
About You

Why are you interested in working with Oppia, and on your chosen project?

I have always been an advocate and a firm believer of education being the only way of bringing
positive change in the world. And for this reason, I started working on a project which mapped
out to UN’s SDG#4 (Quality Education) and came under the Millennium Fellowship by MCN and
UNAI in 2020. It worked on the problem of lack of guidance, exposure and direction by providing
the means to access information and experiences of others with the aim to bring forth educated
decisions regarding career choices.

I wanted to work on something I believed in. The mission of my project coincides with Oppia’s,
where mine focuses on career guidance, Oppia focuses on learning. and this makes me
personally involved and determined to make substantial contributions that I hope could
ultimately lead to Oppia’s success and in-return help the masses to have access to learning
freely. Also, the tech stack used in Oppia is similar to what I have worked on (Python + Angular).

I started working on Angular2+ back in 2020 and had typescript strict checks enabled for all of
my projects. I went through quite a learning curve to understand how these are implemented as
I wanted to experience using best practices when developing in Angular. Since I have already
spent time understanding the fundamentals, I would like to learn more and perfect this
knowledge and this project fits perfectly in helping me do just that. It would enable me to find
solutions to situations with strict typing that I have not encountered yet.

Prior experience
I have have the following experience with regards to the technical skills needed:

● One year experience using Angular2+
○ Completed Angular Essential Training on Linkedin Learning.
○ The project under the Millennium Fellowship mentioned above uses Angular2+ as

the frontend technology.
○ Developed a multi-purpose platform dedicated for the propagation and the use of

machine learning and data science using Angular.
● Two years experience using Python

○ Completed Crash Course on Python offered by Google on Coursera
○ The project under the Millennium Fellowship mentioned above uses

Django(Python) as the backend technology.
● Two+ years of experience using Github

○ Completed Introduction to Git and GitHub offered by Google on Coursera
● One+ month experience in Quality Assurance

○ Worked as a Software Quality Assurance Trainee at Afiniti.

https://www.millenniumfellows.org/
https://www.afiniti.com/

● Two+ years of Experience in Tech Communities (Non-Technical Skills)
○ Projects Lead at Google’s Developer Student Club, NUST
○ Chair Operations at NUST ACM Student Chapter
○ Microsoft Learn Student Ambassador at Microsoft

Links to PRs:
● #12462 - - Fix Part of #4057: Fully cover NumericInputValidationService with unit tests
● #12429 - - Fix Part of #10474: Make TS checks strict for StateEditorRefreshService,

StateNameService, StoryNodeModel
● #12423 - - Fix Part of #10474 : Make checks strict for SchemaFormSubmittedService and

SetInputRulesService
● #12411 - - Fix Part of #10474 : Make typescript checks strict for

MathEquationInputRulesService

Contact info and timezone(s)
Name: Eesha Arif
Location: Islamabad, Pakistan
Contact No: +92 3134756364
Education (Ongoing): Bachelors in Software Engineering
Institution: National University of Sciences and Technology, Pakistan
Primary Email (Hangouts): eeshaarif@gmail.com
Secondary Email: earif.bese18seecs@seecs.edu.pk
Github: @EeshaArif
Linkedin: https://www.linkedin.com/in/eesha-arif-a9084616b
Preferred Communication Method: hangouts, email, slack, discord
Timezone: Pakistan Standard Time UTC+05:00

Time commitment

S.No Dates (Week) Days (Total) Time Commitment

0 17th May - 21st May Mon - Fri (5) 2h/day - 10h/week

1 24th May - 28th May Mon - Fri (5) 2h/day - 10h/week

2 31st May - 2nd June Mon - Wed (3) 2h/day - 6h/week

3 7th June - 12th June NA NA

4 15th June - 20th June Tues - Sun (6) 3h/day - 18h/week

https://github.com/oppia/oppia/pull/12462
https://github.com/oppia/oppia/pull/12429
https://github.com/oppia/oppia/pull/12423
https://github.com/oppia/oppia/pull/12411
mailto:eeshaarif@gmail.com
mailto:earif.bese18seecs@seecs.edu.pk
https://github.com/EeshaArif
https://www.linkedin.com/in/eesha-arif-a9084616b

5 21st June - 27th June Mon - Sun (7) 3h/day - 21h/week

6 28th June - 1st July, 3rd
July-4th July

Mon - Thurs, Sat - Sun (6) 3h/day - 18h/week

7 5th July - 9th July Mon - Fri (5) 3h/day - 15h/week

8 12th July - 16th July Mon - Fri (5) 3h/day - 15h/week

9 19th July - 25th July Mon - Fri (7) 3h/day - 21h/week

10 26th July - 1st August Mon - Sun (7) 3h/day - 21h/week

11 2nd August - 8th August Mon - Sun (7) 3h/day - 21h/week

12 9th August - 15th August Mon - Sun (7) 3h/day - 21h/week

Estimated Total Working Days: 68 days
Estimated Total Time Commitment: 197 hours (This can be subject to change according to
progress and need)

(The above mentioned estimates were taken to the best of my knowledge at the time of writing
this proposal)

Essential Prerequisites
● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine.

● I am able to run one suite of e2e tests on my machine.

Other summer obligations:
I will have classes from 17th May to 2nd June but will still be able to work on the project.

I have final exams for this semester on the 3rd week (7th June - 12th June) and would not be
able to work for the specified week (The specific week might change due to Covid).

During writing of this proposal, I have no other summer commitments.

Communication channels
I plan on communicating with my mentor weekly for progress reports and as-needed during the
project.
Channels:
I plan on using any one of the following channels:

● Google Meets
● Zoom
● MS Teams
● Hangouts

Application to multiple orgs
I am only applying to Oppia.

Project Details

Product Design
The users for this project are the developers on the Oppia team

Oppia uses Angular as the frontend framework with typescript as the primary language, hence
this codebase is fully typed which implies that variable assignment, procedure arguments and
function return values will all be associated explicitly with a type.

Moreover, these type checks are enforced during compile time which signifies that exceptions
and errors are more likely to occur during compilation. Hence, this explicit typing makes code
self-documenting, produces less bugs, enhances understanding of the code and reduces
wastage of time from debugging errors at runtime.

`strict` is a typescript compiler option which turns on the following set of rules (strict mode):

● noImplicitAny
○ Variables/function arguments cannot have implicit type `any`

● noImplicitThis
○ The context of `this` cannot be defined implicitly

● strictNullChecks
○ Values can be null or undefined only if explicitly marked

● strictPropertyInitialization
○ All class properties need to be initialized in a constructor or property initializer

● strictBindCallApply
○ Enforces stricter checking of `bind`, `call` and `apply` functions

● strictFunctionTypes
○ Argument types cannot be bivariant

Enabling the above rules helps to reduce the chances of getting unpredictable results and
makes the code more robust but currently, Oppia’s code base does not pass these strict rules.
This makes the code prone to unexpected actions and errors.

To avoid this, the following actions need to be taken:
1. All the new files to be added should have typescript strict mode enabled
2. Strict typing should be introduced to the files already present in the code base

In this project, I will change the typescript config strict file to ensure that all newly added files
need to pass these strict rules. After this, I will take 120 files and their tests (120 + 120 = 240)
already present in the code base and enforce these strict typing checks on them. These files will
be chosen from UpgradedServices.ts which has files listed down in eleven topological levels
(0-10). The files will be updated in ascending order of topological level, hence the files listed at
topological level 0 will be chosen first and then the ones present at a higher level will be
considered.

Upon the completion of the project, any new file added to the Oppia’s code base will, by default,
have typescript strict mode enabled and hence would need to pass all the above mentioned
rules. Also, strict typing will be introduced to some 120 files listed down in UpgradedServices.ts
alongside their test files (240 in total).

Technical Design

Architectural Overview
The Oppia codebase currently has two typescript config files; tsconfig.json and
tsconfig-strict.json.

https://github.com/oppia/oppia/blob/develop/tsconfig.json
https://github.com/oppia/oppia/blob/develop/tsconfig-strict.json

tsconfig-strict.json:
tsconfig-strict.json compiler options has strict set to true which enables the five rules namely
noImplicitAny, noImplicitThis, strictNullChecks, strictPropertyInitialization. strictBindCallApply
and strictFunctionTypes.
It currently lists down specific files which pass the strict typescript checks. This list has been
updated incrementally after introducing the strict rules to individual files since all the files
cannot be covered at once as the compiler throws a significant number of errors.

These config options (strict mode), hence, are only enabled for the files listed down in
tsconfig-strict.json.

tsconfig.json:
Whereas in tsconfig.json, these strict rules are disabled by setting noImplicitUseStrict as true in
the compiler options. This config file currently includes all the groups of files present in Oppia
codebase folders “core”, “extensions” and “typings”. Hence, the strict mode is disabled for all the
files in the folders when this configuration is used.

typescript_checks.py:
typescript_checks.py is the script used for compiling and checking typescript. It compiles the
files using the configuration stated in a typescript config file. If an optional flag “--strict_checks”
is added then it compiles the files using tsconfig-strict.json. If the flag is removed then the
tsconfig.json file is used instead.

No Command Config File

1 python -m scripts.typescript_checks tsconfig.json

2 python -m scripts.typescript_checks --strict_checks tsconfig-strict.json

config.yml:
Oppia uses CircleCI for continuous integrations. The CircleCI tests run the following job.

https://github.com/oppia/oppia/blob/develop/scripts/typescript_checks.py

It runs python -m scripts.typescript_checks:
● All the files in the folder paths included in tsconfig.json will be compiled and checked

without strict rules
● The folders included were core, extensions, and typings

Then it runs python -m scripts.typescript_checks --strict_checks
● The specific files included in tsconfig-strict.json will be compiled again but checked with

strict rules
● These specific files were also present in “core”, “extensions” and/or “typings” folder.

pre_push_hook.py:
This hook also performs the same action as above. It runs both the commands and checks for
errors before pushing to the repository.

https://github.com/oppia/oppia/blob/develop/scripts/pre_push_hook.py#L512-L528

Implementation Approach
The following tasks need to be performed:

1. Make all newly added files enforce TS strict checks
2. Make TS checks strict for files already present in the codebase.

2.1. Choose the files to cover and their order
2.2. Introduce strict typescript checks to chosen files

1. Make all newly added files enforce TS strict checks
The tsconfig-strict.json file needs to be changed to make all newly added typescript files compile
with strict mode enabled.

Currently it has a files property which is an array which lists down all the files that will be
included with the configuration set to strict mode.

The tsc CLI does not provide any flag for just outputting the name of files in which error occurs.

We need to get a list of files which do not pass strict checks and exclude them, the following
steps will be taken:

1. The include property will be updated to include core and extensions folder in its paths.

"include": ["core/*.ts","extensions/*.ts","typings/*.ts"]

2. The following command will be run

python -m scripts.typescript_checks --strict_checks > out.txt

This will log the error output in a text file named out.txt

3. The text file looks like this

4. The following is a python script that will clean the output

5. And then by running the following command, we will get the list of all the files in the
Oppia codebase that currently do not pass strict checks in the text file named
exclude_files.txt.

python out.py > exclude_files.txt

The file looks like this

6. We add another property exclude in tsconfig-strict.json and set its value to the list of file
paths in exclude_files.txt.

7. And lastly, we remove the files property alongside its file paths since they are already
being covered in include.

These steps will enable strict mode for every other new file that will be added in the folders
‘core’, ‘extensions’ and ‘typings’ but will exclude the files already present in the codebase that
do not pass these checks.

2. Make TS checks strict for files already present in the codebase

2.1 Choose the files to cover and their order:
The Oppia Foundation had already started introducing strict typing to files present at the
topological level 0 in UpgradedServices.ts. And this is being tracked with #10474: Make
typescript checks strict.

As stated before, the files will be updated in ascending order of topological level, hence the files
listed at topological level 0 will be chosen first and then the ones present at a higher level will be
considered but the order can change if a file present at a lower level has a dependency of a file
present at a higher level. The dependency will be catered first.

https://github.com/oppia/oppia/blob/develop/core/templates/services/UpgradedServices.ts
https://github.com/oppia/oppia/issues/10474
https://github.com/oppia/oppia/issues/10474

On further inspection of this issue together with files listed down in tsconfig-strict.json and
UpgradedServices.ts, the state of the files during writing of this proposal is as follows:

Assigned Files: (Not Covered):
These files are already assigned to contributors and will only be covered during the project if a
dependency exists with another file.

1. baseInteractionValidationService
2. CollectionValidationService
3. ComputeGraphService
4. ExplorationFeaturesService
5. ImprovementsService
6. InteractionSpecsService
7. MusicPhrasePlayerService
8. NumericExpressionInputRulesService

Topological Level 0:
Total: 90 files
Not Covered: 32 files

No File Dependencies

1 ExplorationDiffService (No Test File) InteractionObjectFactory,
RecordedVoiceOverObjectFactory,
NumberWithUnitsObjectFactory,
ExtensionTagAssemblerService,
StatesObjectFactory,
StateObjectFactory,
ParamTypeObjectFactory,
RuleObjectFactory,
UnitsObjectFactory,
WrittenTranslationObjectFactory

2 GraphUtilsService InteractionObjectFactory,
NumberWithUnitsObjectFactory,
RecordedVoiceOverObjectFactory,
ExtensionTagAssemblerService,
StatesObjectFactory,
StateObjectFactory,
ComputeGraphService,
RuleObjectFactory.ts,
StateGraphLayoutService,
UnitsObjectFactory,
WrittenTranslationObjectFactory

https://github.com/oppia/oppia/blob/develop/tsconfig-strict.json

3 LearnerActionObjectFactory NA

4 LostChangeObjectFactory NumberWithUnitsObjectFactory,
RecordedVoiceOverObjectFactory,
ExtensionTagAssemblerService,
StatesObjectFactory,
StateObjectFactory,
ComputeGraphService,
ParamTypeObjectFactory.ts,
RuleObjectFactory.ts,
UnitsObjectFactory,
UtilsService,
WrittenTranslationObjectFactory

5 MisconceptionObjectFactory NA

6 NumberAttemptsService NA

7 ParamTypeObjectFactory NA

8 PlayerCorrectnessFeedbackEnabledService
(No Test File)

NA

9 PlaythroughIssueObjectFactory NA

10 RatingComputationService NA

11 RatioExpressionInputRulesService RatioModel

12 ReviewTestEngineService NA

13 RubricObjectFactory NA

14 RuleObjectFactory NA

15 ShortSkillSummaryObjectFactory NA

16 SolutionValidityService NA

17 StateGraphLayoutService (No Test File) InteractionObjectFactory,
RecordedVoiceOverObjectFactory,
NumberWithUnitsObjectFactory,
ExtensionTagAssemblerService,
StatesObjectFactory,
StateObjectFactory,
ComputeGraphService,
RuleObjectFactory.ts,
StateGraphLayoutService,
UnitsObjectFactory,

WrittenTranslationsObjectFactory

18 StoryContentsObjectFactory NA

19 StoryObjectFactory StoryContentsObjectFactory

20 StoryReferenceObjectFactory NA

21 SuggestionModalService NA

22 SuggestionsService NA

23 TextInputTokenizer NA

24 ThreadStatusDisplayService NA

25 TopicsAndSkillsDashboardPageService NA

26 UnitsObjectFactory NA

27 UtilsService NA

28 VersionTreeService InteractionObjectFactory,
RecordedVoiceOverObjectFactory,
NumberWithUnitsObjectFactory,
ExtensionTagAssemblerService,
ParamTypeObjectFactory,
RuleObjectFactory,
UnitsObjectFactory,
WrittenTranslationObjectFactory

29 VoiceoverObjectFactory NA

30 WindowRef NA

31 WinnowingPreprocessingService NA

32 WrittenTranslationObjectFactory NA

Topological Level 1:

No File Dependencies

1 AlgebraicExpressionInputValidationService NA

2 AlertsService NA

3 BrowserCheckerService NA

4 CodeReplValidationService RuleObjectFactory

5 ContinueValidationService RuleObjectFactory

6 DeviceInfoService NA

7 DocumentAttributeCustomizationService NA

8 DragAndDropSortInputValidationService RuleObjectFactory

9 ExpressionSyntaxTreeService NA

10 FeedbackThreadObjectFactory ThreadMessageModel

11 FractionInputRulesService UtilsService

12 FractionInputValidationService RuleObjectFactory

13 GraphInputRulesService GraphUtilsService, UtilsService

14 GraphInputValidationService RuleObjectFactory

15 GuestCollectionProgressService CollectionNodeModel,
CollectionProgressModel

16 HintObjectFactory NA

17 HtmlEscaperService NA

18 ImageClickInputValidationService RuleObjectFactory

19 InteractiveMapValidationService RuleObjectFactory

20 ItemSelectionInputValidationService RuleObjectFactory

21 LocalStorageService InteractionObjectFactory,
ParamTypeObjectFactory,
RecordedVoiceOverObjectFactory,
RuleObjectFactory,
WrittenTranslationObjectFactory,
NumberWithUnitsObjectFactory,
UnitsObjectFactory,
ExtensionTagAssemblerService

22 MathEquationInputValidationService RuleObjectFactory

23 MessengerService (No Test File) NA

24 MetaTagCustomizationService NA

25 MultipleChoiceInputValidationService RuleObjectFactory

26 MusicNotesInputRulesService UtilsService

27 MusicNotesInputValidationService NA

28 NormalizeWhitespacePipe UtilsService

29 NumericInputValidationService RuleObjectFactory

30 NumberWithUnitsObjectFactory UnitsObjectFactory

31 NumericExpressionInputValidationService RuleObjectFactory

32 NumberWithUnitsRulesService UnitsObjectFactory, UtilsService.
NumberWithUnitsObjectFactory

33 OutcomeObjectFactory NA

34 PageTitleService NA

35 ParamChangesObjectFactory NA

36 ParamSpecObjectFactory ParamTypeObjectFactory

37 ParamTypeObjectFactory NA

38 PencilCodeEditorValidationService RuleObjectFactory

39 PlayerTranscriptService ExtensionTagAssemblerService,
AudioTranslationLanguageService,
LanguageUtilService,
StateCardObjectFactory,
UnitsObjectFactory,
NumberWithUnitsObjectFactory,
WrittenTranslationsObjectFactory,
RuleObjectFactory,
RecordedVoiceoverObjectFactory,
InteractionObjectFactory

40 PlaythroughObjectFactory NA

41 PythonProgramTokenizer NA

42 QuestionValidationService ExtensionTagAssembler,
SolutionValidityService,
StateObjectFactory,
QuestionObjectFactory,
UnitsObjectFactory,

NumberWithUnitsObjectFactory,
WrittenTranslationsObjectFactory,
RuleObjectFactory,
RecordedVoiceOverObjectFactory,
InteractionObjectFactory

43 RatioExpressionInputValidationService RatioModel, RuleObjectFactory

44 RecordedVoiceoversObjectFactory NA

45 SetInputValidationService RuleObjectFactory

46 SkillCreationBackendApiService NA

47 StateTopAnswersStatsObjectFactory NA

48 SpeechSynthesisChunkerService NA

49 SVMPredictionService NA

50 SchemaDefaultValueService NA

51 SiteAnalyticsService NA

52 StateClassifierMappingService NA

53 StateEditorService ExtensionTagAssemblerService,
SolutionValidityService,
StateObjectFactory,
QuestionObjectFactory,
UnitsObjectFactory,
NumberWithUnitsObjectFactory,
WrittenTranslationsObjectFactory,
RuleObjectFactory,
RecordedVoiceOverObjectFactory,
InteractionObjectFactory

54 StoryContentsObjectFactory NA

55 SubtopicObjectFactory NA

56 TextInputValidationService TextInputRulesService,
UtilsService, RuleObjectFactory

57 TopicCreationBackendApiService NA

58 UrlService NA

59 WindowDimensionsService NA

60 WorkedExampleObjectFactory NA

61 WrittenTranslationsObjectFactory NA

Topological Level 2:

No File Dependencies

1 AnswerGroupObjectFactory (No Test File) RuleObjectFactory

2 CkEditorCopyContentService NA

3 AutogeneratedAudioPlayerService (No Test
File)

SpeechSynthesisChunkerService

4 BottomNavbarStatusService PreventPageUnloadEventService

5 PreventPageUnloadEventService NA

6 CodeReplPredictionService WinnowingPreprocessingService.
SVMPredictionService,
PythonProgramTokenizer

7 CodeReplRulesService UtilsService

8 ConceptCardObjectFactory RecordedVoiceOverObjectFactory

9 EditorFirstTimeEventsService NA

10 ExpressionSyntaxTreeService NA

11 ExtensionTagAssemblerService NA

12 FocusManagerService NA

13 NumberWithUnitsValidationService UnitsObjectFactory,
NumberWithUnitsObjectFactory,
RuleObjectFactory

14 ParamSpecsObjectFactory UtilsService

15 SidebarStatusService NA

16 SubtopicPageContentsObjectFactory RecordedVoiceOverObjectFactory

17 TopicObjectFactory SubtopicObjectFactory

18 ValidatorsService UtilsService

Some files will also be covered which are not present in UpgradedServices.ts but are a
dependency.

The order in which the strict checks will be introduced to the files is listed down in Milestones.

2.2 Introduce strict typescript checks to chosen files:
When converting the current Oppia’s codebase files to strict mode, the following are some of
the recurring situations which arise alongside the solutions on how to solve them.

Situation 1:
The type of variable is not defined explicitly and hence typescript assigns it an ‘any’ type. This
violates the noImplicitAny rule of strict mode. This situation mostly occurs in the test files of the
Oppia codebase.

To solve this, the variable is explicitly assigned the type it belongs to. In some cases in the
Oppia codebase, we may need to import the Interface, Class or Type as it is not imported in the
file before.
In the example, the service was of type WinnowingPreprocessingService.

Situation 2:

The strictNullChecks rule disallows assigning null and undefined as a value until the type is
explicitly marked.
In the following example taken from the codebase, ruleObjectFactory is of type
RuleObjectFactory. Since it was not explicitly assigned the type null, the compiler throws an
error when we try to assign it the value null.

In some cases that arise throughout the Oppia codebase as in this example, we can simply
remove the null value assignment.

Situation 3:
In cases where the strictNullChecks rule does not pass and the value null or undefined is
being passed to a function, the first course of action to be taken is to try and refactor the code in
a way that adding null or undefined may not be needed.

We can try to refactor it by assigning it an empty string but the initial value of savedMemento
has to be null.
The value null for savedMemento is being passed here;

If refactoring may not be an option as in the example above, we can always add the types null
explicitly.

Situation 4:
In situations where the type is undefined and cannot be refactored.

height() will only return undefined if shadowPreviewCard Selector does not exist.
The css classes do exist in the directives html code and was put there for the exact purpose of
checking the height of the card and hence the selector will be valid and the undefined case will
never occur as of this state of the code.

We could just use the non-null assertion operator to assert that the undefined case will never
occur but with the @typescript-eslint/no-non-null-assertion enabled, the non-null assertion
operator is forbidden.

And there could also be a situation where the code is updated and accidently the wrong classes
or selectors are used. In that case, we should not send wrong height warnings to the user.

Note: (undefined > 630) would have returned false even if not stated explicitly above but
explicitly stating it makes it easier to debug if the need arises.

A test case should be added in its spec file for the scenario where the wrong selector may have
been used to make sure the error is caught before any code change is accepted.
Another approach to be used is to simply throw an error.

Situation 5:
Using ? before assigning values to properties makes them optional, which means that they can
have type undefined alongside whichever type they were assigned.

For example, can_edit_topic is implicitly of type boolean | undefined.

A case can arise where these properties are sure to be assigned a value (they are surely
non-undefined) and are used as an argument (or any other assignment) which is not of type
undefined. At times the strictNullChecks will not allow this since the compiler (type checker) fails
to conclude the fact that the value assigned to these properties will surely never be undefined
and throws an error.

A solution to this is to use the Non-null assertion operator (!), it asserts the type checker that
its operand will be non-undefined and non-null or in other words, excludes the type undefined
and null from the operand’s type.

Situation 6:
The strictPropoertyInitialization rule enforces that the properties be assigned either in a
constructor or with a property initializer and due to this, the following situation may occur.

We can initialize them in the constructor but there are different number of ways to solve this:

We can use the assertion operator if we are sure the value will be assigned at runtime before
being used.

If that is not the case, we can make it optional and put a check for edge cases throughout the
code where the property might be undefined.

Situation 7:
This situation or a variant of it arises in a significant number of files in the Oppia codebase when
working with dictionaries. The following error arises because there is no explicit type mentioned
for the key-value pairs of the dictionary. Hence the type of value returned for the specific key
cannot be determined and ends up implicitly with type ‘any’ which is not allowed in typescript
strict mode.

In the example, nodeTitles had type { } with no explicit mentioning of the types of key-value pairs
and nodes[].getId() returned a string.

To solve this, we need to explicitly mention the type of key-value pair/s present in the dictionary
which is done in the following example in the second statement of the function.

Another approach that could be taken is to define an interface.

And that interface type declaration can be used instead.

Null refactor:
We should always change the spec file to adhere to the actual file and hence for the following
null assertions, it is better to refactor the code

Which can be done as follows:

The below case demonstrates refactoring the code not in the test file

We can assign them the following initial values

Situation 8:

The following demonstrates how to handle constants.
If the following scenario arises where we need to specify the type

then its solution is to use typeof <constant> at line 32

Situation 9:

When it comes to constants and their keys, the following situation may arise

The potential fix to this error is to explicitly identify the type of key values to be of those
properties present in the constant.

Situation 10:

Another situation that arose while dealing with constants was the following:
createUnit is a function that belongs to math.js library and hence its function definition could not
be changed.
The function expects the following parameters

but the CURRENCY_UNITS properties are of type readonly and direct conversion to type
string[] is not possible.

The potential fix to the problem is to use Object.values() instead

Situation 11:

A different situation which rises that involves “this” is as follows:

The way to handle this is by initializing the variables and their types and removing ‘this’ before
each call.

Situation 12:

We should always change the spec file to adhere to the actual file and hence for the following
null assertions, it is better to refactor the code

Which can be done as follows:

Situation 13:

The below case demonstrates refactoring the code not in the test file

We can assign them the following initial values

Situation 14:

Consider the following situation where the return type may be undefined.

We can cater the condition of that state not existing and hence, ensure if undefined case arises,
it will be handled.

Third-party Libraries*
No third party Libraries need to be added.

Testing Approach
With the typescript strict mode enabled for a file, the compiler will throw errors if any strict rule
is being violated. Also, with the pre_push_hook.py already present in the codebase, it is
impossible for a developer (unix like systems) to push changes that fail the typescript checks.
typescript_checks.py is the file for compiling and checking typescript. This is sufficient to ensure
that the files that have strict mode enabled will pass the strict checks and since this mode will
be enabled by default for any new file added to the codebase, the pre_push_hook ensures that
they will be strictly typed. For systems where the hook does not work, the circleCI workflow jobs
will fail if the checks do not pass.

Milestones
(The files have been grouped to 5 per PR and in a way to keep a balance between the level of
complexity in each PR)

Milestone 1
Key Objective: All newly added files to the codebase are strictly typed and the set of 55 files and
their tests (110 individual files) have typescript strict mode enabled and pass the typescript
strict checks.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Make all newly added files enforce TS strict
checks

NA 26th May 1st June

1.2 Make TS checks strict for
StoryContentsObjectFactory,
RatingComputationService,
SuggestionsService,
TextInputTokenizer,
WindowRef

NA 31st May 4th June

1.3 Make TS checks strict for
RuleObjectFactory,
UnitsObjectFactory,
WrittenTranslationObjectFactory,
TopicsAndSkillsDashboardPageService,

NA 16th June 19th June

https://github.com/oppia/oppia/blob/develop/scripts/pre_push_hook.py#L521
https://github.com/oppia/oppia/blob/develop/scripts/typescript_checks.py

ThreadStatusDisplayService

1.4 Make TS checks strict for
StatesObjectFactory
StateObjectFactory
ComputeGraphService
ShortSkillSummaryObjectFactory
RubricObjectFactory

NA 18th June 21st June

1.5 Make TS checks strict for
InteractionObjectFactory,
ParamTypeObjectFactory,
RecordedVoiceOverObjectFactory,
NumberWithUnitsObjectFactory,
ExtensionTagAssemblerService

NA 20th June 23rd June

1.6 Make TS checks strict for
WinnowingPreprocessingService,
PlaythroughIssueObjectFactory,
PlayerCorrectnessFeedbackEnabledService,
RatioExpressionInputRulesService +
RatioModel,
AlgebraicExpressionInputValidationService

NA 22nd June 25th June

1.7 Make TS checks strict for
StoryObjectFactory
UtilsService,
SuggestionModalService,
StoryReferenceObjectFactory,
ReviewTestEngineService

1.2 24th June 27th June

1.8 Make TS checks strict for
StateGraphLayoutService,
VersionTreeService,
ExplorationDiffService,
VoiceoverObjectFactory,
SolutionValidityService,

1.3,
1.4,
1.5

26th June 29th June

1.9 Make TS checks strict for
DeviceInfoService,
DocumentAttributeCustomizationService,
DragAndDropSortInputValidationService,
ExpressionSyntaxTreeService,
FeedbackThreadObjectFactory +
ThreadMessageModel

1.3 28th June 2nd July

1.10 Make TS checks strict for,
AlertsService,
BrowserCheckerService,
CodeReplValidationService,
ContinueValidationService,
FractionInputRulesService

1.3,
1.7

1st July 4th July

1.11 Make TS checks strict for
FocusManagerService,
NumberWithUnitsValidationService,
ParamSpecsObjectFactory,
SidebarStatusService,
SubtopicPageContentsObjectFactory

1.3,
1.5,
1.7

3rd July 7th July

1.12 Make TS checks strict for
GraphUtilsService,
LostChangeObjectFactory,
MisconceptionObjectFactory,
NumberAttemptsService,
LearnerActionObjectFactory

1.3,
1.4,
1.5,
1.7,
1.8

4th July 7th July

Milestone 2
Key Objective: The set of 65 files and their tests (130 individual files) have typescript strict
mode enabled and pass the typescript strict checks.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.0 Make the typescript types guide more
thorough. (wiki update)

NA 9th July NA

2.1 Make TS checks strict for
FractionInputValidationService,
GraphInputValidationService,
HintObjectFactory,
HtmlEscaperService,
ImageClickInputValidationService

1.3 12th July 15th July

2.2 Make TS checks strict for
GuestCollectionProgressService +
CollectionNodeModel +

1.3,
1.5

14th July 17th July

CollectionProgressModel,
InteractiveMapValidationService,
ItemSelectionInputValidationService,
LocalStorageService

2.3 Make TS checks strict for
MathEquationInputValidationService,
MessengerService,
MetaTagCustomizationService,
MultipleChoiceInputValidationService,
MusicNotesInputRulesService

1.3,
1.7

16th July 19th July

2.4 Make TS checks strict for
GraphInputRulesService,
MusicNotesInputValidationService,
NormalizeWhitespacePipe,
NumericInputValidationService,
NumericExpressionInputValidationService

1.3,
1.7,
1.12

20th July 23rd July

2.5 Make TS checks strict for
NumberWithUnitsRulesService,
OutcomeObjectFactory,
PageTitleService,
ParamChangesObjectFactory,
ParamSpecObjectFactory

1.3,
1.5,
1.7

22nd July 25th July

2.6 Make TS checks strict for
PencilCodeEditorValidationService,
PlayerTranscriptService,
AudioTranslationLanguageService,
LanguageUtilService,
StateCardObjectFactory

1.3 24th July 27th July

2.7 Make TS checks strict for
PlaythroughObjectFactory,
PythonProgramTokenizer,
QuestionsObjectFactory,
RatioExpressionInputValidationService,
SetInputValidationService

1.3,
1.6

26th July 29th July

2.8 Make TS checks strict for
SkillCreationBackendApiService,
StateTopAnswersStatsObjectFactory,
SpeechSynthesisChunkerService,
SVMPredictionService,
SchemaDefaultValueService

NA 28th July 31st July

2.9 Make TS checks strict for 1.3, 30th July 2nd August

SiteAnalyticsService,
StateClassifierMappingService,
StoryContentsObjectFactory,
SubtopicObjectFactory,
TextInputRulesService

1.7,

2.10 Make TS checks strict for
TopicCreationBackendApiService,
UrlService,
WindowDimensionsService,
WorkedExampleObjectFactory,
AnswerGroupObjectFactory

1.3 1st August 4th August

2.11 Make TS checks strict for
CkEditorCopyContentService,
AutogeneratedAudioPlayerService,
BottomNavbarStatusService,
PreventPageUnloadEventService,
ValidatorsService

1.7,
2.8

3rd August 6th August

2.12 Make TS checks strict for
PlayerTranscriptService,
QuestionValidationService,
StateEditorService,
TextInputValidationService,
ExpressionSyntaxTreeService

1.3,
1.4,
1.5,
1.8,
2.6,
2.7,
2.9

5th August 8th August

2.13 Make TS checks strict for
CodeReplPredictionService,
CodeReplRulesService,
ConceptCardObjectFactory,
EditorFirstTimeEventsService,
TopicObjectFactory

1.5,
1.6,
1.7,
2.8,
2.9

8th August 11th August

Optional Sections

Additional Project-Specific Considerations
Please elaborate on the specific documentation changes that will be added in this project. Be as
concrete as possible, and provide clear details.

Documentation Changes:
The following documentation changes may be required:

● An assertion to developers that TS strict typing will be enabled for every new file to be
added to the codebase.

● A guide on typescript types is already present in Oppia wiki. This needs to be made
more thorough with additional description (with examples) of the rules that are enforced
due to strict mode.

The Guide on Defining Types will be updated with the addition of the following section and
subsections:

TypeScript Strict Mode:
(This is just a draft of the expected changes to the guide, the updated guide will be more
detailed)

Why Enable Strict Mode?
This section will contain an elaboration on the following points:

● Provides self documentation
● Catches edge cases and reduces potential runtime errors
● Enables writing more robust code

The Strict Rules:
(This will be a general explanation of the rules with simple code examples alongside
explanations of the code snippets, not targeted towards Oppia codebase)

noImplicitAny

Definition:

This rule disallows variables and function arguments to have implicit type `any`

Violation:

const multiply2 = (num) => num * 2;
// error: parameter 'num' implicitly has an 'any' type

Potential Fix:

const multiply2 = (num: number) => num * 2;

noImplicitThis

Definition:

This rule disallows the context of `this` to be defined implicitly

https://github.com/oppia/oppia/wiki/Guide-on-defining-types
https://github.com/oppia/oppia/wiki/Guide-on-defining-types

Violation:

class Employee {
constructor(private name: string) {}

greetEmployee() {
return function() {
console.log(`Hello ${this.name}!`);
// error: 'this' implicitly has type 'any' because it does not have a type annotation.

};
}

}

Potential Fix:

greetEmployee() {
return function (this: Employee) {
...

};
}

or

greetEmployee() {
return () => {
...

};
}

strictNullChecks

Definition

Values can be null or undefined only if explicitly marked

Violation - undefined:

function getEmployeeById (employees: Employee[], id: string): Employee {
const employee = employees.find(employee => employee.id === id);
return employee;
// error: Object is possibly 'undefined'.

}

Potential Fix:

function getEmployeeById (employees: Employee[], id: string): Employee {

const employee = employees.find(employee => employee.id === id)
if (typeof employee === 'undefined') {
throw new Error(`Could not find employee with id: ${id}.`);

}
return employee;

}

Violation - null:

let employee: Employee;
...
employee = null;
// error: type null is not assignable to type ‘Employee’

Potential Fix:

let employee: Employee;
...
employee = new Employee();

Or

let employee: Employee | null;
...
employee = null;

strictPropertyInitialization

Definition

All class properties need to be initialized in a constructor or property initializer

Violation:

class Employee {
name: string;
constructor(private name: string) {}

// error: Property 'name’' has no initializer and is not definitely assigned in the constructor

Potential Fix:

class Employee {
name: string;
constructor(private name: string) {

this.name = name;

}

strictBindCallApply

Definition

Enforces stricter checking of `bind`, `call` and `apply` functions

Violation:

calculatePay: (bonusCode: string, price: number) => number;
...
const totalPay = employee.calculatePay.apply(
undefined,
["CIT"]

);

/*
The call to calculatePay above is violating this rule because calculatePay requires two
arguments.
*/

Potential Fix:

const totalPay = employee.calculatePay.apply(
undefined,
["CIT", 15000]

);

strictFunctionTypes

Definition:

Argument types cannot be bivariant

Violation:

const getEmployeeByName = (name: string) => {
employee.find((employee) => employee.name == name)

}

type getEmployeeByNameType = (name: string | number) => void;

const fn: getEmployeeByNameType = getEmployeeByName;

// error: Type '(name: string) => void' is not assignable to type 'getEmployeeByNameType'.

Potential Fix:

type getEmployeeByNameType = (name: string | number) => void;

const getEmployeeByName: getEmployeeByNameType = (name: string) => {
employee.find((employee) => employee.name == name)

}

const fn: getEmployeeByNameType = getEmployeeByName;

Cases Encountered in Oppia Codebase:
(This will include the list of specific recurring situations which came into view throughout the
GSoC tenure and their approved fixes.)

Case 1:

Violation:
The type of variable is not defined explicitly and hence typescript assigns it an ‘any’ type. This
violates the noImplicitAny rule of strict mode.

Solution:

To solve this, the variable is explicitly assigned the type it belongs to. In some cases in the
Oppia codebase, we may need to import the Interface, Class or Type as it is not imported in the
file before.
In this example, the service was of type WinnowingPreprocessingService.

Privacy

This project involves adding checks to improve the code by either adding additional types to the
code or refactoring the code to avoid adding a new type altogether. It, hence, does not change
the functionality of the code and nor does it change the way user data is collected. There are no
privacy considerations to be taken into account.

Security
This project has no security concerns nor brings in any opportunity for the developers to gain
unauthorized access to any part of the code or user data. This is due to the fact that the
changes involve refactoring the code and there is no addition of any new functionality or feature
that may breach security.

Accessibility (if user-facing)
The users of this project are the developers of Oppia and when it comes to accessibility, adding
types itself makes the code base self documenting and easier to understand and comprehend.
Also, additional documentation will be added about strict typing and will serve as a guide for
developers who may not be introduced to strict typing and its rules before.

Ethics*
Since all this project involves is making the code more robust by introducing strict typing to the
code. There is no additional feature being introduced that might need any ethical considerations
to be taken into account.

Future Work
The project involves enabling strict mode for a limited number of files and hence, does not
introduce strict typing to the entire code base of Oppia. After GSoC, the remaining files could be
introduced to strict typescript checks so that two tsconfig files may not be needed.

