowed to review translations in the language across explorations. This will allow us to
maintain quality of reviews and translation content on Oppia.

Every suggestion, in general, should go through the review process. If it is created by a user
with edit access, the user is given an option to get the suggestion reviewed. Typically we
would like the user to get the suggestion reviewed before it can be accepted, whereas if the
user needs to get the suggestion in immediately (say, just before an important deadline),
then the user could bypass the review system and complete the suggestion (provided he
has edit access).

Users with score above 10 for content related contributions under that subject category
can review the suggested edit. Once the reviewer is happy with the changes, they approve
the changes. Then a trusted reviewer (a user with edit access for the activity) can accept
(merge) the changes. A new role for reviewers will be added. Also a new category of users
will be set up at the activity level called trusted reviewers. Users with a trusted reviewer role
and who are present in the category of trusted reviewers within that activity are termed as
trusted reviewers for that activity.

 8

UX details
This section defines how the user experience would be while creating and reviewing
suggestions. It discusses various possible scenarios of creating a suggestion.

Suggestion 1: Make an edit to the content card of a state
This suggestion is currently handled using the suggestions framework already present. No
changes to the current UX will be made while migrating this suggestion to use the newly
added suggestions framework. The UX is as follows

1. In the player view, there is a suggest changes button on the navigation bar (At the
top right of the page). A learner uses this button to suggest changes.

2. Upon clicking it, a modal pops up with an RTE showing the contents of the concept
card of the state the learner was in. The changes are made in the RTE and a button
to suggest changes will be presented to the learner. Upon clicking this, the
suggestion is created and is sent for review.

3. These suggestions are all viewable under the feedback tab of the creator view. A
user with permissions to view the suggestion threads can state approval, or reject
the suggestion.

4. For some situations, the reviewer can start a conversation with the suggester using
a feedback thread linked with the suggestions. This can be to clarify some point,
request for some changes, or any other discussion.

5. Before accepting the changes, a validity check is run on the suggestion. For
suggestions of this type, the check would validate presence of the state that is being
edited. Between the version where the suggestion was created and the current
version of the exploration, the state that is linked to this suggestion should not have
been renamed or deleted.

6. A trusted reviewer for that exploration can accept the changes into the exploration.
The trusted reviewer can merge an approved suggestion, or state their approval and
merge the suggestion.

Suggestion 2: Make an edit to the answer groups of a state
This suggestion is similar to the first suggestion as it links to an exploration and is also a
content related suggestion. However there is no frontend view where the user can create
such a suggestion. The UX for reviewing will be the same, the creation of this suggestion (or
any other suggestions to can be done in one of two ways:

Approach 1:

1. In the player view, the suggest edit button, on being clicked first shows up a modal
with all the components that the learner has viewed, including hints, solutions,
feedback from Oppia for the submitted answers and the concept card.

 9

2. The learner chooses one of these components, and then an RTE is shown with the
content of that component and the learner can suggest changes as in the previous
suggestion.

3. Then the suggestion is reviewed by following steps 3-6 of the first suggestion. The
validity check would be similar to the last case. The state where the answer group
was edited should still be present in the current exploration version.

Approach 2:

1. In the player view, upon clicking the suggest edit button, the learner is redirected to
the /create/ page for the exploration.

2. Here beside all editable components we show them a pencil symbol (similar to the
when the creator sees the page), but these buttons will just allow suggesting edits to
the content and not to edit the content directly.

3. Upon clicking a button, the learner will be shown a modal which will resemble the
suggest change modal that is shown in step 2 of suggestion 1. Here the content in
the RTE will be the element the learner chose to edit. On clicking a make suggestion
button, the suggestion will be created and sent for review.

4. Then the suggestion is reviewed by following steps 3-6 of the first suggestion.

Both approaches I feel have their pros and cons. Approach 2 might be too complicated for
a learner to comprehend (with the graph on the side, and various rules and sections).
Whereas for some users who are testing the exploration, it would be better for them to
have a look at the subtleties and then make suggestions. Approach 1 may result in a messy
UI (As we will be trying to crunch down majority of the data from the create page into a
modal). This could also result in bad UX.

As a part of this project, the backend changes to facilitate such a system will be built. The UI
will be developed after the three proposed milestones.

Suggestion 3: Add a new question
This suggestion is different from the previous two suggestions. It involves a different
model, and the suggestion is to create a new instance of this model. The UX for this would
be quite different from the other exploration related suggestions mentioned above.

To add a new question, the relevant suggestion must be created from a question frontend
(Not yet present but will eventually be added). The user will need to input all the required
parameters like question name, language code, and the question data. Once the user
submits this data, a suggestion will be created to add a question, and will be submitted for
review.

 10

This being a feature that is still in development, the best people to review a newly added
question at the moment is probably admins. A different interface will need to be added to
display all the suggestions to the admins and then the suggestions can be reviewed. Once
the suggestion is approved, a new question will be added. The validity check would be to
validate that the suggestion is indeed a valid question. This can be done by calling the
validate function on the domain object of the question.

NOTE: One subtlety in this task is that the feedback threads are linked to explorations. So
adding a discussion thread to these type of suggestions would not be possible. The process
to allow feedback threads has been outlined in the later part of this proposal, but it will be
completed as a future milestone.

Suggestion 4: Add or edit audio translations
This suggestion will be linked to any text displayed to the learner which will need audio
translations. This UX for this project can be described effectively from the translations
dashboard view. A translator adds or edits translations for many parts of the exploration
and then submits them. The translations will be sent for review.

Another tab can be added in the translations tab itself to view all the suggested
translations. When a reviewer opens the tab, all translations suggested in the language the
reviewer is proficient in will be shown. The proficiency in a language is determined by the
reviewer’s score in that language. The reviewer will have an interface where the reviewer
can play the newly recorded translation while having a view that shows the text that was
translated. A validity check will be run on the suggestion before merging. This will check
that the content that was translated hasn’t changed since the version where the suggestion
created. If the text in the current version matches the text in the version where the
suggestion was created, the suggestion is valid and can be merged.

 11

Considered implementation method

Add a separate model to handle “new” suggestions and remove the existing “old” suggestions
model

Firstly, we add a new model to store suggestions. A suggestion would optionally include a
feedback thread to handle review comments.

Once suggestions are implemented, a job can be run to convert all existing suggestion
objects to “new” suggestion objects. Once this migration is completed, the “old” suggestions
framework is completely replaced by the newly implemented suggestions framework and
can be safely removed.

One issue is the fact that feedback thread is still linked to an exploration (necessarily). To
allow review comments in any general suggestion, this must be changed. There are two
possibilities I came up with:

Possibility 1: A feedback thread can be linked to a suggestion instead. This leads us to
think about how the rating and feedback system present in explorations would need to be
changed. For this we could create another type of suggestions, say “feedback from
learners”. This type of suggestion would just convey the feedback message and suggestion.
It cannot be reviewed or merged.
Intuitively this approach doesn’t fit in as the learner did not actually suggest anything if the
feedback message was “Nice lesson” or similar. But it is a possible implementation strategy.

Possibility 2: The feedback thread continues to stay linked to an exploration (can be made
to link to any lesson instead). The exploration_id parameter in the feedback thread model
can be made optional, and an extra suggestion_id parameter (again optional) can be
added. When an exploration ID is specified, the feedback thread will be linked to an
exploration (for learner feedback) and when a suggestion ID is specified, the feedback
thread will be linked to a suggestion instead. This will allow retaining of the current
functionality and also allow it to be linked to a suggestion.

Feedback threads linked to suggestions will not be linked to explorations and vice versa. A
suggestion may be made to some exploration content, and may have a feedback thread
attached to it. In this case, the thread will be linked to the suggestion and not the
exploration.

This possibility seems intuitively better as the feedback thread is generalized to provide
feedback for suggestions as well as for lessons. As per this modelling, The existing
functionality for user feedback will be unaltered, and functionality will be extended to start
a discussion on any suggestion put forward for review.

 12

Technical details of the backend
Suggestions
The first model to be added into the backend is for a suggestion.

Several constants need to be defined for some parameters of the suggestion.

1. Constants defining the possible types of suggestions. As a part of this project, I plan
to implement 2 types of suggestions. But broadly, they will be of three types --
content changes, translation related and create new
questions/collections/explorations or other newly added entities. In the future if a
new distinct category of suggestion is going to be added it could be done so.

2. Constants defining the possible statuses of a suggestion: For the moment, we add 5
possible statuses

○ In review - This denotes that the suggestion is in the review process or that it
is marked for review. This will be the default status for newly created
suggestions.

○ Rejected - The suggestion has been reviewed and the changes have been
rejected.

○ Approved - The suggestion has been reviewed and the changes have been
approved. This is analogous to giving a LGTM approval.

○ Accepted - The suggestion has been reviewed and changes have been
merged.

○ Invalid - The suggestion has been invalidated due to some conflicting
changes made since the suggestion was created. Such a suggestion cannot
be merged. Possible scenarios include, changing state content for a state that
doesn’t exist anymore, the content being translated has been changed since
when the translation was suggested and hence the translation is wrong and
would need to be redone.

3. For each type of suggestion defined above, we need a list of possible suggestions
that fall under that type. Adding a new suggestion to the framework would require
you to define an appropriate constant under the appropriate type of suggestion.
This will be a dict where the keys are different types of suggestions and values are a
list of sub-types for suggestions of that type.

4. (optional) For each of the above defined possible suggestions sub-types, we define
what would be the minimum role a reviewer would need to be able to review the
suggestion. (In general this should be the newly added reviewer role, but for some
beta features, it would be nice to restrict the permission to just admins).

 13

The suggestion model should have the following properties.

● The type of the suggestion: A value which is one of the constants defining the types
of suggestions.

● Suggestion sub-type: This will be a value from the list of possible suggestions
(constant defined above) for the given suggestion type. This parameter helps us
identify what specific parameters need to be passed in to the created suggestion.

● Status of the suggestion: Will indicate the status of the suggestion. By default the
status will be set to “In review” if the suggestion needs to be reviewed before
accepting it. This parameter will be one of the defined constants for statuses of a
suggestion.

● Category of suggestion: Will denote the category which the user will be scored on. If
it is not provided, the user will not be scored.

○ For suggestions of translation type, this parameter will store the language.
○ For suggestions of content type or creating new entities, this parameter will

store the subject category (Algebra, Algorithms, etc).
● Author of the suggestion: Stores the user ID of the author.
● Reviewer who approved the suggestion: It would be good to know who approved

the changes for future reference.
● A Feedback thread ID: When the suggestion is created, this will be null. If the

reviewer wants to discuss aspects with the author of the suggestion, a thread will be
created dynamically.

● Assigned reviewer: If any reviewer is specifically assigned to review the suggestion,
this parameter would be set to that user’s ID. This parameter is not required.

● Suggestion parameters: This field will be a JSON object whose parameters depend
on the suggestion sub-type. This parameter is specific to what the suggestion is
made for.

Each suggestion will need to have the following functions.

● Function to check validity of a suggestion.
● Function to convert the suggestion to a dict.
● Function to change the status to rejected or approved.
● Function that accepts the suggestion. This function validates the suggestion, and

then if the suggestion is valid, it will accept the suggestion. For suggestions that
create new entities, the appropriate creation function should be triggered. For
content and translation related suggestions, a call to the appropriate
apply_change_list function should be made to actually make the changes. For newly
added suggestion names, the appropriate function should be called in this function.
If the suggestion is not valid, the status will be set as invalid.

 14

The suggestion parameters field

The suggestion parameters field will be dependent of the sub-type of the suggestion. Here I
outline the required parameters for a few of the possible suggestions.

● For content changes or translation changes, 3 parameters would be required
○ Lesson ID: This parameter stores the ID of the

exploration/collection/question. When new components like skills, topics,
stories, etc are added, their IDs can also be stored in this parameter.

○ Lesson version number: This parameter will store the version number of the
exploration or collection where the change is being suggested at the time the
suggestion was created. It is required to validate that the suggested change is
still valid before accepting (merging) the suggestion.

○ A change list linked with this suggestion: For a start, this could just be one
element to keep suggestions linked to exactly one type of change. This will
follow the same structure as the change lists currently passed into the
apply_change_list function present in explorations, collections and questions.
The dicts in this list should contain:

■ The new value of the content.
■ Based on the command type, the remaining elements of the change

list are decided.
■ The command linked with this suggestion: This parameter specifies

the type of command that needs to be performed by the change list.
The defined constants in the codebase allow editing of the contents of
the lesson by using a change_list (commands defined as CMD_* in the
*_domain files for explorations, collections and questions). Some
examples of the changes possible using this method are listed below:

● Change exploration properties like title, objective, tags, etc.
● Change type of interaction, answer groups, hints, solutions,

and other state properties for an exploration.
● Add or remove nodes from a collection, change required skill

IDs, acquired skill IDs, etc.
● Edit question data, linked skills and title for questions.
● Translations are always linked to a subtitledHtml component

which comprises of concept card, hints, solutions, etc. By using
the edit hint command, the translation linked with it can be
updated.

 15

● Note: Not all of the above supported changes will need to be
exposed as a part of the suggestions framework. Only the
relevant ones will be added based on demand from users. In
this project we take a look at 2 of the allowed commands, in
particular, suggesting edits to content, and suggesting edits to
answer groups.

● For creation of new entities, 2 parameters required are:
○ The type of entity being created
○ A dictionary with all the details that need to be passed to the function that

creates the entity.
● To add/update roles for users:

○ The user ID to update roles for.
○ The new role to be assigned to the user.

 16

The review system

User scoring system (A basic Idea)

To maintain quality of reviews, a scoring system will be implemented. When a user makes a
contribution (gets a suggestion accepted), he gains one point for that type of suggestion.
The values that need to be stored in the userSuggestions model are:

● User ID: The user whose score is recorded.
● Score.
● The category of the suggestion.
● The type of suggestion: This along with the category gives us details of the domain

in which the user has contributed with the above score.

The relevant functions to be added include

● Increase score by 1: To be called when a contribution is accepted.
● Check if user’s score is above 10 (the set threshold).

How this works
Each user will start out with 0 score. Any user regardless of their score can make
suggestions. As and when their suggestion gets accepted, their score for the category
increases by 1. Once their score is above the set threshold, they are given the reviewer role
and can help out in reviewing suggestions where their score is above the threshold.

Users with scores above the threshold will be allowed to approve or reject any suggestion
in that category (not allowed to accept). These users will the termed as being part of the
global reviewer pool for *, where * is the category.

Trusted reviewers
These are users that will be given merge access for an exploration. Each exploration will
have its own set of trusted reviewers. The exploration owners will be able to add users to
the exploration’s trusted reviewer list. These users will be given a role which allows them to
accept suggestions to explorations that are not owned by them.

 17

Review system
Two new actions should be defined for accepting changes to activity and to approve a
suggestion thread.

Two different levels of reviewers will be introduced to aid the review process. A trusted
reviewer will have permissions of an exploration editor along with permission to accept
changes to activities that are not owned by the user. If the user has a score of at least the
threshold for any category, the user should be given the reviewer role which allows the
user to approve a suggestion (in that category) put forth to any activity. The updated role
hierarchy would look like:

https://www.draw.io/#G1NVr-zEhh9uZ5BfV0UZuRB3rbiPKDmtoD

 18

A reviewer would be allowed to use the action:

● Approve a suggestion.

A trusted reviewer would in addition be allowed to use:

● Accept a suggestion (in effect, allows a user with this role to accept changes to
activities owned by someone else).

How the review process works

● For content related suggestions to an exploration:
○ The suggester makes a suggestion.
○ A user with the reviewer role (with enough score in the category of the

suggestion) can approve this suggestion.
○ A user who is a trusted reviewer can approve as well as accept this

suggestion.
● For translation related suggestions to an exploration (an initial idea):

○ The translator adds a translation.
○ Any user with enough score for the language can review the translation
○ The merge rights are still reserved for the trusted reviewers for the

exploration.
■ After the basic review system is set up, another role can be made for

trusted translators. This role however will need to be characterized by
the languages the trusted translator will be allowed to accept
translations for.

■ Another in demand feature request for audio translation reviews was
to add a rotational default reviewer for any incoming audio
translation. This can also be set up after the basic system is in place.

Viability
This is a good model in the long run. However in the short run, This may not work out well
as all users will have 0 score. So we need a good strategy to kickstart this scoring model.
Here are two possible approaches, both approaches may be carried out simultaneously
too.
Possibility 1: Initially, the responsibility is on the creators to assign trusted reviewers for
their owned explorations. These trusted reviewers will aid in the review process to allow
other users to get more and more suggestions accepted. Once we have a sufficient number
of suggestions accepted, the review process will work smoothly as there will be sufficient
number of reviewers for most categories.

 19

Possibility 2: We keep the required threshold score low initially, this will allow us to get in
reviewers quickly and once the reviewer pool grows significant, we raise the threshold to a
realistic value. This approach would help kickstart the process of reviewing, but may
compromise on quality of reviews. The cost vs the benefits should be compared before this
is implemented.

Playbook to add handle a new suggestion sub-type
The following steps need to be followed to add a suggestion of a particular type.

1. First, identify the function that needs to be called in order to complete the
suggestion. In the situations that have been described in this proposal, this step
requires you to identify that for suggestions that change exploration content, the
apply_change_list function needs to be called. For adding a new question, the
add_question function needs to be called.

2. Then identify what values (the suggestion_parameters field) would be required to
perform the command. This is obtained by looking at the parameters that the above
function takes in.

3. Add a new constant in the dictionary containing the sub-types for the type of
suggestion.

4. Add proper validation checks to see if the suggestion is valid (will be run before
accepting the suggestion). Here you will need to validate the suggestion_parameters
field so that the necessary values are all present. Any extra validation is also
performed in this step.

5. Add an extra case in the accept suggestion function to handle this new type of
suggestion. In the accept suggestion function, the suggestion is validated and then a
call should be made to the appropriate function identified in step 1 by passing all
the required parameters identified in step 2.

To add a new type of suggestions

1. Add a new constant alongside other suggestion type constants.
2. Define an empty list of suggestions that fall under this category.
3. Now new suggestions can be added to this new type using the steps mentioned in

the previous section.

 20

Examples of suggestion implementations
This section gives examples of suggestions and how they can be implemented in the
suggestion framework.

● Edit the content of an exploration state, including the concept card, answer groups,
hints, solutions, etc.

○ This suggestion will be linked to CMD_EDIT_STATE_PROPERTY command for
an exploration.

○ The type of the suggestion would be set as “content changes”.
○ The category of suggestion would be linked to the subject category of the

exploration.
○ The lesson ID will be set to the ID of exploration where the edit is being

made.
○ The change list would look like:

[{
Cmd: CMD_EDIT_STATE_PROPERTY
Property_name: STATE_PROPERTY_*,
State_name: ‘First state’,
New_value: some new content

}]
○ The suggestion properties would contain the above mentioned exploration

ID and the change list and the exploration version.
○ This suggestion will need to be reviewed before it can be merged.
○ Any reviewer with a score above the threshold for the subject category can

state approval or rejection.
○ The trusted reviewer can then accept the changes if the suggestion has been

approved, or if he approves the suggestion himself

● Adding a Question
○ This suggestion will be of type “create new entity”.
○ The suggestion parameters would include

■ New question dict containing title, schema version, language code,
question data, etc (the exact dictionary that will be passed to a
function that creates a question).

■ Entity type as “question”.
○ The appropriate reviewer for this situation would be either an admin or

moderator as the question is an independent entity. In the future, there

 21

could be a pool of sitewide questions reviewers, similar to the translation
reviewer pool mentioned below.

○ Once approved this question can be added.

● Adding translations for an exploration component (say, hints).
○ This suggestion will be linked to CMD_EDIT_STATE_PROPERTY command for

an exploration.
○ The type of the suggestion would be set as “translation related”.
○ The category of suggestion would be linked to the language of the

translation.
○ The lesson ID will be set to the ID of exploration where the edit is being

made.
○ The change list would look like:

[{
Cmd: CMD_EDIT_STATE_PROPERTY
Property_name: STATE_PROPERTY_INTERACTION_HINTS,
State_name: ‘First state’,
New_value: {

Html: same hint text as before,
Audio_translations: {

‘en’: {
‘Filename’: newly_uploaded_filename.mp3,
‘File_size’: file size of the above file,
‘Needs_update’: true

}
}

}
}]

○ The suggestion properties would contain the above mentioned exploration
ID and the change list.

○ This suggestion may or may not require reviews.
■ If this suggestion is created by a user who has score above the

threshold for the language in which the user added the translation,
the user will be given an option on whether or not this translation
should be reviewed before adding it. Typically, we would like to have
the translation reviewed before it is added (This was Anmol’s opinion.
He mentioned that when adding a lot of translations, it is possible that
you mess up a few of them in between. It could be a very negative

 22

impact on the learner if wrong translations are played, so it would be
better to have it reviewed). However, for situations where the
translations need to be added in a short span of time, the translator
should be given a choice to directly add the translation without
review.

■ If the creator of the suggestion has a score below the threshold, the
translation is submitted for review.

○ If the user chooses to not opt for a review, this suggestion would directly be
approved. Otherwise, once the suggestion is approved by a user with score
above the threshold for the language, it can be merged into the exploration.

● Adding a demonstrative image for the exploration
○ The image will be a part of any of the content elements of the exploration.
○ So this is again a content change suggestion.
○ This reviewers for this suggestion would be the trusted reviewers of the

exploration where this image is added
○ The element where the image is added will have a changed HTML and a

change list will be present in the suggestion properties. The appropriate
function will be called to apply the change list.

● Add an answer to training data (Can be handled in the future)
○ The appropriate function to be called is identified.
○ A new type of suggestions will be created for adding values to training data.
○ Required values for training will be passed through the suggestion

properties.
○ A check pertaining to this type of suggestion will be added to the validate

suggestion function.
○ The appropriate function is called in the accept_suggestion handler when

such a suggestion is created by a user.

 23

Milestones

Add a general structure for a suggestion (Milestone 1)
As a part of this milestone, the suggestion model will be defined and relevant domain
objects, services and controllers will be added. Finally we will replace the existing
suggestion framework to use newly added framework. We will hook up the existing
frontend views to the newly added controllers instead of the suggestion controllers.

Breakdown of suggestions to be added in this milestone

● Add the new model pertaining to suggestions in
storage/suggestions/gae_models.py.

● Add a domain object for the newly added model in domain/suggestion_domain.py.
○ A set of constants should be defined as mentioned in the overview section.
○ Functions will need to be defined to create a suggestion, validate a

suggestion, update a suggestion (if the suggestion hasn’t been accepted yet),
get author name, validate a suggestion.

○ A function to get the feedback thread object linked to the suggestion should
also be written.

○ Backend tests will need to be written for all the above functions
● Suggestion services will be added under domain/suggestion_services.py

○ Functions to create a new suggestion and update an existing suggestion
(which is “in review”) need to be added.

○ Functions need to be written to query suggestions by category, type of
suggestion, status of the suggestion and author of the suggestion.

○ Functions to accept, reject and approve a suggestion should be written.
○ Each of these functions will need backend tests

● Suggestion controllers that will need to be added under controllers/suggestion.py
○ SuggestionHandler that handles creation and updating a suggestion
○ SuggestionListHandler that will handle get queries for suggestions. Various

cases here would include
■ Get all suggestions linked to an author
■ Get all suggestions in a particular category based on status (In review,

approved, rejected or accepted)
■ Get all suggestions linked to a lesson (So that it is consistent with the

current scenario where all suggestions for an exploration can be
retrieved).

○ SuggestionActionHandler that will be responsible for changing status of the
suggestion.

● Make new routes to access the newly added controllers.

 24

● A new integration test will be added to test the newly added suggestion framework.
This test should

○ Create an exploration, create a content related suggestion to change the
state content (the concept card value).

○ Accept the suggestion and the changes should be visible in the exploration
○ Try another suggestion to modify the content of the state and reject it this

time
○ No changes should be made to the exploration.
○ After the reviewer access control is defined in the next milestone, this test

should be modified as only trusted reviewers can accept the changes.
○ Also a scenario where the initial suggestion is updated before being accepted

should be tested.
● As a part of this milestone, minimal frontend changes will be made. Suggestions are

created in the current suggestions framework by just creating a post request to the
newly created SuggestionHandler with the values required.

○ This will be changed to create a suggestion by passing the additional
parameters and command type equal to CMD_EDIT_STATE_PROPERTY and
property type equal to STATE_PROPERTY_CONTENT. (File to edit:
pages/exploration_player/LearnerLocalNav.js

○ In the creator view where the threads are shown and can be accepted or
rejected, changes will be made to use the new suggestions framework.
(Affected files: pages/exploration_editor/ThreadDataService.js,
pages/exploration_editor/Feedback.js).

○ After linking it up to the new framework, the protractor test should continue
to work. This will be used as one of the checks to see that the suggestion
system actually works as expected.

■ Test will be modified to test a situation where the suggestion is
updated before it is accepted

● Write a one-off job to convert all “old” suggestions to “new” suggestions with
command type equal to CMD_EDIT_STATE_PROPERTY and property type equal to
STATE_PROPERTY_CONTENT. This will be added to
domain/feedback_jobs_one_off.py. Write a test for the same. This step completes
the migration to the newly added suggestion framework. The structure of the newly
added suggestion would look as shown below.

{
 suggestion_type: SUGGESTION_TYPE_CHANGE_CONTENT;
 suggestion_name: CHANGE_STATE_CONTENT;
 status: same as the status of the suggestion;
 category: the subject category of the exploration;
 feedback_thread_id: Get the ID of the linked thread;
 author_id: suggestion.author_id;

 25

 suggestion_parameters: {
 lesson_id: suggestion.exploration_id;
 lesson_version: suggestion.exploration_version;
 change_list: _create_change_list_from_suggestion(suggestion);
 }
}
The change_list would look like:
[{
 'cmd': exp_domain.CMD_EDIT_STATE_PROPERTY,
 'state_name': suggestion.state_name,
 'property_name': exp_domain.STATE_PROPERTY_CONTENT,
 'new_value': {
 'html': suggestion.suggestion_html,
 'audio_translations': {
 'en': translation dict
 }
 }
}]

Reviewers (Milestone 2)
The scoring system (Milestone 2.1)

● First we define the userSuggestionsModel in storage/user/gae_models.py. The
parameters will be as stated above for a basic scoring system.

● Define the appropriate class in domain/user_services.py to create the domain
object.

● Add functions to do the following:
○ To get score of a user for a given category and type of suggestion.
○ To update the score of a user for a given category and type of suggestion (For

the basic model, update score by one).
○ Check if user has score above the threshold for a given category and type of

suggestion.
○ Given a user ID, get all records where the score is above the threshold for the

user.
○ Write tests for all the above implemented functionality.

● Edit the previously added accept suggestion function to add a point to the author of
the suggestion for the given category and type of suggestion.

 26

Now we implement the new role hierarchy for reviewers and trusted reviewers.

The review system (Milestone 2.2)
The two new roles will be added to the present role hierarchy for reviewers and trusted
reviewers.

● First we add two new role constants in feconf.py
● Now we add the roles as per the stated hierarchy in domain/role_services.py
● Then the two new actions in domain/role_services.py are added. Add them to the

allowed actions for the newly added roles.
● Another category of users called trusted reviewers will be added in

domain/rights_manager.py. These will be users who are trusted reviewers for the
activity. These users will have the newly added trusted reviewer role. A model
change would be necessary in storage/exploration/gae_models.py (related model:
ExplorationRightsModel).

● A function should be added to check if user can accept suggestions linked with this
activity. The user should have the accept changes from suggestion thread action
(newly added) in their list of actions. Additionally the user should be either owner,
editor or trusted reviewer for the activity.

● A function should be added to check if user can approve/reject suggestions linked
with this activity. For this having the reviewer role is sufficient.

● A function should be added to check if user can edit a suggestion that is in review.
This permission will be available to trusted reviewers, editors, owner or the user
who created the thread.

● These newly added permissions should be tested.
● New decorators should be added to domain/acl_decorators.py for the following:

○ Can user accept changes to activity.
○ Can user accept suggestion.

■ If the suggestion is not linked to an activity, in general restrict this
permission to admin.

○ Can user approve suggestion.
■ If the suggestion is linked to an activity, check using the above

implemented function.
■ Else check the minimum role needed to review the suggestion from

suggestion_domain.py.
○ Can user edit a suggestion that is in review.

● Relevant tests for the decorators should be added.
● Now use the appropriate decorators in the suggestion handlers present in

controllers/suggestion.py.

 27

● Edit the integration test written to test the newly added permissions also. The
complete flow should be tested

○ The suggestion is created by a user.
○ Then the suggestion is approved by a reviewer.
○ Then the suggestion is accepted by a trusted reviewer.
○ Intermediate steps can be added to test editing the suggestion before

merging, accept another suggestion that makes the current suggestion
invalid and then the suggestion should be marked invalid, etc.

○ Also once the suggestion is accepted, the user score should have increased.
○ Some other situations worth testing include:

■ Try accepting the suggestion with users who don’t have enough
permissions.

■ Try approving the suggestion with users with reviewer role but don’t
have enough score for the category.

○ Any non trivial situation that pops up while testing the framework will be
added as a test in the integration test if applicable.

● A change will be made in the create_suggestion function created in milestone 1. If
the user has enough permissions to accept the suggestion that the user is creating,
an extra parameter can be passed in to bypass the review process. In the create
suggestion function itself, the appropriate permission check would be done and the
suggestion would be approved as soon as it is created.

Now we change parts of the frontend to allow the review system to work.

● For this first we provide the option for exploration admins to give out trusted
reviewer roles to users. For this we add an extra option for trusted reviewers in the
edit roles dropdown.

● The create suggestion dialog will contain a checkbox that can be ticked to bypass
review if the user will be allowed to. A warning message will be displayed to the user
stating that it is not recommended to bypass the review system and should be done
if it is truly urgent to get this suggestion in.

● The current view suggestion modal will be edited to include a button for “approve”
when the user viewing the suggestion is a reviewer.

● The protractor test will need to be modified to assign proper roles to the users
before trying to accept or reject changes. Also the test should be modified to also
include an intermediate step to test approving a thread before accepting. Some
corner cases that can be tested here include

○ Trying to approve a suggestion with users with and without permissions to
do so.

○ Trying to accept suggestions with the same users.
○ Test the new functionality to bypass the review system with different users.

 28

Note: Adding permissions for translation based reviewers can be implemented as an
extension of this review system. As per the proposed model, users with the reviewer role
and a good enough score in the language will be allowed to approve the translation
suggestion for an exploration. The merge access is preserved for trusted reviewers
(Allowing only trusted reviewers to merge a translation suggestion may not be very
meaningful from a UX perspective, But to avoid overlaps with the translation dashboard
project, I didn’t want to go into details for the review process of a translation suggestion.
Once a translator role is introduced for an exploration, a user with the translator role
would be the ideal person to handle translation related suggestions for that exploration,
though the global pool of reviewers for a particular language can state approval regarding
the same.)

Add the backend for 2 new suggestions (Milestone 3)
As a part of this milestone we will implement two new types of suggestions. This will help
us ensure that the system that we built indeed generalizes to various kinds of suggestions.
The two suggestions for this milestone have been chosen based on the priorities
mentioned by Sean. First of them would be a suggestion to add a question, and the second
to suggest changes to answer groups.

Both of these suggestions can be implemented using the same set of steps (the same steps
mentioned in the playbook). The major parameters that will be considered are mentioned
below.

Add a new question

● Function to be called when suggestion is accepted: add_question in
question_services.py

● Parameters to be passed in suggestion_parameters: a question dict that has the
data of the question that will be added.

● A new type of suggestion needs to be created. This type would involve all
suggestions relating to creation of new entities.

● Validation: The question dict should have all the necessary parameters for creating a
new question. This can be validated by creating a domain object and calling
validate() on it. But as the add_question also checks the validity of the object, just
checking that the required parameters are passed should be enough.

Suggest changes to answer groups
● Function to be called when suggestion is accepted: update_exploration in

exp_services.py

 29

● Parameters to be passed in suggestion_parameters: the exploration ID, exploration
version and the change_list. The structure of the change list is determined by
investigating the apply_change_list function.

● This suggestion will be a part of the changes to content type which was added as a
part of the first milestone.

● Validation: Firstly, the state where the answer groups are edited should exist in the
exploration. Then the data passed in must be checked to make sure all the required
details are present. Rigorous validation of the details of the answer groups list is
performed in the update_interaction_answer_groups function, so they will not be
replicated here.

Optional suggestions that can be added (If time permits)

● Suggest changes to hints.
● Suggest changes to solutions (These two suggestions will follow a similar

implementation as the changes to answer groups suggestion).
● Add a question to a skill (A possible overlap with the skills project, can collaborate

and help build a review based system to add questions to skills.)
● Add new audio translations (Again, a possible overlap with the translations

dashboard project. Can collaborate to make the translations dashboard feature also
link to the review system).

 30

Future extension projects (will be taken up after completion of the 3
milestones)

Build a suitable UI to allow suggesting edits to answer groups and to add questions
(Important!)
Once the respective backends are implemented for these suggestions as a part of the final
milestone, the next course of action to allow users to use this functionality is to make
suitable UIs for being able to create and review these suggestions. This will be taken as an
extension of the third milestone if time permits. This will allow this functionality to be used
by the community so that we can obtain feedback and hence improve the framework.

Delink Feedback threads from explorations (Important!)
As mentioned in the implementation details, for the review system to become truly general,
feedback threads need to be delinked from explorations. Two possible approaches were
outlined above. This step has to be completed to allow generalizing the suggestions
framework and the review system to be comment on any suggestion thread to give
feedback on any suggested change.

Develop an extension of the review system for translations (Important!)
Reviewers for translations is a complex domain. There should be a set of users who can be
called the translation team who have rights to add, review, and change translations for any
exploration. This is partly possible with the basic implementation of the review system. The
add and change steps had to go through the review step and the reviewers would need to
have a high enough score for the language in order to approve. This is fine, except, the
trusted reviewer for an exploration was finally needed to complete the process and accept
the translation.

This could be a meaningless step for translation suggestions. The trusted reviewer may not
be proficient in the language that the translation is in and hence there is no reason for him
to be the one to accept the translation. Instead these rights need to be provided to either
the translators for the exploration, or to a global set of “trusted translators”, or both of
them. This project extension is possible but relies on the translation dashboard to be
implemented to have translators for an exploration.

 31

A reviewer dashboard (Better UX)
For better UX for reviewers, a dashboard can be created to show users all of the
suggestions that they are assigned for review. Also in general they should view all
suggestions in categories they are allowed to review for. The user can be presented with an
interface to filter the suggestions based on various relevant parameters so that it will be
easy for the reviewer to find a particular set of suggestion to review.

Make a rotational default reviewer assignment for all newly created suggestions
(Feature request from the audio team)
As a part of the basic review system that was implemented, a default reviewer can be
assigned by the creator. But as the number of suggestions increase, this could become a
very cumbersome process. So the trusted reviewers can be assigned rotationally as default
reviewers for the incoming suggestions.

Add suggestions pertaining to newly added functionality
As more and more functionality is added into Oppia, different types of lessons are created,
etc, the community should also be allowed to contribute in these new areas. For this new
suggestions need to be added into the framework. For instance, suggestions pertaining to
audio translations could be added after the translation dashboard is set up, suggestions
pertaining to adding new skills, adding questions into a skill, etc can be added once these
features are added. For each of these suggestions, their relevant UI component must also
be added so that the user can create such suggestions.

Generalise the process of suggesting edits to an exploration
Once a learner is allowed to create suggestions to suggest edits for various parts of an
exploration, a good U! design must be implemented so that the learner can easily (and
without getting confused) select the component that needs to be edited and give its new
value.

 32

Timeline

Dates Tasks that will be completed

Community bonding period:
April 23rd - May 7th (2 week)

Finish ongoing PRs, communicate with my
mentor to make any required changes to
the implementation plan, and complete
responsibilities for May release. Also my
college final exams would be going on.

Coding period starts (on 14th May)
May 10th - 15th

Implement the required model and domain
object for the suggestion model, add the
related services, and add relevant backend
tests for the same.

May 16th - May 23rd Add controllers for the suggestions model,
new routes will be created for the same,
relevant tests will be added.

May 24th - May 28st A new integration test will be added to test
the above added framework

May 29th - June 2nd (Release cut on June
2nd)

The related frontend changes will be
implemented in order to use the new
framework

June 3rd - June 7th
First evaluation

A one off job will be written to migrate the
suggestions from the old framework to the
new framework.

June 7th to June 11th Buffer period for the first milestone.
Manual testing will be done to catch any
bugs. If any bugs are reported, I will work
to fix them.

June 11th to June 15th The existing suggestions model will be
removed from the codebase, all related
controllers, services and domain objects
will be removed.

 33

June 16th - June 20th The new user scores model will be defined,
all related domain objects and services will
also be added. Relevant tests will be added.

June 20th - June 27th New roles are added for trusted reviewers
and reviewers, their allowed actions are
defined. Related functions to check various
permissions are added. New decorators
are added. Rigorous tests will be written to
test the decorators. Use the decorators in
the respective suggestion controllers
implemented in milestone 1.

June 28th - July 3rd Edit the integration test built to also use
the various permissions defined for the
users. Various corner cases will be tested
to make sure that the permissions are
correct.

July 3rd - July 5th Minor changes to frontend to allow
assigning the new roles and also to allow
reviewers to view the feedback thread. The
“approve” button will be added to the view
suggestion modal.

July 5th - July 9th (release cut on July 7th)
Second Evaluation

Buffer time for milestone 2. Manual testing
will be done for the review system that has
implemented. Any bugs that surface will be
worked upon.

July 9th - July 12th Clean up any bugs that surfaced during
release testing. Any such situation will be
added as a test in the unit/integration test
as applicable.

July 13th - July 20th Add a new suggestion type to add a new
question, add related validators, also test
this new suggestion in the integration test

July 21st - July 26th Implement a second type of suggestion to
change the answer groups. This being
similar to the suggestion type implemented

 34

in milestone 1, an integration test would
not be required. However, unit tests will be
added for the added code

July 27th - July 31st Thorough testing of the components added
in all 3 milestones. Any bugs reported will
be worked upon. Relevant documentation
will be added describing the suggestions
framework, review system and also the
playbook to add a new suggestion will be
added.

Aug 1st - Aug 6th (release cut on Aug 4th) Buffer period for the final milestone. If all
tasks are completed so far, an (optional)
additional suggestion will be added to
allow suggesting changes to
hints/solutions.

 35

Summer Plans

Which timezone(s) will you primarily be in during the summer?

I will be in India throughout the summer (Timezone: UTC+05:30)

How much time will you be able to commit to this project?

Between May second week to July end, I will be able to spend about 8-10 hours during
weekdays and about 3-4 hours on weekend. Overall per week, I will be able to spend about
55-60 hours on this project.

In August, my classes begin and hence the time spent during weekdays would be lesser
(around 3-4 hours) while the weekends I can spend more time (about 8-10 hours, to make
up for any pending tasks for the week).

What jobs, summer classes, and other obligations might you need to work around?

I have no other commitments during the summer. I have no other obligations till July end.
In August I will have to get back to college, so the number of hours per week may be
slightly lower. I will try to make up during weekends.

 36

Communication

What is your contact information, and preferred method of communication?

My contact information:

Mobile number: +91-7760351907
Email ID: nithusha21@yahoo.co.in (primary), nithesh2108@gmail.com
Github tag: @nithusha21
I am also active on Gitter and Hangouts.

How often, and through which channel(s), do you plan on communicating with your
mentor?

I plan to maintain a daily record of my progress. Meetings with the mentor can be
conducted once or twice a week. I will be in constant touch with my mentor on
Hangouts/Gitter. To have meetings, any online service is fine by me. But seeing that all my
meetings with the Oppia community have been on Hangouts so far, we’ll probably use
Hangouts for meetings.

About me
I’m Nithesh N. Hariharan, a second year undergraduate studying electrical engineering at
Indian Institute of Technology, Madras (India).

mailto:nithusha21@yahoo.co.in
mailto:nithesh2108@gmail.com

