

Google Summer of Code 2021

Angular Migration
Ashutosh Chauhan

About You
My name is Ashutosh Chauhan. I am a first-year undergraduate at Indian Institute of Technology, Jammu,
pursuing Electrical Engineering as my major. I am a core member of the coding club at our institute and also
maintains the club’s website which is built with angular.

Why are you interested in working with Oppia, and on your chosen project?
I’ve started to work on Oppia in Feb 2021. The reason I started contributing to Oppia was that I wanted to
improve my angular and angularjs skills. But along the way, I started to admire the motto of Oppia. The
amount of selfless work developers put here for the betterment of free education is unparalleled and
inspiring.

Most of the Oppia’s users belong to developing nations where internet speeds are not good. I also belong to a
remote village in my country and daily experience internet fluctuations and slow speeds. I want to improve
Oppia’s performance by migrating the project to the angular router. By doing this project, I want to play my
part to help Oppia achieve its mission. I also believe that the best way to learn is by practice. This project will
help me to get proficient with angular and angularjs.

Prior experience
I have been doing web development for the past four and half years. I am a full stack developer and work
primarily with Node/Flask backend and Angular/React frontend frameworks. During my high school, I stood
first in an inter-school competitive programming competition in the north india region. I also stood first in a
National Level Programming Olympiad for high school students.

1. I have contributed to the fossasia organisation from the end of November 2020 to Feb 2021. During

my time with fossasia , I mainly worked on fossasia/susi.ai (A web-client built with react for a
Artificial Intelligence system called SUSI). I have 7 PRs merged there, most of them were fixing issues
labeled bugs, high priority and 3 are still open for review. You can find a list of my contributions on
susi.ai here . I have also contributed to fossasia/open-event-server (An API built with flask). I made
PR #7705 on that project.

2. I am a member of the angular migration team in Oppia. I have been regularly contributing from Feb

2021 to the migration project. My contributions involve creating PRs, reviewing other contributer’s

https://github.com/fossasia/susi.ai
https://github.com/fossasia/susi.ai/pulls?q=is%3Apr+author%3Aashutoshc8101+is%3Aclosed
https://github.com/fossasia/susi.ai/pulls?q=is%3Apr+author%3Aashutoshc8101+is%3Aclosed
https://github.com/fossasia/open-event-server
https://github.com/fossasia/open-event-server/pull/7705

PRs and helping new developers with Oppia installation. At present I have 14 PRs merged and
4 PRs open. I have also participated in Oppia release testing (March 2021).

3. I maintain a website for The Coding Club of IIT Jammu (my college) built with angular. We used the

angular router and built an API to power it. We have open sourced it on github
coding-club-iit-jammu / coding-club-iit-jammu.github.io and are open to contributions from
developers across the globe.

4. I have built a music library application. Users can upload songs to Django powered backend and play

music on their browsers. I used JWT tokens to build a stateless authentication system and deployed it
on Amazon Web Services. This project taught me the concepts of token based authentication, SQL
databases, WSGI specification and nginx reverse proxy system.

5. I have also worked with backends in python, nodejs and php. I have created a realtime chat application

with nodejs and e-commerce application with php as personal projects.

Links to my PRs for Oppia:
From the beginning of my contributions to Oppia, I had a keen interest in migration and the build process.
Most of my PRs are related to migration.

1. #12027 Migrates collection-editor-state.service.ts along with spec to angular.
2. #12076 Migrates admin-jobs-tab.component to angular.
3. #12191 Migrates translation opportunity modal and its dependencies.
4. #12410 Migrates topics list directive to angular.
5. #12371 Migrates base-content directive and its dependencies to angular.

The complete list of PRs created by me is here .
I have opened 4 issues regarding UI bugs, those can be found here .
My contributions also involve helping others gitter and discord.
I have also reviewed PRs from other contributors, most notably #11791 , #12071 and #12110

Contact info and timezone(s)
Email and Hangout: ashutoshc8101@gmail.com
Contact Number: +91 9816092935
Gitter: @ashutoshc8101
Discord: ashutoshchauhan81
TimeZone: Kolkata, India (GMT+5:30)
I am active on all these platforms. My preferred methods of communication are email, hangout, and discord.

Time commitment
I would be able to devote 20 hr/ week to the GSoC project, which can be extended upto 40 hr/week if the
need arises. From 12 June to 16 June , I will have my end semester examination and the time devoted will be
1 hr /day. After that, I will get a vacation from college till 4 July. I can easily make up by devoting (6 hr/day) to
The GSoC project.

https://www.codingclubiitjammu.tech/
https://github.com/coding-club-iit-jammu/coding-club-iit-jammu.github.io
https://github.com/coding-club-iit-jammu/coding-club-iit-jammu.github.io
https://github.com/coding-club-iit-jammu/coding-club-iit-jammu.github.io
https://github.com/oppia/oppia/pull/12027
https://github.com/oppia/oppia/pull/12076
https://github.com/oppia/oppia/pull/12191
https://github.com/oppia/oppia/pull/12410
https://github.com/oppia/oppia/pull/12371
https://github.com/oppia/oppia/pulls?q=is%3Apr+author%3Aashutoshc8101
https://github.com/oppia/oppia/pulls?q=is%3Apr+author%3Aashutoshc8101
https://github.com/oppia/oppia/issues?q=is%3Aissue+author%3Aashutoshc8101+
https://github.com/oppia/oppia/pull/11791
https://github.com/oppia/oppia/pull/12071
https://github.com/oppia/oppia/pull/12110
mailto:ashutoshc8101@gmail.com

Essential Prerequisites

● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine.

● I am able to run one suite of e2e tests on my machine.

Other summer obligations
I have end semester examinations from 12 June to 16 June in my college. After that I will be completely free
till August 2021. I don’t have other obligations.

Communication channels
I am active on Gitter, hangout and discord . I can be flexible with any platform my mentor likes. Meetings can
be held bi-weekly to discuss progress and workflow to be followed ahead.

Application to multiple orgs
I’m only applying to Oppia organization this year
I’m applying for the Improve Frontend Type System project other than this project.
My preferences are:

1. Angular Migration
2. Improve Frontend Type System

Project Details

Product Design
For Users:
After the completion of this project, the end user will be able to change the view of the application, without
reloading and rebuilding of the angular application on a page change.

Example:

1. User clicks on the donate button in the navigation bar.

2. Oppia does not reload, only a section of the webpage is changing.

3. Users would reach the donate page, without reloading and rebooting of a new app.

When a user tries to visit a unauthorised page, he will be redirected to the not found page.

If a user tries to access a page like profile which requires him to be logged in, he will be redirected to the login
page.

For developers:
The frontend build process will be simplified for the developers.

● They will be able to build the frontend using ng build command and can add --prod flag to build in
production mode.

● They will be able spin up a development server for frontend using ng serve and can add --prod flag to build

and serve in production mode.

● They will be able to run eslint with ng lint command

● They will be able to run end to end tests using ng e2e

● They will be able to run frontend tests with ng test command

Following commands will also be integrated with present commands.

Following changes will be made to already present commands:

1. python -m scripts.start:
Instead of using webpack to build the project, this command will use ng cli to build the application for
both development and production .

2. python -m scripts.run_frontend_tests:

Instead of directly using karma cli, this command will use the ‘ng test’ command to run the frontend
tests.

3. python -m scripts.run_e2e_tests:

Instead of directly using protractor, this command will use ‘ ng e2e’ command to run end to end tests.

Technical Design

I am dividing my project into two subprojects

SUB-PROJECT 1: Migration to angular router:
Let us first understand how the present routing system works. I will be explaining it with the help of the
following illustration.

● Client sends a HTTP GET request to the backend.
● Backend searches the request url in the URLS list present in main.py and routes defined in app.yaml

(production) and app_dev.yaml (development) files.
● Now there are three possibilities :

1. /url is API route, in this case, backend calls the associated controller with the route and sends
a JSON response back to the browser with an appropriate status code .

2. /url is a route for a static web page, in this case, the backend calls the associated controller,
which finds the required template in the webpack_bundles folder and uses render_template
to send a webpage back to the client.

3. /url does not match any of routes present in the URLS list, it sends the user not found error
page by rendering ‘error-page-404.mainpage.html’ with status code: 404 .

Relevant Code:
base.py
413 self .render_template('maintenance-page.mainpage.html')

414 else :

415 self .render_template(

416 'error-page- %s .mainpage.html' % values['status_code'])

417 else :

418 if return_type != feconf.HANDLER_TYPE_JSON and (

Pros of present system:

1. This system only sends the data required for a single page, nothing less or more.
2. As this system was the standard for a long time, search engine are optimized for the web pages that

are coming from a server

Cons of present system:
1. This model leads to slow navigation between pages for the users. On every request a new angular

application is bootstrapped by the angular’s runtime compiler which leads to a slower user
experience.

2. This puts more load on the client's cpu and increases the overall size of the application. This affects
mobile devices more as they have generally less powerful cpus.

Now let us understand the proposed routing system.
I will be explaining it with the help of the following illustration

● In this modal, only API routes are handled by the backend. The request which does not match any

backend route, is then handed over to the frontend router.
● Then the frontend router matches the request with its list of defined routes, if the request is matched,

it displays the associated component to the user, if it does not match with any route, it shows the not
found component.

● This model uses routerLinks for navigation between pages
● When the user clicks a routerLink the URL changes but request to the server is prevented.
● The change of URL results in a change of state of application. This could be rendering of a new

component and even requesting the api to fetch data.
● The whole page won’t refresh, the libraries and components which were available in the previous

view are reused again instead of being fetched again from the server.
● Only data which is required and is not available on the client is requested from the server through

AJAX requests.
● Uses lazy loading to fetch angular modules only when they are required.

Pros:

1. Less data is processed, navigation between views is faster.
2. CSS and Javascript libraries are only fetched on first load.
3. Reduced load on the server.
4. Smooth animations can be added for view changes.

Cons:
1. If lazy loading is not implemented, the whole application needs to be loaded on the first

request which usually takes longer.
2. Search engines are not nearly as efficient as they are for the present routing system.

This can be solved by using Interaction Observer API and Server Side Rendering. I will add
SSR after GSoC as a future project.

Why lazy loading?
By default modules are eagerly loaded, which means as soons as app loads, all NgModules are loaded too,
irrespective of whether they are required or not. For larger apps, lazy loading provides better loading times
for apps, as it makes initial bundle size smaller.

These are the conceptual benefits, lets see, how well do they practically?
To find this, I conducted a survey.
The main objective of my survey is to find which approach provides better user experience for users when
they hop from one page to another in a website.
The participants of this survey are students of my university, who are regular users of the web.

I used these two famous websites as examples:
1. Wikipedia : Uses backend routing, does full refresh on page changes.
2. Angular.io : Uses angular router and uses animations during page changes.

Total 27 students participated in the survey.
Results:

1. 85.2% participants like partial view change of application more than full page refresh.
2. 74.1% participants liked animations during view change of application.

Conclusion:

The proposed strategy does not only provide better performance but also better user experience. Here
is the link to the survey form and here is the link to the survey data.

How will Oppia benefit?
When a user first visits Oppia, bundles required for that page are downloaded on his browser. Then angular
compiles the templates and modules to build an application. This process of Just In Time compilation takes
some time and uses cpu for processing. When the user jumps to another page, again a new application is
built and cpu is utilized. When we shift to the angular router, this recreation of application will no longer be
required . This will reduce user’s cpu usage and the change of the view of application will be quick . This will
result in faster user experience .

Implementation Strategy:
I plan to migrate to the angular router in three phases.

1. Dual router setup
2. Preparation of modules
3. Actual migration and cleanup

Phase I : Dual Router Setup
I will migrate to angular router incrementally (one page at a time), so that my PRs remain small which will
result in easier PR creation and review.
To achieve that, I have planned a migration flow. I will be explaining that using the following illustration.

https://forms.gle/WXF7gbsQ3ZntxQCT7
https://drive.google.com/file/d/1ae4KoW63qZ2p_aaZMwWtSx6Z5RSYkLLv/view?usp=sharing

● During migration, some of the pages will be handled through angular router (let say, x) and rest will
be handled through the previous model (total - x).

● To achieve that, I will create a new page (this page will become the unified entry to the application

after the router migration), a root module and a root routing module. I will add this page to the
webpack entry list.

webpack.common.config.ts

 59 entry: {
 60 about: commonPrefix + '/pages/about-page/about-page.import.ts' ,
 61 admin: commonPrefix + '/pages/admin-page/admin-page.import.ts' ,
 62 app: commonPrefix + '/pages/app-page/main.ts' ,
 63 classroom:
 64 commonPrefix + '/pages/classroom-page/classroom-page.import.ts' ,
 65 collection_editor:
 66 commonPrefix + '/pages/collection-editor-page/' +
 67 'collection-editor-page.import.ts' ,
 68 collection_player:
 69 commonPrefix + '/pages/collection-player-page/' +

 ...

 151 plugins: [
 152 new HtmlWebpackPlugin({
 153 chunks: [‘app’],
 154 filename: 'index.mainpage.html' ,
 155 meta: {
 156 name: defaultMeta.name,
 157 description: 'With Oppia, you can access free lessons on ' +
 158 'math, physics, statistics, chemistry, music, history and ' +
 159 'more from anywhere in the world. Oppia is a nonprofit ' +
 160 'with the mission of providing high-quality ' +
 161 'education to those who lack access to it.'
 162 },
 163 template: commonPrefix + '/pages/app-page/index.html' ,
 164 minify: htmlMinifyConfig,
 165 inject: false
 166 }),

I will add following files to create this new page:

● I will use the existing error module for all not found routes.
● I will register error module to the root routing module of our new unified entry app with lazy loading

for wildcard route ‘**’

1 import { APP_BASE_HREF } from '@angular/common' ;
2 import { NgModule } from '@angular/core' ;
3 import { Route, RouterModule } from '@angular/router' ;
4
5 const routes: Route[] = [
6 {
7 path: '**' ,
8 loadChildren: () => import ('pages/error-pages/error-page.module')
9 .then(m => m.ErrorPageModule)
10 }
11];

12 @NgModule ({
13 imports: [
14 RouterModule.forRoot(routes)
15],
16 exports: [
17 RouterModule
18],
19 providers: [
20 {
21 provide: APP_BASE_HREF,
22 useValue: '/'
23 }
24]
25 })
26 export class AppRoutingModule {}
27

With present typescript configuration, we cannot use import syntax for lazy loading.
This can be fixed using two methods:

1. Adding “module”: “esnext” in tsconfig.json
2. Adding “module”: “es2020” in tsconfig.json

As for the typescript ̂ 4.0.2, which Oppia is using, both configurations work the same.
But the “esnext” can evolve in backward incompatible ways, which can cause issues in the future.
So, I will use “es2020” during this project.
To ensure that this updation of tsconfig.json will not cause any side effects:

1. I ran frontend tests with this configuration. All were successful.
2. I ran a webpack build, it was successful without any issues
3. I ran e2e suites, they were successful.

● Then I will set up the backend to serve this newly created page when no requests are matching with

available routes.
This will be done by rendering index.mainpage.html for all 404 routes at the backend .
To implement this I will add a condition in _render_exception_json_or_html function present in base.py
file.

base.py

Now the dual router setup is complete, 404 routes will be redirected to the frontend angular router.

397. def _render_exception_json_or_html(self, return_type, values) :

404.

405. method = self.request.environ['REQUEST_METHOD']

406.

407. if return_type == feconf.HANDLER_TYPE_HTML and method == 'GET' :

408. self.values.update(values)

409. if self.iframed:

410. self.render_template(

411. 'error-iframed.mainpage.html' , iframe_restriction= None)

412. elif values['status_code'] == 503 :

413. self.render_template('maintenance-page.mainpage.html')

414. + elif values['status_code'] == 404 :

415. + self.render_template('index.mainpage.html')

416. else :

417. self.render_template(

418. 'error-page-%s.mainpage.html' % values['status_code'])

419. else :

420. if return_type != feconf.HANDLER_TYPE_JSON and (

421. return_type != feconf.HANDLER_TYPE_DOWNLOADABLE):

422. logging.warning(

Phase 2 Preparation of Modules:

2.1 Creation of Route guards.
Why do we need them?
Some pages like admin-page are not supposed to be accessible by everyone. They should have restricted
access. If we don’t restrict access, users can open restricted pages however they can’t do anything on that
page because api requests are secured at the backend. This will lead to bad user experience.
At present blocking of unauthorized users from accessing a certain page is handled at the backend, but after
migration this should be handled in the frontend.

I will implement frontend route protection using this route guard:
const ROLE_PERMISSION_LEVELS : ROLE_PERMISSION_LEVELS_DICT = {
 USER: 0 ,
 COLLECTION_EDITOR: 1 ,
 TOPIC_MANAGER: 2 ,
 MODERATOR: 3 ,
 ADMIN: 4 ,
 SUPERADMIN: 5
};

@ Injectable ({
 providedIn: 'root'
})
export class AuthGuard implements CanLoad {
 constructor (
 private userService : UserService ,
 private router : Router ,
 private windowRef : WindowRef
) {}

 canLoad (route : Route , segments : UrlSegment []): boolean | UrlTree |
 Promise < boolean | UrlTree > | Observable < boolean | UrlTree > {
 return this . userService . getUserInfoAsync (). then ((user) => {
 if (route . data . minRole <= ROLE_PERMISSION_LEVELS . USER) {
 if (user . isLoggedIn ()) { # Check 1
 return true ;
 } else {
 this . windowRef . nativeWindow . location . assign ('/login?return_url=%2F’);
 return false ;

 }
 }

 if (route . data . minRole <= ROLE_PERMISSION_LEVELS . COLLECTION_EDITOR &&
 user . canCreateCollections ()) { # Check 2
 return true ;
 }

 if (route . data . minRole <= ROLE_PERMISSION_LEVELS . TOPIC_MANAGER &&
 user . isTopicManager ()) { # Check 3
 return true ;
 }

 if (route . data . minRole <= ROLE_PERMISSION_LEVELS . MODERATOR &&
 user . isModerator ()) { # Check 4
 return true ;
 }
 if (route . data . minRole <= ROLE_PERMISSION_LEVELS . ADMIN &&
 user . isAdmin ()) { # Check 5
 return true ;
 }
 if (route . data . minRole <= ROLE_PERMISSION_LEVELS . SUPERADMIN &&
 route . data . minRole >= ROLE_PERMISSION_LEVELS . ADMIN &&
 user . isSuperAdmin ()) { # Check 6
 return true ;
 }

 this . router . navigate (['not-found']);
 return false ;
 }, (error) => {
 return false ;
 });
 }

Following are the characteristics of the route guard:
● Auth guard follows the role hierarchy.
● Auth guard redirects the user to the login page, if the route requires the user to be logged in.

Currently it is using location api to redirect but it will be moved to router.navigate([‘/login’]),
once the login page is migrated to the angular router.

● Auth guard redirects the user to not found page (404) page, if the user does not have sufficient
rights.

Usage :

const routes: Route[] = [
 {
 path: 'donate' ,
 loadChildren: () => import ('pages/donate-page/donate-page.module')
 .then(m => m.DonatePageModule)
 },
 {
 path: 'profile' ,
 loadChildren: () => import ('pages/profile-page/profile-page.module')
 .then(m => m.ProfilePageModule),
 canLoad: [AuthGuard],
 data: { minRole : ROLE_PERMISSION_LEVELS . USER }
 },

● /profile route can be accessed if the user is logged in.
● /admin route can be accessed by admin and super admin.
● /moderator route can be accessed by moderator and admin (superadmin cannot access this page,

which exactly replicates the current behaviour).

Note: Superadmin is a special role, which does not follow the role hierarchy. Superadmin cannot access topic
manager and collection creator pages. But he can add these roles to himself by accessing the admin page.

Following table shows what role is required for what page.

 {
 path: ‘moderator’,
 loadChildren: () => import (‘pages/moderator-page/moderator-page.module’)
 .then(m => m.ModeratorPageModule),
 canLoad: [AuthGuard],
 data: { minRole: ROLE_PERMISSION_LEVELS . MODERATOR }
 },
 {
 path: 'admin' ,
 loadChildren: () => import ('pages/admin-page/admin-page.module')
 .then(m => m.AdminPageModule),
 canLoad: [AuthGuard],
 data: { minRole: ROLE_PERMISSION_LEVELS .ADMIN }
 },

PAGE MINIMUM ROLE REQUIRED

about No role required

admin Admin

classroom No role required

collection_editor Collection Editor

collection_player No role required

contact No role required

creator_dashboard User

contributor_dashboard User

delete_account User

donate No role required

email_dashboard Admin

There is a “Refactor role structure & add new roles” project proposition by Sandeep Dubey under
consideration.
If that project is completed before/during the GSoC period, I will change the architecture of the route guard
from hierarchical based to multi roles based route protection to support his changes.

Error page No role required

exploration_editor Exploration Editor

exploration_player No role required

get_started No role required

learner-dashboard User

library No role required

maintenance No role required

moderator Moderator

notifications_dashboard User

pending_account_deletion User

privacy No role required

preferences User

profile User

signup User

skill-editor Topic Editor

splash No role required

subtopic_viewer Topic Editor

teach No role required

terms No role required

thanks No role required

topic_editor Topics Editor

topics_and_skills_dashboard Topics Editor

topic_viewer Topics Editor

The role refactor project will add three new roles to oppia:

1. Release Coordinator: These grants access to run jobs on the MR job dashboard and perform
Memcache operations.
Associated pages to be added with this role:

● MR job dashboard
2. Voiceovers admin: This grants the ability to manage the assignment of voiceover artists to lessons.
3. Contributor Dashboard admin: This grants the ability to see statistics for the contributor dashboard,

and provides access to various administrative controls to tweak its operation.

Multi roles based route protection architecture:

How will multi role route protection work?

● Every page will have a predefined set of roles which have access.
● Every user will have a set of assigned roles.
● The route guard will try to match roles required by a page with the roles of the user who is trying to

access the page.
● If at least a single role of the user meets the requirement of the page, the page can be accessed.

I have prepared this route guard for implementing multi role route protection.

Auth-multi-role.guard.ts

export const ROLES = {
 USER: 'user' ,
 COLLECTION_EDITOR: 'collection_editor' ,

 TOPIC_MANAGER: 'topic_manager' ,
 MODERATOR: 'moderator' ,
 ADMIN: 'admin' ,
 SUPERADMIN: 'superadmin' ,
 RELEASE_COORDINATOR: 'release_coordinator' ,
 VOICEOVERS_ADMIN: 'voiceovers_admin' ,
 CONTRIBUTOR_DASHBOARD_ADMIN: 'contributor_dashboard_admin'
};

export class AuthGuard implements CanLoad , CanActivate {
 constructor (
 private userService : UserService ,
 private router : Router ,
 private windowRef : WindowRef
) {}

 canLoad (route : Route , segments : UrlSegment []): boolean | UrlTree |
 Promise < boolean | UrlTree > | Observable < boolean | UrlTree > {
 return this . userService . getUserInfoAsync (). then ((user) => {
 if (route . data . roles . indexOf ('user') > - 1 &&
 route . data . roles . length === 1) {
 if (user . isLoggedIn ()) {
 return true ;
 } else {
 this . windowRef . nativeWindow . location . assign ('/login?return_url=%2F');
 return false ;
 }
 }

 for (let i = 0 ; i < route . data . roles . length ; i ++) {
 if (route . data . roles [i] === ROLES . COLLECTION_EDITOR &&
 user . canCreateCollections ()) {
 return true ;
 }
 if (route . data . roles [i] === ROLES . TOPIC_MANAGER &&
 user . isTopicManager ()) {
 return true ;
 }
 if (route . data . roles [i] === ROLES . VOICEOVERS_ADMIN &&
 user . isVoiceoversAdmin ()) {
 return true ;

 }
 if (route . data . roles [i] === ROLES . CONTRIBUTOR_DASHBOARD_ADMIN &&
 user . isContributorDashboardAdmin ()) {
 return true ;
 }
 if (route . data . roles [i] === ROLES . MODERATOR &&
 user . isModerator ()) {
 return true ;
 }
 if (route . data . roles [i] === ROLES . RELEASE_COORDINATOR &&
 user . isReleaseCoordinator ()) {
 return true ;
 }
 if (route . data . roles [i] === ROLES . ADMIN &&
 user . isAdmin ()) {
 return true ;
 }
 if (route . data . roles [i] === ROLES . SUPERADMIN &&
 user . isSuperAdmin ()) {
 return true ;
 }
 }

 this . router . navigate (['not-found']);
 return false ;
 }, (error) => {
 return false ;
 });
 }

Usage:

const routes: Route[] = [
 {
 path: 'donate' ,
 loadChildren: () => import ('pages/donate-page/donate-page.module')
 .then(m => m.DonatePageModule)
 },
 {
 path: 'profile' ,
 loadChildren: () => import ('pages/profile-page/profile-page.module')
 .then(m => m.ProfilePageModule),

2.2 Preparation of modules:
 The way that the modules (*-page.module.ts files) are structured now, they can’t be
 used for lazy loading. We need to perform some changes.
 Issues with present structure:

1. Lazy loading demands a routing module to be added to lazy loaded modules.
 2.

 canLoad: [AuthGuard],
 data: { roles : [ROLES . USER] }
 },
 {
 path: ‘moderator’ ,
 loadChildren: () => import (‘pages/moderator-page/moderator-page.module’)
 .then(m => m.ModeratorPageModule),
 canLoad: [AuthGuard],
 data: { roles: [ROLES . MODERATOR, ROLES . ADMIN] }
 },
 {
 path: 'admin' ,
 loadChildren: () => import ('pages/admin-page/admin-page.module')
 .then(m => m.AdminPageModule),
 canLoad: [AuthGuard],
 data: { roles: [ROLES .ADMIN, ROLES . SUPERADMIN] }
 },

Second issue:
There are two sections of code in each *.mainpage.html files.

● One is static, all *.mainpage.html files share this section, so I will place this part in index.html of our
newly created unified app’s folder

● The other section which is present inside the red box in the above illustration is different for every
*.mainpage.html file.

Solution to these issues:

● I will create a routing module for every page and register it with corresponding
*-page.module.ts files.

● I will move the common section of *.mainpage.html to the index.html and will create a root
component (top level) for every page containing the dynamic part.
Body of index.html will look like this.

core > templates > pages > donate-page > donate-page.routing.module.ts

1 import { NgModule } from '@angular/core' ;
2 import { Route, RouterModule } from '@angular/router' ;
3 import { DonatePageRootComponent } from './donate-page-root.component' ;
4
5 const routes: Route[] = [
6 {
7 path: '' ,
8 component: DonatePageRootComponent
9 }
10];
11
12 @NgModule ({
13 imports: [
14 RouterModule.forChild(routes)
15],
16 exports: [
17 RouterModule
18]
19 })
20
21 export class DonatePageRoutingModule {}

27 < body >
28 < oppia-root >

Root component for every page (eg demo page) will look like this -

Final folder structure for every page (eg. donate page) would look like this.

29 < div ng-controller = "Base" > <!-- ng-controller will not be required after
 angularjs is removed from the codebase -->
30 < base-content >
31 < router-outlet ></ router-outlet >
32 </ base-content >
33 </ div >
34 </ oppia-root >
 <!-- script tag for libraries -->
35 </ body >

core > templates > pages > donate-page > donate-page-root.component.html

1 < navbar-breadcrumb >
2 < ul class = "nav navbar-nav oppia-navbar-breadcrumb" >
3 < li >
4 < span class = "oppia-navbar-breadcrumb-seperator" ></ span >
5 Donate
6 </ li >
7 </ ul >
8 </ navbar-breadcrumb >
9
10 < content >
11 < router-outlet ></ router-outlet >
12 </ content >

Phase 3: Actual migration and clean up

● This will be done one page at a time
● Usage of window.location will be replaced with angular router

● Modules will be registered in root routing module using lazy loading
● I will use the already present PageTitleService to set titles for pages.

I will use PageTitleService in the root component of every page to set titles.
eg. Donate Page:
export class DonatePageRootComponent {
 constructor (
 private pageTitleService : PageTitleService
) {}
 ngOnInit (): void {
 this . pageTitleService . setPageTitle ('Donate - Oppia');
 }
}

● Migrated Routes, corresponding controllers along with their tests will be removed from the backend (
related files: main.py, base.py, app.yaml, app_dev.yaml etc)

Example 1: How will remove unused code in the backend for the donate page.
app_dev.yaml, app.yaml
165. secure : always

166. expiration : "0"

167. - - url : /donate

168. - static_files : webpack_bundles/donate-page.mainpage.html

169. - upload : webpack_bundles/donate-page.mainpage.html

170. - http_headers :

171. - Pragma : no-cache

172. - Strict-Transport-Security : "max-age=31536000; includeSubDomains"

173. - X-Content-Type-Options : "nosniff"

174. - X-Frame-Options : "DENY"

175. - X-Xss-Protection : "1; mode=block"

176. - secure : always

Location Api Using angular router

this . windowRef . nativeWindow . location
. href = this . classroomUrl

this . router . navigateByUrl (this . class
roomUrl);

this .windowRef.nativeWindow.location
. assign ('/signup');

this . router . navigateByUrl (‘/signup’)
;

178. - expiration : "0"

179. - url : /get-started

Example 2: How will I remove unused code for the learners dashboard page.

main.py
377. r '%s' % feconf.UPLOAD_EXPLORATION_URL,

378. creator_dashboard.UploadExplorationHandler),

379. - get_redirect_route(

380. - '/learner_dashboard' ,

381. - learner_dashboard.OldLearnerDashboardRedirectPage),

382. get_redirect_route(

383. r '%s' % feconf.LEARNER_DASHBOARD_URL,

Learner_dashboard.py

39. """Handles GET requests."""

40. self .redirect(feconf.LEARNER_DASHBOARD_URL, permanent = True)

...

43. - class LearnerDashboardPage (base . BaseHandler):

44. - """Page showing the user's learner dashboard."""

45. -

46. - @acl_decorators.can_access_learner_dashboard

47. - def get (self):

48. - """Handles GET requests."""

49. - self .render_template('learner-dashboard-page.mainpage.html')

...

52. class LearnerDashboardHandler (base . BaseHandler):

53. """Provides data for the user's learner dashboard page."""

Learner_dashboard_test.py

297. self .logout()

298.

299. - def test_learner_dashboard_page (self):

300. - self .login(self .OWNER_EMAIL)

301. -

302. - response = self .get_html_response(feconf.LEARNER_DASHBOARD_URL)

303. - self .assertIn('{"title": "Learner Dashboard | Oppia"})' , response.body)

304. -

305. - self .logout()

● Migrated page will be removed from the webpack entry list along with it’s HtmlWebpackPlugin entry.

HANDLING OF ROUTING SERVICES:

At present, oppia codebase uses routing services (eg router.service.ts, url.service.ts,
skill-editor-routing.service.ts and topics-editor-routing.service.ts) to implement a frontend router like
functionality.

After the introduction of angular router, some functions of these services will become redundant. It is best to
remove redundant code.
One of the most important services here is url service:

Following table shows alternate interfaces provided by the angular router to achieve the same functionality
without having to maintain that code.

1. Skill editor routing service
This service act as a mini frontend router for skill editor page

 The usage of this service can be replaced with the angular router.

 I will set up nested routing using child routes for this page.

Url service Angular router

getCurrentLocation() Router.url

getCurrentQueryString() ActivatedRoute.queryParams

getUrlParams() ActivatedRoute.params

 isIframed () : boolean {

 let pathname = this . getPathname ();

 let urlParts =

pathname . split (' / ');

 return urlParts [1] === ' embed ' ;

 }

 isIframed () : boolean {

 let pathname = this .router.url;

 let urlParts =

pathname . split (' / ');

 return urlParts [1] === ' embed ' ;

 }

getHash() ActivatedRoute.fragment

Implementation Details:

Following changes will made to skill-editor-page.component.html

- <div ng-if = "$ctrl.getActiveTabName() === 'main'" >

- <skill-editor-main-tab></skill-editor-main-tab>

- </div>

- <div ng-if = "$ctrl.getActiveTabName() === 'questions'" >

- <questions-tab></questions-tab>

- </div>

- <div ng-if = "$ctrl.getActiveTabName() === 'preview'" >

- <skill-preview-tab></skill-preview-tab>

- </div>

+ <router-outlet></router-outlet>

Following routes will be added to lazy loaded module skill-editor.routing.module.ts

const routes: Route[] = [

 {

 path: '' ,

 component: SkillEditorPageComponent,

 children: [

 {

 path: 'questions' ,

 component: SkillsQuestionTabComponent

 },

 {

 path: 'editor' ,

 component: SKillEditorTabComponent

 },

 {

 path: 'preview' ,

 component: SkillPreviewTabComponent

 }

]

 }

];

Similarly for topic editor page:

Implementation will remain similar to the skill editor page.
Preview tab on topic editor page:

Exploration editor page:

SEO CONCERNS:

Will we see an SEO drop?
Yes,

Why?
Currently title and meta description are both statically added to *-mainpage.html files.

After the migration, the code for title and meta description tags will be placed in the root.component.ts files
of every page. These components are lazy loaded. So, client side rendering is required for setting the title and
meta description.

So, there will be a drop in SEO.

Nowadays, most of the crawlers are getting better and better with client side rendering. So, It will depend on
crawler to crawler, on how much SEO drop we will get.

Measures taken to minimize the drop?

Statically adding a generalized (that works for all pages) title and meta description in the root index.html file
and then replacing those meta tags and title when the root component loads lazily.

How will this fix work?

1. Crawlers usually take two passes while indexing a web page.
2. First they crawl without rendering javascript and look for title and meta description tags
3. In the second pass, they render javascript and index.

It is very important for crawlers to be able to read crucial tags like title and meta description in the first pass
to get good SEO.

So, by using the above fix, during the first pass the crawlers will get a generalized title and meta description.
So that at least, the most important search engine result will not get affected.

Search results for about and fraction pages will definitely get a hit, as they will get indexed after the second
pass of the crawler.

I don’t think there will be any related regressions.

PRESERVING STATUS CODES:

Why to preserve?
HTTP Status codes are important for SEO. Only backends can set status code in response headers. If we
handle other error pages in the frontend too then, we won’t be able to add appropriate status code to them.
The search engine crawlers might identify them as regular pages instead of error pages.

How to preserve?
Error pages are usually assigned status codes other than 200 (OK). Most of these error pages are handled at
the backend. So, they will have appropriate status code assigned to them.
One exception to this is error 404 page.
Possible fix for the status code:

The fix for this is to define a new /not-found route in the backend with status code 404. When a route is not
found by the frontend router, it should redirect to this / not-found route in the backend.
Example:

export class HardRedirectToNotFoundErrorPageComponent implements OnInit {

 constructor (

 private windowRef : WindowRef

) {}

 ngOnInit (): void {

 this . windowRef . nativeWindow . location . href = '/not-found' ;

 }

}

Router configuration:

{

 path: '**' ,

 component: HardRedirectToNotFoundErrorPageComponent

}

HOW TO KEEP ROLES IN SYNC WITH BACKEND?

The frontend roles which i plan to introduce correspond directly to UPDATABLE_ROLES in role_services.py.

role_services.py
 91. # NOTE : LEARNER role should not be updated to any other role, hence do
not
 92. # add it to the following list .
 93. UPDATABLE_ROLES = [
 94. feconf . ROLE_ID_ADMIN ,
 95. feconf . ROLE_ID_BANNED_USER ,
 96. feconf . ROLE_ID_COLLECTION_EDITOR ,
 97. feconf . ROLE_ID_EXPLORATION_EDITOR ,
98 . feconf . ROLE_ID_MODERATOR ,

99. feconf . ROLE_ID_TOPIC_MANAGER

100.]

To keep the roles in sync, I will write a linter to ensure that the roles present constants.ts files in the frontend

will be the same as the UPDATABLE_ROLES list in the backend.

This linter will be added to pre push hooks and circle ci lint checks.

Why is CSRF not a security concern?

CSRF stands for C ross S ite R equest F orgery.
Every website which uses a cookie is vulnerable to this attack. Forms are most vulnerable to this attack and
forms usually send POST / PUT / DELETE requests.

How Oppia prevents CSRF?

Oppia uses a token based prevention system.

● For every POST / PUT / DELETE request to be a valid request, the request should provide a valid
csrf_token in its body.

● This csrf token is obtained in the frontend by using the csrf-token.service.ts which provides a
getTokenAsync() function.

● This service sends a GET request to /csrfhandler route at the backend which creates the token and
sends it back to the frontend.

Why does this prevention system work?
Attackers can trick the browser into sending the cookie from a cross site origin but sending the csrf_token
from cross site origin is not possible.

The Page Handlers which I propose to remove are only for GET requests.
The GET requests are not vulnerable to CSRF attacks.
The Api endpoints will not be altered during this project by any means.
So , I think that this project does not cause a CSRF vulnerability

META TAGS:

At present, meta tags are placed in header.template.html file and this file is imported to every
*-mainpage.html file (This is done using underscore-template-loader).
This is done to avoid repeated writing of the same meta tags in all the mainpage html files individually.

Pros of current approach:

1. Easier updation, any change made to header.template.html file will reflect in all the pages.
2. Duplication of html code is avoided here.

After migration to the router, all the entry points will be unified and there will only be one mainpage.html file
that is index.html (unified entry point). As we will have only one entry file now, there is no need to separate
meta tags in a separate file.
The issue which is solved in the present approach will not be there after migration to router.
As there is no problem, then fix is also not required.

So, I will add the meta tags (static) directly to the unified entry point mainpage.html file.

During Migration:
The *-mainpage.html files which are not migrated will use header.template.html file using
underscore-template-loader. The new unified entry point will also contain the meta tags.
When all pages are migrated to angular. The header.template.html file will be finally deleted.

This will be done for static meta tags.

Currently we also interpolate some meta tags using underscore-template-loader. This wouldn’t be possible
after migration to angular cli.
To resolve this, I will use the Meta service provided by angular to set dynamic meta tags.

Example: (donate page)

@ Component ({

 selector: 'donate-page-root' ,

 template: '<donate-page></donate-page>'

})

export class DonatePageRootComponent {

 constructor (

 private pageTitleService : PageTitleService ,

 private meta : Meta

) {}

 ngOnInit (): void {

 this . pageTitleService . setPageTitle ('Donate - Oppia');

 this . meta . addTag (

 { itemprop: 'description' ,

 content: 'Donate to The Oppia Foundation to enable more ' +

 'students to receive the quality education they deserve.' });

 }

}

PERFORMANCE GAIN:

The biggest issue that affects our bundle size is duplication of libraries across pages.

I have analyzed our current bundles using the webpack-bundle-analyzer plugin.

1. Let us start with donate bundle:

As you can see about 90% of the total size of the bundle consist of libraries imported from node_modules
and constants.ts

Gzipped sizes:
Total size of donate bundle: 838.99 KB
Size of common libraries and code: 813.77 KB
Size of unique code for donate page: 25.22 KB

97% code inside this bundle consists of common libraries.

For about page:

Total size of about bundle: 798.58 KB
Size of common libraries and constants.ts = 729.52 KB
Size of unique code for this page: 29.48 KB

91% code inside these bundles consists of common libraries.

When we unify these two pages, we get a bundle that look like this:

● Here the common libraries are only imported once, the duplication of node_modules across bundles is
avoided here.

● The unique code for both pages only sums to 27.35 KB (gzipped).

I have used source-map-explorer to get these metrics.

Total size (gzipped) of both pages currently : 1636.99 KB
Total size (gzipped) after unification: 322.11 KB (main bundle) + 75.02 KB (polyfills) = 397.11 KB

We are seeing 75.74% reduction in bundle size for these two pages.

For large pages like the exploration editor page, node_modules alone takes 2.46 MB (gzipped).

After unifying all the entry points,
The reduction in total build size of oppia will be: 70.206 MB

The present total bundle size (gzipped) for all the pages is : 97 MB

So with unification only we are getting a 72 % reduction in total bundle size of oppia.

With lazy loading , we will have an initial bundle under 400 KB (gzipped).

With AOT enabled , we can get the initial bundle size under 80 KB (gzipped).

After migration angularjs libraries will no longer be required. Which led to a significant reduction in size of
third_party.js file.

Current size: 531 KB (gzipped)
After removal of angularjs libraries: 81 KB (gzipped)

Here we are seeing 84.74 % reduction in size.

Speed Changes:
Considering the user's internet speed to be constant, decrease in bundle size will directly proportional to
decrease in loading time.

For example if there is 80 % decrease in bundle size, then loading time will also decrease by 80 %.

SUB-PROJECT 2: MIGRATION FROM WEBPACK TO ANGULAR - CLI

Why?
Currently, Oppia uses webpack to bundle and compile frontend code.
Pros:

1. Fully customisable, can be configured for every requirement.
2. Provides more control over the build process.

Cons of using custom webpack configurations:
1. Steeper learning curve than angular cli
2. Lots of knowledge is required to configure it the right way
3. Not future proof, plugins and loaders can get deprecated, developers have to handle this themselves

I propose to migrate to angular cli:
Pros:

1. Easy to learn as compared to webpack
2. Does not require much configuration and boilerplate code.
3. It is future proof, underlying functionality will adapt to keep us updated.
4. Provides code generation, developers can create components, services, modules etc using ng generate

command. This will help in increasing productivity of developers.
5. Supports Server Side Rendering.

Cons:

1. Less customizable than webpack, but this can be overcome using @angular-builders/custom-webpack
plugin

Performance Comparison:
Note:
Our present webpack configuration, only transpiles typescript, doesn't perform type checking.
Whereas, angular cli builds also performs type checking along with transpilation.
We cannot disable type checking in angular cli build, So, to have a level ground, I have enabled type checking
while compiling with webpack configuration to produce these results.

Configuration webpack angular cli

Development mode without
source maps

17203ms

Command Used:
node
node_modules/webpack/bin/webp
ack.js --config
webpack.dev.config.ts

36269ms

Command used:
npx ng build

Development mode with source
maps enabled

88003ms

Command Used:
node --max-old-space-size=8192
node_modules/webpack/bin/webp

51233ms

Command Used:
npx ng build --source-map

Note:
These builds were tested on a 8 core 16 thread CPU, 16 GB DDR4 RAM and PCIe SSD.
These build times are highly hardware dependent but relative performance will remain the same for most
systems.

Conclusion:
ng cli provides better build speeds than webpack.
It is slower while using in development mode without source maps but it also performs build optimisation,
differential loading and caching out of the box.

What do developers prefer?
To find this, I conducted a survey with a small pool of participants. The main objective of the survey was to
find what tool is preferred more and why.
The participants of the survey were angular developers.

Results :
More than 75% of angular developers prefer angular cli over webpack because it provides simplicity, code
generation and is easier to learn.
Here is the link to survey form.

Build system at present:
● At present webpack builds an application for each page.

ack.js --config
webpack.dev.sourcemap.config.ts

Production mode without
sourcemaps

65262ms

Command Used:
node --max-old-space-size=8192
node_modules/webpack/bin/webp
ack.js --config
webpack.prod.config.ts

32811ms

Command Used:
npx ng build --prod

Production mode with
sourcemaps

155791ms
Command Used:
node --max-old-space-size=8192
node_modules/webpack/bin/webp
ack.js --config
webpack.prod.sourcemap.config.ts

33073ms

Command Used:
npx ng build --prod --source-map

Rebuilding time for minor changes 732ms 539ms

https://docs.google.com/forms/d/e/1FAIpQLSdICFWG6DRys0d4UZVKT8uylV_nMOSvC2JQaPHF5_eoWuwj-A/viewform?usp=sf_link

● After migration and integration of the angular router all the entry points will be unified.
● Now I will introduce angular cli in the build process, when it is fully integrated with the build system, I

will start removing the webpack from the project.
● This will be done incrementally, so PRs remain small and the Oppia is working at every stage.
● Add angular.json at project root and will optimize the production bundle.

Implementation Strategy:
I will implement this in 6 steps:

1. Introduction of angular cli using angular.json

angular.json

...

16 "architect" : {

17 "build" : {

18 "builder" : "@angular-devkit/build-angular:browser" ,

19 "options" : {

20 "outputPath" : "dist/oppia" ,

21 "index" : "core/templates/pages/app-page/index.html" ,

22 "main" : "core/templates/pages/app-page/main.ts" ,

23 "tsConfig" : "tsconfig.json" ,

24 "aot" : false ,

25 "vendorChunk" : true ,

Specifications of proposed angular.json file:

1. Should we use a separate vendor bundle?:
Pros:
The vendor bundle contains the libraries which usually are big in size and are not changed
frequently. So, by using a separate vendor file, libraries can be cached which will result in
faster rebuilding of code for developers.

26 "assets" : [

27 "core/templates/pages/app-page/assets/hashes.json" ,

28 "core/templates/pages/app-page/assets"

29],

30 "sourceMap" : true ,

31 "poll" : 1000

32 },

33 "configurations" : {

34 "production" : {

35 "fileReplacements" : [

36 {

37 "replace" :

"core/templates/pages/app-page/environments/environment.ts" ,

38 "with" :

"core/templates/pages/app-page/environments/environment.prod.ts"

39 }

40],

41 "optimization" : {

42 "scripts" : true ,

43 "styles" : true

44 },

45 "outputHashing" : "all" ,

46 "sourceMap" : false ,

47 "namedChunks" : false ,

48 "extractLicenses" : true ,

49 "vendorChunk" : false ,

50 "styles" : [

51 "third_party/generated/css/third_party.css" ,

52 "core/templates/css/oppia.css" ,

53 "core/templates/css/oppia-material.css"

54],

55 "scripts" : ["third_party/static/jquery-3.5.1/jquery.min.js" ,

 "third_party/static/jqueryui-1.12.1/jquery-ui.min.js" ,

"third_party/static/jquery-ui-touch-punch-0.3.1/jquery.ui.touch-punch-improved.js" ,

 "third_party/ngx_generated/js/third_party.js"

]

56 }

57 }

Cons:
Using a vendor chunk can lead to large build size, which will increase Oppia loading time for
users

 So, I came to the conclusion, to only use vendor chunk in development and not in production,
 so both developers and users can be benefitted.

2. There are two approaches to handle third party libraries. These are the following:
2.1 Use <link> and <script> tag.
2.2 Bundle third party libraries using ng cli.
Pros of not bundling libraries:

1. By not including third party libraries in our bundle, we can reduce build time
significantly.

Cons:
1. This approach leads to slower loading of the website for the users.
2. Browser fetches libraries from server one by one. Latency, browser and server response

time can lead to significant increase in Oppia’s loading time.
So, I came to a conclusion, to bundle libraries in production mode, so Oppia’s users will get
better loading times and not to bundle libraries in development mode, so Oppia’s developers
can enjoy faster builds. Page loading time is generally very low for developers as they have
server running on the same machine unlike users

3. Production build is optimized with minification, tree shaking and dead code elimination .

2. Integration of ng build with ̀ python -m scripts.start`:
I will replace call to spawn webpack with call to spawn ng build process:
I will replace following code in start.py:

with

135 ANGULAR_CLI_FILE = os.path.join('node_modules' , '@angular' , 'cli' , 'bin' , 'ng')

136 if not parsed_args.prod_env:

135 background_processes = []
136 if not parsed_args.prod_env:
137 # In prod mode webpack is launched through scripts/build.py
138 python_utils.PRINT('Compiling webpack...')
138 webpack_config_file = (
140 build.WEBPACK_DEV_SOURCE_MAPS_CONFIG if parsed_args.source_maps
141 else build.WEBPACK_DEV_CONFIG)
142 background_processes.append(subprocess.Popen([
143 common.NODE_BIN_PATH,
144 os.path.join(
145 common.NODE_MODULES_PATH, 'webpack' , 'bin' , 'webpack.js'),
146 '--config' , webpack_config_file, '--watch']))
147
148 # Give webpack few seconds to do the initial compilation.
149 time.sleep(10)

137 # In prod mode ng build is launched through scripts/build.py

138 background_processes.append(subprocess.Popen([

139 ANGULAR_CLI_FILE,

140 'build' , '--deploy-url=/dist/oppia' , '--watch'

141]))

142 # Give ng build a few seconds to do the initial compilation.

143 time.sleep(10)

I will perform the following changes to build.py.

Replace:
657 def build_using_webpack (config_path):
658 """Execute webpack build process. This takes all TypeScript files we have
in
659 /templates and generates JS bundles according the require() imports
660 and also compiles HTML pages into the /backend_prod_files/webpack_bundles
661 folder. The files are later copied into /build/webpack_bundles.
662 Args:
663 config_path: str. Webpack config to be used for building.
664 """
665
666 python_utils.PRINT('Building webpack')
667
668 cmd = ' %s %s --config %s ' % (
669 common.NODE_BIN_PATH, WEBPACK_FILE, config_path)
670 subprocess.check_call(cmd, shell = True)

With:

def build_using_ng_cli (enable_sourcemap = False):
 """Execute angular-cli build process.
 """

 python_utils.PRINT('Building with angular-cli')

 cmd = ' %s build --deploy-url=/dist/oppia/ --prod' % ANGULAR_CLI_FILE
 if enable_sourcemap:
 cmd = cmd + ' --source-map'
 subprocess.check_call(cmd, shell = True)

Ng cli will build and store the bundle in the dist/oppia folder. To make files present in this folder available to the
users. I will add dist/oppia as a static folder in both app.yaml and app_dev.yaml.

app.yaml, app_dev.yaml
53. expiration : "0"

54.

55. + - url : /dist/oppia

56. + static_dir : dist/oppia

57. + secure : always

58. + application_readable : true

59. + expiration : "0"

60.

61. - url : /asset

● Build using webpack will be replaced by build_using_ng_cli
● webpack configs, webpack calls in start.py and build.py will be removed.

 3. Linting

Oppia uses eslint as preferred linter for js/ts files. Angular Cli, out of the box, only provides Tslint.
So, I plan to use a third party library @angular-eslint to use eslint with ng cli.
I will add the above configuration to angular.json, so developers run eslint using ̀ ng lint ’ command.

4. Karma tests

I will add following configuration to angular.json, so developers can run frontend tests using ‘ng test’

 "test" : {
 "builder" : "@angular-devkit/build-angular:karma" ,

 "lint" : {
 "builder" : "@angular-eslint/builder:lint" ,
 "options" : {
 "eslintConfig" : ".eslintrc" ,
 "cache" : true ,
 "force" : true ,
 "lintFilePatterns" : [
 "core/**/*.ts"
],
 "ignorePath" : ".eslintignore"
 }
 },

 "options" : {
 "main" : "core/templates/pages/app-page/main.ts" ,
 "tsConfig" : "tsconfig.spec.json" ,
 "karmaConfig" : "core/tests/karma.conf.ts"
 }
 }

Karma test runner uses webpack internally with karma-webpack plugin:
I plan to replace the karma-webpack plugin with @angular-devkit/build-angular/plugins/karma plugin.
To implement this, I will modify the current angular.json file:

● I will add @angular-dev/build-angular to the frameworks array.
● I will replace karma-webpack with @angular-devkit/build-angular/plugins/karma plugin.
● I will remove the webpack test configuration added in the karma.conf.ts file.

core > tests > karma.conf.ts
...

8. module . exports = function (config) {
9. config . set ({
10. basePath: '../../' ,
11. frameworks: ['jasmine', ‘@angular-devkit/build-angular’],
12. files: [
13. // Constants must be loaded before everything else.
14. // Since jquery, angular-mocks and math-expressions
15. // are not bundled, they will be treated separately.
16. 'third_party/static/jquery-3.5.1/jquery.min.js' ,
17. 'third_party/static/angularjs-1.8.2/angular.js' ,
18. 'core/templates/karma.module.ts' ,
19. 'third_party/static/angularjs-1
...
116. plugins: [
117. 'karma-coverage-istanbul-reporter' ,
118. 'karma-jasmine' ,
119. 'karma-chrome-launcher' ,
120. 'karma-ng-html2js-preprocessor' ,
121. 'karma-json-fixtures-preprocessor' ,
122. 'karma-coverage' ,
123. - 'karma-webpack',
123. + '@angular-devkit/build-angular/plugins/karma'
124.],

...
140. - webpack: {
141. - mode: 'development' ,
142. - resolve: { ... },
160. - devtool: 'inline-cheap-source-map' ,
161. - module: {
162. - rules: [...]
217. - }
218. - }

To integrate ng test with python -m run_frontend_tests command, I will perform these changes to the
run_frontend_tests.py file.

Replace

123 cmd = [

124 os.path.join(common.NODE_MODULES_PATH, 'karma' , 'bin' , 'karma'),

125 'start' , os.path.join('core' , 'tests' , 'karma.conf.ts')]

with
37 ANGULAR_CLI_FILE = os.path.join('node_modules' , '@angular' , 'cli' , 'bin' , 'ng')

...

123 cmd = [

124 ANGULAR_CLI_FILE, 'test'

125]

● combined-tests.spec.ts will remain the same.

5. e2e tests:

angular.json
"e2e" : {
 "builder" : "@angular-devkit/build-angular:protractor" ,
 "options" : {
 "protractorConfig" : "core/tests/protractor.conf.js" ,
 "devServerTarget" : "oppia:serve"
 },
 "configurations" : {
 "production" : {
 "devServerTarget" : "oppia:serve:production"
 }
 }
 }

6. ng serve:
angular.json

 "serve" : {
 "builder" : "@angular-devkit/build-angular:dev-server" ,
 "options" : {
 "browserTarget" : "oppia:build" ,
 "proxyConfig" : "proxy.conf.json"
 },
 "configurations" : {
 "production" : {
 "browserTarget" : "oppia:build:production"
 }
 }
 },

proxy.conf.json:
{
 "/" : {
 "target" : "http://localhost:8181" ,
 "secure" : false
 }
}

Specification of the above configuration:

● Can spin up a local development server.
● Proxy api requests to the backend.

My Progress on the project before submitting the proposal:
I have been successful in setting up and migrating 3 pages to the angular router with route protection using
auth guards. I have also been successful adding angular cli (ng build, ng serve, ng lint, ng test, ng e2e) to the
project.
You can check out the work on my fork here.

Third-party Libraries
@angular-eslint (MIT License)
Oppia project uses eslint as its preferred linter for javascript and typescript files. Tslint is deprecated now.
But angular cli out of box only supports Tslint. So, to use eslint with angular cli, I will use this third party
library. For implementation details, please refer to step 3 of implementation detail of sub project 2 here .

https://github.com/ashutoshc8101/oppia/tree/demo-fireauth
https://github.com/angular-eslint/angular-eslint

Testing Approach
● Unit tests will be written along the route guard, components and services (if any) to be added.

Milestones
Community Bonding Period:

As I am already contributing to Oppia from Feb 2021, I have become quite familiar with the codebase. So, I
will start working on the project right away. This will provide me a strong head start which will help me to
cover up unexpected delays in the future.

As I am part of the angular migration team, I along with other developers will finish migration of project to
angular and will remove angularjs during this period.

Key Objective: Remove angularjs from the project
Starts: 17 May 2021
Ends: 6 June 2021

Tasks:

1. Complete migration of angularjs directives, components and left services.
2. Remove angularjs libraries from the project.

2.1 Following libraries will be removed:
1. angular
2. Angular-cookies
3. Angular-route
4. Angular-ui-sortable
5. Angular-ui-validate
6. ng-infinite-scroll

 3. Remove unused code which was written to dual boot angular and angularjs.

Milestone 1:

Key Objective : Migration to angular router
Starts: 7 June 2021
Ends: 12 July 2021

Tasks:

1. Introduce angular router in the project.
2. Migrate pages to angular router.
3. Clean up unused code.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Angular router will be ready to be used. June 8 June 10

1.2 About page will be migrated to angular
router

 June 9 June 11

1.3 Classroom, contact page will be
migrated to angular router

 June 10 June 12

1.4 Delete account and donate pages will
be migrated to angular router

 June 11 June 13

1.5 Email dashboard and error pages will
be migrated to angular router

 June 12 June 14

1.6 Get started page and landing pages will
be migrated to angular router

 June 13 June 15

1.7 Maintenance and moderator pages will
be migrated to angular router

 June 14 June 16

1.8 Collection player and exploration pages
will be migrated to angular router

 June 15 June 17

1.9 Learner dashboard and library pages
will be migrated

 June 16 June 18

1.10 Preferences and privacy pages will be
migrated

 June 17 June 19

1.11 Review test and signup pages will be
migrated

 June 18 June 20

1.12 Story viewer and subtopic viewer pages
will be migrated

 June 19 June 21

1.13 Admin page will be migrated to angular
router

 June 20 June 22

1.14 Collection editor page will be migrated
to angular router.

 June 21 June 23

1.15 Creator dashboard page will be
migrated to angular router

 June 22 June 24

1.16 Exploration editor page will be migrated June 24 June 26

1.17 Sign up page will be migrated June 25 June 27

1.18 Story editor page will be migrated June 26 June 28

1.19 Topic editor page will be migrated June 27 June 29

1.20 Topics and skills dashboard page will be
migrated

 June 28 June 30

1.21 Topic viewer page will be migrated June 29 July 1

1.22 Review and sign up page will be
migrated

 June 30 July 2

1.23 subtopic viewer and story viewer pages
will be migrated

 July 1 July 3

1.24 Not found and notification dashboard
pages will be migrated

 July 2 July 4

1.25 Pending account deletion and practice
session page will be migrated

 July 3 July 5

1.26 Privacy and splash page will be
migrated

 July 4 July 6

1.27 Teach and terms pages will be migrated July 5 July 7

Milestone 2

Key Objective : Migration to angular cli

Tasks:
● Introduce angular cli.
● Introduce ng build to build oppia.
● Introduce ng lint for linting of project with eslint.
● Introduce ng test to run karma test runner.
● Introduce ng e2e to run end to end tests.
● Introduce ng serve to run local development server.

1.28 Thanks and login pages will be
migrated

 July 6 July 8

1.29 Buffer time for milestone 1

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 Angular cli will be introduced in the
project.

 19 July 23 July

2.2 Developers will be able to build the
Oppia’s frontend with angular cli.

 24 July 28 July

2.3 Developers will be able to lint the
project using the ng lint command.

 26 July 30 July

2.4 Developers will be able to run frontend
tests with ng test command.

 1 August 4 August

2.5 Developers will be able to run end to
end workflows using ng e2e command.

 6 August 10 August

2.6 Developers will be able to run a
development server for frontend using
ng serve command.

 11 August 14 August

2.7 Buffer time for milestone 2

Additional Project-Specific Considerations

Privacy
No, this project does not add any new feature which collects user data.

Security
No, this feature does not have any security considerations. Most of the changes are only related to frontend.
If by mistake any wrong change is made, it will in the worst case only affect frontend security. If any user gets
through the frontend security layer, the api endpoints are secured at the backend. So, he will not be able to
gain any unauthorized access.

Accessibility
Only subproject 1 (Migration to angular router) is a user facing feature.
For the feature to be accessible, I will ensure following:

● All the routerLinks will be reachable through tabs.
● The title of every page can be announced using screen readers.

Documentation Changes
Oppia’s wiki has a section for webpack.
That section will no longer be required after the migration to angular cli.
I will replace that section with a section explaining the usage of ng cli and its configuration.

Future Work

1. Implementation of preloading strategy for frontend routing:
Default strategy for routing provides fast interpage navigation but results in large initial bundle size.
On the other hand, Lazy loading provides a smaller initial bundle but interpage navigation is not fast
as default strategy.
Preloading provides the best of both worlds, with preloading we can have a smaller initial bundle
without the cost of relatively slower interpage navigation.

2. Server Side Rendering for Oppia using angular universal:
With Server Side Rendering, static pages are generated on the server. As servers have generally
better resources, they can render web pages more quickly as compared to a user's browser. It also
provides better Search Engine Optimization.

