
 

  

 

Review tests and other improvements to 
the questions framework 
 

 

 

 

Name: Shiqi Wu 

Email: ​wushiqi1998@gmail.com 

GitHub Account: sophiewu6 

University of California, Irvine, Computer Science major 
 

 

mailto:wushiqi1998@gmail.com


  1 
 

Project Details 

Why are you interested in working with Oppia? 
I have been using online tutorials and courses since middle school. They have helped me a 
lot when my school doesn’t offer certain classes, when I couldn’t understand some 
materials in class, or when I want to take classes from foreign countries. However, I still 
found this new education channel needs some improvements. When I was searching for 
open source communities, Oppia’s goal “provide high quality education to those who lack 
access to it” quickly got my attention because of my interest in online education. I feel like I 
can make contributions to Oppia with my programming skills and experience with online 
education tools. 

As I got involved into Oppia, I found everyone in the community is very friendly and willing 
to help newcomers. In the past, I only had chances to work with students from the same 
school. This is my first chance to work with people from all over the world. It impressed me 
that people from different parts of the world, who didn’t know each other, are working 
together for the same goal. I would like to be part of this community to develop something 
useful and make friends from all over the world. 

What interests you about this project? Why is it worth doing? 
Reviewing is a very important part of studying. When I attempt to memorize vocabulary, I 
have to review old words every day so that I won’t forget about them. I also found that if we 
have multiple quizzes throughout the semester, we won’t struggle during the final week as 
much because we have reviewed the class materials before the quizzes. 

When I first looked into Oppia’s website, I felt like something was missing because there 
was no review tests between lessons. Learners would forget about old materials if reviews 
don’t happen in time. When I saw this project idea in Google Summer of Code idealist, I 
picked this project right away because I think the learning experience can be significantly 
improved after adding review tests. 

Another purpose of tests is to help learners get to identify their weaknesses so they can 
improve upon that. By implementing skill mastery level, learners can get a clear view of 
which parts they need to put more efforts on. It helps learners to allocate time to improve 
the weakness more efficiently. 

Prior Experience 



  2 
 

I have experience contributing to a large shared repository, Cloudberry, which is from a 
research team at University of California, Irvine. It intends to develop a general-purpose 
middleware system to support visualization on large amounts of data, as well as a 
TwitterMap prototype which supports interactive analytics and visualization on more than 
one billion tweets with new data continuously being ingested. 

As for skills that are required in Oppia, I am proficient in both Python and AngularJS. I have 
three year’s experience coding in Python. I have developed lots of projects, including a 
gaming AI and a search engine, with Python. AngularJS is the language for the frontend part 
of my research team. I have implemented a few large features for the team by using 
AngularJS. 

Other than that, I have participated in a few Hackathons and Medical AI Jam, where I have 
developed Android apps and web apps in teams. 

Links to My PR for Oppia 
I will keep contributing to Oppia after submitting this proposal. Please refer to this link to 
get an updated version: ​My Pull Requests 

#6566​: Convert the current per-exploration translator role to a voice-artist role 

#6557​: Write e2e tests for editing exploration properties (coreEditorAndPlayerFeatures.js) 

#6540​: Make test coverage of core.storage.exploration.gae_models 100% 

#6472​: Remove globals ALLOWED_INTERACTIONS_CATEGORIES from creator_dashboard, 
exploration_editor, skill_editor, and topic_editor 

Overview 
This project aims to add review tests and improve the current question framework. After 
this project, review tests will be shown after going through a few lessons. The tests results 
will be used to update skill mastery level, so that learners can review and practice 
according to the mastery level and learning tips. Tests results will also be sent to creators 
once a few months to help improve the questions and lessons. 

Display Review Tests 
A review test player will show up after learner going through every three chapters in a 
story. The test player will make use of the existing question player. There will be three 
questions for each skill linked to the three chapters. Questions should be randomly 
selected from the question bank linked to each skill.  

https://github.com/oppia/oppia/pulls?utf8=%E2%9C%93&q=is%3Apr+author%3Asophiewu6
https://github.com/oppia/oppia/pull/6566
https://github.com/oppia/oppia/pull/6557
https://github.com/oppia/oppia/pull/6540
https://github.com/oppia/oppia/pull/6472


  3 
 

Learners can try the same questions infinite times, but every time they get the wrong 
answer, scores will be deducted (details see Mastery Level). Learners can’t proceed to the 
next question until they get the right answer. Learners have the option to see hints and 
solutions like practice sessions when getting stuck. However, seeing solutions can result in 
deducting scores and mastery levels. 

To avoid having too many questions in a review test, less questions will be selected for 
every skill when there are too many skills. When number_of_skills >= 7, we select two 
questions for each. When number_of_skills >= 10, we select one question for each. There 
will be an upper limit of 15 questions in the review test. If there are more than 15 skills 
linked to the three chapters, only select questions linked skills with relatively low mastery 
level for that particular learner. 

Review Tests Results 
Learners can attempt questions multiple times until they get the right answer. However, 
every time they get the answer wrong on the first time, the score of the review test will be 
deducted by 100 / number_of_questions. The score is set to 100 in default. For example, if a 
review test has 10 questions, answering 8 questions correctly on the first time means the 
score is 80.  

The results can be used to decide whether the learner can proceed to the next chapter. The 
requirement for passing the test is answering at least 1/2 questions of each skill correctly at 
the first time. This percentage will be the same even if there are only one or two questions. 
That means we allow one wrong answer for every skill when we have two or three 
questions, but learners must get every question correctly at the first time when there is 
only one question. 

If the learner passed every skill being tested, he/she can proceed to the next chapter. If the 
learner failed one or more of the skills, he/she has to review the concept cards and take the 
review test, which only contains the failed skills. Only after passing the review test, he/she 
can finally proceed studying. 

Mastery Level 
● Mastery levels are bound to each skill and learner, and they are set to 0.0 when 

nothing is done. 
● Mastery level can be increased or decreased by demonstrating the corresponding 

skill, mostly by answering questions.  
○ If a question is solved correctly the first time, increase the mastery level by 

10% + 10% * question_skill_difficulty (a float between 0 and 1). Difficulty 0.1: 
11%, difficulty 0.2: 12%, etc. 



  4 
 

○ If a question is solved correctly the second time, increase the mastery level 
by 10% * question_skill_difficulty (a float between 0 and 1). Difficulty 0.1: 1%, 
difficulty 0.2: 2%, etc. 

○ If a question is solved correctly after the second time, decrease the mastery 
level by 5% * (times_of_trying - 2). The third time: -5%, the fourth time: -10%. 
It won’t be deducted any more than 10%. 

○ When the answer group is linked to misconceptions, only decrease the 
mastery level of the skill that is linked to the misconception. If not, all skills 
linked to the question will get decreased mastery level. 

○ Since the mastery level is between 0.0 and 1.0, it won’t increase after 
reaching 100%, or decrease after reaching 0%. 

● Viewing hints or solutions can decrease the mastery level. 
○ Mastery level will be decreased by 2% every time viewing a hint. 
○ Mastery level will be decreased by 10% if viewing the solution. 

● Learners will be able to view their mastery levels in two ways. 
○ Score modals that show up every time after finishing tests. 
○ A page that has a list of skills and their corresponding mastery levels inside 

the topic viewer. 

Give Learning Tips Using Mastery Level 

Review Tests and Practice Sessions 
Different tips will be given under different situations: 

1. When mastery level is above 80% and it is increased: “You have mastered this skill 
very well! You can work on other skills or learn new skills.” 

2. When mastery level is under 80% and it is increased: “You have made progress! You 
can increase your mastery level by starting practice sessions.” 

3. When mastery level is above 80% and it is decreased: “Seems like you didn’t do very 
well this time. Please keep practicing.” 

4. When mastery level is under 80% and it is decreased: “Please practice more on this 
skill by starting practice sessions.” 

5. When mastery level is at 100%: “Congratulations! You have mastered this skill!” 

Pretests 
1. When every prerequisite skill’s mastery level is above 80%: “Congratulations! You 

have mastered every skill that is required for this new lesson.” 
2. When one or more of prerequisite skills’ mastery levels are under 80%: “Please 

practice more on skill1 and skill2 (specify the names). You need to pass the pretest 
before starting this lesson.” 



  5 
 

3. Prompt logged-out users that they can login to skip pretests if they have sufficient 
skill mastery. 

Also, pretests will be automatically skipped when every prerequisite skill’s mastery level is 
above 80% because too many tests will be overwhelming for learners. Otherwise, learners 
have to take the pretests containing questions from prerequisite skills with mastery level 
lower than 80%. 

Select Questions based on Difficulty Level 
Questions were randomly selected before implementing mastery level feature. We can 
improve it by selecting questions using both question difficulty and learner’s mastery level. 
Questions with the most similar difficulty to the mastery level will be selected. For example, 
when there are five questions with difficulty 0.1, 0.3, 0.5, 0.7, 0.9, and a learner’s mastery 
level is 0.65, then questions with 0.5, 0.7, 0.9 difficulty will be selected. 

Also, for pretests and review tests, try focus on questions that are only linked to skills that 
are in the scope (prerequisite or lessons before review tests). Don’t select a question if it is 
linked to skills that have no mastery level (not yet studied). 

User Workflow 

 



  6 
 

Learner View 
After a learner going through three chapters, a review test will show up: 

 

After successfully completing all questions, the learner’s performance will be evaluated and 
the results will be displayed in a modal. 

Passed: 



  7 
 

 

The skill names are clickable. When learners click on them, they will be directed to the 
corresponding skill concept cards, so that they can review the skills after the review tests. 
After exiting the concept cards, learner will be redirected to the review test result page 
automatically to check other results. 

The star shows how many questions were answered correctly the first time. 

Failed: 



  8 
 

 

The learner didn’t pass the “Calculate” skill (didn’t get 2 out of 3 questions correctly), so 
he/she can’t proceed to the next chapter. The learner should click on the button to review 
the failed skills. After reviewing, a review test containing failed skills will show up. The 
learner will have to pass this review test to “unlock” the next chapter. 

As we can see from the two mockups above, there is a green bar under every skill name. 
These bars show the mastery levels of corresponding skills. On the right of the bars, the 
icons show the details of mastery level and give learning tips accordingly.  

Hover over the icon we will see: (more learning tips details see Overview - Give Learning 
Tips Using Mastery Level) 

 



  9 
 

 

Learners will also be able to view a list of skills in the topic as well as their mastery levels. 
This design allows learners to view the mastery levels anytime they want, and they can 
practice their skills according to the mastery levels. 

Logged Out Users View: 
While logged in viewers can keep track of mastery levels, logged out users will not have any 
mastery levels tracked. However, they can still take review tests (just as they can take 
pre-tests and practice sessions). Learning tips in the topic viewer page will not be given to 
the logged out users about which skills they need to improve upon since oppia will not 
have mastery level information for that user. 

Technical Design 

Display Review Tests 
● Add a counter variable storing the number of explorations that the learner went 

through in a story. When the counter%3 == 0, or it is the last exploration in the story, 
display the review test. 

● Getting questions from the backend: 
○ Have a list storing the chapter ids that need to be tested in the incoming 

review test. Clear the list after finishing a review test. Add ids into the list 
before going through a chapter. 



  10 
 

○ Get all skill ids linked to the chapters. Check the length of the list of skill ids. If 
length is less than 7, get three questions for each. If length is less than 10, get 
two questions for each. If length is equal to or greater than 10, get one 
question for each. If length is greater than 15, only get 15 questions linked to 
15 skills with relatively low mastery level (this will be implemented after we 
have mastery level done). Get questions from the backend question bank 
randomly. 

○ In the frontend, fetches the review test questions using the dictionary 
returned from the backend. 

● Initialize the review tests pages using the existing question player. 
● Display a modal at the end of the test. Create a template file, which contains a 

header, a list of clickable skill names, scores, a list of clickable skill names (redirect to 
skill concept cards), also an option to review the skill concept card. This file will be 
called every time the learner finishes a review test. 

Review Tests Results 
● Implement a function keep tracking of the user’s score linked to every skill during a 

review test. The score will be set to 100 by default. If the learner does not get the 
correct answer at the first time, the score will be deducted by 100 / 
number_of_questions. If the learner gets the answer correctly at the first time, the 
score will remain the same. At the end of the review test, return the total score and 
the correction rate of each skill. 

● Have a list storing failed skill ids (details see Overview - Review Tests Results). After 
the test is over, check if the list is empty. 

○ If it is empty: Enable the next chapter, and initialize the “good score” modal. 
○ If it is not empty: Initialize the “bad score” modal. When the “Review Skills” 

button is clicked, redirect to the concept cards linked to the skills in the list. 
After reviewing, another review test will be initialized, and use the same 
method as above to get questions linked to the failed skills from the 
backend.  

Mastery Level 
● Add a MasteryLevelModel class.  

○ skill_id: the id of the skill that the mastery level data is linked to. 
○ user_id: the id of the user that the mastery level data is linked to. 
○ mastery_level: a float between 0.0 and 1.0. Set to 0.0 by default. 

● Use timestamps to keep track of the following: 
○ How many times answers are submitted by the learner. 
○ Number of hints used by the learner. 
○ Whether the solution is requested. 



  11 
 

● Implement functions to do calculations (as stated in Overview - Mastery Level) after 
pretests, review tests, and practice sessions. 

Add Skills Tab in Topic Viewer 
● Add a new tab in the topic viewer template file next to story and practice tabs. 
● Get skill names linked to this topic and mastery levels linked to skill_id and user_id. 

Give Learning Tips Using Mastery Level 
● Add bars to display mastery level in the result modals/pages of pretests, review 

tests, and practice sessions. 
● Create an enum with three values IsInPretestMode, IsInReviewTestMode, and 

IsInPracticeMode to represent different test states. (could be extended if needed) 
● Add learning tips. 

○ Learning tips for review tests and practice sessions are the same. Details see 
Overview - Give Learning Tips Using Mastery Level. 

○ When IsInPretestMode is true, if at least one of the prerequisite skills of a 
chapter does not have 80%+ mastery level, the chapter will be disabled. 

● Check mastery levels of prerequisite skills before pretests. If all of them are above 
80%, don’t show pretests. If some of them are lower than 80%, show pretests only 
with skills with lower than 80% mastery level.  

● Improve questions selection:  
○ Get learner’s mastery level from the backend. 
○ question_skill_difficulty will always be - Easy: 0.3, Medium: 0.6, Hard: 0.9. If 

mastery level <= 0.45, select from Easy. If 0.45 < mastery level <= 0.75, select 
from Medium. If mastery level > 0.75, select from Hard. Don’t get questions if 
skill mastery level is not available for the skill_id. 

○ If there is not enough questions in the corresponding level, go to the closest 
difficulty level. 

Milestones 
I plan to have three big milestones (four weeks) based on the timeline provided by Google, 
and four small milestones (one week) in each big milestone. 

Preparation / Community Bonding Period (Now - May 26) 
During this period, I will keep making contributions to the community, getting more familiar 
with the codebase and mentors. One of the issues I am going to work on is implementing 
the frontend part of question difficulty. 



  12 
 

Milestone 1: Display Review Tests and Calculate Scores (May 27 - June 23) 

Display Review Tests Breakdown: 
● Implement ReviewTestEngineService.js which does the following: 

○ Handle answer submitting. 
○ Get corresponding questions from the backend. 
○ Load the next question when the answer is correct. 
○ Stay in the same question and give suggestions when the answer is wrong. 
○ Return to the story player after the last question. 

● How to get questions from the backend: 
○ domain/story_domain.py: Add a function to get all the linked skill_ids for each 

exploraion_id.  
○ Add a function to decide how many questions are supposed to be selected 

based on the number of skill_ids in total. 
○ controller/reader.py: Add a ReviewTestHandler class to handle a GET request 

and return a review_test_questions_dict, which contains one to three random 
questions for each skill, using domain/question_services.py. 

○ dev/head/domain/question/ReviewTestBackendApiService.js: It fetches the 
review test questions using the dict returned from the backend. The 
questions in the dictionary will be used to display in the review tests. 

● Tests will be added to make sure: 
○ Questions are randomly selected from the question bank linked to each skill. 
○ Correct number of questions are selected from the backend for each skill. 

(number details see Overview - Display Review Tests) 
○ Questions can be displayed successfully, and in the correct order. 
○ Move on to the next question if answer is correct. 
○ Remain on the same page and is able to try again if answer is incorrect. 
○ Suggestions will be given when answer is incorrect. 

● Add a counter to keep track when to display the review tests: 
○ In ExplorationPlayerStateService.js, when the counter%3 == 0, or it is the last 

exploration in the story, set variable inReviewTestMode (default false) true. 
○ When inReviewTestMode is true, start ReviewTestEngineService and initialize 

the services. 
○ Once the final question is done, should have a function to move back to the 

story player. 

○ This counter value will be stored in the StoryProgressModel in 
user/gae_models.py. We can look at the length of completed_node_ids (from 
StoryProgressModel) and assume that as the counter. That is, we can do 



  13 
 

length(completed_node_ids)%3 to figure out if we should give a review test or 
not. 

● Tests will be added to make sure: 
○ Review tests always show up at the right time. 
○ Learners will be returned to the story player page after they are done. 

Score Calculation Breakdown: 
● Add functions in ReviewTestEngineService.js which do the following: 

○ Have a score variable which is set to 100 by default, and do calculation every 
time after the learner submits an answer, based on the value of 
answerIsCorrect (boolean).  

○ Return the skill_id being tested, question_id, and scores accordingly. 
● Tests will be added to make sure: 

○ The score calculation gives the correct result. 
○ The function returns the same information as what was in the review tests. 

● Display the modal every time after finishing the review test: 
○ Add a template file review_test_result_directive.html. 
○ In ReviewTestEngineService.js, open the modal after the last question.  

● Tests will be added to make sure: 
○ The result modal will show up every time after the last question. 
○ The information being shown is correct in different situations. 

(Single/multiple skills, different scores etc.) 

Sub-milestones 
 

Submission Date  Merge 
Date 

Description 

June 9  June 14  Get questions dictionary from the backend. Implement 
ReviewTestEngineService and relevant functions (loading 
questions, redirecting to next question cards, etc). Add tests. 
(Bullets 1-3 in Display Review Tests Breakdown) 

June 16  June 19  Handle displaying review tests. Add relevant tests. 
(Bullets 4-5 in Display Review Tests Breakdown) 

June 23  June 26  Handle review tests scores calculation and display the result 
modal. Add relevant tests. 
(Score Calculation Breakdown) 



  14 
 

 

Milestone 2: Review Tests Results and Mastery Level (June 24 - July 21) 

Review Tests Results Breakdown: 
● Add a new list in ReviewTestEngineService.js. After the test is over, add id of every 

skill which has under 1/2 correction rate. 
● Change the previous mastery level modal to two situations (pass or fail). Update 

corresponding template files. 
● When the list is empty, change nothing. (Keep milestone 1) 
● When list is not empty: 

○ Open the mastery level failed modal. 
○ Use ConceptCardBackendApiService.fetchConceptCard() to get a dict of 

concept cards linked to the failed skill_ids. Call ConceptCardObjectFactory to 
create the concepts cards from the backend and load them. 

○ After closing the concept cards, a review test will be initialized again, using 
the same method as above. The difference is this time it only get questions 
linked to the skill_ids in the failed list. 

○ After completing the review test, check the list again. If empty, proceed. If 
not, repeat the same steps as above until empty. 

● Tests will be added to make sure: 
○ Failed skill ids are added into the list. 
○ Two different modals are triggered under different situations. 
○ Concept cards linked to the skills can be get from the backend. 
○ Concept cards can be opened after clicking the button. 
○ Review tests open automatically after reviewing concept cards. 

Link Answer Groups to Misconceptions Breakdown: 
● Add a new class AnswerMisconceptionsLinkModel in 

storage/question/gae_models.py and tests in gae_models_test.py. 
● In question_services.py, add functions to create, get, delete instances of 

AnswerMisconceptionLinkModel. 
● In question_editor.py, add a Handler class for linking and unlinking answer groups 

to or from a misconception. 
● Tests will be added to make sure: 

○ Answer groups and misconceptions are linked correctly. 
○ The create, get, delete functions work as expected. 

● In question_editor_modal_directive.html, add a button for creators to link answer 
groups and misconceptions. 



  15 
 

● In QuestionEditorDirective.ts, add functions for linking and unlinking answer groups 
to or from a misconception on the frontend. 

● Tests will be added to make sure: 
○ When creators choose to link answer groups and misconceptions, 

corresponding changes happen on the backend. 

Mastery Level Breakdown: 
● Add a new class MasteryLevelModel in storage/skill/gae_models.py and tests in 

gae_models_test.py. (Parameters see Technical Design - Send Feedback to Creators). 
● Define class in domain/skill_domain.py to create a domain object.  
● Define functions in domain/skill_services.py to get mastery level data linked to 

skill_id and user_id, and other relevant functions. 
● Backend tests will be added to test functions above. 
● Update mastery level: 

○ Add functions to handle calculations under different situations. 
○ Every time learner submits answers, uses hints or solutions, functions above 

will be called to do corresponding calculations. 
○ In each test’s Handler, handles PUT requests for updating mastery levels at 

the end of tests. 
● Tests will be added to make sure: 

○ Mastery level data will be updated successfully when answers/hints/solutions 
are triggered. 

○ Mastery level data will be increased or decreased by the correct amount 
under different situations. 

● Display mastery level information on the result modals. 
○ Update the template file to add mastery level bar. 
○ Add frontend tests to make sure it can be displayed correctly. 

Sub-milestones 
 

Submission Date  Merge Date  Description 

June 30  July 3  Divide results into passed/failed modes and store failed 
skill id for review used. Add relevant tests. 
(Bullets 1-2 in Review Tests Results Breakdown and 
relevant tests) 

July 7  July 10  Redirect learners to concept cards and automatically 
start a review test afterwards. Add relevant tests. 
(Bullets 3-5 in Review Tests Results Breakdown) 
 



  16 
 

July 14  July 17  Add backend and frontend for 
AnswerMisconceptionsLinkModel. Add relevant tests. 
(Link Answer Groups to Misconceptions Breakdown) 
 

July 21  July 24  Add new mastery level model, domain, services, and 
tests for each of them. Add relevant tests. 
(Bullets 1-4 in Mastery Level Breakdown) 
Note: The backend part will be ready after this, but 
calculation and updating will be handled in Milestone 3. 
 

 

Milestone 3: Add Skill Tab, Send Feedback to Creators and Use Mastery Levels to 
Improve Tests (July 22 - Aug 18) 

Add Skill Tab Breakdown: 
● Add a skill tab in topic_viewer.html.  
● Add a Handler in controllers/topic_viewer.py to get skill names and mastery levels 

from the backend. 
● Tests will be added to make sure:  

○ The new added tab will be displayed in the topic viewer. 
○ Skill names and mastery levels can be gotten from the backend correctly. 
○ Skill names and mastery levels can be displayed correctly. 
○ If a skill is linked to multiple topics, the skill mastery level can be updated in 

the skill tabs of all of them. 

Tests Improvement with Mastery Levels: 
● Since displaying mastery level information is already handled in milestone 2, we 

only need to consider adding learning tips for different mastery levels. 
● Learning Tips details see Overview - Give Learning Tips Using Mastery Level.  
● Tests will be added to make sure: 

○ Correct learning tips will be given under every different situation. 
○ In pretest mode, chapter is disabled if its prerequisite skill’s mastery level is 

under 80%. 
● For pretests: 

○ Check mastery level of every prerequisite skill before pretests. 
○ In ExplorationPlayerStateService.js, don’t set isPretestMode to True when 

every skill’s mastery level is above 80%. 



  17 
 

○ Currently pretests get questions from the backend using 
prerequisite_skills_list. Replace that with a list containing only skills with 
mastery level under 80%. 

● Tests will be added to make sure: 
○ Only show pretests when some of the prerequisite skills are under 80%. 
○ Only show questions linked to those skills. 

● Select questions based on difficulty and mastery levels: 
○ In controllers/reader.py: Add a function to get questions based on their 

difficulty and learner’s mastery level. Details see Technical Design. 
● Tests will be added to make sure: 

○ Questions selected are the ones that have the most similar difficulty as the 
learner’s mastery level. 

● Set an upper limit 15 to number of questions in review tests, and only select 15 
questions linked to skills with relatively low mastery level when there are more than 
15 skills linked to the three chapters. Use the same way to get questions from the 
backend as milestone 1. But after getting skill_ids, sort the list in the ascending 
order of corresponding mastery level. Only use the skill_ids of index 0 to 14. 

● Tests will be added to make sure: 
○ When number of skills linked to the three chapters is larger than 15, only 

select 15 questions. 
○ The questions are selected from skills with relatively low mastery levels. 

Sub-milestones 
 

Submission Date  Merge Date  Description 

July 28  July 31  Handle updating mastery levels after every 
test/practice. Add mastery level information on every 
result modal/page.  
(Bullet 5-7 in Mastery Level Breakdown) 
 

Aug 4  Aug 7  Add skill tab frontend and its handler to get data from 
the backend. Add relevant tests. 
(Add Skill Tab Breakdown) 
 

Aug 11  Aug 14  Implement learning tips feature and other 
improvements for pretests, review tests, and practice 
sessions. Add relevant tests. 
(Tests Improvement with Mastery Levels) 
 



  18 
 

Aug 18  Aug 21  Buffer period. Fix any bugs reported and manually test 
to look for bugs. Prepare for final submission. 
 

 

Future Projects 
1. Expand test feedback to all tests, including pretests, review tests, and practice 

sessions. This improvement will be done during GSoC if time allowed. 
2. Improve the content of the test feedback to show more useful information. 
3. Improve questions selection based on mastery level for pretests and practice 

sessions. 
4. Add an individual skill player so that learners can review skills anytime they want. 

Summer Plans 

Which timezone(s) will you primarily be in during the summer? 
I will stay in America (west coast) throughout the summer. The time zone will be Pacific 
Daylight Time (GMT-7). 

How much time will you be able to commit to this project? 
I won’t have any other full-time work during summer. For most of the time, I will spend 6-8 
hours a day, 6 days each week (36-48 hours a week) working on this project. My finals week 
will be in June 10 - June 14, so during the five days, I will only spend 3 hours a day, but I will 
catch up on the weekend (June 15 - June 16). 

What jobs, summer classes, and other obligations might you need to work around? 
My final exams end on June 14. I won’t have any other jobs, summer classes after that. 

Communication 

What is your contact information, and preferred method of communication? 
My contact information: 

email: ​wushiqi1998@gmail.com​ (preferred) 

mailto:wushiqi1998@gmail.com


  19 
 

phone number: +1-4252867071 

I will also be active on Gitter. 

How often, and through which channel(s), do you plan on communicating with your 
mentor? 
I plan to contact my mentor everyday to share my progress and ask questions on 
Gitter/Google Hangout based on mentor’s preference, and there will be a weekly meeting 
so we can talk about my progress during every small milestone (one-week duration) and 
my plan for the next week. 


