
Oppia | GSoC’21

ॐ �ी �ाम देवाय नमः
GSoC 2021 Proposal - Oppia

Improve Exploration Save Flow
Aryaman Gupta

1

Oppia | GSoC’21

Table of contents
About You 2

Why are you interested in working with Oppia, and on your chosen project? 2
Prior experience 3
Contact info and timezone(s) 3
Time commitment 4
Essential Prerequisites 5
Other summer obligations 6
Communication channels 6
Application to multiple orgs 6

Project Details 6
Product Design 6

First Part: 6
Second Part: 9

Technical Design 11
First Sub Project: 11

Architectural Overview 11
Implementation Approach 13

Second Sub Project: 22
Architectural Overview 22
Implementation Approach 24

Third-party Libraries* 29
Testing Approach 29

First Sub Project: 29
Second Sub Project: 30

Milestones 31
Milestone 1 31
Milestone 2 32

Future Work 1

2

Oppia | GSoC’21

About You

Why are you interested in working with Oppia, and on your chosen project?
I got to know about Oppia from my seniors in my college when I asked them to suggest some
open source organizations as I was new to opensource. So I simply filled the CLA and started
contributing. Still, when I got to know more about Oppia, I was fascinated with its motive: to
provide high-quality education to those who lack access to it. This motivated me a lot as I
always thought of working with some non-profit organizations to help the person in need, so
here I got a way of helping them that is best suited for me.

Secondly, I have always been inspired by Oppia’s team, which works so hard to make Oppia a
better platform, its friendly and helpful mentors, and it's great work culture that can not be found
in any other organization.

Project Chosen: Improve Exploration save flow: Syncing edits in the background

I chose this project because I wanted to work on something which is new to the codebase and
which can be really helpful for its users. We also often get stuck because of bad network
connection, and if our progress or changes lose, it can be really frustrating. So this project will
solve that problem where the changes will be saved in case of a bad network connection and
will be merged once a reliable network source is found. Secondly, it will also enable real-time
collaboration effectively, which is quite an interesting feature to implement in the codebase.
Also, this feature will help many creators work simultaneously, which will save a lot of time, and
then the changes will be easily done.

Prior experience
I have been doing web development since last year. I have been coding in javascript and python.
I have experience with frontend frameworks like Angular, VueJs, React, Flutter and have also
worked with backend frameworks like DRF, Django, etc. I have worked on a few college projects
also and I have a prior experience with problem-solving and DSA. You can visit my Github
Profile .

Apart from this, I have been contributing to Oppia for the past three months and have been
working with the LaCE and Migration team simultaneously. In this short period of time, I have
become quite familiar with the codebase.

3

https://github.com/atpug22
https://github.com/atpug22

Oppia | GSoC’21

Some of My PR’s are:

● Migrated Fatigue Detection Service
● Added a unit test for Graph Utils Service
● Audit Job to check for explorations with number of ratio terms greater than 10
● Cover Few Services with strict checks

This is a complete list of all my PRs.
This is a complete list of all the issues I opened.

Apart from the issues I fixed in the PRs, I also worked on finding what goes in angular-html-bind
for many directives and components using an instance of $compile, which gave me a lot of
knowledge of the codebase and its different components and services.

Contact info and timezone(s)
● Contact:

○ Email: aryaman.gupta.met19@itbhu.ac.in
○ Phone No.: (+91) 7355929950

I am fine with any form of communication.
● TimeZone: Indian Standard Time (GMT+5:30)

But I will still be available at any time zone that you guys prefer.

Time commitment
● I would be working throughout the GSoC Period time from 7th June to 16th August (10

week period).
● I will commit approx 4 hrs per day and approx 30 hrs per week during the GSoC period.

Actually, my college is teaching in an online mode right now but it may happen that
college reopens in august starting (most probably will be online during the GSoC period
due to the increasing covid cases), so in that case, before going to college, I will increase
my working hours to approx 5-6 hours per day and will be working 2-3 hours per day
from college.

4

https://github.com/oppia/oppia/pull/11408
https://github.com/oppia/oppia/pull/12072
https://github.com/oppia/oppia/pull/12157
https://github.com/oppia/oppia/pull/11460
https://github.com/oppia/oppia/pulls/atpug22
https://github.com/oppia/oppia/issues/created_by/atpug22
mailto:aryaman.gupta.met19@itbhu.ac.in

Oppia | GSoC’21

Essential Prerequisites
Answer the following questions:

● I am able to run a single backend test target on my machine. (Show a screenshot of a
successful test.)

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a
successful test.)

5

Oppia | GSoC’21

● I am able to run one suite of e2e tests on my machine. (Show a screenshot of a

successful test.)

Other summer obligations
I don't have any other commitments this summer except if college reopens, then it may take 1-2
days shifting to college, but I make sure that I'll cover up those days sometime else.

Communication channels
I am planning to communicate through hangouts and email. Also, I am comfortable with any
other channel that the mentor prefers. And I will be able to communicate with the mentors
almost daily and give my updates on the project.

Application to multiple orgs
No, I am not applying to any other org.

6

Oppia | GSoC’21

Project Details

Product Design
This feature’s users will be mainly the exploration creators and later can be used for topics,
skills, and lesson creators.
This project is divided into two parts, so I’ll try to explain the two parts separately.

First Part:
Explorations are interactive activities that try to recreate one-on-one tutoring experience. These
explorations may have multiple managers and collaborators.
So a situation may arise when two creators (managers or collaborators) at the same time try to
change some content in various states. So now, let’s see what happens in such situations.
So let us take two users, A and B.
Presently, if A changes the content and saves a draft and publishes it, and then if B changes
some content and saves a draft and tries to publish it, it doesn’t publish. When he reloads the
screen, it shows some dialog box telling him to discard all the changes as the version is
changed because the changes are made by some other user (shown in the image below).

Fig 1: Dialog showing the conflicts

7

Oppia | GSoC’21

So after this project completes, it will start syncing the edits in the background and will merge
the changes if the changes are unrelated and will show the conflicts for all the related changes
just after saving it.
It will compare the changes from the backend after each save without even publishing the
changes.

So if A makes some changes in the description of state 1 and then click on the save button and
publishes it, the changes will get saved at the backend server. If B also makes some changes in
the description of the same state related to A’s changes and then clicks on the save button, it
will immediately open a dialog (as shown above in Fig 1) showing the conflicts discarding the
changes.

But suppose B changes something in the other states or anything else in the same state, which
is unrelated to A’s changes (as often creators work on different parts of the exploration, and it
may not intersect) . In that case, the changes will be merged automatically without any delay and
will also be updated in the backend.

8

Oppia | GSoC’21

This is an overall flow diagram of a process for a single user.

Flow Diagram 1: Flow diagram for updating the explorations process

9

Oppia | GSoC’21

 Below I am adding a separate flow diagram for what happens when draft changes are saved.

10

Oppia | GSoC’21

Second Part:
Sometimes we get stuck because of our network problems, and then we need to postpone our
work which may lead to not completing the work before deadlines or getting a lot of work piled
up at the last minute. Suppose, If you are editing some explorations and suddenly your internet
connection goes down, what will happen next?

Presently, suppose any creator is making any changes in their exploration, and suddenly their
network connection starts behaving weirdly (like it becomes flaky or disconnects the user). In
that case, all the progress and changes made by the user are lost.

After completing this project, if any creator is making any changes in their exploration and
suddenly loses their network connection, all their changes will be saved locally until they find
reliable network access. When they get a reliable network source, their changes will get saved to
the backend and frontend both and will show the conflicts (if any).

So when a user is working on any exploration and suddenly if his network connection loses, he
will get a notification on his screen as shown below.

After this, the user can make the changes without worrying about losing them, he can save them
by clicking on the save button (shown in the image below), and all his changes will be saved
locally.

Fig 2: Making changes in the description of any exploration

11

Oppia | GSoC’21

The Save Draft / Publish button will be disabled for users while being offline because t here is no
use in clicking on that button as all the changes need to be checked (as in subproject 1) before
saving. So we’ll just autosave the draft.

In case the user try to leave the page (possibly accidentally) then he will get an alert toast as
shown below

Fig. 3: Leave the page notification.

and if the user clicks on leave then he will lose all his progress.

After this, when the user gets a good connection back, he will get one more notification on the
screen.

Now if the changes are not mergeable then the user will simply get the modal showing the
changes to be discarded and telling him that changes can not be merged similar to what
happens normally in a good internet connection.
And if the changes are mergeable and merged then he will get this notification as shown below .

After this, Fig 2 process will start again, and if he gets any conflicts, he will get the same dialog
shown as in Fig 1 just after this notification shown above ; otherwise, his progress will get saved.
And this is how the offline autosaving process will work.

12

Oppia | GSoC’21

Technical Design
Here also, as there are two sub-projects so I’ll complete the technical design in two sections.
Let’s just start with the first one.

First Sub Project:

Architectural Overview
I will try to explain the architecture through the sequence diagram given below.
In exp_services.py, instead of is_version_of_draft_valid, we will introduce a new function called
are_changes_mergeable, which will return true if the changes can be merged into the backend
or will return false.
To check the condition stated above, we will first compare the latest version number of the
exploration in the backend with that on the frontend. If the versions are the same, then the
uncommitted changes can be easily merged, and if not, then we will compare the changes done
in the backend with the uncommitted change list on the front end and then decide accordingly.

Flow Diagram 2: Explaining how the whole process of saving changes take place.

13

Oppia | GSoC’21

Implementation Approach

Let’s start with a flow diagram of how the uncommitted change list will travel and the exact
process. These all the checks mentioned in this flowchart will take place in the backend.

Flow Diagram 3: Flow diagram to show the functionality inside are_changes_mergeable function.

We already have the uncommitted change list , including all the changes done until now on the
front end, and haven’t been saved in a draft or published. We’ll pass this change list into
are_changes_mergeable , where the comparison will be made.

are_changes_mergeable function will have a structure like this:

14

Oppia | GSoC’21

Before writing the conditions for the comparison, let’s discuss the completeChangeList and
how we can get it. So, now to compare the changes done both in the backend (already made by
some other users) and frontend (non-committed change list), we’ll need all the changes done in
the backend and frontend so far. We already have the uncommitted change list and to get the
changes already done in the backend by other users, we’ll take all the versions’ (between latest
on the backend and on which the user is working) change lists and then concatenate them into
one complete change list called completeChangeList .

To get the completeChangeList, we’ll create a function called getCompleteChangeList(exp_id,
v1, v2) in exp_fetchers.py with arguments:

● exp_id: Id of exploration user currently working on.
● v1 and v2: Version numbers of the exploration of where to where the user wants to find

the exact complete change list.
getCompleteChangeList will be the exact backend version (the code will be in python for the
backend) of this function shown below. Here in frontend we have used version tree service to
get the change list of any version for the current exploration but while writing this function in the
backend, we’ll pass the current exploration id as argument and then get the change list of any
version from the snapshots stored of that exploration.

15

Oppia | GSoC’21

After getting the completeChangeList, now, let’s focus on the comparison of the changes. So
the changes may include the changes of state names also and as there’s a lot of dependency on
statenames, let’s discuss separately about tracking the state identity process. I have explained it
in the steps below:

● Create a new temporary dict called changed_statenames , where we will store the new
state names mapped to the old state names, a new_states list where we’ll store all the
new states added and a deleted_states list to store all the deleted_states names..

● We’ll iterate through the completeChangelist and look for the changes in which the state
name is changed, state is added or state is deleted. Now let’s discuss the various
conditions:

○ New state is added: In this case we’ll push the name of the state in the
new_states list.

○ State is deleted: In this case we’ll push the name of the state in the
deleted_states list.

○ States renamed once or multiple times: In this case we’ll simply store the new
name (as in the latest version on the backend) mapped to the old name (as in the
browser’s version), we’ll not need the names changed in between as we have to
merge the changes in the latest version from the browser version.

○ State deleted and then added again: In this case when a same state is added
again, we’ll treat it as a new state only because we don't know whether the
properties inside it are different or same, like maybe a user has created a
different state with the same name again, therefore we’ll need to treat that state
as a new state only. So we’ll save that name in both new_states as well as
old_states list if it does not exist in that list.

16

Oppia | GSoC’21

○ State added and then deleted: In this case we’ll remove that state name from the
new_states list as it is not in the latest version at the backend and hence is not a
problem for us.

● Now we’ll iterate through the uncommitted change list and look if the current user has
made any change in any state’s name or added or deleted any state.

○ If renamed, then we’ll check for that state in changed_statenames , if found, then
that means that some other user also changed that state’s name so the current
user will get the conflict.

○ If added or deleted any state, then we’ll simply check no new state is added and
no old state is deleted in the backend otherwise will show the conflict because
addition and deletion of the state changes the flow of the exploration and it will
be very complex to handle the new addition or deletion of any state from another
change list.

While applying the other changes, we will use the changed state name from the
changed_statenames dict created above to avoid future conflict and will also look for that state
in deleted_states list to check if that state is not deleted.
changed_statenames will have a structure like this:

Moving further, we need to simplify the comparison process, so, to do that, we can create a
temporary dict called changed_properties, where a key will be the latest state name (taken from
the changed_statenames dict created above), and the value will be a dict containing the name
of the properties changed in that state along with the changes made in that property from the
completeChangeList.
The changed_properties dict mentioned above will have a structure like this:

17

Oppia | GSoC’21

I am basically dividing the changes from the completeChangeList on the basis of states and
properties. For example if the user changes the content of an introduction state from “hello” to
“hello world”, then the changed properties dict will look like this:

We will just iterate through our uncommitted latest change list and check that if the property we
are updating now is already changed in the backend or not. For this, we’ll look for the property in
the changed_properties dict, and if found, we’ll start comparing its changes.

Here is an example below to explain all the terms used above with the help of flowchart (on the
next page).
So there are two users A and B starting together from version 5 of an exploration. A makes
some changes and publishes them while B is still making the changes without committing or
publishing them. So after A changes, backend version upgrades to 7 while B is still on version 5
so when he will try to make the changes, his changes will be checked before merging and for
that:

● completeChangeList = ChangeList 1 (changes from version 5 to 6) + ChangeList 2
(changes from version 6 to 7)

● changed_statenames =

● changed_properties =

18

Oppia | GSoC’21

● new_states =

19

Oppia | GSoC’21

Flow Diagram 4: Explaining the process

20

Oppia | GSoC’21

Now let’s discuss all the conditions for the True and False of are_changes_mergeable function .
So here I have defined the loci of the changes i.e. if the changes are in these properties then
what all other properties will be affected:

● Content: Affects Translations & Voiceovers only.
● Interaction ID: Affects everything related to interaction i.e. solution, answer_groups,

customization_args, confirmed_unclassified_answers and hints.
● Customization_args: In interactions like image region, item selection, multiple choice,

drag and drop sort, all the maths interaction, code editor and music interaction,
customization_args affects answer_groups and solutions, and therefore affects
voiceover and translations.

● Answer_groups : Affects the solutions if the change is in the rules of the answer group
and affects the voiceovers and translations if the change is in the feedback of the
answer group.

● Default_outcomes : Affects feedback and therefore voiceovers and translations.
● Hints : Affects only voiceovers and translations.
● Solutions : Affects only voiceovers and translations.
● Exploration properties like Title, Goal, Language, Category, tags and the name of the

first card .: The name of the first card is affected by the change in the state name but can
be easily handled with the changed_statenames dict created above.

Flow Diagram 5: Chart of the properties affected by other properties.

21

Oppia | GSoC’21

Let me just explain the various scenarios. So below are the changes made by the second user
after the first one has updated the backend. I have explained the cases in which the user will get
into a conflict.

● Changes in the content: These changes are not affected by any other property changes,
therefore can be easily merged if someone has not changed the content of the same
state in the backend .

● Change in the interaction id: This change also is not affected by any other property
changes except for the changes in the interactionId itself

● Changes in the solutions of an interaction: If someone changes any answer_group in
the same state irrespective of the solution’s relation with it, the conflict will be shown
because checking every answer group in the change_list to satisfy the solution is not a
good method to follow here. Also affected by interactionId so if someone changes the
interaction then the solution can not be changed for the obvious reasons that for every
interaction the type of solutions are different and also if in the backend someone
changes the interaction twice and restores back the original interaction then we’ll check
if the answer_groups or customization_args are changed or not, if changed then we’ll
show the conflict else we’ll merge the changes.
In interactions like image region, item selection, multiple choice, drag and drop sort, all
the maths interaction, code editor and music interaction, they are also affected by
customization_args and hence will show the conflict if the args are changed.

● Changes in the customization_args: Affected by interactionId only. So any changes in
the interaction id (i.e. Interaction type) or the customization_args itself in the backend
will show the user a conflict error.

● Changes in the answer_groups: Affected by the interactionId always and by the
customization_args in interactions like image region, item selection, multiple choice,
drag and drop sort, all the maths interaction, code editor and music interaction. So any
changes in these two properties or in the answer_groups itself in the backend will show
the user a conflict error.

● Changes in the default_outcomes: These are not affected by any other property but in
case of the change in the interactionId, we’ll need to show the conflict as the
default_outcome may be different according to the interaction.

● Changes in the Hints: Affected only by the interactionId. So any changes in interactionId
or in the hints itself will show a conflict error in this case New hints can be added easily.

22

Oppia | GSoC’21

● Changes in the voiceovers and translations: Affected by changes in the content,
feedbacks, hints, solutions, and default outcomes only. So if any of these properties are
changed in the backend and we try to change the voiceovers and translations of those
properties then the user will get a conflict error.

● Changes in the exploration properties like title, goal, language, category, tags or the
name of the first card: These changes are not affected by any other changes except the
state name change, which can be handled by the new and old names of the states I am
storing and therefore the conflict will not be shown until or unless these values are itself
changed.

So above I have covered all the changes and when they will show the conflicts.
Now, we’ll check the two conditions:

● If any two changes (one from backend completeChangeList and one from user’s change
list) lie in any of the scope mentioned above. If they lie then that means we should show
the conflict.

● Now we will compare the value of that property from the browser’s version with the value
of that property in the latest version at the backend. This is done to check that the net
effect of the change list is to change that property. For example: Suppose if the net
effect of one changelist is to change the content from A to B and then back to A (as well
as do some other things on the exploration), and the net effect of the other changelist is
to change the content from A to C. So in this case the changes should be merged.

Therefore if the values in the second condition are not the same i.e. net effect is changed and
the first condition is satisfied too, then the user should get a conflict error and then the
are_change_mergeable will return False and will show the conflict, telling the user to discard the
changes.

Also, I will add the are_changes_mergeable condition in EditorAutosaveHandler in editor.py so
that changes will be saved to draft only if there aren’t any conflicts and this will avoid losing all
the changes at last i.e. I will restore the last saved draft in case of merge conflicts.

23

Oppia | GSoC’21

After this, in case the changes are not mergeable, we will show the conflict modal from
autosave-info-modal.service, where the function will look similar to this:

24

Oppia | GSoC’21

Second Sub Project:

Architectural Overview
As discussed above in the product design section, we here need to enable offline functionality
so that creators can work offline too and their changes can be updated to the backend when the
creator is online.

Here first we need to continuously monitor the network connection of the user and then display
the alert notification based on the offline and online status. For this, I’ll add a functionality in
which I’ll send the continuous get requests at the fixed intervals to check for internet connection
and will also use browser’s online/ offline events and will listen to them using fromEvent listener
to check whether the device is connected to any network source or not. I have explained the
functionality of this in the implementation approach.

Also, simultaneously I need to import all the services, directives/components, modals, and
scripts which a creator will need during editing exploration. Because when he will be offline then
he will not be able to load any modal so we’ll need to preload them.

After that in the exploration data service, we will save only in the local storage, and then when
the network is back we’ll call the function to save the data in the backend and then the changes
saving process will work as explained in the first sub project technical design.

At last, we will add an event listener to check if someone tries to close the window and as told in
the product design, it will ask the user whether they are sure about closing the window because
it will lose their progress.

25

Oppia | GSoC’21

So here is a sequence flow diagram to give you a better understanding:

Flow Diagram 6

26

Oppia | GSoC’21

Implementation Approach
Firstly, in order to monitor network connection we will create a new service called
ConectionService, which will continuously check for network connection using fromEvent
listener to listen to window offline and online events and also for internet connection by sending
the get request at a fixed interval (kept it 3 sec for now as it will neither be too frequent, avoiding
any load on the server and it neither be too slow, but this can be changed so will discuss it with
the mentor and then decide) and based on response will show whether the user is offline or
online. So in order to check network state, i’ll add a function called checkNetworkState in this
service, which will look like this:

And also I will add a function to check internet connection which will look like the snippet below.
This ConnectionService can also be used in future to check the network connection while
making other things workable offline too.

27

Oppia | GSoC’21

We will also create ConnectionServiceModule to declare ConnectionService and it will look like
this:

28

Oppia | GSoC’21

After this, we will just import ConnectionServiceModule in exploration-editor.page.module.ts
and then declare it in the imports.
Now, we’ll need to inject ConnectionService in exploration-editor.page.component.ts’s
constructor and in this component, we’ll subscribe to monitor() to get notification whenever the
internet status is changed.
It will look like this:

29

Oppia | GSoC’21

Now, we’ll need to import some scripts and directives too so I made a list of them.
● Ckeditor

○ Config.js static/ckeditor-4.12.1/config.js?t=J5S9
○ Skin.js static/ckeditor-bootstrapck-1.0.0/skins/bootstrapck/skin.js?t=J5S9
○ Editor.css static/ckeditor-bootstrapck-1.0.0/skins/bootstrapck/editor.css?t=J5S9
○ en.js static/ckeditor-4.12.1/lang/en.js?t=J5S9

● Delete-interaction-modal.template.html
● Outcome-feedback-editor.directive.html
● Customize-interaction-modal.template.html
● All the interaction inputs
● Add-answer-group-modal.template.html
● State-solution-editor.directive.html
● Save-validation-fail-modal.template.html
● Confirm-leave-modal.template.html
● Add-hint-modal.template.html
● Delete-hint-modal.template.html
● Select2-dropdown.directive.html
● Response-header.directive.html
● save-validation-fail.modal.ts

So we need to import and load all these files when the exploration editor page loads for the very
first time.
_autosaveChangeList function in exploration-data.service.ts at present initiates the change list
to save in both backend and localstorage. It looks like this:

30

Oppia | GSoC’21

As we can see above, first it saves to local storage and then updates backend draft, so in case
of offline we need to save only to local storage so we’ll not run rest of the function and when the
network reconnects, we’ll just send the change list to backend again or we can call this whole
function again.

Now we need to keep the check for if someone does not close the window also. For that we can
just add an event listener as shown below.

Now in order to show this alert when the navigation is changed also, we need to implement a
can deactivate guard.
First we need to implement the CanDeactivate interface. It will look like this:

After this we just need to add CanDeactivateGuard to the ngModule providers.

31

Oppia | GSoC’21

Third-party Libraries*
I am not using any third party libraries.

Testing Approach

First Sub Project:
To test this feature, we need to do the following steps.

1. Create two users A and B. Login as A.
2. Create a new exploration and add B as a collaborator in that exploration.
3. Add some content and add endExploration interaction in the Introduction state and then

publish it.
4. Let A keep the editor open while login B on incognito in the same browser because we

can’t login simultaneously using another account on the same window so we’ll need to
use incognito.

5. Open the same exploration(in which B’s a collaborator) in B’s window. Open the
exploration editor.

6. Remove the endExploration interaction from the introduction state and add a continue
button interaction.

7. Add a new state with name “end” and set the destination of the continue button to end
state. Save the changes and publish them.

8. You can see that on A’s side the exploration version is still the old one. So now, make
some changes from the A’ side in the content and then save and publish it. We’ll see that
it will not show any error and after publishing it will load the latest version with all the
changes(including B’s changes).

9. A’s changes haven’t been updated on B’s side. So now make some changes in content of
“introduction” from B’s side.

10. B will get a conflict error message. And he will need to discard his content changes and
the screen will automatically reload with the latest version (including A’s and B’s).

11. Let’s take one more example. Change continued interaction from “introduction” state to
numeric input interaction with hints solutions etc. And add destin. “end “state to its
correct answer group.

12. Save and publish the changes and then reload the exploration on both windows to load
all the changes.

13. Now change the rule in answer_group from A’s side and accordingly the solution and
then save and publish the changes.

14. B’s side is still on the old version so change the translations of the feedback from the
answer groups and then save and publish them. Changes should be merged easily.

32

Oppia | GSoC’21

15. After B’s merging, B’s on the latest version with all the changes so far. Change the rules
again, like if it was “number should be less than or equal to” before then change it to
“number should be greater than or equal to” now. Update the solution accordingly and
save and publish it.

16. A is still on the old version so now change the solution only and save it. A conflict popup
will appear on screen as the changes are related. Discard the changes and the
exploration will reload to the latest version.

Second Sub Project:
To test this feature, we need to do the following steps.

1. Create a user and login.
2. Click on the create button in the navbar to create the new exploration.
3. Once the exploration editor page loads completely, then disconnect the internet. A

warning notification should appear on the screen telling the user, “ Looks like you’re
offline. Don’t worry, your progress will be saved once reconnected. ”.

4. After that, click on the content box, type some content, and then click on the Save
button. Also, add an endExploration Interaction to it.

5. Connect back to the internet. An information notification should appear informing the
user that his progress is being saved. Now Close the window and reopen that same
exploration. Content written before, and an end exploration interaction should be there.

6. Now disconnect the internet again, and the same notification should appear as appeared
above in the 2nd point. Make some changes in the content and then click on the close
window icon, and then an alert box should appear informing the user that he will lose all
his progress.

a. Click on the leave button, and the window should have been closed. Again open
that exploration after connecting to the internet, and the changes you made in the
content should not be there.

b. Click on the cancel button and then try step 4

33

Oppia | GSoC’21

Milestones

Milestone 1
Key Objective : Introduce functionality such that edits made by a user should be propagated to
all clients. The changes should be applied if the changes are unrelated or else the user should
be informed of the merge conflict.

Here is the list of all the files I am planning to edit in this milestone.

● change-list-service.ts to change the response functionality of add change function.
● Exploration-data-service.ts to change the successCallback function on autosave and

save of exploration.
● auto-save-info-modal.service.ts to change the discard change modal as we needed it.
● exp_services.py, editor.py, exp_domain.py, exp_fetchers.py to include all the

functionalities at the backend.

Milestone 2
Key Objective : Enabling the exploration to work offline in case of connectivity issues.

34

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Added the completeChangeList
functionality in the backend to get all the
changes from version v1 to v2 in one
array.

- 14/06/2021 18/06/2021

1.2 Added the are_changes_mergeable
function in exp_services to check whether
the changelist can be merged or not.

1.1 25/06/2021 30/06/2021

1.3 When a user saves an exploration, their
changes are applied directly if they are
mergeable; otherwise, they get a merge
conflict popup if their changes cannot
be merged.

1.2 04/07/2021 08/07/2021

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

Oppia | GSoC’21

Here is the list of all the files I am planning to edit in this milestone.

● We will create the new connection-service.ts, connection-service.spec.ts,
connection-service-module.ts files to check the network connection.

● exploration-editor-page.module.ts, exploration-editor-page.mainpage.html,
exploration-editor-page.component.ts, exploration-editor-page.component.html to
preload all the scripts and components needed, to add the connection service check and
the event listeners for window leaving attempts.

● local-storage.service.ts to complete the locally saved changes functionality.

Future Work
I will try to make other services workable offline too like we can work for learners to play
exploration offline or maybe we can also work on the topics and skills creator to do the changes
offline and also syncing edits in the background for them too.

35

2.1 Scripts and components needed will be
preloaded and all the modals in the
exploration editor will be workable offline.

- 15/07/2021 20/07/2021

2.2 Checking continuously for network
connection functionality

- 20/07/2021 25/07/2021

2.3 Saving the data only to local storage in
case of offline and then updating it on the
backend after the internet reconnects.

2.1 and 2.2 30/07/2021 6/08/2021

2.4 Added event listeners to check all the
leaving editor window attempts.

- 5/08/2021 10/08/2021

