0

Google Summer Of Code 2018
Rich Text Editor Upgrade

Nitish Bansal

Name of the Project

Rich Text Editor Upgrade

Why am | interested in working with Oppia?

The purpose which Oppia serves is the foremost reason which drives me towards
contributing to Oppia. Being a student myself, | understand the importance of this
organisation for millions of students who do not have access to classrooms due to various
reasons. Oppia provides a platform to gain and share knowledge without any hurdles.

The work environment in Oppia also motivates to learn and contribute with the team of
Oppia. All the members associated with Oppia are active and enthusiastic about their work.
They are always available to help and review my work whenever | am stuck. Contributing to
Oppia for the last two months has not only boosted my technical knowledge but also
taught me the importance of working in a team and helping my fellow contributors.

| would love contributing to Oppia to provide a better experience to all the teachers and
students using Oppia.

| would want to continue to contribute in Oppia even after the GSoC period ends.

What interests me about this project? Why is it worth

doing?

The platform of Oppia is undoubtedly a great platform for students to learn and for
teachers (authors) to share their knowledge. | would love to improve any thing that makes
the work of a student or a teacher easier. Improving the current editor would definitely be
a great help for the teachers to write their content.

In the Oppia’s current editor, there are many problems in the preview mode which do
make the work of a teacher difficult. Some of the issues which indicate the problem with
the current RTE are:

1. Issue #1811
2. Issue #1933
3. Issue #1810

https://github.com/oppia/oppia/issues/1811
https://github.com/oppia/oppia/issues/1933
https://github.com/oppia/oppia/issues/1810

Due to these issues, a teacher has to save the content and then cross check about how the
content is actually looking. So the current editor needs to be improved. More the number
of teachers who love this platform, the better it would be.

Prior Experience

| have been working with Python since last two years. | have implemented the following in
python:

1. Digit Classifier using neural networks by training the model on MNIST dataset.
2. Video chat app using WebRTC.

3. Cloud Music player using Django framework in which a user adds and listens to
songs. These songs are uploaded by the user on per account basis.

| have also completed a course on Network Programming in python.

I am fluent and experienced in Javascript and HTML/CSS too. Most of my PR’s on github are
associated with Javascript. | had implemented a multiplayer game Armoured Aces where
the objective of each player is to kill other players tank. | have also contributed in
mozilla/brackets and processing/p5.js. Both of these organisations needed a good
familiarity with Javascript and HTML/CSS.

| have not implemented anything based on Angular]S but when | started contributing in
Oppia | learnt about Angular]S and it was not very new, knowing the basics of Javascript. It
was difficult in the beginning but as time passed | understood the code structure of Oppia,
went through tutorials on Angular]S, searched whatever | could not understand in Oppia
codebase. Now | feel | have a good command over this language too.

| was not an active GitHub user till last year but for the last four to five months, | have been
actively contributing to open source. | have made around 40PRs in this time trying to give
back to the open source community. Link to my github page is bansalnitish.

| have collected sufficient information about content migration and testing. | have also
gone through the documentation of CKEditor and TextAngular on their respective websites
and hence find myself in a strong position for the project.

https://github.com/mozilla/brackets/pulls?q=is%3Apr+author%3Abansalnitish+is%3Aclosed
https://github.com/processing/p5.js/pulls?q=is%3Apr+author%3Abansalnitish+is%3Aclosed
https://github.com/bansalnitish

Some of my PR’s and issues

Some of my PR's :

mozilla/brackets #916 - Quick Edit Ul for Padding
mozilla/brackets#918 - Quick Edit Ul for Margin

oppia/oppia #4770 - Enhancement to Correctness Footer
oppia/oppia #4740 - Added Speech Recognition Functionality

A total of my 14 PR’s in Oppia are merged till date.

The following issues were also created in Oppia:

o #4660
o #4737

Apart from these issues and PR’s | have been following almost all the PR’s after my first PR.
I have tried to help my fellow contributors and reviewed PR’s like #4787. This has increased
my understanding of the Oppia source code for those files also which are not directly
associated with my project.

Project Plan

This section include a list of topics that will be covered during GSoC. | have written a
detailed explanation of each these along with mock implementation in the implementation
strategy section.

The list includes these five major topics:
1. Content Migration

Problem: The current database stores html content in a form supported by TextAngular
which is different from that used by CKEditor. Some content from the older editor jWysiwyg
may also be present which too needs to be migrated finally to CKEditor.

| found out the differences in tags produced by TextAngular vs CKEditor. The differences
are summarized in the table shown below.

https://github.com/mozilla/brackets/pull/916
https://github.com/mozilla/brackets/pull/918
https://github.com/oppia/oppia/pull/4770
https://github.com/oppia/oppia/pull/4740
https://github.com/oppia/oppia/issues/4660
https://github.com/oppia/oppia/issues/4737
https://github.com/oppia/oppia/pull/4787

Text Angular CKEditor
Tag Allowed parent tags Tag Allowed parent tags
 <j>

<p> <p>
<pre> <div>*
<blockquote> <blockquote> <blockquote> <blockquote>
no parent no parent

<ij>
<[i>
<p> <p>
<div>*
<div> <blockquote> <div> <div> tag will not be
produced by user
<i>
 <|i>
<p> <p>
<pre> <div>*
<|i> <[i>

/ <blockquote> / <blockquote>
<|i> <|i>
<pre> <div>*
<div> no parent
no parent
<p> <blockquote> <p> <blockquote>
<div> no parent
<pre>
no parent
<pre> <blockquote> <div>* <blockquote>
no parent No parent
<oppia-noninte <oppia-noninteractive-li
ractive-link> <i> nk>
 <|i>
<p> <p>

<pre> <div>*
<oppia-noninte <oppia-noninteractive-
ractive-math> <i> math>

<p> <p>
<pre> <div>*
<oppia-noninte <oppia-noninteractive-i
ractive-image> <p> mage> <p>
<pre> <div>*
<oppia-noninte <oppia-noninteractive-c
ractive-collapsi <p> ollapsible> <p>
ble> <pre> <div>*
<oppia-noninte <oppia-noninteractive-t
ractive-tabs> <p> abs> <p>
<pre> <div>*
<oppia-noninte <oppia-noninteractive-v
ractive-video> <p> ideo> <p>
<pre> <div>*

<div>* tag is replacement of <pre> tag, <div>* = <div style="background:#eeeeee;
border:1px solid #cccccc; padding:5px 10px">

Migration of tags in detail

 tag will be migrated to and the parents for tag in both the editors are
same,, so no other migration is needed.

for bold in soup.findAll('b"'):
bold.name = 'strong'

<blockquote>

<blockquote> tag is used for indentation. The number of <blockquote> tags used is
equivalent to the number of times user increases indentation. Indent plugin in CKEditor
does not produce blockquotes on indenting. CKEditor has a blockquote plugin but it does
not function in the same manner as the increase indent option in TextAngular. So, | would
add a new plugin for indentation which adds blockquotes on indentation.

No migration is needed for this tag since the valid parents are same except <pre> which
will be migrated separately.

Here are outputs from both the editors if we use increase indent button:

TextAngular CKEditor

<blockquote><blockquote><p>Hello</p> | <p style="margin-left:80px">Hello</p>
</blockquote></blockquote>

Hello

Hello

<blockquote> tag is not nested inside any other tag i.e there can be no parent of
blockquote tag can be produced by a user in CKEditor. Though <blockquote> tag can be
nested inside <blockquote> tag in textAngular. However if this nested <blockquote> tag is
provided as source html code in CKEditor it produces same visible output as TextAngular.
Hence we don't need any migration here.

Indentation in TextAngular adds blockquotes to all the cases except when single list items
are indented. The custom plugin which I will add will function in the same manner.

Use of
 tag is allowed in both the editors. In CKEditor, if allowedContent is true
 tag will not be replaced by . If
 tag is not migrated, it will not create any
problem since CKEditor will render it correctly as a blank line, so we can keep these tags as
such. However if the author creates a blank line in CKEditor its HTML output would be
stored as <p> </p> whereas in TextAngular it would be <p>
</p>. If
is
present along with some other content in parent tag, then it remains the same in CKEditor
and is not replaced by . So, | will migrate only blank lines.

for linebreak in soup.findAll('br'):
parent_tag = linebreak.parent

if parent_tag.name == 'p' and parent_tag.get text() == '':
linebreak.replaceWith(' ")

<div>
In textAngular this tag is produced if we click on increase indent button first and then write any
content. This tag is always present between <blockquote> and <p> tags.

<blockquote><div><p>Content</p></div></blockquote>

For CKEditor | will remove <div> tags html content since in CKEditor <div> cannot be
produced by a user except in the special container used as a replacement for <pre> tag.
This step will be performed before migrating <pre> tags to avoid migration of the newly
added <div> tags as replacement for <pre>.

for div in soup.findAll('div'):
div.unwrap()

<i>

<i> tag will be migrated to and the parents for <i> tag in both the editors are same,
so no other migration is needed.

for italic in soup.findAll('i'):

italic.name = ‘em

Lists have the same valid html criteria except when they are indented.

Indenting the list as a whole will add blockquote for indentation. For indenting the list as a
whole, use increase indent button first and then use the list button.

Indenting any list item say by two spaces produces different html output as follows:

TextAngular CKEditor

hellol</1i> hellol
 <ul style="margin-left:40px">
 hello2</1i>
hello2</1i>
 </1i>
 hello3</1i>
hello3</1i>

Migration for any such case will require checking the number of consecutive or
tags and if that is greater than one, replacing it with a single or respectively and
adding margin styling to it.

same procedure will be followed for ol
for ul in soup.findAll('ul'):
cnt = 0
while True:
child = ul.findChildren()

if child:
first child = child[@]
if first _child.name == 'ul’:
cnt += 1
first_child.unwrap()
else:
if cnt >= 1:
ul['style'] = 'margin-left:%d' %(40 * cnt)
break

The plugin created for indentation will take care of the difference in indentation of lists
when single list items are indented i.e. blockquote will not be added for indentation if user
indents single list items.

 /

<div> tag cannot be produced as a parent of or tag in CKEditor. This will fixed by
migration of <div> tag (unwrapping <div> tag).

<p>
<div> tag cannot be produced as a parent of <p> tag in CKEditor. This will fixed by
migration of <div> tag (unwrapping <div> tag).

Migration is only needed when <p> tag is present inside <pre> tag (this form can be
produced by using lists inside pre and then removing the lists). In this case, | will remove
the <p> tag.

for p in soup.findAll('p"'):
if p.parent.name == 'pre':
p.unwrap()

<pre>

In this case we will have tags of the form <pre>Content</pre>. We can also have
<pre><p>Content</p></pre> (this form can be produced by using lists inside pre and then
removing the lists). Both these forms will be replaced by the form mentioned in the table
above. CKEditor does not have a pre option. Instead it has special container feature which
produces same result as pre.

for pre in soup.findAll('pre'):

pre.name = ‘div’

pre['style'] = 'background:#eeeeee; border:1lpx solid #cccccc;
padding:5px 10px'

If we use pre with a list, the html output in textAngular would be

<pre>itemlitem2</1i></pre>

and that in CKEditor would be

<1li>

<div style="background:#eeeeee; border:1px solid #cccccc; padding:5px
10px">iteml</div>

</1li>

<1li>

<div style="background:#eeeeee; border:1px solid #cccccc; padding:5px
10px">item2</div>

</1li>

10

However these two outputs will differ as shown here:

CKEditor Text Angular
[&) Source O a B B &® @ Hi | H2 H3 H4 | H5 | He | P | pre | ™ B
B I USx x|& L |iz|i2|4 ¢ | @ % O Words: 2 Characters: 12
Special ... - | Mormal{... - | Font -~ | Size
1. itemi
2. item2
1. iteml
2. item2

So | will create a custom plugin for pre which produces the same format as followed by
TextAngular in all cases. So | need to convert the form

<pre>iteml<item2></1i></pre>
to a format compatible with CKEditor:

<div style="background:#eeeeee; border:1px solid #cccccc; padding:5px
10px; ">

iteml</1i>
item2</1i>

</div>

This will be done as well when migrating <pre> as in code above. No additional code is
needed for this.

Also if user presses Shift + Enter inside pre container, blank lines are added in html output
instead of
 tag. Here is the output when user presses Shift + Enter inside pre
container:

11

jhello
<pre>hello

hello
hello</pre>

The output for the above case in CKEditor is rendered as:

<div style="background:#eeeeee; border:1px solid #cccccc; padding:5px
10px">hello

hello</div>

So, any blank lines within <pre> tags need to be migrated to
.

def inject_tag(text, start, end, tagname):
root = text
while root.parent:
root = root.parent

before = root.new_string(text[:start])
new_tag = root.new_tag(tagname)
after = root.new_string(text[end:])

text.replace_with(before)
before.insert_after(new_tag)
new_tag.insert_after(after)
return after

soup = BeautifulSoup(html _data, 'html.parser')
for pre in soup.findAll('pre'):
text = pre.string
start = text.find('\n")
while start >= O:
end = start + 1
text = inject_tag(text, start, end, 'br'")
start = text.find('\n")

12

Rich Text Components

Rich text components are of the form <oppia-noninteractive-x> where x can be math,
image, link, video, tabs, collapsible. | will use the same RTE components. Since the RTE
components same, the html output will also be same and migration is not required. Only
difference in valid parent tags is due to pre and div which will be solved by migration of pre
tag.

Goal: Transform the current content into the format used by CKEditor. The above
mentioned details will come in handy while carrying out this task.

2. Testing for Content Migration

Problem: Content migration can result in data format which is incompatible with CKEditor
and hence will not function properly with CKEditor.

Goal: Test for all the cases and ensure that all content is migrated safely and works as
expected on CKEditor.

3. Integrating CKEditor

Problem: Current RTE uses Text Angular which has many issues with preview format of
rich text components. Using CKEditor instead of Text Angular will fix all these issues.

Goal: CKEditor integrated in RTE with new plugins.

4. Testing features of new editor and resolving bugs

Problem: Integration of a new editor will produce bugs and issues.

Goal: Testing all the plugins and features to produce a bug free integration.

5. Documentation

Problem: The integration of a new editor will modify our RTE by introducing its associated
plugins as well modifying the existing features. This needs to be documented for users as
well as developers.

Goal: Document the complete work for users and developers of Oppia.

Project Workflow

First
Evaluatio

Second
Evaluatid?n

mplementaion of one o
jobs scripts for content
migration

v

CTesting the scripts

v

Content migration from
JWysiwyg to TextAngular

v

CKEditor Integration

v

Content migration from
TextAngular to CKEditor

v

Fixing Issues with CKEditor

v

Submission of final work

\J

\

_/

(o)
\/

~
\/

(e\ (B
)\

14

I will firstly begin by writing the one off job scripts, one for content migration from
jWysiwyg to TextAngular and one for TextAngular to CKEditor. | will perform testing of
these scripts. Then | will use the first script and perform content migration from jWysiwyg
to TextAngular.

After this | will replace the TextAngular editor with the CKEditor. Then | will perform content
migration from TextAngular to CKEditor. | will be having a ready one off job script to
perform the migration (script will be made ready in first phase).

Finally I will fix all the issues that come in way after the CKEditor integration and content
migration.

Documentation will occur simultaneously along with all the three phases.

Implementation Strategy

One-off job for performing content migration

The goal of content migration is to convert the html content in the exploration data into a
format compatible with CKEditor. This will take place in two phases:

1. Migrate html content from jWysiwyg to TextAngular format
2. Migrate html content from TextAngular to CKEditor format

| will describe a process for migration from TextAngular to CKEditor. The same will be used
for migration from jWysiwyg to TextAngular.

Step 1: Find the fields containing html data in an exploration

The html content is present in the html fields in state content and in the feedback fields in
interaction outcomes. It can also be nested within these fields. | will find all such fields
which can contain html content and then perform the migration accordingly. | have
demonstrated the working for html fields in state content. A similar procedure will be used
to extract the html from other fields.

Step 2: Validate current html content

| have prepared a list (listed above) of all the supported tags in CKEditor and TextAngular. It
is necessary to validate this list and confirm that any other tags are not found in the current
html content. | will write a MR job that will check the current content and validate that tags
of only the currently used editor are present in the html content. To be more precise, the
MR job checks that:

15

e Only valid TextAngular tags and html is present before migrating to CKEditor. This
will find any jWysiwyg tags or html format which are not present in TextAngular
supported format.

e After migration from TextAngular to CKEditor on backup data, this job will find any
TextAngular tags and html which are not present in CKEditor supported format.

This MR job would also be used for testing phase.

Here is a mock which | have implemented:

class ExplorationContentValidationJob(jobs.BaseMapReduceOneOffJobManager):
"""Job that checks the html content of exploration and validates it.
@classmethod
def entity classes to map over(cls):
return [exp_models.ExplorationModel]

@staticmethod
def map(item):
if item.deleted:
return
exploration = exp_services.get exploration_from_model(item)
tagerr_msg = []
htmlerr_msg = []
for state _name, state in exploration.states.iteritems():
html _data = state.content.html.encode('utf-8")
soup = BeautifulSoup(html data, 'html.parser')
ALLOWED_TAG_LIST = ['List_of_allowed tags_in_current_editor']
used tag list = soup.find all()
tagerr_list = []
htmlerr_list = []
for tag in used_tag list:
tag _name = str(tag.name)
if tag_name not in ALLOWED TAG_LIST:
tagerr_list += [tag name]
tagerr_list = list(set(err_list))
tagerr_list ', ".join(err_list)
if len(tagerr_list):
tagerr_msg += ['Html: %s Prohibited tags: %s' %(
html data, err_list)]

16

This is a demonstration for p tag only. A similar method will
be used for all other tags.
ALLOWED_ PARENT LIST =
["list of allowed parents_in_current_editor']
for tag in soup.findAll('tag name'):
parent = tag.parent.name
if parent not in ALLOWED_PARENT_LIST:
htmlerr list +=[html_data]
htmlerr_list = list(set(htmlerr_list))
htmlerr list ', '.join(htmlerr_list)
if len(htmlerr_list):
htmlerr msg += ['Invalid html: %s' %(err_list)]

tagerr_msg = ', '.join(tagerr_msg)
htmlerr_msg = ', '.join(htmlerr_msg)
Err_msg = tagerr_msg + ‘\n’ + htmlerr_msg
if len(err_msg):

yield(item.title, err_msg)

@staticmethod
def reduce(key, values):
yield (key, values)

This job will be added to exp_jobs_one_off.py.

| added some prohibited tags to the welcome exploration, disabled html cleaning and
tested this job on the admin page. Here is the output | obtained:

@ppia > Admin AcTiviTIES ISl CONFIG ROLES MISC @-
SIaTere g Tartmew oD

Recent jobs

Note: This table may be stale; refresh to see the latest state.

Job ID Status Time started Time finished

ExplorationContentValidationJob- completed March 20 March 20 View

1521566943204-662 17:29:03 17:29:31 ‘ Output ‘
Job Qutput

« [u'Welcome to Oppia!', [u'Html: <h2>What is 10 times 10?</h2> Prohibited tags: h2, Html:
<h1>Congratulations, you have finished!</h1> Prohibited tags: h1]

| also tested this job on some invalid html. Here is the output for the same:

Recent jobs

Note: This table may be stale; refresh to see the latest state.
Job ID Status Time started Time finished
ExplorationContentValidationJob- completed April 07 April 07 [View |
1523083893319-87 06:51:33 06:52:05 ‘ Output ‘

Job Qutput

« [u'Errors’, [u'lnvalid html: <i>=<p>Congratulations, you have finished!</p></i>', u", u'l]

Step 3: Migrate html content to the desired format

| will write a conversion functions for schema migration which will:

N =

5.

Extract the html content from the exploration dict

Parse the html content using BeautifulSoup

Manipulate the DOM tree to convert html to a suitable format
Apply changes to the exploration dict

Save the exploration

Here is mock which | have implemented for the same:

These conversion functions will be added to exp_domain.py.

def _convert vN dict to vN+1 dict(cls, exploration dict):

def

Converts a vN exploration dict into a vN+1 exploration dict.

Migrates html content from textAngular to CKEditor format.

exploration_dict['schema_version'] = N+1

exploration_dict['states'] = cls. convert states vM dict_to vM+1 dict(

exploration dict['states'])

exploration_dict['states_schema_version'] = M+1

ret

_co

urn exploration dict

nvert states vM dict to vM+1 dict(cls, states dict):
Converts from version M to M+1l. Version M+1 converts the

17

18

html content from textAngular to CKEditor.

Args:

states dict: dict. A dict where each key-value pair represents,
respectively, a state name and a dict used to initialize a State

domain object.

Returns:

dict. The converted states dict.

for state_dict in states_dict.values():
html data = state_dict['content']['html']
soup = BeautifulSoup(html data, 'html.parser')

Code for only some of the tags in migration details is written
here. Other code will be added in the same format.

for

for

for

padding:5px

bold in soup.findAll('b"'):
bold.name = 'strong'

italic in soup.findAll('i'):

italic.name = 'em

pre in soup.findAll('pre'):

pre.name = 'div’

pre['style'] = 'background:#eeeeee; border:1px solid #cccccc;
10px'

state_dict['content']['html'] = str(soup)
return states dict

Current schema version will be set to N so that any exploration which has schema version
less than N will be migrated when ExplorationMigrationjJobManager is run.

| added the conversion functions and ran the ExplorationMigrationjobManager with the
following change to output the yaml content:

exploration
yield('Yaml

= exp_services.get _exploration by id(old exploration.id)
content', exploration.to_yaml())

19

The exploration was migrated as desired. The html tags and <i> were converted to
 and respectively.

Recent jobs

Note: This table may be stale’ refresh to see the latest state.

Job ID Status Time started Time finished

ExplorationMigrationJobManager- completed April 10 April 10 ' View

1523397705455-942 22:01:45 22:02:15 ‘ Output ‘
Job Output

» [u'Yaml content’, [w'author_notes: \'\'\nauto_tts_enabled: true\nblurb: \'\\ncategory:
Welcome\ncorrectness_feedback_enabled: false\ninit_state_name: Welcome!\nlanguage_code:
en\nobjective: become familiar with Oppia\'s capabilities\nparam_changes: [[\nparam_specs:
{A\nschema_version: 24\nstates:\n END:\n classifier_model_id: null\n content:\n audio_translations: {}\n
html: <p><strong=<em=Congratulations, you have finished!</em=</p=\n interaction:\n
answer_groups: [I\n confirmed_unclassified_answers: [[\n customization_args:\n
recommendedExplorationlds:\n value: [[\n default_outcome: null\n hints: [[\n id: EndExploration\n solution:
null\n param_changes: [J\n Estimate 100:\n classifier_model_id: null\n content:\n audio_translations: {}\n
html: <em=>=What is 10 times 107</em=>\n interaction:\n answer_groups:\n - outcome:\n dest: Numeric
input\n feedback:\n audio_translations: {}\n html: Yes! So 11 times 11 must be bigger. Let\'s try again.\n

Testing

This phase will be time consuming. It will require analysing the data, writing tests for scripts
(script validation) and then checking that whether the content has migrated to a form
compatible with CKEditor (post validation). Same testing will be used to check whether the
content has migrated from jWysiwyg to TextAngular.

Testing will consist of three phases:
Step 1: Pre-Migration Testing

Task 1: In this phase, | will test if the one-off job script produces desired output on dummy
explorations.

I will write tests for checking the content migration job which will migrate dummy
explorations and compare the output with desired format.

Dummy exploration:

states:
Statel:
classifier model id: null

content:
audio_translations: {}
html: <blockquote><p><i>Hello, this is
statel</i></p></blockquote>
interaction:
answer_groups: []
confirmed_unclassified_answers: []
customization args: {}
default_outcome:
dest: Statel
feedback:
audio_translations: {}
html: "'
labelled as correct: false
param_changes: []
refresher_exploration_id: null
hints: []
id: null
solution: null
param_changes: []
State2:
classifier_model id: null
content:
audio_translations: {}
html: <pre>Hello, this is state2</pre>
interaction:
answer_groups: []
confirmed_unclassified_answers: []
customization_args: {}
default _outcome:
dest: State2
feedback:
audio_translations: {}
html: "'
labelled as_correct: false
param_changes: []
refresher_exploration_id: null
hints: []
id: null
solution: null
param_changes: []

Desired migrated exploration

states:
Statel:
classifier_model_id: null
content:
audio_translations: {}
html: <blockquote><p>Hello, this is
statel</p></blockquote>
interaction:
answer_groups: []
confirmed_unclassified answers: []
customization_args: {}
default_outcome:
dest: Statel
feedback:
audio_translations: {}
html: "'
labelled as_correct: false
param_changes: []
refresher_exploration id: null
hints: []
id: null
solution: null
param_changes: []
State2:
classifier_model_id: null
content:
audio_translations: {}
html: '<div style="background:#eeeeee; border:1lpx solid #cccccc;
padding:5px
10px">Hello, this is state2</div>'
interaction:
answer_groups: []
confirmed_unclassified _answers: []
customization_args: {}
default outcome:
dest: State2
feedback:
audio_translations: {}
html: "'

21

labelled as_correct: false
param_changes: []
refresher_exploration_id: null
hints: []
id: null
solution: null
param_changes: []

Test for Content Migration Job:

This test will be added to tests in ExplorationMigrationjobTest class in
exp_jobs_one_off_test.py.

def test _migration_job migrates complete content(self):
"""Tests that the exploration migration job migrates the content
without skipping any tags.
exploration =
exp_domain.Exploration.create_default_exploration(self.VALID EXP_ID,
title="title', category='category')
exploration.add states(['Statel', 'State2'])
statel = exploration.states['Statel’]
state2 = exploration.states['State2']
contentl dict = {
'"html': '<blockquote><i>Hello, this is
statel</i></blockquote>",
'audio_translations': {}
}
content2_dict = {
‘html': ‘'<pre>Hello, this is state2</pre>',
'audio_translations': {}
}
statel.update_content(contentl_dict)
state2.update_content(content2_dict)
exp_services.save_new_exploration(self.albert_id, exploration)

Start migration job on sample exploration.

job_id = exp_jobs one off.ExplorationMigrationJobManager.create new()
exp_jobs_one_off.ExplorationMigrationJobManager.enqueue(job_id)
self.process _and_ flush_pending tasks()

22

23

Verify that migration produces the desired output.

updated_exp = exp_services.get_exploration_by id(self.VALID EXP_ID)
updated yaml = updated exp.to _yaml()

desired_yaml = ("""Desired_yaml content""")
self.assertEqual(updated _yaml, desired_yaml)

| ran the backend tests and the above test produced the desired results.

Task 2: | will also add a feature to output the lines which differ in case the test fails. This will
make it easier to debug the script. Here is a mock for doing so:

try:

self.assertEqual(updated yaml, desired yaml)
except AssertionError as e:

err_str = ""

for line in difflib.unified diff(updated yaml.splitlines(),
desired_yaml.splitlines(), fromfile='updated yaml', tofile='desired yaml',
lineterm=""):

err_str += line + "\n"

raise Exception('Migration not successful for test data: \n%s'

%err_str)

Here is one of the false cases which | displayed using the above mock code:

nitish@niktish: ~fopensrcfoppia

Step 2: Migration testing on test server data

24

| will perform this step on backup copy of the server data.

Task 1: In this phase, | will first perform migration on the test server data and then use the
Content Validation job to test if any of the tags used by TextAngular (not supported in
CKEditor) are still present in the migrated data.

| have attached the mock code for the Content Validation Job - written above in
implementation details for content migration.

This job will validate the html content and provide the list of prohibited tags and invalid
html if found after migration.

Task 2: Debug the Content Migration job based on the error cases found in task 1.

After a successful completion of phase 1 and phase 2, | will migrate the actual data and
then move to phase 3.

Step 3: Post Migration Testing

This will also firstly occur on a backup copy of production data.

In this phase, | will test whether the actual data has migrated into the required format. | will
test whether any tags used in TextAngular (not used by CKEditor) are still present in
migrated data. When there are no errors left | will replace the production data with the
backup copy on which the migration has been performed after integration of CKEditor.

CKEditor Integration

Step 1: Creation of CKEditor RTE Directive

I will begin this milestone by implementing the CKEditorRte directive. | will use the
CKEDITOR.inline() function to enable inline editing directly on html elements. | wrote the
below code to implement basic CKEditor.

oppia.directive('ckEditorRte", [
"$compile’,
function($compile) {

return {
restrict: 'E',
scope: {
uiConfig: '&'
¥

template: '<div id="ckeditor" contenteditable="true"></div>",
require: ‘?ngModel’,

link: function(scope, el, attr,

ngModel) {

var ck = CKEDITOR.inline('ckeditor');

I38;
1);

25

This is the output that | got on using the
code above mentioned. There are many
additional options in the toolbar. | will
configure the toolbar to use only basic
styling options and the rich text
components.

EEGE
B S | T |5 =
Nitish Bansal

Y-lag NuME

It
)

9 Shies - | Nomd - |9

¥IIvJ Save Content

Step 2: Configure toolbar for CKEditor

CKEditor standard provides a variety of plugins available in the toolbar. Since we need basic
styling only, | will configure the toolbar to use the groups for basic styling. This is what |

tried to configure the toolbar.

toolbar: [

{name: "basicstyles", items: ['Bold', 'Italic',

{name: "paragraph", groups: ['list’

, 'indent'],
items: ['NumberedList', 'BulletedList’,

]]
)

"Underline']},

'Outdent', 'Indent']},

This is the configured toolbar which | got
using the above code. It provides the
options for basic styling:

Bold

Italics

Ordered list
Unordered list
Increase indent
Decrease indent

Introduction

@ A==

hello

o4Vl Save Content

+ Add Interaction / End Exploration

26

Step 3: Creating plugins for Rich Text Components in CKEditor

In this step | will add the rich text components. The code for the components will remain
the same i.e. | will be using the code defined in the folder extensions/rich_text_components
as itis. I will add a custom plugin based on the following mock:

CKEDITOR.plugins.add('image"', {
icons: 'image',
init: function(editor) {
// Logic for image plugin

1)

A custom widget will be created for the plugin to open a customization window when the
plugin icon is clicked.

I will add the custom widgets based on the following mock:

editor.widgets.add(" 'image', {
button: 'Insert Image',
inline: true,
// Logic for image widget
)

The created plugin will be added as an extra plugin and integrated in the toolbar. | tried
adding plugins for image and link and here is a demonstration of that:

27

Toolbar after adding
custom plugins image and
link.

Introduction

@BI

-]

5]

Cancel Save Content

Image in preview mode i.e
without clicking the save
button.

Introduction

Image after clicking the
save button.

Introduction

o) Add audio translation. .

+ Add Interaction / End Exploration

28

Introduction

@ B I|:

hello|

B
8

Link in preview mode. It is
now fixed and shows the

actual link and not a link
marker as shown Cancel

previously in textAngular.

Introduction

© hello
) Add audio translatien...
Link after dlicking the save

button.

I will add all the rich text components namely Image, Link, Video, Collapsible, Math and
Tabs. The UX for any component will use the customization modal as was the case with
TextAngular RTE. Here is the mock for the same:

p{a > Untitled Exploration

Introduction Issues Overview
Unresolved Student An
= Ng outstanding 8
B I K= = oo [

Link

+ Add Interaction / End Exploration

-
—
i
L)
.
=
-

Image

i e |

After the integration of CKEditor, | will migrate the content to a form compatible with
CKEditor.

Testing the CKEditor and resolving bugs

In this phase, | will test the newly added feature manually as well as take the inputs from
the mentors regarding any improvements to be made.

Bugs will be resolved accordingly to produce a perfect Rich text editor. This phase would
involve more manual work to check various plugins and remove the bugs accordingly.

Documentation

Documentation will involve the addition of following information:

1. Introduction: This section will contain a small introduction about CKEditor. It will
explain the basic features of CKEditor.

2. Reasons to Migrate from textAngular Editor to CKEditor: Advantages of CKEditor
over TextAngular. | will describe all the issues that were present in TextAngular
editor in brief.

3. Usage of CKEditor: Here | will mention how to use the CKEditor and will define each
of the attribute required to use this editor.

4. Third Party: This section will contain all the third party libraries that our editor will
be using.

50

5. Code: | will explain how the code for the editor works, where the code is present
and how it is linked up in the files. | will also explain how to configure the editor like
changing the theme of the editor, customising the toolbar and adding a plugin to
the editor.

6. Making a Custom Plugin for CKEditor: This will contain a detailed description of how
to create and add a custom plugin to CKEditor.

7. Upgrading the editor: This final section will contain the information about which all
tests are to be performed after upgrading the editor to make sure that our editor
has upgraded correctly.

Timeline

Task Estimated Estimated Period
Time

| will explore the code and get more familiar
with the code structure of Oppia, | will do so

by

Solving issues 7 Days May 7-13
Communicating with the mentor
Reviewing PR's

Organising Creator Experience Page

| will start the content migration task and it
will consist of following:

e Finding more differences (if left)
between HTML output of jWysiwyg, 10 Days May 14 - 23
TextAngular editor and CKEditor.

e Update the one-off job script
according to the new findings and
cases.

I will write tests for the content migration
from jWysiwyg to TextAngular and also for
T'extAnguIar tp CKFdltor during this period. 18 Days May 24 - June 10
It's work consists of:

e Test the one off script on dummy data

31

e Test the migration on test server
backup data

After the tests are successful, test server data
will be migrated to TextAngular format. Then
| will test the migration on backup of
production data and then migrate the actual
production data. Till this time we will have all
the content in TextAngular format along with
a ready one off job script to perform
migration to CKEditor. (June Release)

I will start with CKEditor integration.

e | will integrate CKEditor in this phase. 15 Days June 11 - 25

e | will also document this integration.

| will perform content migration from

TextAngular to CKEditor in this period. Firstly
migration will occur on test server data and 15 Days June 26 - July 10
then on production data. (July Release)

| will remove all issues that come in way after
CKEditor integration and content migration. 21 Days July 11 - 31

Submission of final work for evaluation and
take final feedback from mentors before
submission. 14 Days August 1-14
| will make fixes based on feedback and
ensure that everything works as expected.

Releases

June Release: Migration from JWysiwyg to TextAngular. Also till this time | will be having
both the one-job off scripts (JWysiwyg to TextAngular, TexAngular to CKEditor) ready.

July Release: Integration of CKEditor along with content migration to CKEditor. In this
release we will have CKEditor integrated in Oppia.

32

Summer Plan

Timezone - IST (Indian Standard Time) (UTC +05:30)

Time | can commit to the Project

Period Hours per week
May 7 -13 21-28
May 14 - July 31 35-42
August 1 - August 13 30-35

What jobs, summer classes, and other obligations might you need to

work around?

| have no commitments in the summer. I'll be staying back home for the most part of it
from May 10 - July 20. From 21st July I'll be returning back to my college so the number of
working hours may be reduced by 1-2 hours or so as | would be engaged in my classes.
However | would try to cover this up by working more on weekends. | have mentioned my
typical working hours above and on an average | will be able to spend 40 hours per week
on the project.

Communication

Name : Nitish Bansal
Phone :+91 8360172271
EMail : nitishbansal2297@gmail.com

I would like to have meetings on google hangouts. We can fix a schedule and will be
notified every week whenever we have meetings. Since Oppia community is very active on
gitter that too can be used to have meetings. This is not something that is fixed, | am open
to any platform that mentors would like to have a discussion on. | will also maintain daily
devlogs to document my daily work.

It would be good to have meetings twice a week with the mentor. This can also be changed
by having a chat with the mentor.

mailto:nitishbansal2297@gmail.com

