

Fix the linter and implement
all the lint checks

Google Summer Of Code

Anshul Kumar Hudda

About Me

Why are you interested in working with Oppia, and on your chosen project?
Oppia’s mission is to “provide high-quality education to those who lack access to it.” And myself
belonging to a farmer’s family know the importance of education. I know how education can
change lives. I’m very fascinated by Oppia's mission. It is a great learning experience to work
with Oppia, I learned so much in just a few months of working with Oppia. I find the Oppia
community to be super friendly. They helped me with every issue I face and are ready to guide
me. It’s been a great learning experience for me so far. I would continue to contribute to Oppia
even after the GSoC period ends.

What interests me about this project?
I chose the linter project because I like to work on the backend part of the projects and also, it is
written in Python. I always want to learn more about Python and I think it is a fun way to learn
Python more deeply by working on a real world project.

The project aims to fix the linter and implement new lint checks. This project is really important
for the following reasons:

I. Lint checks are important to reduce errors and improve the overall quality of your code.
II. Linting code increases the readability which makes the understanding code easier.

III. Linting code reduces the chances of syntax errors.

An open source organisation like Oppia needs the linting checks because the developers from
around the world contribute to the oppia repository and everyone has a different coding style.
Lint checks makes sure that they do not create a mess in the code and the next coder is easily
able to read it.

Prior experience
I have been working with Python for the last two years. I am a backend developer and work
primarily with Django. I have also been involved in Machine Learning since the past few months.

Some of my projects include:
❏ I made a blogging web app for adding posts for users using Django.
❏ I worked on a college project named ‘Attendance management system’ which is going to

be live from next semester. This web app is made with Django and React and will be
used for registering the attendance of the students.

❏ I created a bot for playing Nintendo’s Mario using NEAT (Neuro Evolution of Augmented
topologies) Algorithm as a college project.

Links to PRs and Issues to Oppia

● PR​ ​#8656​ (Split the linter to run for a specific file extension.)
● PR ​#8947​ (Addition of Python, HTML, CSS, Js/Ts lint tests.)
● PR ​#7929​ (Added lint check for a newline above args in python doc string.)
● PR ​#8066​ (Custom pylint extension to ensure that comments follow correct format.)
● PR ​#8034​ (Custom pylint extension for checking division operator)

Here​ is the complete set of PRs opened by me.

Issues opened by me:

● Issue ​#8625

I am also helping fellow contributors by reviewing their PRs.

Contact info and timezone(s)
I will be in New Delhi (India) throughout the summer (Timezone: UTC+05:30)

Communication

● Email: ​anshulhudda.ssap@gmail.com
● Phone: +91 8700215154
● Github: ​@Hudda

I will be in continuous touch with the mentors via email, Gitter or Hangouts. There could be
biweekly (or as preferred by the mentors) meetings on Hangouts to discuss the workflow to be
followed ahead.

Time commitment
I will spend 55-60 hours per week contributing.

Essential Prerequisites
● I am able to run a single backend test target on my machine.

https://github.com/oppia/oppia/pull/8656
https://github.com/oppia/oppia/pull/8947
https://github.com/oppia/oppia/pull/7929
https://github.com/oppia/oppia/pull/8066
https://github.com/oppia/oppia/pull/8034
https://github.com/oppia/oppia/pulls?q=is%3Apr+author%3AHudda+
https://github.com/oppia/oppia/issues/8625
mailto:anshulhudda.ssap@gmail.com
https://github.com/Hudda

● I am able to run all the frontend tests at once on my machine.

● I am able to run one suite of e2e tests on my machine.

Other summer obligations
I have no other summer obligations.

Communication channels
I am comfortable with all the modes of communication, be it Gitter or Hangouts or Whatsapp
and am willing to choose any mode used by the mentors.

Project Details

Product Design
This project will help developers on the Oppia team in writing clean code with fewer syntax
errors and good readability. Linting is used to detect style errors in the codebase and for writing
cleaner code so that everyone can understand it easily.

Catching errors using exception handling
The Oppia development workflow uses lint checks to help detect style errors before they reach
the review phase. But error detection for the linter itself is missing. There had been several
cases in the past where the linter happily let everything through, one time it was ‘​ASCII
encoding​’ error and one time it was ‘​variable referenced before initialization​’ error which caused
the ​Pylint to stop working, and this was not detected until several months. During this period a
lot of lint errors build up and we had to spend some time fixing those errors. To make sure this

won’t happen again. I will add exception handling to the linter so that if any unexpected error
happens it gets caught and linter raises an exception.

Let’s see an example of ​‘variable referenced before initialization’ ​error. Suppose there are
several changes made by a developer in the codebase. Developer run linter to check if there
are any lint errors in his/her code. This is what he/she sees(see screenshot below) when the
linter finishes linting.

Developer think that his/her code is free of lint errors as all checks are passed. But here comes
the twist, if we scroll a little up, we found that an unexpected error has happened which linter did
not report(see screenshot below) and neither stops the code execution.

These types of errors mostly remain hidden in the verbose output of the linter and difficult to
catch with just simple testing. But these errors can be easily caught with exception handling.
With exception handling we can catch all the unexpected errors and print them at the end of
linter output, so that the developer should be able to fix them. When I am done implementing
exception handling we will have this(see screenshot below) type of warning at the end of code
execution.

One can say why not just write tests for catching errors. But it is not possible to write tests for all
cases, a developer isn't always able to think of all cases where errors might happen. Also, tests
are not able to catch unexpected errors. For example, in the above example we have tests
written for that piece of code which is causing error but still the error passes through it, because
the developer who wrote that piece of code did not take the case in consideration where the file
is empty(__init__.py). All the tests were passing in this case(see screenshot below) but still error
was there.

For cases like this, we need exception handling because by using exception handling we have
an advantage of catching unexpected errors which is not possible in the case of writing just
tests. That’s why I will implement exception handling along with tests for extra protection. So, if
developers leave any case in tests or any unexpected error happens it will be caught by
exception handling and all the error messages should be reported at the end of linter output.

Why do we need exception Handling?
● Exception handling is not for the lint checks but for any bug in the linting script itself. The

tests only check the behaviour of lint check. But there might be some logical error in the
script which might not be caught by the tests.

● If we do not use exception handling, the linter still fails but the error is harder to catch as
the error log is buried somewhere inside the output and not at the end of lint output.
Example: Here linter fails but we are not seeing the main cause of the error because it is
buried in the output.

This is the error which can be found in between the linter output:

As you can see, this is hard to see and therefore, hard to debug.

● As of now even after an exception is raised the linter continues to run. The linter
continues running even if an exception is raised because we have many sub linters e.g.
pylint, eslint, sylint and if any exception raised, it only stops that particular linter and
other linter continues running. This is the reason we need exception handling.

Why do we need custom exceptions?
● The reason we need custom exceptions is the same as the above point. Only a sublinter

is stopped running and the other linter continues running. The exception remains buried
in the output and we may never know if something has happened at all.

● By using custom exception handling we can catch all the errors and show them to the
user at the end of the linter output with a warning message.

Splitting of linter
As of now, the linter is linting all the file types at once, but in ​#8656 I am working to separate
linters according to their file extension type. So that we can have sub linters to the main linter
and we can run a specific linter by using a command-line argument. This way we do not have to
lint all the file types if we only want to lint files for a specific file type.

https://github.com/oppia/oppia/pull/8656

Adding tests for lint checks in ‘pre_commit_linter.py’
As of now almost all of the linter code remains untested, only pylint has tests written for its
custom checks. I will add tests for the lint checks in ​pre_commit_linter​. Adding tests will ensure
that the lint checks are working as they meant to be. This will also ensure that any future lint
checks do not remain untested and any new error will not be introduced. A small amount of
work is already done in ​#8947​.

Make lint output less verbose
The verbose mode is outputting too much code right now and a large part of the output is
generally are of no particular use(see screenshot below).

There is much extra information which is of no use and makes it hard to see the actual error. I
will change the code so that only essential bits are shown by the linter. And summary of error
messages will be shown at the end of the linter output under a line saying ‘​Please fix errors
below​’. After I am done with implementing this feature the linter output will look like this(see
screenshot below).

https://github.com/oppia/oppia/pull/8947

Mocks for the making lint output less verbose
Python

JS/TS

HTML

CSS

In the screenshots above, all the extra bits which are of no use have been trimmed. This way
the user sees only important information and extra clutter has been removed. Also, all the errors
are at the end of lint output and hence it will be easy for developers to easily spot the lint errors.

Requirements of verbose and non-verbose mode

Verbose mode Non-verbose mode

Need --verbose flag to enable verbose mode
and will be mainly used in a CI environment.

Linter will run in non-verbose mode by
default.

Will log error twice once when they are being
caught and once at the end of linter output

Will log error only once at the end of linter
output.

All the information will be shown. Only important parts of the error message will
be shown and extra bits will be removed.

Implementation of new lint checks
There are a number of lint checks which are not implemented yet(see issue ​#8423​). I will
implement these checks and write their test in their respective files. Also, I am going to fix all
new lint errors which are going to pop up after the implementation of these new lint checks.

List of all lint checks with deadlines

https://github.com/oppia/oppia/issues/8423

S.No. Lint Checks Deadline

General Lint Checks

1. Check to ensure that all lines in skip_files in app.yaml reference valid files in
the repository

7/6/2020

2. Newline check at end of file 9/6/2020

3. Lint checks to ensure that there are valid spaces and newlines 11/6/2020

4. Lint checks for webpack config 13/6/2020

5. Check that all TODO comments start with capital letter 15/6/2020

6. Check for proper comment style for Python and JS files 18/6/2020

7. Check to ensure that every file (of any type) ends with exactly one newline
character.

20/6/2020

CSS lint checks

8. Check for alphabetized list in CSS 23/6/2020

9. Prohibit inline styling 25/6/2020

Python lint checks

10. Enforce multiples of 4 indentation in docstring 7/7/2020

11. Check for proper comment indentation 8/7/2020

12. Check for proper Args and Returns style 10/7/2020

13. Check to multiline expressions ensuring line break after '(' 12/7/2020

14. Check for args-name for a non-keyword argument 14/7/2020

15. Check to ensure that pylint pragmas are used to disable any rule for a single
line

16/7/2020

16. Lint check to ensure that there is one blank newline below each class
docstring.

18/7/2020

17. Check to detect variables that are declared but never used. 20/7/2020

18. Forbid usage of assertRaises; require assertRaisesRegexp instead. 22/7/2020

19. Enforce that PEP8 naming convention is followed. 24/7/2020

JS/TS lint checks

20. Forbid use of innerHTML due to security issues 24/7/2020

21. Check for unused imports 25/7/2020

22. Add a check to ensure that multi-line expressions in parenthesis are broken
down after "(" in JavaScript files

2/7/2020

23. Check for unused directive/service dependencies 4/8/2020

24. Improve reachability of sorted imports 6/8/2020

25. Check that filename is similar to service or directive name 8/8/2020

26. Check for eslint-disable statements 10/8/2020

27. Lint check to ensure require(…) statements are alphabetized 12/8/2020

28. Lint check for test files 16/8/2020

29. Detect variables that are defined but never used. 16/8/2020

30. Add lint check to make sure there's a space before the opening braces of a
function start.

18/8/2020

31. There should be no space before "function" 20/8/2020

32. Catch missing space after semicolon 22/8/2020

“All $http calls should be in backend-api files and prohibited elsewhere (​#8039​)” will be
implemented after GSoC once the issue​ ​#8016​ and​ ​#8038​ are resolved.

Final Product
After I am done implementing these features we have a more robust linter with more lint checks.
This will make the developer’s life easy by identifying any syntax errors before the code
reviewing phase.

In the end we have these(see screenshot below) types of lint errors if we made any style error
and pushing will be blocked until we fix all the lint errors.

https://github.com/oppia/oppia/issues/8039
https://github.com/oppia/oppia/issues/8016
https://github.com/oppia/oppia/issues/8016
https://github.com/oppia/oppia/issues/8038
https://github.com/oppia/oppia/issues/8038

If all tests are passing we have these types of success messages(see screenshot below).

Technical Design

Architectural Overview
Refactoring of code will be done in ​oppia/scripts/linters/pre_commit_linter.py​. All the code
for catching exceptions and making output less verbose will go in this file.

New lint checks for the different file types will go in following files under ​oppia/scripts/linters
directory:

1. Python
1.1. pylint_extensions​.​py
1.2. python_linter.py​ ​(If a third party check like isort needed to be used)
1.3. general_purpose_linter.py​ ​(If need to check for bad patterns in files)

2. Javascript and Typescript

2.1. Js_ts_linter.py
2.2. general_purpose_linter.py​ ​(If need to check for bad patterns in files)

3. HTML

3.1. html_linter.py
3.2. general_purpose_linter.py ​(If need to check for bad patterns in files)

4. CSS
4.1. css_linter.py
4.2. general_purpose_linter.py​ ​(If need to check for bad patterns in files)

For tree structure of linter files, see screenshot below.

Tests for the different linter files will be written in following files under
oppia/core/tests/linter_tests​ directory:

1. Python
1.1. pylint_extensions_test.py
1.2. valid.py
1.3. invalid.py

2. Typescript

2.1. valid.ts
2.2. Invalid.ts

3. Javascript

3.1. valid.js
3.2. invalid.ts

4. HTML

4.1. valid.html

4.2. invalid.html

5. CSS
5.1. valid.css
5.2. invalid.css

For tree structure of directory, see screenshot below.

We may need to add more test files depending on the requirement.

Implementation Approach
The project is divided into 2 major parts. Below are the detailed explanations of each of these.

1. Refactoring of linter

1.1. Addition of exception handling
Task execution and output catching will be covered under try/except block.

The code will look something like this:

try/except block at task execution ensure that it will catch any exception during execution
of task

try/except block at catching output ensures that it will catch any error during the execution of a
particular linter execution.

This part is just an example, more code will be added when I will implement this fully.

1.2. Splitting of linter
This part is already completed in ​#8656​.

https://github.com/oppia/oppia/pull/8656

1.3. Making output less verbose
This is the basic strategy of making output less verbose:

1. Error messages will be stored in ​summary_message​ and then appended

to a list ​summary_messages​ and print the ​summary_message. ​Then this
list will be returned to be used in main linting script

2. Then, Individual linter output will be added to list ​all_messages.

3. Then the list containing all the linter messages will be passed to a method
to trim down the extra bits in linter output.

4. Script for removal of extra bits will be written in
‘​_print_complete_summary_of errors’ ​ method​.

5. I am going to ignore all the extra bits of the linter output by processing the

linter output in a function and only an important part of the linter output will
be shown. The function will look something like this:

This part is just an example, more code will be added when I will implement this fully.

2. Locking mechanism for summary_messages
As of now, we do not have a locking mechanism for ​summary_messages​ because of that
sometimes we have lint errors of one file under the name of different files. To solve this I am
going to implement a locking mechanism so that ​the summary_messages​ variable can be
accessed by one resource at a time.

The code will look something like this:

3. Implementation of new lint checks.
This is the basic strategy for writing lint checks.

Custom Python Lint Checks
1. We need to create a ​Class ​with the desired name with parent class

checkers.BaseChecker​. Inside this class we have the following parts.

1.1. A name.​ The name is used to generate a special configuration

section for the checker, when options have been provided.
1.2. A priority.​ This must be to be lower than 0. The checkers are ordered by

the priority when run, from the most negative to the most positive.
1.3. A message dictionary.​ Each checker is being used for finding problems

in code, the problems being displayed to the user through messages.

2. Process_module​ contains the logic for the lint test.

3. At the end we need to register this class with the pylint so that we can use the
new custom pylint.

#7881​, ​#7929​ is the link to two PRs in which I had added lint checks.

Example of docstring checker
Below is the code of docstring checker merged in ​#8410

https://github.com/oppia/oppia/pull/7881
https://github.com/oppia/oppia/pull/7929
https://github.com/oppia/oppia/pull/8410

The Challenge in writing this function is to check if the given docsting is really a docstring or a
multiline comment for writing test in pylint_extension_test.py. This is checked by creating a
variable is_class_or_function initialized with ‘FALSE’ value. This is only TRUE if the docstring is
found below the class or function definition.

Lint Checks for bad pattern matching.
This is the general approach of writing lint checks for bad pattern matching.:

1. If the lint check is meant to just check bad patterns. Then the ​regex ​for that pattern will
go in the bad pattern matching lists in the ​general_purpose_linter.py ​file. The list has
dictionaries in it to store regexes and corresponding messages. List of bad pattern
matching lists is as follows:

1.1. BAD_PATTERNS ->​ For general bad pattern matching for every file type.

1.2. BAD_PATTERNS_JS_AND_TS_REGEXP ->​ For bad pattern matching in js and
ts files.

1.3. BAD_LINE_PATTERNS_HTML_REGEXP -> ​For bad pattern matching in HTML
files.

1.4. BAD_PATTERNS_PYTHON_REGEXP ->​ For bad pattern matching in Python
files.

Below is the general format to define a bad pattern check:

1. A regexp:​ regexp is used to define the regex pattern which is used to catch the
unwanted patterns.

2. A message:​ Message is used to display the problem to the user.
3. excluded_files: ​Files to be excluded from the pattern matching.
4. excluded_dirs: ​Directories to be excluded from the pattern matching

Below is an example for writing a bad pattern matching lint check.

Writing Custom HTML, CSS, JsTs Lint Checks
Custom Lint checks for these file types will be written in their respective files i.e. ​html_linter.py,
css_linter.py, python_linter.py, js_ts_linter.py​.

The general strategy for writing custom HTML, CSS, JsTs Lint checks is as follows:

1. Define a method under a class(HTMLLintChecks, PythonLintChecks, JsTsLintChecks).

2. Redirect output to terminal.

3. Catch output and append in a list.

4. Return the ‘​summary_messages’​ list.

5. Call the method defined above from ​‘perform_all_lint_checks’​ method and return it.

Testing Approach

Custom Pylint checks
This is the general strategy for writing custom pylint checks:

1. We need to create a class with the parent ​unittest.TestCase ​class.

2. Then we need to create the object of the checker class we want to test.

3. Then there will be different test cases to test the above created test class object.

4. Check if it outputs the right message.

Custom Python, CSS, HTML, JsTs lint checks
Currently, we do not have a mechanism to test the custom Python, CSS, HTML, JsTs lint
checks. I will create the test mechanism in a new file named ​pre_commit_linter_test.py ​under
oppia/scripts/linters/ ​directory.

This is the general strategy to create test mechanism:

1. We need to create a general class to handle all linter function tests. This has
test_utils.GenericTestBase​ as a parent class to have basic testing methods.

2. Also, we are going to need ​mock_check_codeowner_file method to suppress code
owner file messages.

3. Then, we create the Test class for that filetype which we want to lint. In this case as an
example I used ​PythonLintTests​. In the setup method for this class.This class has a
test_valid_python_file method to check the contents of ​valid.py test file contents. In
this method we check the output of the ​pre_commit_linter.py if it is outputting what we
want.

4. oppia/core/tests/linter_tests ​contains all the tests file for ​pre_commit_linter. ​In this
directory, files starting with ​valid contain the valid format for testing the Linting classes.
While files starting with ​invalid ​contain the invalid format for testing desired Linting
classes. Here is an example of a valid format file for the Python linting function.

Milestones
Tasks before GSoC starts (Current Period - 31 May)

● Adding locking mechanism for ‘​summary_messages​’
● Contributing to bug fixes and other issues
● Reviewing PRs

Milestone 1
Key Objective​: In non-verbose mode, the linter has less verbose output, and raises an exception
if there is any error due to the operation of the linter script. All existing lint checks have tests
written for them. The linter handles all general and CSS lint errors, and the linter script has 100%
test coverage.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Add tests for existing checks in
pre_commit_linter.py

 1/6/2020 3/6/2020

1.2 Lint output is more cleaner and less
verbose.

 2/6/2020 4/6/2020

1.3 Exception handling is used to handle
unexpected errors.

 3/6/2020 5/6/2020

1.4 Add lint check to ensure that all lines in
skip_files in app.yaml reference valid files
in the repository

 5/6/2020 7/6/2020

1.5 Add newline check at end of file 7/6/2020 9/6/2020

1.6 Add lint checks to ensure that there are
valid spaces and newlines

 9/6/2020 11/6/2020

1.7 Add lint checks for webpack config 11/6/2020 13/6/2020

1.8 Add lint check that all TODO comments
start with capital letter

 13/6/2020 15/6/2020

1.9 Add lint check for proper comment style
for Python and JS files

 15/6/2020 18/6/2020

1.10 Add lint check to ensure that every file (of
any type) ends with exactly one newline

 18/6/2020 20/6/2020

character.

1.11 Add lint check for alphabetized list in CSS 20/6/2020 23/6/2020

1.12 Add lint check to prohibit inline styling 23/6/2020 25/6/2020

Milestone 2
Key Objective​: The linter fully handles all Python lint checks. All JS/TS lint checks are fully
implemented, except for at most 11.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 Add lint check to enforce multiples of 4
indentation in docstring

 3/7/2020 7/7/2020

2.2 Add lint check for proper comment
indentation

 4/7/2020 8/7/2020

2.3 Add lint check for proper Args and Returns
style

 6/7/2020 10/7/2020

2.4 Add lint check to multiline expressions
ensuring line break after

 8/7/2020 12/7/2020

2.5 Add lint check for args-name for a
non-keyword argument

 10/7/2020 14/7/2020

2.6 Add lint check to ensure that pylint
pragmas are used to disable any rule for a
single line

 12/7/2020 16/7/2020

2.7 Add lint check to ensure that there is one
blank newline below each class docstring.

 14/7/2020 18/7/2020

2.8 Add lint check to detect variables that are
declared but never used.

 16/7/2020 20/7/2020

2.9 Add lint check to forbid usage of
assertRaises; require assertRaisesRegexp
instead.

 18/7/2020 22/7/2020

2.10 Add a lint check to enforce that PEP8
naming convention is followed.

 20/7/2020 24/7/2020

2.11 Add lint check to forbid use of innerHTML
due to security issues

 22/7/2020 24/7/2020

2.12 Add a lint check to check for unused
imports

 23/7/2020 25/7/2020

Milestone 3
Key Objective​: The linter fully handles all JS/TS lint checks.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

3.1 Add a check to ensure that multiline
expressions in parentheses are broken
down after "(" in JavaScript files

 31/7/2020 2/7/2020

3.2 Add lint check for unused
directive/service dependencies

 2/8/2020 4/8/2020

3.3 Add lint check to Improve reachability of
sorted imports

 4/8/2020 6/8/2020

3.4 Add lint check that filename is similar to
service or directive name

 6/8/2020 8/8/2020

3.5 Add lint check for eslint-disable
statements

 8/8/2020 10/8/2020

3.6 Add lint check to ensure require(…)
statements are alphabetized

 10/8/2020 12/8/2020

3.7 Add lint check for test files 12/8/2020 16/8/2020

3.8 Add lint check to detect variables that are
defined but never used.

 14/8/2020 16/8/2020

3.9 Add lint check to make sure there's a
space before the opening braces of a
function start.

 16/8/2020 18/8/2020

3.10 Add lint check to make sure that there
should be no space before "function"

 18/8/2020 20/8/2020

3.11 Add lint check to catch missing space
after semicolon

 20/8/2020 22/8/2020

Optional Sections

Future Work
After the GSoC, I will add the codeclimate linting to replace the following:

1. Eslint
2. Pylint
3. Stylelint
4. Bad Pattern matching

A significant amount of work is already done here(​#8267​)

Why we can’t use Code Climate now
The problem is with the pylint, as code climate uses ‘pylint v2’ and we are using ‘pylint v1’. Also,
we can’t upgrade to ‘pylint v2’ as this will need Python 3 and we are currently using Python 2.
There is also another issue, we can’t use pylint custom checks with code climate’s pylint engine
due to code climate security policy. So, we are going to need a separate .pylintrc file for code
climate. Due to these reasons, I was thinking of adding code climate linting after the GSoC
period ends.

https://github.com/oppia/oppia/pull/8267

