
GSoC 2021 Proposal
Implement lightweight checkpointing

(Apoorv Srivastava)

About You

Hello Reviewers,
My name is Apoorv Srivastava. I am a sophomore at The LNM Institute of Information
Technology, Jaipur. I want to put forward my proposal to implement lightweight checkpointing in
the oppia’s android application.

Why are you interested in working with Oppia, and on your chosen project?

Oppia's mission is to help anyone learn anything they want in an effective and enjoyable way.
With this vision in mind, I wish to contribute to oppia to make learning enjoyable for students all
across the world. I also choose Oppia because of the talented and experienced team working at
oppia. I believe I will be able to learn a lot by working with them.

Prior experience

I have good prior working experience. I started contributing to Oppia in October of 2020, in the
last 6 months I have fixed a number of issues and filled in new issues which I found during
testing. I have also reviewed quite a few PRs so I am familiar with the coding style used at
oppia.

I have been doing android development for the past year. Though I started with java, I have
been doing it in Kotlin for the past 8 months. I have created a number of personal projects. One
of these personal projects was TruCoder which was built entirely in kotlin, which is available on
the google play store. I have also interned with MediaVigil as an android developer. Where I had
to create an app for their news website.

My contributions at Oppia :

1. Merged PRs:
a. https://github.com/oppia/oppia-android/pull/2670
b. https://github.com/oppia/oppia-android/pull/2597
c. https://github.com/oppia/oppia-android/pull/2493

https://play.google.com/store/apps/details?id=com.carrot.trucoder2&hl=en_IN&gl=US
https://github.com/oppia/oppia-android/pull/2670
https://github.com/oppia/oppia-android/pull/2597
https://github.com/oppia/oppia-android/pull/2493

d. https://github.com/oppia/oppia-android/pull/1934
e. https://github.com/oppia/oppia-android/pull/2499

2. A list of issue that I filled in can be found here
3. I also reviewed a number of PRs, one of them is for code coverage of the app with

JaCoCo. Here is the link to that PR

Contact info and timezone(s)
Name: Apoorv Srivastava
University: The LNM Institute of Information Technology, Jaipur.
Country: India
Email: 2000apoorv@gmail.com
Github: https://www.github.com/MaskedCarrot
Timezone: Indian Standard Time (IST) (+5:30 GMT)
Preferred method of communication: Hangouts, e-mail and Gitter.

Time commitment
I am committed to spending 7 hours a day on this project on weekdays (Monday to Saturday).
The time I devote to the project on Sunday will depend upon the work to be completed in the
project in that week. In total, I am committed to working about 45 hours a week.

Essential Prerequisites
● Yes, I am able to run robolectric tests on my device.

● Yes, I am able to run espresso tests on my device.

https://github.com/oppia/oppia-android/pull/1934
https://github.com/oppia/oppia-android/pull/2499
https://github.com/oppia/oppia-android/issues?q=is%3Aissue+author%3AMaskedCarrot
https://github.com/oppia/oppia-android/pull/2730
mailto:2000apoorv@gmail.com
https://www.github.com/MaskedCarrot

Other summer obligations
I have no other obligations during this summer.

Communication channels
I am comfortable with any mode of communication that the mentor chooses, be it email, gitter or
hangouts. Mentors can expect a response from me in about an hour.

Application to other orgs
I am only applying to oppia

Project Details

Product Design

The users of this feature are the end-user of the oppia-android app. After the implementation of
this project, the users will be able to resume the partially complete exploration.

What is lightweight checkpointing?

Lightweight checkpoint saves the user progress, exactly where they left off in an exploration.
When the user returns to the exploration, they have the option to start or resume the chapter
i.e. the user can then continue the exploration normally as if they never left. This means that the
current state and all previous states will have exactly the same form as they did when the user
left the exploration.

The progress will be saved locally in the device storage, and therefore it doesn't matter whether
the user is online or offline.

The general behaviour of lightweight checkpointing

The following use case defines the behaviour of lightweight checkpointing in various situations.

1. The user advertently or inadvertently leaves a partially complete exploration. In this
case, all the progress made by the user in that exploration will be saved. In case the
exploration was marked as “not started” the exploration will now be marked as “in
progress saved”. In case the progress is not saved (due to low memory, app crash etc)
the exploration will be marked as “in progress not saved”.

2. The segmented progress bar in the Topic lessons tab will show a light orange colour arc
for all the explorations that were marked “in progress saved” and “in progress not
saved”.

3. When the user resumes a partially complete exploration, they will be given the option to
start the exploration from the beginning or resume the exploration where they last left it.

4. When the user completes an exploration it will be marked as “Completed”. If the
exploration has any progress associated with it in that profile, it will be deleted.

5. When the user restarts an exploration that was marked as
“completed”, the exploration will not be marked as “in progress saved” or “in progress not

saved” and will remain as “completed”. Though the progress will still be saved if the user
exits the partially complete exploration.

The general behaviour of UI after implementation of lightweight checkpointing

Every exploration that is in progress will be reflected by the
UI in the topic lessons tab.
➢ For every chapter that is in progress, the

segmented circular progress bar will show an arc
of light orange colour.

➢ For every chapter that has been completed the
progress bar will show an arc of dark orange
colour.

➢ For every chapter that has not been stated yet the
progress bar will show an arc in grey colour.

Once the user completes an exploration, the chapter
containing that exploration will be marked as “completed”
and the existing progress if any will be deleted.

When the user starts an exploration that has saved
progress associated with it, they will be taken to a new
screen like the one shown below. Here they will get an
option to restart the exploration or continue the exploration
from where they left off.

If the user chooses to continue the exploration, the existing progress will be used to resume the
exploration. If the user chooses to start over the exploration, the exploration will start from the
beginning and the existing progress will be overwritten.

Mock showing the fragment to resume or restart the chapter

Edge cases and constraints for lightweight checkpointing

Topic Updates

Topics are shared across all profiles. If a topic has an “in progress” exploration, the app will not
auto-update the topics.

In case the user decides to update the topic manually, they will be informed that “updating the
topic will cause all the users of the app on that device to lose progress for that topic”. (since
downloaded topics are shared across multiple devices).

If the user still continues to update the topic, the progress for all explorations associated with
that topic will be deleted across all profiles. This will be done by checking the version of the
exploration downloaded.

Topic deleted

When a user deletes a topic, the topic is deleted across all profiles. So it is important that we
don’t delete the progress of the exploration associated with that topic.

When the topic is re-downloaded, its explorations can be resumed if they have a saved
progress stored.

If a topic updates after a user deletes it, a newer version of the topic will be redownloaded. In
this case we will use the “exploration version” to figure out if we can resume the exploration with
the saved exploration progress or not.

App is updated

There is no additional requirement in this case. The exploration progress saved in the previous
version of the app will be used to resume the exploration in the updated version of the app.

Storage

Keeping a check on storage is really important. There will be an upper limit of 2 MB per profile
to store the checkpoints.

If the storage runs out, a new checkpoint will only be saved if space is freed up by deleting the
oldest checkpoint.

It is important to note here that this limit does not guarantee that the checkpoint database will
always be under 2MB, however, this does ensure that if the user exits the exploration
advertently. The oldest checkpoint will be deleted if the storage limit is reached.

The mock showing dialog box will be shown to the user if the storage runs out.

App Crashes or is force closed

If the app crashes or is force closed (the app is closed by clearing it from recent apps) while the
user was in an exploration. It is important that we save the user's progress so that users are
able to resume the exploration from where they last left off.

It is important to note that though we have a constraint on storage, we still have to save the
exploration progress if the app crashes.

Progress not saved

If the user exits the exploration inadvertently and the exploration checkpoint storage is full, we
will not be able to save the checkpoint progress. In that case, when the user restarts the
exploration they will see a dialog box with the following message.

Mock showing the dialog box which the user sees on restarting the app if progress was not saved on the
crash.

Space analysis for checkpoint

Early implementation and analysis revealed that each checkpoint takes about 20 KB of storage.
This means we will be able to save around 100 checkpoints per profile before the storage
runs out. This is done by assuming that the user submits 3 incorrect answers before submitting
the correct answer in the fourth attempt.

Metrics

Another important part of building any project are the metrics, which help us measure how the
new feature has impacted the user. After implementation of the project, the app will also save
and log the following counts

● Number of times progress is saved successfully
● Number of times progress was not saved successfully
● Number of lessons saved advertently
● Number of lessons saved inadvertently
● Number of times user choose ‘start over’
● Number of times user choose ‘continue’
● Number of correct answers after returning to the lesson
● Number of incorrect answers after returning to the lesson.

Technical Design

The Approach

Saving the progress

The approach I propose here saves/updates the exploration checkpoint after every time the
user interacts with the exploration. This is done to ensure that the progress is saved even in
case of system deaths, low memory or app crashes.

In case the user exits the exploration advertently, the size of the checkpoint database will be
checked. If the storage size has not exceeded the limit, the user will exit the exploration. If it
has, the user will be presented a dialog box where they can choose if they wish to overwrite the
oldest saved exploration progress with the current exploration progress.

Flowchart describing the process to save exploration progress

In case the user exits the exploration inadvertently, since the progress is saved after every
interaction. The user will be able to resume the exploration when they return.

The process to show an apology dialog when progress is not saved

https://lucid.app/documents/edit/c653d829-c9af-41c3-bea6-0730e9a6eab3/0?callback=close&name=docs&callback_type=back&v=687&s=642

If an exploration is marked as “in progress not saved”, it means that the user started the
exploration but the progress they made was not saved. In this case we will show a dialog box to
inform the user that the progress they made in the exploration was not saved.

Retrieving saved progress

Retrieving the saved progress is quite straight forward, we just have to fetch the DataProvider,
observe it for changes. Once ExplorationCheckpoint is available, one of the three processes will
be followed.

1. ExplorationCheckpoint is of defaultInstance. This means that no exploration progress
was found. In which case we will start the exploration from the beginning.

2. ExplorationCheckpoint is not of defaultInstance but the exploration was marked as “in
progress not saved”. This means that the exploration could not be saved and the
apology dialog has to be shown.

3. ExplorationCheckpoint is not defaultInstance and the exploration is marked as “in
progress saved”. This means that valid progress was found and now we can start to
resume the exploration.

Flowchart showing the process followed while retrieving saved progress

Architectural Overview

https://lucid.app/documents/edit/3e488b9d-7356-4389-849f-1a0492cef559/0?callback=close&name=docs&callback_type=back&v=481&s=612

Oppia uses a combination of Model-View-ViewModel and Model-View-Presenter architecture in
its android application. Further, the oppia-android has its directory structure divided into 5
modules which are as follows:

1. app module contains activities, fragments, ViewModels, presenters. It also contains
robolectric tests.

2. data module is used to provide data to the app via backend or local storage.
3. model module contains the protobuf used in the app.
4. domain module contains the business logic used in the app including both frontend

controller and business service logic.
5. utility module contains miscellaneous classes like OppiaClock which are used by other

modules.

To implement this project we have to use all the modules. The module wise implementation of
the project is represented as follows.

1. app module
a. Modification of existing presenters and layout files that will show if a lesson is

currently in progress.
b. Implementation of a new activity, its presenter and its layout file that will allow the

users to choose whether they wish to start the lesson from the beginning or they
wish to continue where they left.

c. Modification of presenters and ViewModel to restart the exploration where it was
left off.

2. data module
a. Used for creating and retrieving cache storage.

3. domain module
a. Addition ExplorationCheckpointController to record and retrieve exploration

progress.
b. addition of ExplorationStorageModule to inject the constants of time period and

storage limit.
c. Modification and usage of ExplorationProgressController,

ExplorationDataControler and StateDeck to create, record and retrieve
exploration checkpoints.

4. model module
a. Addition of protobuf to store the progress made by the user.
b. Modification of oppia_logger.proto to save metrics.

5. utility module.
a. DataProviders to retrieve the store.

The following table lists the files that will be added, modified or deleted in each of the modules
to implement this project.

Model module

exploration_storage.proto model/src/main/proto/exploration_storage.proto added

oppia_logger.proto model/src/main/proto/oppia_logger.proto modified

topic.proto model/src/main/proto/topic.proto modified

Domain module

ExplorationCheckpointController.kt domain/src/main/java/org/oppia/android/d
omain/exploration/ExplorationCheckpoint
Controller.kt

added

ExplorationStorageModule.kt domain/src/main/java/org/oppia/android/d
omain/exploration/ExplorationStorageMo
dule.kt

added

StateDeck.kt domain/src/main/java/org/oppia/android/d
omain/state/StateDeck.kt

modified

ExplorationProgressController.kt domain/src/main/java/org/oppia/android/d
omain/exploration/ExplorationProgressCo
ntroller.kt

modified

ExplorationDataController.kt domain/src/main/java/org/oppia/android/d
omain/exploration/ExplorationDataContro
ller.kt

modified

AnalyticsController.kt domain/src/main/java/org/oppia/android/d
omain/oppialogger/analytics/AnalyticsCo
ntroller.kt

modified

App module

StoryChapterSummaryViewModel.kt app/src/main/java/org/oppia/android/ap
p/story/storyitemviewmodel/StoryChap
terSummaryViewModel.kt

modified

TopicLessonFragmentPresenter.kt app/src/main/java/org/oppia/android/ap
p/topic/lessons/TopicLessonsFragmen
tPresenter.kt

modified

RecentlyPlayedFragmentPresenter.kt app/src/main/java/org/oppia/android/ap
p/home/recentlyplayed/RecentlyPlayed
FragmentPresenter.kt

modified

ExplorationActivityPresenter.kt app/src/main/java/org/oppia/android/ap
p/player/exploration/ExplorationActivit
yPresenter.kt

modified

StateFragmentPresenter.kt oppia-android/app/src/main/java/org/o
ppia/android/app/player/state/StateFra
gmentPresenter.kt

modified

StopExplorationDialogBoxFragment.kt app/src/main/java/org/oppia/android/ap
p/player/stopplaying/StopExplorationD
ialogFragment.kt

deleted

InsufficientExplorationCheckpointStora
geDialogFragment.kt

app/src/main/java/org/oppia/android/ap
p/player/stopplaying/InsufficientExplor
ationCheckpointStorageDialogFragme
nt.kt

added

ExplorationProgressNotSavedDialogFr
agment.kt

app/src/main/java/org/oppia/android/ap
p/player/startplaying/ExplorationProgr
essNotSavedDialogFragment.kt

added

ResumeExplorationActivity.kt app/src/main/java/org/oppia/android/ap
p/player/startplaying/ResumeExplorati
onActivity.kt

added

ResumeExplorationActivityPresenter.kt app/src/main/java/org/oppia/android/ap
p/player/startplaying/ResumeExplorati
onActivityPresenter.kt

added

resume_exploration_activity.xml app/src/main/res/layout/resume_explor
ation_activity.xml

added

SegmentedCircularProgressView app/src/main/java/org/oppia/android/ap
p/customview/SegmentedCircularProg
ressView.kt

modified

lesson_chapter_view.xml app/src/main/res/layout/lessons_chapt
er_view.xml

modified

This project can be broadly divided into four parts
1. Implementation of mechanism to save, retrieve and delete checkpoint.
2. Implementation of mechanism to manage checkpoint during topic updates and deletion
3. Minor enhancements to the UI
4. Implementation of metrics

The next part of the proposal lists the files that will be needed to be added, updated or deleted
in order to implement the project.

Implementation of mechanism to save and retrieve checkpoints

ExplorationCheckpointStorage protobuf

1. This protobuf will be added to store details about the exploration checkpoint.

Topic protobuf

1. This protobuf will be modified because the exploration can now be in two new states i.e.
“in progress saved” and “in progress not saved”.

ExplorationCheckpointController

1. This class will be responsible to save the exploration progress, retrieve the exploration
checkpoints.

StateDeck

1. This class will be responsible for resuming exploration and creating
ExplorationCheckpoint.

ExplorationProgressController

1. This class will also be responsible for resuming the exploration using StateDeck.

ExplorationDataController

1. This class will supply Exploration Checkpoints from the app layer to
ExplorationProgressController.

2. This class will also communicate to ExplorationCheckpointController to save the user
progress.

The exploration can be started from any one of the following app layer classes. These classes
use ExplorationDataController to start the exploration.

1. StoryChapterSummaryVeiwModel

2. TopicLessonsFragmentPresenter

3. RecentlyPlayedFragmentPresenter

All these three class will
1. Observe combined dataProvider of ExplorationCheckpoint and ExplorationDatabase

size. Supply these values or initialize lateinit values accordingly and then start the
exploration.

StateFragment
1. This will be responsible to show ExplorationProgressNotSavedDialogFragment(apology

dialog) when the progress is not saved at the beginning of the exploration.

2. This class will also be responsible for saving the exploration after every user interaction.

StopExplorationDialogFragment

This dialog fragment warns the user that they will lose all the progress in the exploration before
they exit a partially complete exploration. Since we are saving the progress there is no need for
this dialog fragment.

InsufficientExplorationCheckpointStorageDialogFragment

This dialog box will be shown to the user if the user is exiting the partially complete exploration
advertently. This will be modified to show three options

1. Back
2. Leave exploration without saving progress
3. Leave exploration after replacing the current progress with the oldest exploration

progress.

ExplorationProgressNotSavedDialogFragment

This dialog fragment will be shown to the user if the user restarts an exploration whose progress
could not be saved during the user’s previous attempt.

ExplorationActivityPresenter

1. They will be responsible to show
InsufficientExplorationCheckpointStorageDialogFragment when storage space runs out.

2. This class will also be responsible to save the data using the domain layer when the user
exits the exploration.

ResumeExplorationActivity

1. This activity will be responsible to start or resume the exploration using an
ExplorationCheckpoint.

Implementation of mechanism to manage checkpoint during topic updates
and deletion

In case of topic deletion, we are not deleting the exploration progress. So the only case we need
to consider here is a topic update. Now topic updates can happen in two scenarios.

1. Update to a topic already present on the device.
2. Update to a topic that was deleted from a device. This means an updated version of the

topic is redownloaded.

For the first case, we will have a function that updates a topic only if it has no active progress
across any profiles. When the app auto-updates the topics this function will be called for every
topic, and only those topics which do not have any active progress associated with them will be
updated. If the user manually updates a topic, first the topic will be checked, if the topic has no
active progress, it will be updated but if it has active progress, the user will be warned by a
dialog box, if the user continues the progress will be deleted across all profiles for that topic.

For the second case when a topic is downloaded its version will be matched with all the profiles,
and all the exploration progress whose version does not match will be deleted.

Minor enhancements to the UI

SegmentedCircularProgressView
This class draws the segmented progress back on the Topic Lessons Tab. This class will be
modified to show progress in the case of “in progress” chapters.

Lessons_chapter_veiw

This is the XML file that is shown in the recycler view of the topic lesson fragment. This class
used data-binding to show a “tick icon” for all completed chapters. This XML will be modified in
a similar manner to show an icon for all chapters that are “in progress”

Implementation of metrics

Metrics will be stored as count on the device and will be logged when they change using
AnalyticController. Whenever any of the following counts are updated, they are logged using
AnalyticController.

The first step in the implementation of metrics is a modification of oppia-logger.proto to save the
counts.

Progress Saving count

This count will save the number of times the progress is saved successfully on the device. This
count will include all successful saving attempts, be it due to the user leaving advertently or
saving of progress after every interaction.

Error saving count

This count will save the number of times the progress is not saved successfully on the device.
This count will include all unsuccessful saving attempts, be it due to the user leaving advertently
or saving of progress after every interaction.

This count will be updated in ExplorationCheckpointController and logged by AnalyticController
whenever there is a successful saving attempt by the app.

Lessons saved advertently count

This count will save the number of times the user exits the exploration advertently. This count
will only include when the user uses the ‘X’ icon or back button to exit a partially complete
exploration.

Lesson saved inadvertently count

This count will save the number of times the user exits a partially complete exploration
inadvertently. This count will not count every saving attempt that is made after every user
interaction and only is incremented when the app crashes or the app is cleared from recent.

Lesson completion count for saved lesson

This count will the number of times a lesson is completed, if that lesson was resumed (that
means the lesson was saved at some point)

“Start Over” count

This count saves the number of times the start over is clicked. That means the number of times
the lesson was started from the beginning.

“Continue” count

This count saves the number of times the lesson is continued or resumed.

Correct answers count in a resumed lesson

This count will save the number of correct answers in a lesson that was resumed.

Incorrect answers count in a resumed lesson

This count will save the number of incorrect answers in a lesson that was resumed.

Implementation Approach

Alternate approach
An alternate approach can be instead of saving the entire checkpoint every time
there is a user interaction, we just update the existing checkpoint with the latest
checkpoint.

cons

There is a higher probability of a write transaction failing because there will be a
higher number of write transactions.

The reason I rejected this approach
This approach is not reliable. Suppose there are 5 user interactions. And the 3rd
interaction did get saved (due to disk failure or some other error), so the
checkpoint will have the following user interactions 1 , 2 ,4 ,5. Now if the
exploration is restarted using this checkpoint, the app can behave unexpectedly
because there is missing information about one user interaction.

Implementation of mechanism to save and retrieve checkpoints

The first step is to create a new protobuf named exploration_checkpoint_storage.proto. This
protobuf will be a model for the data which will be saved in order to save the checkpoint. Four
new messages will be created in this protobuf.

1. ExplorationCheckpointStates

variable usage

completedState

(CompletedState)
stores CompletedState which stores a list of all
AnswerAndResponse to a particular previous state.
The last answer in this list is always guaranteed to
be the correct answer.

stateName

(string)
stores the name of the state to which the responses
were made

2. ExplorationCheckpoint

variable usage

pendingTopStateName

(string)
stores the last state name visited by the user (top
most state of the state deck)

explorationCheckpointStates

(repeated
ExplorationCheckpointState)

stores a list of all previous states visited by the
user and the responses they made to those states.

pendingUserAnswers

(repeated
AnswerAndResponse)

stores a list of AnswersAndResponse for the
pending top state.

stateIndex

(int32)
stores the index of the last state user was at.

hintIndex

(int32)
stores the index of the hint which was revealed to
the user.

Version

(string)
stores the version of exploration whose progress
was saved.

3. OrderedExploration

explorationName

(string)
Stores the name of the exploration

explorationId

(string)
Stores the Id of the exploration

4. ExplorationCheckpointDatabase

variable usage

explorationCheckpointMap

(map<string,
ExplorationCheckpoint>)

Stores a map from explorationId to
ExplorationCheckpoint

orderedExploration

(repeated
OrderedExploration)

A list of explorations in the order they were saved.
This list contains the name and Id of the exploration.
This list will be used to delete the oldest checkpoint in
O(1).

Then we will create a class named ExplorationCheckpointController in the domain module.
This class will be responsible for saving, retrieving the ExplorationCheckpoints for a particular
explorationId.

This class will create a different cache for every profileId, this ensures that different profileIds
can have separate storage available to save the progress. (each profile will have a limit of
2MBs)

This class will have a function to retrieve the saved ExplorationCheckpoint. This function will
return an ExplorationCheckpoint if progress is found or a default instance of
ExplorationCheckpoint if no progress is found.

This class will also have a function that will return the oldest save checkpoint name and
explorationId as OrderedExploration. This will be useful when we show the dialog box if the
storage is full.

We will also create a dagger module named ExplorationStorageModule. This module will be
required to supply constants like the storage limit of 2MB.

Analysis of time complexity from write and read data operations.

Every profile will contain an ExplorationCheckpointDatabase. This database will contain a map
from explorationId to ExplorationCheckpoint and a list that contains the name and Id of the
exploration.

We are saving the exploration name in the list because the InsufficientStorageDialogFragment
requires us to show the name of the oldest exploration in the form of the following message.
“The progress of $oldestCheckpointName will be deleted.”

Saving progress

Whenever we save progress for a new ExplorationCheckpoint, we also append the name and
explorationId of this exploration in the list. This operation takes O(1).

Deleting oldest progress to save the current progress

When we want to delete the oldest progress we remove the explorationId at the 0th index of the
list. And remove that explorationId from both the list and the map. This operation takes O(1).

Retrieving progress

When we want to retrieve progress, we use the explorationId to get the progress from the map.
This operation takes O(1).

An alternate approach to find the oldest checkpoint can be saving a timestamp along with the
ExplorationCheckpoint.
I rejected this approach because of the following reasons

1. the time complexity to find the oldest checkpoint here becomes O(n) because we have
to traverse the whole map.

2. It can be said that the list in the approach I am using saves the explorationId
twice(once in the map and once in the list), though in this alternate approach we will
not be saving explorationId twice, but we will have to save timestamp for the

exploration instead.

Modification of ChapterPlayState

Every chapter can be put into one of the four categories
1. Chapter is not started
2. Chapter is in progress but progress is not saved
3. Chapter is in progress and progress is saved
4. Chapter is completed

So we have to replace the STARTED_NOT_COMPLETED state with two new states,
in_progress_saved and in_progress_not_saved.

The modified ChpaterPlayState will have:
1. COMPLETION_STATE_UNSPECIFIED
2. NOT_STARTED
3. IN_PROGRESS_SAVED
4. IN_PROGRESS_NOT_SAVED
5. COMPLETED
6. UNRECOGNIZED

When the user starts an exploration from the beginning, the exploration will be marked as
IN_PROGRESS_NOT_SAVED. When the user starts the exploration, a new checkpoint will be
created and saved. If the save is successful the ChapterPlayState will be changed to
IN_PROGRESS_SAVED.

When the user resumes an exploration, the exploration will already be marked as
IN_PROGRESS_SAVED so it will not be changed.

Every time the user interacts with the exploration, the updated checkpoint will be saved and the
ChapterPlayState will be updated as follows:

1. If the checkpoint is saved successfully the chapter will be marked as
IN_PROGRESS_SAVED.

2. If the checkpoint is not saved successfully the chapter will be marked as
IN_PROGRESS_NOT_SAVED.

Once the user completes the chapter the chapter will be marked as COMPLETED.

I. Implementation of mechanism to save checkpoints

1. To save ExplorationCheckpoints we will create a function in StateDeck that takes the
current values of the StateDeck and creates an ExplorationCheckpoint with them.

The class ExplorationCheckpointController apart from the functions for data operations will also
have an enum and a class as follows

When a new exploration checkpoint is saved, the size of the database will be checked and the
corresponding deferred result will be returned.

We will add two new variables in the StateFragmentPresenter, isDatabaseFull (Boolean) and
currentChapterState (enum of “in_progress_saved” and “in_progress_not_saved”).
isDatabaseFull is a flag that tells us if the database has exceeded the storage limit and
currentChapterState is added so that whenever it changes we can also change the value of
ChapterPlayState.

Every time the user interacts with the exploration(submits an answer or clicks the continue
button), an exploration checkpoint will be created (containing all necessary variables of
StateDeck). This checkpoint will be saved and a dataProvider will be returned to the
StateFragmentPresenter. This dataProvider will be observed in the StateFragmentPresenter.

The result of the dataprovider can either be success or failure.

If the result is successful, the currentChapterState variable will be set as “in_progress_saved”
and if ChapterPlayState will be marked as IN_PROGRESS_SAVED.

II. Implementation of mechanism to retrieve checkpoints

Exploration can be started from any of the following three classes.

❖ StoryChapterSummaryVeiwModel
❖ TopicLessonsFragmentPresenter
❖ RecentlyPlayedFragmentPresenter

The implementation of retrieving the progress will be identical from all of the three classes. As
an example, I am assuming we are starting the exploration from
TopicLessonFragmentPresenter.

https://carbon.now.sh/?bg=rgba%28171%2C+184%2C+195%2C+1%29&t=seti&wt=none&l=auto&ds=true&dsyoff=20px&dsblur=68px&wc=true&wa=true&pv=10px&ph=9px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=2x&wm=false&code=private%2520suspend%2520fun%2520getDeferredResult%28%250A%2520%2520deferred%253A%2520Deferred%253CExplorationCheckpointActionStatus%253E%250A%29%253A%2520AsyncResult%253CAny%253F%253E%2520%257B%250A%2520%2520return%2520when%2520%28deferred.await%28%29%29%2520%257B%250A%2520%2520%250A%2520%2520%2520%2520ExplorationCheckpointActionStatus.CHECKPOINT_SAVED_DATABASE_SIZE_LIMIT_EXCEEDED%2520-%253E%250A%2520%2520%2520%2520%2520%2520AsyncResult.success%28CheckpointDatabaseSizeLimitExceeded%28%2522Database%2520size%2520exceeded%2522%29%29%250A%2520%2520%250A%2520%2520%2520%2520ExplorationCheckpointActionStatus.CHECKPOINT_SAVED_DATABASE_SIZE_LIMIT_NOT_EXCEEDED%2520-%253E%250A%2520%2520%2520%2520%2520%2520AsyncResult.success%28null%29%250A%2520%2520%257D%250A%257D

1. When the exploration name is clicked, we will retrieve the data provider to retrieve the
ExplorationCheckpoint from ExplorationCheckpointController, convert it to live data and
observe it

Once the data is retrieved, we will check if it is equal to
ExplorationCheckpoint.defaultInstance(), if this is true that means no progress was
found for the current explorationId, in this case, we will start the exploration from the
beginning by supplying the defaultInstance of ExplorationCheckpoint to
startPlayingExploration() of ExplorationDataController(modified later in this proposal).

If it is false we will start the ResumeExplorationActivity and send the
ExplorationCheckpoint and the internalProfileId to this activity.

2. Now here if the user clicks “continue” we will use start the exploration by passing the
ExplorationCheckpoint but if the user clicks “start over” we will start the exploration by
passing the defaultInstance of ExplorationCheckpoint to startPlayingExploration() of
ExplorationDataController. Here we will also supply internalProfileId to
ExplorationDataController.

3. Now we will modify startPlayingExploration() function of ExplorationDataController to
receive an ExplorationCheckpoint and internalProfileId as function parameter and
passing it onto beginExplorationAsync of the ExplorationProgressController.

4. Next, we will modify ExplorationProgressController, here we will set the
internalProfileId and the ExplorationCheckpoint as global variables for this class by
initializing lateinit variables with them. Internal profileId will be used to save the new
checkpoint, and ExplorationCheckpoint is used to resume the exploration.

Next we will modify the finishLoadingExploration() to use StateDeck.resetDeck() if
defaultInstance of ExplorationCheckpoint is supplied else StateDeck.resumeDeck() will be
called.

Here getPreviousStatesFromCheckpoint(), getCurrentDialogInteractionsFromCheckpoint() and
getHintListFromCheckpoint() are private function that are used to get corresponding list from
ExplorationCheckpoint. Sample implementation of getPreviousStatesFromCheckpoint() is
shown below, and others are similar to this.

5. Our final step is to add a function in StateDeck to resume the exploration. This function
is very simple; it gets all its values from ExplorationProgressController and sets these
values to their respective variables.

Implementation of mechanism to manage checkpoint during topic updates
and deletion

I. The mechanism for topic updates

To handle topic updates we will create a function canTopicBeUpdated(). This function
will check if the topic has any exploration which has progress associated with them. If this
function finds progress it will return False otherwise it will return True. This can be done either
by saving the topicId in the version variable of ExplorationCheckpoint and comparing the topicId
or passing a list of explorationId associated with that topic and checking for all explorationIds.
This function checks for explorationCheckpoint saved across all profiles

While handling topic updates if have to take care of two situations

1. Topic update when auto-update is turned on: In this case, for every topic first the function
canTopicBeUpdated() runs and based on the result topic will be updated.

2. Topic update when updated manually: In this case when the user clicks to update the
topic first canTopicBeUpdated() runs if the result is True topic is updated, but if the result
is false the user is shown a dialog box to warn them that progress across all profiles will
be deleted. If the user still proceeds the progress across all profiles for that topic is
deleted.

II. The mechanism for topic deletion and re-download

When a topic has deleted the progress associated with it will not be affected in any way.
When the user re-downloads the topic there can be two cases

1. The topic re-downloaded is of the same version: In this case, the topic can be resumed
without any implementation. The existing progress will be used to resume the lesson.

2. An updated version of the topic is re-downloaded: In this case, the topic cannot be
resumed. Here we have two implementations.

a. Because the explorations are versioned we can compare the exploration version
for the downloaded topics with that of the saved exploration checkpoints. In case
the version doesn't match we then delete the checkpoint.

b. We delete the checkpoint for all exploration whose topic was updated.

Both the approaches will work as both delete the checkpoints which can not be used. But the
first approach is clearly better as it provides a little more flexibility in case the topic version
changed due to a change in some of the explorations but some explorations were not updated.

Minor enhancements to the UI

1. To show the arc for every chapter in progress the functions onDraw() and initialize() of
SegmentedCircularProgressView will be changed as follows.

2. T. Next to show an icon next to the chapter “in progress” similar to the tick icon we will
have to update the layout file lessons_chapter_view.xml and use data-binding to show
the icon. The implementation will be exactly the same as that for the tick icon.

Implementation of metrics

The first step to implement metrics is to create a message structure in oppia_logger.proto to
save the metrics

First, we will implement metrics that will be uploaded to Firebase Analytics.

1. LightweightCheckpointingLog

Timestamp

(int64)
Stores a timestamp for the metric

Metric

oneof(int32, float)
Stores either the count (int) or the rate(float) of the
metric

checkpointMetricType

(enum)
Enum containing the following

1. CHECKPOINT_METRIC_UNSPECIFIED

2. RATE_PROGRESS_SAVING_SUCCESSFUL

3. RATE_PROGRESS_SAVING_FAILURE

4. RATE_SAVED_LESSON_COMPLETION;

5. COUNT_LESSONS_SAVED_DELIBERATELY

6. COUNT_CHAPTER_SAVED_INADVERTENTL
Y

7. RATE_START_OVER = 7;

8. RATE_CHAPTER_CONTINUE

9. RATE_CORRECT_ANSWER_IN_SAVED_LES
SON

10. RATE_INCORRECT_ANSWER_IN_SAVED_LE
SSON

Now we will define a structure for the message to save the raw counts for each type of the
metric

2. CountWithExplorationId : These are the message that requires an explorationId
associated with them like RATE_CORRECT_ANSWER_IN_SAVED_LESSON

explorationId

(string)
The Id of the exploration the metric is
associated with.

count

(int32)
The raw count of the metric

3. MetricCount

metricType

oneOf(int32, CountWithExplorationId)

Stores int32 when only the count needs to be
saved for the metrics and saves
CountWithExplorationId when the count also
has to be saved along with the metric.

4. MetricCountDatabase

MetricCountDatabase

(map<string, Metriccount>)
Maps a metricName to MetricCount

Next, we will do some new functions in the AnalyticController. The implementation of these
functions will be similar to that used to log EventLogs.

The map MetricCountDatabase will map count names (which will be constant strings) to the
count of the metric. Whenever the metric has to be logged, the count will be retrieved
incremented by one and logged to Firebase. The metric whose rate has to be calculated will
have an extra step of calculation of rate before they can be logged to Firebase.

If we save/update the checkpoint after every user interaction then the implementation of
every metric except COUNT_CHAPTER_SAVED_INADVERTENTLY is pretty straight forward.
One possible approach to handle the count of inadvertent saves is to log them every time an
exploration marked as “in progress not saved” is started.

Third-party Libraries*
There are no third-party libraries that are required for the implementation of this project.

Testing Approach

Testing is a very important part of any project. It ensures that the new code added to the
codebase does not break the existing functionality of the project.

Here in this project, we are required to write robolectric and espresso tests for the following.

1. ExplorationCheckpointController: This class will be thoroughly tested. We will have to
check that all of the functions like save, delete, update function for the

ExplorationCheckpoint work correctly. There will be a new class named
ExplorationCheckpointControllerTest that will be used to test this class.

2. We will have to check that the entire domain layer implementation of this project works
correctly. This includes the classes StateDeck, ExplorationProgressController and
ExplorationDataController.

3. Next, we will also test the ResumeExplorationActivity. It will be made sure through
testing that the components of this activity are correctly displayed. Also, this class will
be tested to make sure it works correctly in the implementation of lightweight
checkpointing.

4. Minor UI changes (SegmentedProgressBar and lessons_chapter_view are correctly
displayed and the icons or progress is visible correctly for progress chapters.

Milestones

Milestone 1
Key Objective: Implementation of mechanism to save and retrieve checkpoints in the domain
layer, and adding necessary UI classes in the app layer.

Milestone 1 will not change any actual functioning of the develop branch instead it will prepare
the domain and app layer classes for implementing checkpointing in milestone 2

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Addition of exploration_storage protobuf
to save checkpoints, modification of
oppia_logger proto and modification of
topic proto(for chapterPlayState)

N/A Jun 8, 2021 Jun 11,
2021

1.2 Implementation
ExplorationCheckpointController to add
support to save, retrieve, delete and find
the oldest checkpoint. And adding tests
for ExplorationCheckpointController.

1.1 Jun 13, 2021 Jun 18,
2021

1.3 Implementation domain layer mechanism
to save and resume exploration.
(StateDeck ,
ExplorationProgressController and

1.2 Jun 24, 2021 Jun 29,
2021

ExplorationDataController)

1.4 Modification of StoryProgressController
for in progress chapters and
implementation of UI changes(segmented
progress bar) to show in progress
chapters

1.3 July 2, 2021 July 5, 2021

1.5 Implementation of
ResumeExplorationActivity, its presenter
and layout file.

N/A July 4, 2021 July 8, 2021

1.6 Addition of new dialog fragments
1. InsufficientStorageDialogFragment
2. ProgressNotSavedDialogFragment

N/A July 7, 2021 July 11,
2021

Milestone 2
Key Objective: Implement Lightweight checkpointing for explorations and success metrics.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 Modification of StateFragment and
ExplorationActivity to save exploration on
user interaction.

1.3 July 19,
2021

July 24,
2021

2.2 Modification of App layer classes to start
exploration
(StoryChapterSummaryVeiwModel,
TopicLessonsFragmentPresenter,
RecentlyPlayedFragmentPresenter)

1.3 July 27 2021 1 August,
2021

2.3 Implementation of mechanism to handle
topic updates

1.3 3 August
2021

August 7,
2021

2.4 modification of AnalyticsController to
save metrics

1.1 August 9,
2021

August 13,
2021

2.5 Implementation of success metrics. 2.1,2.2,2.3
2.4

August 14,
2021

August 18,
2021

Optional Sections

Additional Project-Specific Considerations

Privacy

Lightweight checkpoint saves all the user data locally on the device, so there is no privacy
concern for this project.

Security
All the checkpoints will be stored internally within the app so this feature does not create any
new security issue.

Accessibility (if user-facing)

The new UI being introduced here is the ResumeExploratorActivity which does not include a
very complex UI. Further, it will be made sure that this activity passes the tests of the A11y
scanner.

It will be made sure that the light orange colour and the icon introduced for the “in progress
chapter” pass the a11y tests on the a11y scanner.

The last UI component that will be added in this project are the two dialog box(
InsufficientStorageDialogFragment, ProgressNotSavedDialogFragment), both of these dialog
boxes will also be made to pass the a11y tests of a11y scanner.

Documentation Changes*
There are no changes in the documentation that will be required after the implementation of this
project.

Ethics*

Since this project just involves saving the user progress, there are no ethical considerations that
have to be taken care of.

Future Work

Future work will include the implementation of Full version checkpointing. This is an extension of
lightweight checkpointing. It involves saving the progress at specific points in the exploration.

