
Improve backend test coverage and upgrade it to support Python 3

Basic Information

● Name: Rishav Chakraborty
● Institute: University Institute of Engineering and Technology, Panjab University
● Major: Computer Science and Engineering (Second Year)

Why am I interested in working with Oppia?

I believe education is the right to everyone but many can’t afford it especially in the
developing and underdeveloped countries. Oppia’s mission is to “provide high quality
education to those who lack access to it.” I wish to contribute to it with all my efforts so
that students all across the world has access to high-quality scalable online lessons.

I used many online learning platforms but found Oppia to be the most unique. Its
explorations and one-on-one learner/tutor conversation makes the learner focus and
participate actively. This system also beats the education system followed in schools
and colleges.

Furthermore, I find the Oppia community to be super friendly. They helped me at every
issue I faced and are always ready to guide me. Contributing to Oppia has enhanced
my technical knowledge and also taught me the importance of working and coordinating
in a team. It had been a great learning experience for me so far with Oppia. I would
continue to contribute to Oppia even after the GSoC period ends.

What interests me about this project? Why is it worth doing?

The project aims to improve backend test coverage to 100%, and then migrate the
backend codebase to be simultaneously compatible with both Python 2 and Python 3. It
also includes converting the bash scripts to Python. This project is really important for
the following reasons:

I. 100% test coverage is needed to guard against regressions in the future which
can happen when developers rewrite code and break things because there are
no tests for that part of the code.

II. Converting the bash scripts would make Oppia less OS-dependent and would
reduce the number of scripting languages that Oppia uses.

III. Python3 is the future of Python and Python2 will not be maintained past 2020.
Hence its very important to port the existing code to Python3.

This project requires proficiency in bash and Python scripting and also a knowledge of
working of the backend files. Thus, I would get to learn a lot of things while working on
this project. It would be great fun to work on this project. I am also deeply interested in
networking and from the conversion of the scripts, I would learn a lot more about it.
Completing the project would also make me more proficient in Python and back-end
testing.

Prior Experience

I have been working with Python for the last two years. I am a backend developer and
work primarily with Google App Engine and its framework webapp2 .I also have
experience with Django. I have been involved in web development since the past year.

Some of my projects include:

❏ At Rajasthan Hackathon 5.0, I led a team of 4 members where we made a
system for automatic accident detection using various sensors and alarming the
nearest hospital of the location using Google App Engine.

❏ I worked in a college project to make an adaptive intelligent tutoring system for
students based on Bloom’s taxonomy. My task was to create the whole website,
the database and also to write the functions which would automatically check the
student’s answers to questions. I used Django and Stanford NLP to do my work.

❏ I made a blog for adding entries and posts for users as a summer project for
college. The website is live ​here​.

❏ I made other small front-end projects like a website for adding image filters and
others for drawing different patterns using pure JavaScript.

❏ I also contributed to Sympy(a symbolic mathematics library for Python) in the
past year and attended some technical conferences like Pycon India, etc.

Source code for all my projects can be found at my ​ ​GitHub profile​​ .

Links to PRs and issues to Oppia

Some of my PRs are:

● Lint check to ensure that each Angular file contains exactly one component:
#6202

https://lilith-blog.appspot.com/
https://github.com/lilithxxx
https://github.com/oppia/oppia/pull/6202

● Lint checks to run only for the files changed by the user: ​#6033
● Tests for memcache services: ​#5355
● Changed startup script to open browser after starting server: ​#5431
● Reduce code redundancy in backend testing: ​#5838

Here​ is the complete set of PRs opened by me.

I also created a total of 10 issues in Oppia till date. They can be seen ​here​.

Project plan and implementation strategy

The project is divided into 3 major parts. Below are the detailed explanations of each of
these.

1. Milestone 1: At most 500 lines of Python code (outside ‘scripts/’) remain
untested

1.1. Improve test coverage of more than 85% of the backend code

For porting the code to be compatible with both Python2 and Python3, we need
to ensure first that it has a very good coverage. It is because to be sure in our
test suite that any failures that appear after having tools rewrite the code are
actual bugs in the tools and not in our code. The final aim is to merge a PR which
brings backend coverage to 100% by end of Milestone 2.

The files and their coverage which need to be covered can be seen in ​Codecov’s
dashboard​.

The following is the general strategy in writing the tests:
1. setup - this is where we prepare any inputs/environment needed for the

test.
2. baseline verification - check the values without performing any action. This

can be done by ​self​.get_json(url)​ ​for files in ​core/controllers ​and by
directly calling the function to be tested for other files.

3. action - perform the action or function call that leads to the expected
change. This can be done by​ self.post_json(url)​ ​for files in
core/controllers ​and by directly calling the function which will update its
value for other files.

https://github.com/oppia/oppia/pull/6033
https://github.com/oppia/oppia/pull/5355
https://github.com/oppia/oppia/pull/5431
https://github.com/oppia/oppia/pull/5838
https://github.com/oppia/oppia/pulls?utf8=%E2%9C%93&q=is%3Apr+author%3Alilithxxx+
https://github.com/oppia/oppia/issues?utf8=%E2%9C%93&q=is%3Aissue+author%3Alilithxxx+
https://codecov.io/gh/oppia/oppia/tree/develop
https://codecov.io/gh/oppia/oppia/tree/develop

4. endline verification - check that the values in the baseline verification have
changed accordingly. This can be checked again by
self.get_json(url)​ ​for files in ​core/controllers ​and by directly calling
the function to be tested for other files.

Missing tests which are common among files are where:

■ Exception is raised

The tests for catching exception can be written as:

with​ self.assertRaises(Exception):
response = self.get_json(​'/mock/%s'​ %

self.exploration_id)

■ Code depends on constants in `constants.js`:

with​ self.swap(constants, ​'ENABLE_NEW_STRUCTURE_EDITORS'​,
True​):

response = self.get_json(url)

● Some functions are not used anywhere in the codebase and hence leads to
decrease in coverage. Those functions would be removed. I will find these
functions as and when I will come across these when adding the backend tests.
For example when writing the tests for ​core/controllers/creator_dashboard.py
I came across a function `_get_intro_card_color` which I found was not used
anywhere in the codebase so I removed it.

● When writing the backend tests, the controllers and the functions to be tested
would also include strings with unicode characters. These functions would take
unicode strings(for example Hindi etc) as parameters to check if we get the
desired behaviour. This is important as the behaviour of str/unicode would
change when the porting of Python2 to Python3 would occur(further details can
been seen in milestone 2.2) and it is important to ensure that the functions still
work and are not broken. For example in ​core/domain/fs_domain_test.py:

self.fs = fs_domain.AbstractFileSystem(

 fs_domain.ExplorationFileSystem(​'exploration/eid'​))

def​ ​test_get_and_save​(self)​:
 self.fs.commit(self.user_id, ​'abc.png'​,
'file_contents'​)
 self.assertEqual(self.fs.get(​'abc.png'​),
'file_contents'​)

 self.fs.commit(self.user_id, ​'abc.png'​, ​'Лорем'​)
 self.assertEqual(self.fs.get(​'abc.png'​),
utils.convert_to_str(​'Лорем'​))

In the above function the behaviour for `fs.commit` should also be working for the
unicode string 'Лорем' just like it works for the string ‘file_contents’. This way the
functions would include tests for unicode strings.

The​ list of files​ that need to be covered is a little big and thus I hope to start making PRs
which will add tests for some of the files soon before the community bonding period
begins.

2. Milestone 2: The Python coverage for the codebase reaches 100% and the
codebase supports both Python 2 and 3. There are checks which ensure
that both these conditions are preserved going forward

2.1. Improve test coverage of the remaining backend code

Since the list of files to be covered for backend testing is quite big I will
add tests for the remaining 15% of the backend code in this milestone.

2.2. Port to Python3 from Python2.

This is the main part of the project. I will use ​Futurize ​for making the codebase
compatible with Python3. The Python 3 version which would be ported to is
Python 3.7. Python 3.7 images are also available on CircleCI and Travis. I prefer
Futurize ​over other tools like ​Modernize​ as Futurize does its best to make
Python3 idioms and practices exist in Python2, for example backporting the bytes
type from Python 3 to have the semantic parity between the major versions of
Python. Also Futurize has an excellent ​documentation​ to help the conversion.
Below is a tabular comparison between ​Futurize​ and other alternatives:

Futurize Modernize

Futurize converts either Python2 or
Python3 code into (almost) standard
Python 3 code, with the `future` module

Python-modernize converts Python2 code
into a common subset of Python 2 and 3,
with the `six` module as a run-time

https://codecov.io/gh/oppia/oppia/tree/develop
http://python-future.org/automatic_conversion.html

as a run-time dependency.

dependency.

The two steps in the conversion process are:

● Run the first stage of the conversion process with:

futurize --stage1 -a core/**/*.py

This applies fixes that modernize Python 2 code without changing the
effect of the code. This will not introduce any non-trivial bugs into the code
as it will modernize Python2 code only with no compatibility with Python3.
We are going to ensure this by:

➔ running our backend tests on the entire codebase. And since by
then the coverage would be 100%, we can be sure that it didn't
introduce any bugs. Even if in the “worst case scenario” some bugs
are introduced in the codebase, the backend tests would fail and I
will fix those bugs immediately.

➔ making sure that no one else introduces non-portable py2-to-py3
code which would be handled by the lint checks.

➔ manually testing certain core user journeys to make sure nothing is
broken. The QA tests will be done every time before a PR is
opened in milestone 2.

The changes are those that bring the Python code up-to-date without
breaking Python2 compatibility. The resulting code will be modern Python
2.7-compatible code plus __future__ imports which includes:

from​ __future__ ​import​ absolute_import
from​ __future__ ​import​ division
from​ __future__ ​import​ print_function

● After stage 1, we need to convert the binary data to the unicode wherever
needed. In Python2 we could use the str type for both text and binary
data. Under Python 3, binary files and text files are clearly distinct and
mutually incompatible. Hence to represent strings in Python2 we will be
using `unicode` while representing them in Python3 we will be using `str`.
To represent binary data we will be using `bytes` for both Python 2 and 3.

By passing the​ --unicode-literals​ flag to the futurize script, all string
literals that were not explicitly marked up as b'' will mean text (Python3 str
or Python2 unicode). For example:

text_1 = ​u'Лорем'

text_2 = ​'example_text_1'
text_3 = ​b'example_text_2'

After running the futurize script with the above flag, `text_1` and `text_2`
both would be of type ‘unicode’ in Python2 and type ‘str’ in Python3 while
`text_3` would be of type ‘bytes’ in both the Python versions.

As of now, I have not fully migrated the codebase but I tested it by porting
the files in the `scripts/` folder and some files in `core/controllers/` and
`core/domain/`. The changes required to convert binary to str are mostly
trivial and I will fix them as and when they occur. Some examples of the
changes required are:

➔ After the conversion of the ​pre_commit_linter, ​the file-paths are
needed to be converted to str form.

all_filepaths = [filename.decode(​'utf-8'​) ​for
filename ​in​ all_filepaths]

➔ To convert some content to str form, we would have to replace the
str() ​function with ​utils.convert_to_str(). ​This is because all the
strings in Python2 would basically be of type `unicode`. For
example ​str(content)​ ​would be replaced by
utils.convert_to_str(content)​.

● Run stage 2 of the conversion process with:

futurize --stage2 -a core/**/*.py

This stage adds a dependency on the future package. The goal for stage
2 is to make further mostly safe changes to the Python 2 code to use
Python3 style code that then still runs on Python2 with the help of the
appropriate builtins and utilities in future. We can't guarantee that the
change would be fully safe as the porting will introduce some
bugs/feature-changes some of which are discussed below. I will have to
manually fix the bugs that comes on porting. I will also add new backend
tests for any such bugs that are found.

The ​-a ​flag denotes ​--all-imports ​which add all future imports to each file.
This is required as after porting developers need not worry about which
future import to add to a new file that has been created.

● Make changes to open files using​ io.open() ​instead of just ​open()​ as the
io​ module is consistent from Python2 to Python3 while the built-in ​open()
function is not (in Python3 it’s actually io.open()). In Python2, the built-in
open​ and ​io.open​ were different (​io.open​ was newer and supported more
things like explicit encoding, etc). In Python3, ​open​ and ​io.open​ are the
same thing (they got rid of the old built-in ​open​). Since ​open​ is different in
Python 2 and 3, we will have to use ​io.open​ which is consistent across
the two versions.

The built-in ​open​ function in Python2 looks like:

open(name[, mode[, buffering]])

While ​io.open ​looks like:

io.open(file, mode=​'r'​, buffering=​-1​, encoding=​None​,
errors=​None​, newline=​None​, closefd=​True​)

These changes would be part of the ​python_utils.py ​file so that we could
choose later which one will be easier to migrate. The file would contain both the
functions, i.e ​open​ and ​io.open​. Hence our code would look like:

with​ python_utils.open(file) ​as​ f:
 ​# do stuff to f

● After the above steps, we will have code that has to choose what to do
based on what version of Python is running. The best way to do this is
with feature detection of whether the version of Python running under
supports what we need. Comments will be added to distinguish code
between the two Python versions.

For example, in ​scripts/pre_commit_linter​ the code for redirecting stdout
would be as follows:

For Python 2

try​:
 ​from​ StringIO ​import​ StringIO
For Python 3

except​ ImportError:
 ​from​ io ​import​ StringIO
_TARGET_STDOUT = StringIO()

This is because:

● The ​StringIO​ module is gone in Python3 and hence we need
io.StringIO

● Redirecting stdout with ​io.StringIO ​in Python2 does not work as it
is an in-memory stream for unicode text.

Another example for this is in
scripts.docstrings_checker.get_args_list_from_function_definition, ​we will have to
use the following code:

try​:
 ​return​ [a.arg ​for​ a ​in
function_node.args.args ​if​ a.arg ​not​ ​in
 args_to_ignore]

 ​except​ AttributeError:
 ​return​ [a.id ​for​ a ​in
function_node.args.args ​if​ a.id ​not​ ​in
 args_to_ignore]

The above change is required as to get the arguments name in a function
in Python2 we need to use​ function_node.args.args.id​ but in Python3 we need to
use ​function_node.args.args.arg

This sort of feature detection would be kept in a separate file called
python_utils.py ​ so that we don't have this sort of construct in any other file. We don't
want it to be a pattern throughout the rest of the codebase. The functions in the file can
go like this:

def​ ​import_string_io​()​:
 # For Python 2

 ​try​:
 ​from​ StringIO ​import​ StringIO
 # For Python 3

 ​except​ ImportError:

 ​from​ io ​import​ StringIO
 ​return​ StringIO()

def​ ​get_args_of_function_node​(function_node_args)​:
 # For Python 2

 try:

 return function_node_args.id

 # For Python 3

 except AttributeError:

 return function_node_args.arg

The other files can directly call these functions whenever required.

I will add the other feature detections in this file as and when they occur in the
codebase.

● I will also start a doc that would contain the list of remaining steps that
need to be taken for a final migration to python3. This doc will be finished
by the end of milestone 3.

● I have checked the ​https://caniusepython3.com​ website to detect which
dependencies also need to be ported. As much as I can check for now we
don’t have to migrate our third_party libraries but if the need comes I will
migrate them. There may be some libraries that needs to be ported and
the ​caniusepython3​ does not name all the libraries that needs to be
addressed(i.e it can’t tell whether its a blocking dependency or not). This
is the reason I have allotted quite a time for this milestone. But we do
need to install our pip packages with pip3 in addition to pip. For that in
install_prerequisites.sh ​I will add ​sudo apt-get install
python3-pip​ ​and in ​install_third_party.sh ​I will add another function
similar to function ​pip_install ​to install the packages in Python3
environment as well. The above function would become:

function pip3_install {

 ​# Attempt standard pip3 install, or pass in --system if
the local environment requires it.

 ​# See https://github.com/pypa/pip/issues/3826 for
context on when this situation may occur.

 pip3 install ​"$@"​ || pip3 install --system ​"$@"
}

https://caniusepython3.com/

The libraries that would be installed via pip3 will be installed in different
locations than the same libraries installed via pip2.

For example Pylint for two Python versions will be installed as:

pip_install pylint==​1.9.4
--target=​"$TOOLS_DIR/pylint-1.9.4-python2"

 pip3_install pylint==​2.3.1
--target=​"$TOOLS_DIR/pylint-2.3.1-python3"

For mac developers, I will update the wiki page ​here​ to include instructions
on installing pip3. The command ​brew install python3​ ​would install
Python3 and also install pip3 automatically. There will also be code in the
install_third_party.sh ​script that will ensure that the two Python versions
are installed in the system and will warn the user if they are not.

Some libraries that are not compatible, for example ​beautifulsoup4​ can
be made compatible by adding the required download URL in
manifest.json​ file. There are two URLs for this library(one for Python2
and the other for Python3). Hence I will add two different locations for the
libraries (one for each Python version).

3. Milestone 3: All bash files are removed from the codebase

3.1. Put lint checks to ensure that the backend code always remains
compatible with both Python2 and Python3

● Once we have fully translated our code to be compatible with Python3,
we must make sure our code doesn’t regress and stop working under
Python3.

For this we can use​ Pylint’s --py3k​ flag to lint our code to receive
warnings when the code begins to deviate from Python3 compatibility.
This also prevents from having to run Futurize over our code regularly to
catch compatibility regressions. It checks for:

➔ Print statements
➔ Division without __future__ statement (old-division)

https://github.com/oppia/oppia/wiki/Installing-Oppia-%28Mac-OS%29

➔ Outdated imports, i.e built-in modules that are no longer present in
Python3.

 I would add this flag in ​pre_commit_linter ​where pylint is run:

pylinter = lint.Run(

 [​'--py3k'​] + current_files_to_lint +
[config_pylint],

 exit=​False​).linter
 ​# These lines invoke Pycodestyle and print
its output

 ​# to the target stdout.
 style_guide =

pycodestyle.StyleGuide(config_file=config_pycodestyle)

 pycodestyle_report = style_guide.check_files(

 paths=current_files_to_lint)

Also to help with staying compatible, any new files that will be created
should have at least the following block of code at the top of it and there
would be a lint check to enforce this:

from​ __future__ ​import​ absolute_import
from​ __future__ ​import​ division
from​ __future__ ​import​ print_function
from​ __future__ ​import​ unicode_literals

● After creating the ​python_utils.py​ file we would want other developers to
strictly use the functions defined there. For example, we would want to
enforce people to not use StringIO and instead use the custom function
defined in the above file. I will create a lint check to enforce this. This lint
check would detect patterns when a certain code is used which should
rather be called from the ​python_utils.py​ file. For example:

PYTHON_UTILS_PATTERNS = {

 ​'Import StringIO'​: ​'Use import
python_utils.import_string_io()'

 ​'get_args_list_from_function_definition()'​: ​'use

python.utils.get_args_of_function()'

}

all_filepaths = [

 filepath ​for​ filepath ​in​ self.all_filepaths ​if
not​ (
 filepath.endswith(​'pre_commit_linter.py'​)
or

 any(

 fnmatch.fnmatch(filepath, pattern)

 ​for​ pattern ​in​ EXCLUDED_PATHS)
)]

 ​with​ _redirect_stdout(_TARGET_STDOUT):
 ​for​ filepath ​in​ all_filepaths:
 file_content =

FileCache.read(filepath)

 ​for​ pattern ​in​ PYTHON_UTILS_PATTERNS:
 ​if​ pattern ​in​ file_content:

 failed = ​True
 print(​'%s --> %s'​ % (

filepath,PYTHON_UTILS_PATTERNS[pattern]))

These lint checks together with the file ​python_utils​ created in milestone 2
would be sufficient for checking compatibility with Python 2 and 3.

3.2. Convert all bash scripts to python

The bash scripts would be converted to python so that Oppia is just using one
scripting language and so that the scripts are less platform-dependent. This part
would include heavy use of the ​shutil​ and the ​os​ library. Some scripts like the
clean.sh, install_chrome_on_travis.sh ​and​ install_prerequisites.sh ​are fairly
easy to convert. These include basic file operations like ​rm, mkdir, ​installing
libraries, etc.

Following is the table for comparing the basic syntax between bash and python:-

https://docs.python.org/3/library/shutil.html#module-shutil
https://docs.python.org/3/library/os.html#module-os

BASH PYTHON

rm -rf shutil.rmtree(path)

echo print

if [! -f dir_path) os.path.isdir(dir_path)

mkdir os.makedirs()

dpkg DebPackage()

● For the networking and the server stuff, ​socket​ is a great choice. Its a low
level networking interface. For example, to see if a server is running in a
particular port we can use the following function:

def​ ​is_port_in_use​(port)​:
 ​import​ socket
 ​with​ socket.socket(socket.AF_INET,
socket.SOCK_STREAM) ​as​ s:
 ​return​ s.connect_ex((​'localhost'​, port)) == ​0

I tested in my local machine and it works.

For other commands that are specific to bash like starting Oppia requires
subprocess​ to execute it.

cmd = ​"python GOOGLE_APP_ENGINE_HOME/dev_appserver.py
CLEAR_DATASTORE_ARG ENABLE_CONSOLE_ARG --admin_host

0.0.0.0 --admin_port 8000 --host 0.0.0.0 --port 8181

--skip_sdk_update_check true app.yaml)&"

task = subprocess.Popen(cmd.split(),

stdout=subprocess.PIPE,

 stderr=subprocess.PIPE)

out, err = task.communicate()

● I will also integrate the test scripts with their respective Python files. For
example the ​run_backend_tests.sh ​code can be included in the
backend_tests.py ​file by simple syntax conversion and running the
coverage​ ​reports​ by ​subprocess. ​Only the ​TestingTaskSpec ​class
needs to be modified as below to report the coverage.

import​ setup

https://docs.python.org/2/library/socket.html#module-socket

import​ setup_gae

TOOLS_DIR = os.path.join(

 os.getcwd(), ​'..'​, ​'oppia_tools'​)
THIRD_PARTY_DIR = os.path.join(

 os.getcwd(), ​'third_party'​)
class​ ​TestingTaskSpec​(object)​:
 ​"""Executes a set of tests given a test class name."""

 ​def​ ​__init__​(self, test_target,
should_generate_coverage_report)​:
 self.test_target = test_target

 self.​should_generate_coverage_report​ =
should_generate_coverage_report

 ​def​ ​run​(self)​:
 ​"""Runs all tests corresponding to the given test
target."""

 test_target_flag = ​'--test_target=%s'​ %
self.test_target

 ​if​ self.​should_generate_coverage_report​:
 exc_list = [

 ​'python'​, COVERAGE_PATH, ​'run'​, ​'-p'​,
TEST_RUNNER_PATH,

 test_target_flag]

 e = run_shell_cmd(exc_list)

 exc_list1 = ​'python %s report
--omit=%s/*,%s/*,/usr/share/ --show-missing'​ %
(COVERAGE_PATH, TOOLS_DIR, THIRD_PARTY_DIR)

 e1 = run_shell_cmd(exc_list1.split())

 ​print​ e1
 ​else​:
 exc_list = [​'python'​, TEST_RUNNER_PATH,
test_target_flag]

 e = run_shell_cmd(exc_list)

 ​return​ e

● After the bash scripts are converted to Python, it needs to have tests of its
own so it does not decrease coverage. For testing if the scripts are
downloading/removing libraries, I would create a mock class that will
inherit the actual class and ensure that the calls to the download/remove
in the mock class occur. For example:

install_third_party.py:

class​ ​Install_libraries​()​:
 ​def​ ​install_via_pip​(self)​:
 pip_install(pylint==​1.9.3​)
 pip_install(browsermob-proxy==​0.7.1​)

install_third_party_test.py:

import​ install_third_party
class​ ​Mock_install_libraries​(Install_libraries)​:
 ​def​ ​install_via_pip​(self)​:
 ​with​ self.assertRaises(Exception):
 pip_install(test_package)

The socket connection can be tested as:

import​ start
is_port_in_use = start.is_port_in_use(​8181​)
self.assertTrue(is_port_in_use)

start.close_port()

We can check if a library is installed or not as follows:

response = requests.get(url_to_library)
self.assertTrue(response.ok)

To check if a library is installed properly we can use the ​mock ​library. It
mocks out HTTP code.

The ​mock​ library is a part of the unittest module in Python 3 while it needs
to be separately installed as a pip package in Python 2. This would be
taken care by the ​python_utils.py​ file.

For example mocking a function that deletes a folder would be:

import shutil

import mock
def del_dir(test_path):
 shutil.rmtree(test_path)

response_mock = mock.Mock()
response_mock.del_dir('test_path/')
response_mock.del_dir.assert_called_once_with()

● The config files of CircleCI and Travis would be edited to run the new
Python scripts instead of the old bash ones. For example to run the
front-end tests on CircleCI, the following code snippet would be used:

frontend_tests:

 <<: *job_defaults

 steps:

 - checkout

 - run: date +%F > date

 - restore_cache:

 <<: *restore_cache

 - run:

 name: Run frontend tests

 command: |

 python scripts/run_frontend_tests.py

--run-minified-tests=true

 - run:

 name: Generate frontend coverage report

 command: |

 sudo pip install codecov

 codecov --file

../karma_coverage_reports/coverage-final.json

 when: on_success

Timeline

Pre-GSoC Period

1. Check to ensure that untested code does not get into develop branch

There should be checks to ensure that code which would decrease coverage should not
make into the develop branch. For that I suggest we use Codecov’s ​commit status​. It
measures overall project coverage and compares it against the base branch. It can be
used to automatically detect if the coverage is reduced.

I already implemented the above commit-status in my local repo. Below is the
screenshot:

Oppia already uses Codecov and hence needs just a yaml configuration file to enable
the commit-status. The yaml file roughly consists of:

coverage:

 status:

 project:

 default:

 ​# basic
 target: auto

 threshold: null

 base: auto

https://docs.codecov.io/docs/commit-status

● The target field would be updated to ​100% ​after milestone 2. This would ensure
that our backend coverage is 100%.

● The codecov/patch status(as shown in the above screenshot) only measures
lines adjusted in the pull request. This status provides an indication of how well
the pull request is tested. For example, in a PR we add the following lines
denoted by ‘+’:

def​ ​divide​(x, y)​:
+ ​if​ y <= ​0​:
+ ​raise​ ValueError(​"y must be greater than 0"​)
 ​return​ x * y

The resulting codecov/patch status of this commit would be 0% covered because
no tests are created for this method. Even though the project coverage is 90%
(approximate coverage of the entire Oppia codebase), this patch status will only
measure lines added.

Another commit adds the following lines:

+ ​def​ ​test_divide_by_1​(self)​:
+ ​assert​ divide(​10​, ​1​) == ​10

Running the tests will result in a patch coverage of 50% covered because we
have not yet tested the behavior of dividing by zero. Let's add another test by
adding another commit:

 ​def​ ​test_divide_by_1​(self)​:
 ​assert​ divide(​10​, ​1​) == ​10

+ ​def​ ​test_divide_by_zero​(self)​:
+ ​with​ self.assertRaises(ValueError)
+ divide(​1​, ​0​)

Now Codecov will report a codecov/patch status of 100% covered for this full pull
request. This indicates that the pull request adjusted code is properly executed
by tests.

● The other commit status measures overall project coverage with the newly
created PR and compares it against `develop`. This tests if the PR increases or
decreases the overall project coverage.

Hence two commit status will be added to check coverage -- one for the whole
codebase and one for the PR created.

That’s it! The configuration file for the CircleCI would automatically call the
Codecov’s configuration file resulting in the display of commit-status. The
`codecov` command in the CircleCI yaml file would do the above task and thus
there is no need to make changes in the CircleCI yaml file.

2. Write a few backend tests:

I am planning to write the backend tests for the following files before the community
bonding period starts as these files are fairly small and only 5-10 lines of code remains
in each file to be tested:

● core/controllers/creator_dashboard.py

● core/controllers/moderator.py

● core/controllers/practice_sessions.py

● core/controllers/question_editor.py

● core/controllers/recent_commits.py

● core/controllers/resources.py

● core/controllers/topics_and_skills_dashboard.py

● core/domain/activity_jobs_one_off.py

● core/domain/classifier_services.py

● core/domain/config_domain.py

● core/domain/config_services.py

● core/domain/feedback_jobs_continuous.py

● core/domain/fs_services.py

● core/domain/html_cleaner.py

● core/domain/obj_services.py

● core/domain/param_domain.py

● core/domain/question_domain.py

● core/domain/question_jobs_one_off.py

● core/domain/rating_services.py

● core/domain/recommendations_jobs_one_off.py

● core/domain/search_services.py

● core/domain/skill_jobs_one_off.py

● core/domain/stats_jobs_continuous.py

● core/domain/story_jobs_one_off.py

● core/domain/user_query_jobs_one_off.py

● core/domain/value_generators_domain.py

● core/domain/visualization_registry.py

The files are divided into ​Easy ​Medium ​and​ ​Hard​ on the basis of difficulty. The difficulty
rating is based on the following table:

Easy Medium Hard

Less LOC(5 - 20) More LOC than Easy ones
(20 - 80)

More LOC than medium
ones(80 - 180)

Mainly includes writing
tests for catching
exceptions

Includes:
● Writing tests for

catching exceptions
● Writing tests for

handlers which are
small in size and
does not have much
branching
statements and
hence are less
complicated

Includes:
● Writing tests for

catching exceptions
● Writing tests for

handlers which are
bigger in size and
has more branching
statements and
hence are more
complicated.

Expected
date for

submission
of PR

Expected
merge date

TASKS(Difficulty)

 Write backend tests for files in ​core/controllers​:

● May 8
● May 9
● May 11

● May 13
● May 14

● May 15

● May 16

● May 17

● May 18

● May 19

● May 21

● May 23
● May 25

● May 9
● May 11
● May 13

● May 14
● May 15

● May 16

● May 17

● May 18

● May 19

● May 21

● May 23

● May 25
● May 27

● base.py​(Medium)
● profile.py​(Medium)
● editor.py​(Medium)

● email_dashboard.py​(Medium)
● feedback.py​(Medium)

● learner_dashboard.py​(Medium)

● library.py​(Medium)

● skill_editor.py​(Easy)​ and
story_editor.py​(Easy)

● suggestion.py​(Easy)​ and
topic_editor.py​(Easy)

● collection_editor.py​(Easy)​,
collection_viewer.py​(Easy), ​and
translator.py​(Easy)

● acl_decorators.py​(Easy) ​and

pages.py​(Easy)

● Files in core/platform​(Easy)
● Files in core/storage​(Easy)

Also my college final exams would be going on.

● May 28
● May 29
● May 30
● May 31

● June 1
● June 2
● June 3
● June 4
● June 5
● June 6
● June 7

● May 29
● May 30
● May 31
● June 1

● June 2
● June 3
● June 4
● June 5
● June 6
● June 7
● June 8

Complete the remaining backend tests in
core/domain​:

● collection_domain.py​(Hard)
● exp_domain.py​(Hard)
● topic_services.py​(Hard)
● collection_services.py and its test

file​(Medium)
● learner_progress_services.py​(Medium)
● user_jobs_one_off.py​(Medium)
● exp_services.py​(Medium)
● feedback_services.py​(Medium)
● html_validation_service.py​(Medium)
● question_services.py​(Medium)
● topic_domain.py​(Medium)

● June 8
● June 9
● June 10
● June 11
● June 12
● June 13
● June 14
● June 15
● June 16
● June 17

● June 19

● June 20

● June 21

● June 22

● June 9
● June 10
● June 11
● June 12
● June 13
● June 14
● June 15
● June 16
● June 17
● June 19

● June 20

● June 21

● June 22

● June 23

● skill_domain.py​(Medium)
● skill_services.py​(Medium)
● state_domain.py​(Medium)
● stats_domain.py​(Medium)
● exp_jobs_one_off.py​(Medium)
● stats_services.py​(Medium)
● story_domain.py​(Medium)
● story_services.py​(Medium)
● suggestion_services.py​(Medium)
● event_services.py​(Easy)​ and

classifier_domain.py​(Easy)
● subtopic_page_domain.py​(Easy)​,

subtopic_page_services.py​(Easy)
● rights_manager.py​(Easy)​,

suggestion_registry.py​(Easy)
● summary_services.py​(Easy)

● topic_jobs_one_off.py​(Easy)​,

user_jobs_continuous.py​(Easy)

June 24 June 28 Buffer period for first milestone

● June 29

● July 1
● July 3
● July 5

● July 6

● July 7

● July 8

● July 10

● July 11

● July 1

● July 3
● July 5
● July 6

● July 7

● July 8

● July 9

● July 11

● July 12

Write the remaining backend tests in:
● scripts/build.py​(Hard)

● scripts/pylint_extensions.py​(Hard)
● core/domain/stats_jobs_one_off.py​(Hard)
● core/controllers/reader.py​(Hard)

● core/controllers/admin.py​(Hard)

● scripts/docstrings_checker.py​(Medium)

● core/tests/test_utils.py​(Medium)

● core/jobs.py​(Medium)

● core/domain/user_services.py​(Easy)

July 13 July 21 All of the following would be done in a single PR to
make all the backend tests pass:-

● Port the code to Python3 and convert the
binary data to the unicode

● Create ​python_utils.py ​to use features
different in Python2 and Python3

● Make further code changes that are

necessary
● Install libraries for Python3 that would

otherwise create dependency problems.

July 22 July 26 Buffer period for second milestone.

July 27 July 29 Put lint checks to ensure that the backend code
always remains compatible with both Python2 and
Python3.

● July 30
● Aug 2

● Aug 5

● Aug 8
● Aug 11
● Aug 14

● Aug 17

● Aug 20

● Aug 1
● Aug 4

● Aug 7

● Aug 10
● Aug 13
● Aug 16

● Aug 19

● Aug 21

Convert the following bash scripts to Python(The
following order is required so that we don’t have
importing/sourcing problems) and write its test file:-

● setup.sh
● clean.sh,

create_expression_parser.sh,install_chrome
_on_travis.sh,
install_frontend_tests_dependencies.sh

● vagrant_lock.sh, install_prerequisites.sh

● Install_third_party.sh
● Setup_gae.sh, start.sh
● run_backend_tests.sh,

run_frontend_tests.sh

● run_e2e_tests.sh, run_performance_tests.sh

● run_presubmit_checks.sh, run_tests.sh

August 22 August 26 Buffer period for third milestone. Finish writing the
list of remaining steps that need to be taken for a
final migration to python3.

Which timezone(s) will I primarily be in during the summer?

I will be in India throughout the summer (Timezone: UTC+05:30)

How much time will you be able to commit to this project?

Throughout May I will be having my college final exams and hence I can spend around
20-25 hours per week.

In June and July, I will be having summer holidays and can spend around 55-60 hours
per week.

In August, my classes begin and hence the time spent during weekdays would be lesser

(around 4-5 hours) while in the weekends I can spend more time (about 8-10 hours, to
make up for any pending tasks for the week).

What jobs, summer classes, and other obligations might you need to work
around?

I have no other commitments during the summer. I have no other obligations till July
end. In August I will have to get back to college, so the number of hours per week may
be slightly lower. I will try to make up during weekends. There might also be two days of
travelling, one in the first week of May and the other in the third week of July.

Communication

● Email: ​annonymousxyz@outlook.com
● Other mail: ​reshav01@gmail.com
● Github: ​@lilithxxx

I am comfortable with all modes of communication, be it Gitter or Hangouts and am
willing to choose any mode used by the mentors.

I will be in continuous touch with the mentors via email, Gitter or Hangouts. There could
be biweekly (or as preferred by the mentors) meetings on Hangouts to discuss about
the workflow to be followed ahead.

mailto:annonymousxyz@outlook.com
mailto:reshav01@gmail.com
https://github.com/lilithxxx

