

GOOGLE SUMMER OF CODE

STATIC SERVING

James, James John

March 2019

STATIC SERVING, GSOC 2019

Name of the project:

Static Serving

Why am I interested in working with Oppia?

I discovered Oppia while going through the organization list published by Google on the

26th day of February. I immediately got attracted to Oppia because it used technologies

that I was interested in.

While digging in and finding more about Oppia, I discovered it’s the mission of

providing quality education to those who lack access to it.

I’ve been an educator for a large part of my life. And finding an organization that

believes in the same principle as me and uses similar technologies as I’m used to just

seemed like the perfect fit.

What interests me about the project?

While going through the suggested starter issues, I stumbled upon a set of related issues

and this had to do with removing a global variable from the base.html. Working on this

issue made me understand the codebase. I also noticed the predominant use of jinja

templates for controlling the frontend flow, creating sections to be filled by other pages

that required them, including other templates needed for the page.

I find the need to move from python injected frontend code to javascript controlled code

as exciting. I have done something similar in a PHP project and I feel it would be a good

way to contribute to the Oppia foundation.

STATIC SERVING, GSOC 2019

Prior experience:

I have been building web applications for almost 2 years.

I have worked with Javascript frameworks such as EmberJs, Angular and AngularJs,

React and Vue. In recent times, I have been working more with Vue. Here’s a link to a

javascript starter-kit which I built to aid rapid frontend development.

I also use PHP in building web backends using the Laravel framework.

My python knowledge has mostly been used for building CLI (Command Line Interface)

tools for my personal use and I have not used it in a large application before. Which is

also one of the reasons I decided to apply to Oppia. To use my python knowledge in

building advanced web applications.

From August 2017 to December 2017, I interned with Hotels.ng.

Hotels.ng is the biggest online hotels booking company in Nigeria. I worked on the front

end of a new platform that was to manage hotels booking across Africa Timbu.com. I

interned with this company again from May 2018 to August 2018 where I got to work on

the backend of Spendtrim.com - a platform that helps manage companies expenses,

quotes and vendors, and Roomhub - a property management platform. The projects

were open source during the internship and made private after the internship program.

Working on these large projects gave me the experience of working on very large

software. Although the technologies used are quite different, I believe the experience

gained will be helpful in contributing to the project.

I am very proficient with cloud tools especially the Google Cloud Platform. I recently

took a course on coursera offered by Google about the Google Cloud Platform. I got to

deploy some applications using the Google App Engine and also set up the Compute

Engine and the Kubernetes Engine.

Since most of my web development experience has not been with python, I decided to

make up for this by taking the python course in codecademy and also the python web

development training from realpython.com. I also completed the angular.js course on

codecademy to keep me abreast with the right angular coding patterns. These training

courses also helped in my understanding of the codebase, the project and in working on

some starter issues whose PRs will be given below.

STATIC SERVING, GSOC 2019

https://github.com/Jamesjay4199/starter-kit
https://timbu.com/
https://spendtrim.com/
https://roomhub.app/
https://coursera.org/
https://codecademy.com/learn/learn-python
https://realpython.com/python-web-applications/
https://www.codecademy.com/learn/learn-angularjs
https://www.codecademy.com/learn/learn-angularjs

Open Source Contribution

Contributing to Oppia is my first time contributing to a major open source project.

I started contributing to Oppia shortly after the organization list was announced by

Google and I have successfully made 2 pull requests that got merged into the develop

branch and raised one issue which I am working will be working on.

I focussed on working on issues that had a direct relationship with this project so that I

could get more understanding of the problem and how it should be solved.

Here are links to the pull requests:

https://github.com/oppia/oppia/pull/6365

https://github.com/oppia/oppia/pull/6410

Link to issue:

https://github.com/oppia/oppia/issues/6565

Apart from my contribution to Oppia, I have also had some personal projects which I’ve

hosted on GitHub. They are can be found here

Project Plan and Implementation Strategy

This project aims at removing the jinja templates used in serving of pages to a more

static method.

Below are problems that are currently faced as a result of using jinja templates in the

pages and problems that will be faced when jinja templates are removed from all the

pages.

Problems

1. All pages are currently served using jinja templating engine and this poses some

issues such as not being able to cache the pages. Since the jinja templates will

have to be converted every time before rendering the page, a cached version of

each page cannot be kept in the browser and this means that for every time a user

visits a page, a freshly baked version of the page is sent to the user with all its

dependencies.

STATIC SERVING, GSOC 2019

https://github.com/oppia/oppia/pull/6365
https://github.com/oppia/oppia/pull/6410
https://github.com/oppia/oppia/issues/6565
https://github.com/jamesjay4199

2. Static templates are injected to each page using jinja constructs {% include
%}. This also leads to the pages being compiled before being rendered and hence

pose a similar issue as 1 above.

3. Data required by each page is passed to the page using jinja constructs and as

such, removing jinja from the pages will lead to loss of data required by the

pages.

4. Template inheritance is currently done using jinja constructs using base.html as

the skeleton template. Removing the jinja templates will mean losing the

template inheritance offered by jinja.

Having listed the problems associated with the use of jinja constructs and the problems

that will arise as a result of removing jinja templates, it is pertinent to use an approach

that not only solves the problems currently faced as a result of the use of jinja templates

but also to proffer solutions to possible problems that will arise as a result of the

removal of jinja templates.

Implementation Approach

1. Getting rid of base.html:

In order to remove jinja constructs from the static pages like

core\templates\dev\head\pages\splash\splash.html,
core\templates\dev\head\pages\about\about.html and

core\templates\dev\head\pages\landing\topic_landing_page.ht

ml, total dependence on core\templates\dev\head\pages\base.html

will have to be eliminated and a new way to reuse components has to be

implemented.

Currently, base.html is used for the following:

● Meta tag inclusion

● Specifying sections of the page using jinja blocks

● Warnings and loader macro

● Scripts inclusion

I. Meta tag inclusion:

A study of the meta tags for each page shows that some meta elements are

the same for all pages while others are different per page.

STATIC SERVING, GSOC 2019

Using the htmlWebpackPlugin, meta elements can be injected into each

page during the build process.

Below is a sample webpack configuration file, template and built HTML

generated by webpack.

STATIC SERVING, GSOC 2019

As seen above, the meta tags needed per page can be added into the webpack

configuration and included into each page. The general meta properties like

application_name, title, type etc will be included using the above-shown

mechanism, while the page specific meta properties will be added in the

individual templates which will be kept in the built files.

II. Removal of jinja blocks:

● Prerender block: This block is currently only used in one page,

splash.html and only contains a link

{% block prerender %}
 <link rel="prerender" href="/library">
{% endblock prerender %}
This will be added directly to the page and hence, removed from the

base.html

● Title block: This is used in almost all pages, but as seen in the

webpack example, it can be added injected into the built template.

Work is currently ongoing to remove the use of the title block in

non-static pages here.
● Header_js block: This block is used to load all scripts required in

the page before the page is rendered like angularjs, etc.

This will be removed the scripts will be included using webpack.

● Base_url block: This is also only used in one page, library.html

and will be added to the html-webpack-plugin configuration for the

library page to be automatically injected into the built page.

STATIC SERVING, GSOC 2019

https://github.com/oppia/oppia/issues/6565

● Header_css block: This block is used to load stylesheets to all

pages by including a file which calls the stylesheets. A CSS loader

will be used with webpack to bundle the style sheets. Since some

sheets are only used on development while the minified variant is

used in the production build, following the ongoing work on

webpack introduction, two webpack configs are made,

webpack.dev.config.js and webpack.prod.config.js the unminified

CSS will be loaded in webpack.dev.config.js while the minified form

of it will be at webpack.prod.config.js.

● Before end head tag hook: This construct is currently used to

include the google analytics snippet. This snippet will be kept in a

script file of its own and the needed parameters (ANALYTICS_ID

and SITE_NAME_FOR_ANALYTICS) will be fetched via an AJAX

call then they will be loaded into the analytics script. The script will

be injected into each page using webpack.

● Navbar_breadcrumb: This will be explained in the transclusion

section.

● Local_top_nav_options: This will be explained in the

transclusion section.

● Content: This will be explained in the transclusion section.

● Footer: This will be explained in the transclusion section.

III. Removal of warnings and loader macro:

The warnings and loader macro will be replaced by the transclusion

component which will be created. This component will house the content

block and the footer block.

IV. Script inclusion:
This is currently done using webpack here and should be completed before

GSOC begins.

STATIC SERVING, GSOC 2019

https://github.com/oppia/oppia/pull/6324

2. Removal of remaining jinja templates:

Some jinja constructs which were not covered above include:

● {{ interaction_templates}}

● {{ dependencies_html}}

● {{visualizations_html}}

● {{value_generators_js}}

● {% include 'components/rich_text_components.html' %}

● {% include <active tab in exploration_editor page> %}

1. Interaction_templates

The interaction_templates are a set of HTML pages which house scripts

that are to be injected on the page based on the type of interaction that is

expected in the page. Some pages like creators dashboard load all while

others load specific interaction templates by specifying the ID of the

interaction as defined in constants.js.

In order to remove {{ interaction_templates }}, the scripts needed for

those pages need to be injected into the page using webpack. The process

to determine the interactions needed for each page will be by specifying

the IDs to be loaded.

Each interaction template such as Continue.html,

DragAndDropSortInput.html, etc loads not one script but multiple scripts.

These scripts will be bundled into different chunks. For example, the

scripts in Continue.html will be bundled into 1 script which can then be

referenced from the dist folder as /dist/continue.js.

The scripts will be concatenated using webpack-concat-plugin and then

injected into the template using html-webpack-plugin.

2. Dependencies_html:

Each interaction comes with an array of dependencies which are required

for the interaction. The codemirror and ui_leaflet dependencies also

require additional angular modules to be registered during the

initialization of the app.

These dependencies are HTML files containing scripts and in one case

(guppy.html), also contain styles.

STATIC SERVING, GSOC 2019

https://github.com/hxlniada/webpack-concat-plugin

As in the case of interactions_html, the scripts needed for each

dependency will be bundled into one script file.

Then all the dependencies for the page will be gotten from an ajax call to

the server to get the dependencies.

However, the dependencies come with some additional angular modules

to be added to the page when the app is first initialized. Currently, there

are only two possible additional modules (ui.codemirror, ui-leaflet) and

they are only required in five pages (creator_dashboard, topic_editor,

exploration_editor, skill_editor, exploration_player). The additional

modules can be added in the script needed for these pages since they are

not required in other pages.

3. Visualizations_html:

This is only used in the editor pages and it returns some directives used for

visualizations. They are needed for the editor pages and will be compiled

and added to the bundled script for the pages.

4. Value_generators_js:

It is used in the admin page and the exploration editor. It loads two extra

directives (Copier Directive and Random Selector). Since they are only

required in those two pages, they will be bundled together as a part of the

script needed for the pages.

5. Including the active tab in the exploration editor page:

Currently, in exploration_editor.html a check for the active tab is done

with angularjs but the HTML for the active tab is included using jinja for

most.

A new directive activeTab directive will be created to manage the logic of

showing the currently active tab.

It will receive the currently active tab as an attribute. And in its controller,

an array of objects containing tab name, isComponent (to denote if it is a

component) and pageLink (a relative path to the html for the section if it

is not a component) will be provided. So when the active tab attribute is

set, the corresponding HTML will be loaded and included in the page

using ngInclude. If they are components, the components will be loaded

instead.

STATIC SERVING, GSOC 2019

Also, in the editor_tab.html, the {% include %} construct is used to add

other HTML, this will be replaced with ngInclude.

6. Rich Text Components:

Currently, in some pages, {% include

'components/rich_text_components.html' %} is used to include some

additional scripts. These scripts will be bundled into a chunk and will be

included into the pages where they are required.

3. Sending data to pages

The total removal of jinja from each page will lead to a problem of the pages not

having all the data required for complete functionality.

Essentially, data required by most pages are loaded into the GLOBALS variable in

core\templates\dev\head\pages\base.html.

Other pages like

core\templates\dev\head\pages\collection_editor\collection_

editor.html,

core\templates\dev\head\pages\exploration_editor\exploratio

n_editor.html,

core\templates\dev\head\pages\creator_dashboard\creator_das

hboard.html, etc have data required by them loaded into the GLOBALS variable

also as seen here:

{% block header_js %}
 {{ super() }}
 <script type="text/javascript">
 GLOBALS.DEFAULT_TWITTER_SHARE_MESSAGE_DASHBOARD =
JSON.parse(

'{{DEFAULT_TWITTER_SHARE_MESSAGE_DASHBOARD|js_string}}');
 GLOBALS.INTERACTION_SPECS =
JSON.parse('{{INTERACTION_SPECS|js_string}}');
 GLOBALS.ALLOWED_INTERACTION_CATEGORIES = JSON.parse(
 '{{ALLOWED_INTERACTION_CATEGORIES|js_string}}');

STATIC SERVING, GSOC 2019

 GLOBALS.DEFAULT_OBJECT_VALUES = JSON.parse(
 '{{DEFAULT_OBJECT_VALUES|js_string}}');
 </script>
{% endblock header_js %}
The above code snippet is from

core\templates\dev\head\pages\creator_dashboard\creator_das

hboard.html, and this is the same approach used by several other pages to load

in data from the backend.

Since global variables can typically cause some issues especially with third-party

libraries, several measures have to be taken in order to minimise their use.

Currently, work is ongoing in the removal of these global variables here.

A good way to send these variables to their respective pages would be by creating

a data handler for each page that requires additional data. This data handler will

return all the data required for the page.

Following the work that was done in the signup handler, that can be replicated

across all other pages. This will make the handler to be page specific and handle

all things required by the page.

Note: This is not the only way that can be used to remove these global variables.

Other ways currently being worked on include moving them to

\assets\constants.js.

4. Multi-slot Transclusion

As stated in the problem set, removing the jinja constructs will affect template

inheritance thereby requiring a javascript solution for this.

Here is how the template inheritance is currently done using jinja:

All pages extend core\templates\dev\head\pages\base.html, using the

{% extends 'pages/base.html' %} jinja construct and add specific

markup to jinja blocks already specified in

core\templates\dev\head\pages\base.html thus:

{% block maintitle %}

STATIC SERVING, GSOC 2019

https://github.com/oppia/oppia/issues/5002

 About us - Oppia

{% endblock maintitle %}

{% block header_js %}
 {{ super() }}
{% endblock %}

One way angular helps fix the issue is through the use of components with

support for multi-slot transclusion.

Multi-slot transclusion is a mechanism provided for components which allow the

component to specify a named slot for allowing additional markup to be added to

the component.

Here is how the transclusion works:

A new directive (component) is created. This directive specifies slots which are

capable of accepting HTML as content. And when no content is provided, falls

back to the default content which was provided during the creation of the

component.

In this case, two transclusion components will be created. One which creates two

slots to accept content currently inserted in the content block using jinja, and

content inserted in the footer block. This first transclusion component will

replace the warnings and loader macro.

The second transclusion component will be much larger than the first and will

provide slots for navbar_breadcrumb, local_top_nav_options, and for the first

component to be used.

Two different transclusion components are needed for the case of embedded

explorations. They will not contain breadcrumb, local_top_nav_options and

some other content that will be in the second transclusion component, hence a

different component for it.

In addition to providing slots for HTML to be inserted, all the current HTML

content of the base.html will be available in the transclusion components. For the

first, only the HTML in the macro will be available.

The first transclusion component will essentially have markup similar to:

STATIC SERVING, GSOC 2019

//base-template.js
app.directive('static-content', function () {
 return {
 restrict: 'E',
 transclude: {

 'breadcrumb': '?breadcrumb',
 'topNavOptions': '?topNavOptions',
 'content': '?content',
 },
 templateUrl: 'base-template.html'
 };

});

<!-- base-template.html -->
<div style="border: 1px solid black;">
 <div class="title"
ng-transclude="breadcrumb">breadcrumb to be displayed
here</div>
 <div ng-transclude="topNavOptions"></div>
 <div ng-transclude="content"></div>
</div>

The second transclusion component will be similar to the first but will receive the

main content of the page and the footer content if any.

//page-content.js
 return {
 restrict: 'E',
 transclude: {

 'content': '?content',
 'footer': '?footer'
 },
 templateUrl: 'page-content.html'

STATIC SERVING, GSOC 2019

 };

});

<!-- page-content.html -->
<div style="border: 1px solid black;">
 <div ng-transclude="content"></div>
 <div class="footer" ng-transclude="footer">
 <ngInclude src="footer.html"></ngInclude>
 </div>
</div>

Here is a link to a demo on github.

Proposed Directory Structure

A new directory called base_components will be created at

core\templates\dev\head\base_components.
The directory will house the two transclusion components and their templates.

Transclusion in Angular2

As with many improvements, angular2 came with a better way to do transclusion,

using <ng-content>.
In angularjs, the transclude slots are defined in the directive script, while in

angular2, the slots are defined in the templates. Using a select attribute to name

slots, multi slot transclusion is achieved. And it works in the same way as that of

angularjs, except that instead of just HTML tags, the slot names can also be used

as an attribute.

Testing Plan

● Frontend tests:
Frontend tests will be written to test the individual components like the

breadcrumb component.

STATIC SERVING, GSOC 2019

https://github.com/Jamesjay4199/transclusion-demo

● Backend tests:

Backend tests will be written to test and ensure the functionality of the

page handler which sends back data needed for each page.

● End to end tests:
End to end tests will be written to test the transclusion functionality.

The tests will be written to assert the following:

1. That the content entered into the slots is found in the page.

2. That the fallback content is used when no content is entered into

the slot.

3. That the content has its scope independent of the transclusion

component. This can be tested by passing a property with the

content to be inserted in the slot and check for its availability.

STATIC SERVING, GSOC 2019

Milestones

1. Create transclusion component and use it in all static pages thereby

removing all jinja constructs from the static pages

Static pages as used here include:

➔ about.html

➔ splash.html

➔ splash_at0.html

➔ splash_at1.html

➔ signup.html

➔ privacy.html

➔ teach.html,

➔ terms.html

➔ topic_landing_page.html

➔ email_dashboard_result.html

➔ get_started.html

➔ landing_page_stewards.html

➔ thanks.html

➔ learner_dashboard.html

➔ notifications_dashboard.html

➔ preferences.html

➔ practice_session.html

➔ email_dashboard.html

➔ moderator.html.

● Week 1: (May 27, 2019 – June 01, 2019)

This week will focus on creating the needed transclusion components and

using it on the about page.

1 PR will be made which implements the components in the

core\templates\dev\head\pages\about\about.html page. This

will also help test the compatibility of the components with the codebase.

This will be reviewed and all compatibility issues if any fixed and sent in

another commit to the same PR.

STATIC SERVING, GSOC 2019

Another PR will be made which uses webpack to set the meta tags needed

in the about page

● Week 2 (June 03, 2019 – June 08, 2019)

Use the new components in the following pages

Core\templates\dev\head\pages\splash\splash.html,

core\templates\dev\head\pages\splash\splash_at0.html,

core\templates\dev\head\pages\splash\splash_at1.html,

core\templates\dev\head\pages\signup\signup.html,

core\templates\dev\head\pages\privacy\privacy.html,

core\templates\dev\head\pages\teach\teach.html,

core\templates\dev\head\pages\terms\terms.html.

Use webpack to add meta tags to the above pages.

After these are done, we can be sure that the components are ready to be

implemented in other pages.

● Week 3 (June 10, 2019 – June 15, 2019)

Make

core\templates\dev\head\pages\landing\topic_landing_pa

ge.html,

core\templates\dev\head\pages\email_dashboard\email_da

shboard_result.html,

core\templates\dev\head\pages\get_started\get_started.

html,

core\templates\dev\head\pages\landing\stewards\landing

_page_stewards.html,

core\templates\dev\head\pages\thanks\thanks.html

to use the components developed earlier.

Use webpack to add meta tags to the above pages.

One PR will be made to reflect this change but each page will be done in an

individual commit ensuring that they are reviewed individually and

problems will be fixed appropriately per page.

STATIC SERVING, GSOC 2019

● Week 4 (June 17, 2019 – June 22, 2019)

Continue work of week 3 by making the following pages use the

components developed earlier:

Core\templates\dev\head\pages\practice_session\practic

e_session.html,

core\templates\dev\head\pages\learner_dashboard\learne

r_dashboard.html,

core\templates\dev\head\pages\notifications_dashboard\

notifications_dashboard.html,

core\templates\dev\head\pages\preferences\preferences.

html,

core\templates\dev\head\pages\email_dashboard\email_da

shboard.html,

core\templates\dev\head\pages\moderator\moderator.html

.

Use webpack to add meta tags to the above pages.

One PR will be made to reflect this change but each page will be done in an

individual commit ensuring that they are reviewed individually and

problems will be fixed appropriately per page.

Proposed Pull Requests For the First Milestone

S/N PR Description Proposed

creation date

Expected merge

date

1. Breadcrumb component,

static-content component,

about.html implementation of the

components.

May 30th, 2019 June 4th, 2019

 2. Make signup.html,
splash.html,
splash_at0.html,
splash_at1.html,privacy.ht
ml, teach.html,
terms.html, thanks.html use

June 6th, 2019 June 11th, 2019

STATIC SERVING, GSOC 2019

the already developed components.

 3. Change

topic_landing_page.html,em
ail_dashboard_result.html,
get_started.html,
landing_page_stewards.html

to use the components developed

earlier

June 13th, 2019 June 17th, 2019

 4. Make

learner_dashboard.html,
notifications_dashboard.ht

ml,email_dashboard.html,
moderator.html,
preferences.html, to use the

components developed earlier

June 19th, 2019 June 22rd, 2019

2. Use transclusion components in dynamic pages and create handlers

for pages where needed.

Continue work on the first month to include the dynamic pages.

The following pages are considered as dynamic here:

➔ creator_dashboard.html

➔ exploration_player.html

➔ exploration_editor.html

➔ profile.html

➔ admin.html

➔ library.html

➔ skill_editor.html

➔ story_editor.html

➔ topic_viewer.html

➔ topic_editor.html

➔ collection_editor.html

➔ collection_player.html.

STATIC SERVING, GSOC 2019

● Week 5 (June 24th - June 29th)

Make the following pages use the transclusion components

core\templates\dev\head\pages\library\library.html,

core\templates\dev\head\pages\topics_and_skills_dashbo

ard\topics_and_skills_dashboard.html,

Core\templates\dev\head\pages\creator_dashboard\creato

r_dashboard.html,

core\templates\dev\head\pages\exploration_player\explo

ration_player.html,

core\templates\dev\head\pages\exploration_editor\explo

ration_editor.html and

core\templates\dev\head\pages\admin\admin.html.

Use webpack to add meta tags to the above pages.

Submit PR containing the above-mentioned changes to be reviewed and

merged.

● Week 6 (July 1st - July 6th)

Extend work done the previous week to include:

core\templates\dev\head\pages\profile\profile.html,

Core\templates\dev\head\pages\collection_editor\collec

tion_editor.html,

core\templates\dev\head\pages\collection_player\collec

tion_player.html,

core\templates\dev\head\pages\skill_editor\skill_edito

r.html,

core\templates\dev\head\pages\story_editor\story_edito

r.html,

core\templates\dev\head\pages\topic_viewer\topic_viewe

r.html,

core\templates\dev\head\pages\topic_editor\topic_edito

r.html.

Use webpack to add meta tags to the above pages.

STATIC SERVING, GSOC 2019

● Week 7 (July 8th - July 13th)

Create handlers for the following pages:

Core\templates\dev\head\pages\admin\admin.html,

core\templates\dev\head\pages\collection_editor\collec

tion_editor.html,

core\templates\dev\head\pages\collection_player\collec

tion_player.html,

core\templates\dev\head\pages\topic_editor\topic_edito

r.html,

● Week 8 (July 15th - July 20th)

Create handlers for the following pages:

core\templates\dev\head\pages\skill_editor\skill_edito

r.html,

core\templates\dev\head\pages\exploration_editor\explo

ration_editor.html,

core\templates\dev\head\pages\exploration_player\explo

ration_player.html,
core\templates\dev\head\pages\profile\profile.html,

 Proposed Pull Requests For The Second Milestone

S/N PR Description Proposed

creation date

Expected merge

date

 1. Use transclusion components in:

library.html,

topics_and_skills_dashboar

d.html,

creator_dashboard.html,

exploration_player.html,

exploration_editor.html

and admin.html

June 27th, 2019 July 2nd, 2019

 2. Use transclusion components in:

core\templates\dev\head\pa

July 4th, 2019 July 8th, 2019

STATIC SERVING, GSOC 2019

ges\profile\profile.html,

collection_editor.html,

collection_player.html,

skill_editor.html,

story_editor.html,

topic_viewer.html,topic_ed

itor.html.

 3. Create handlers for the following

pages: admin.html,
collection_editor.html,

collection_player.html,

topic_editor.html,

July 11th, 2019 July 17th, 2019

 4. Create handlers for the following

pages: skill_editor.html,
exploration_editor.html,

exploration_player.html,
profile.html,

July 18th, 2019 July 22nd, 2019

3. Use Webpack to inject other scripts needed by the dynamic pages

thereby totally removing jinja from the codebase.

At this point, all static pages have been served with the transclusion

component and have no jinja use in them, while some dynamic pages like

creator_dashboard.html, exploration_editor.html,

exploration_player.html, skill_editor.html,

topic_editor.html, admin.html, story_editor.html use some

other jinja constructs to add other script and dependencies into the pages.

● Week 9 (July 22nd - July 27th)

Use webpack to get rid of {{ interaction_templates}} in the following

pages:

Core\templates\dev\head\pages\creator_dashboard\creato

r_dashboard.html,

core\templates\dev\head\pages\exploration_editor\explo

STATIC SERVING, GSOC 2019

ration_editor.html,

core\templates\dev\head\pages\exploration_player\explo

ration_player.html,

core\templates\dev\head\pages\skill_editor\skill_edito

r.html,

core\templates\dev\head\pages\topic_editor\topic_edito

r.html

● Week 10 (July 29th - August 3rd)

Use webpack to get rid of {{ dependenties_html }} in:

Core\templates\dev\head\pages\creator_dashboard\creato

r_dashboard.html,

core\templates\dev\head\pages\exploration_editor\explo

ration_editor.html,

core\templates\dev\head\pages\exploration_player\explo

ration_player.html,

core\templates\dev\head\pages\skill_editor\skill_edito

r.html,

core\templates\dev\head\pages\topic_editor\topic_edito

r.html

● Week 11 (August 5th - August 10th)

Use webpack to get rid of {{ visualizations_html }} in:

Core\templates\dev\head\pages\creator_dashboard\creato

r_dashboard.html,

core\templates\dev\head\pages\exploration_editor\explo

ration_editor.html,

core\templates\dev\head\pages\skill_editor\skill_edito

r.html,

core\templates\dev\head\pages\topic_editor\topic_edito

r.html

Use webpack to get rid of {{ value_generators_js }} in:

Core\templates\dev\head\pages\admin\admin.html,

core\templates\dev\head\pages\exploration_editor\explo

ration_editor.html

STATIC SERVING, GSOC 2019

● Week 12 (August 12th - August 17th)

Create a new chunk for rich text components and add it to the bundle for

the following pages:

core\templates\dev\head\pages\admin\admin.html,

core\templates\dev\head\pages\creator_dashboard\creato

r_dashboard.html,

core\templates\dev\head\pages\exploration_editor\explo

ration_editor.html,

core\templates\dev\head\pages\exploration_player\explo

ration_player.html,

core\templates\dev\head\pages\skill_editor\skill_edito

r.html,

core\templates\dev\head\pages\story_editor\story_edito

r.html,

core\templates\dev\head\pages\topic_editor\topic_edito

r.html.
Work on showing active tab without using jinja using the already

described method in the exploration_editor page.

 Proposed Pull Requests For the Third Milestone

S/N PR Description Proposed

creation date

Expected merge

date

 1. Get rid of

{{interaction_templates}}

July 25th, 2019 July 30th, 2019

 2. Get rid of {{dependencies_html}} August 1st, 2019 August 5th, 2019

 3. Get rid of {{visualizations_html}}

and {{value_generators_js}}

August 9th, 2019 August 11th, 2019

 4. Get rid of {% include

'components/rich_text_component

s.html' %}

August 13th, 2019 August 16th, 2019

5 Work on showing active tab in

exploration editor page.

August 16th, 2019 August 19th, 2019

STATIC SERVING, GSOC 2019

End of GSOC 2019 !!!

Summer Plans

Timezone:
I will be working from Uyo, Nigeria (GMT + 1) throughout the duration of the Google

summer of code.

Time to be Dedicated for GSOC

My Semester examinations end on the last week of May, therefore, from June till

August, I will be able to devote 8 - 9 hours daily to work on my GSoC project.

The next semester is the period which I am to go to my industrial training and it doesn’t

start until about September.

Other Commitments

I am a part of the DSC (Developer student club) University of Uyo, Uyo core team. And

we have meetings at most once per month and mostly during the weekend.

Apart from that, I am free to work on the project even during the weekends to make sure

the project gets delivered before the deadline.

Communication

Contact Information

Name: James, James John

Email: Jamesjay4199@gmail.com

Mobile: +243-8168272063

Twitter: @jjaycodes

School: University of Uyo, Uyo

Course: B.Eng, Mechanical Engineering

STATIC SERVING, GSOC 2019

mailto:Jamesjay4199@gmail.com
https://twitter.com/jjaycodes

Channels

I typically use Whatsapp, Gmail, and Twitter for communication. I have used slack for

teamwork several other times. I don’t mind using another medium of communication

for communicating with my mentor.

Also, I love using tools like Wrike, Trello Boards and Pivotal Tracker to track progress in

each milestone and the project as a whole. The board can be made publicly available and

it can be used by my mentor to track my progress and give reviews on the work done so

far.

Future Plans for the Project

I intend contributing to Oppia even after GSoC, so I will definitely pay particular

attention to this project after GSoC and help in maintaining the project by offering by

constantly adding new ways to improve the project and offering reviews to necessary

pull requests. I will also be working with the speed team in other ways in improving the

speed of Oppia.

STATIC SERVING, GSOC 2019

https://wrike.com/
https://trello.com/
https://www.pivotaltracker.com/
https://www.oppia.org/

