
GSoC 2021 Proposal
End-to-End Testing Support

About You

Why are you interested in working with Oppia, and on your chosen project?
Oppia provides free education for kids through the internet with a great way of teaching (i.e
Explorations) which gives students a great learning experience. There is a great team working
for oppia and it was fun being a part of this team and contributing to the codebase. Contributing
to oppia is going to impact many learning students. This makes me happy.
Oppia has a great codebase and architecture, besides all these oppia is a great community that
helps the contributors get onboarded and help one another. It was a great experience helping
out new contributors and code reviews.

I love writing Instrumentation tests in android, though when I started contributing to oppia I had
no idea about writing tests once I started I loved writing tests in both Robolectric and Espresso.
Now I’m excited to work on UiAutomator.

Prior experience
I started android development a year ago. I’ve worked with the following technologies
Dagger-Hilt, Coroutines, Retrofit, Jetpack components, Espresso, etc. I’ve also published an
app which is a replacement of a website shreify to experience how publishing an app works.

I’ve worked as an Android Developer Intern at Jan Elaaj, an online consultation company for 2
months. Their app was in Java in which I had some trouble with it as I was mainly focused on
Kotlin for android development. Here I’ve worked on many features and fixed bugs also got to
publish many releases.

Then I wanted to step into open-source for more experience as an Android Developer, I’ve
contributed to Tachiyomi and successfully got 2 PR merged, though these were minor
contributions I still feel proud of it as this app was impacting many users.

I have 91 Reputation on StackOverflow by answering a few android related Discussions or
Questions and helping out other android developers.

When I started contributing to Oppia, I really liked the way Onboardig mentors are assigned and
how other contributors help out each other which kept me motivated and I was able to contribute
to oppia daily with issues, pull requests and code reviews, and frequently I got to learn many

https://play.google.com/store/apps/details?id=farees.hussain.shareify
https://shareify.netlify.app/
https://github.com/tachiyomiorg
https://github.com/tachiyomiorg/tachiyomi-extensions/pulls?q=is%3Apr+author%3AFareesHussain+is%3Aclosed
https://stackoverflow.com/users/12088301/farees-hussain

new topics like Protocol buffers, Bazel, Instrumentation Tests, Local Test, Dagger and most
importantly the MVP + MVVM architecture. I’ve also started Contributing out of curiosity to
check how the backend works on the web side. I’ve joined the CLAM team (Core Learning and
Mentoring) and part of the OnBoarding team in Oppia android and the Stability and Data
Handling team in Oppia web.

Merged PRs in Oppia-android:
● #2344 - Migrated ProfileInputView to TextInputLayout for AddProfileActivity with

Espresso and Robolectric tests
● #2392 - Migrating to BindableAdapter for LanguageSelectionAdapter
● #2648 - Created a BUILD.bazel file for app/viewmodel
● #2233 - Adding bullet indentation for Bullet points
● #2289 - Seperate Robolectric Check provider

Merged PRs in Oppia-web:
● #11869 - Removing email access in admin-page
● #11999 - Fix E2E tests in core/tests/protractor/accessibility.js

Contact info and timezone(s)
Name - Syed Farees Hussain
Country - India
College - Jamia Millia Islamia, Delhi
Email - fareezzhussain@gmail.com
Github - https://github.com/FareesHussain
Discord - FareesHussain#8100
LinkedIn - https://www.linkedin.com/in/farees-hussain-286a08193
Timezone - Indian Standard Time (IST) / +5:30 GMT
Preferred method of communication - Hangouts, e-mail, and Gitter

Time commitment
My time commitment to this project will be as follows -

● 7 hours a day (Monday - Saturday)
● Time dedication on Sunday will be subject to work requirements.
● Total: 40-50 hours a week.

Essential Prerequisites
● I have submitted few pull requests that include Espresso tests #2195, #2264, #2344,

#2345, #2349, #2350, #2510
● I am able to build Oppia-android using Bazel

https://github.com/oppia/oppia-android/pull/2344
https://github.com/oppia/oppia-android/pull/2392
https://github.com/oppia/oppia-android/pull/2648
https://github.com/oppia/oppia-android/pull/2233
https://github.com/oppia/oppia-android/pull/2289
https://github.com/oppia/oppia/pull/11869
https://github.com/oppia/oppia/pull/11999
https://github.com/FareesHussain
https://www.linkedin.com/in/farees-hussain-286a08193
https://github.com/oppia/oppia-android/pull/2195
https://github.com/oppia/oppia-android/pull/2264
https://github.com/oppia/oppia-android/pull/2344
https://github.com/oppia/oppia-android/pull/2345
https://github.com/oppia/oppia-android/pull/2349
https://github.com/oppia/oppia-android/pull/2350
https://github.com/oppia/oppia-android/pull/2510

● I use Linux and it supports KVM

● I am able to run all the Espresso tests of a test suite

● I am able to run all Unit tests of a test suite

● I am able to run Android Instrumentation Tests (UiAutomator) using Bazel

● I am able to load the development server in the android emulator

Other summer obligations
I will give my full commitment to the project within the timeline. I might run into some college
exams and assignments in between, yet I will be obligated to organization work.

Communication channels
I regularly use these communication channels and will respond within an hour

● Hangouts
● Gitter (via GitHub)
● e-mail
● Discord

Application to multiple orgs
I’m only applying to Oppia.

Project Details

Product Design
The users of this project are the developers of the Oppia Android team who would be able to run
the tests on their systems.

Why do we need to Test our App?
Let’s suppose there is an app in which we need to check whether a particular
feature/component of the app is working or not. we usually verify this by clicking around and
verifying if it is working and if something doesn’t work you can detect it easily and fix it and now
as it is working perfectly and was verified then you don’t touch it later. But when you extend your
app by adding and updating features there might be something that breaks which were
previously working and tested end then we need to test the whole app again by clicking around
manually in this way it costs a lot of time and there might be some parts left in this procedure.
This way the testing will be prone to mistakes and does not scale. To avoid this behavior of
frequently testing the app manually after every update we write automated tests that manually
operate the app to verify the feature in the various test cases.

The whole above procedure can be automated which gives a precise test result and also saves
a huge amount of time. Testing your app is an integral part of the app development process. By
running the tests against your app consistently after every update in your codebase, you can
verify your app’s correctness, functional behavior, and usability before releasing a feature or
updating the codebase.

Testing also gives the following advantages:
● Rapid feedback on failures
● Early Failure detection in the development cycle
● Safer Code refactoring, letting you optimize code without worrying about regressions.
● Stable Development Velocity, helping you minimize technical debt

Here the figure shows a Continuous testing and developing cycle. We see that when a Feature
is developed it is tested across the app and the feature itself, In case the feature affects other
parts of the app it is Refactored and fixed, and simultaneously when the feature is developed
there were also tests written to test the feature across various test cases of the feature.

What are Android Instrumentation tests?
When we enter into Testing Android apps we come across several technical terms, which are
divided into a test pyramid. The test pyramid is a tests dividing strategy, a way of thinking about
how different kinds of automated tests should be used. In this division, the lower layer contains
faster, cheaper, and isolated tests. At the top level of the pyramid, we will have slower, more
expensive, and Integrated tests.

Here the white box represents local tests, the Black box represents the Instrumentation test (run
on a real device or emulator)

This tests pyramid is divided into three parts:
Unit Tests: These are fast and cheap tests. This layer should have a greater quantity of tests
than the upper layers. Usually tests logic. These make 70% of the testing in our app. Eg:
Robolectric, JUnit, etc.
Integration Tests: To test how two components of our app work together i.e, to test the
interaction between different components in the app. It is different from the integrated test(which
requires our app to run in the emulator). These make 20% of the testing in our app. Eg:
Espresso, UI Automator, etc.
End to End Tests: To test all the components of the app runs together including Network
requests. These make 10% of the testing in our app. End-to-End tests. These make 10% of the
testing in our app. Eg: UI Automator, Appmium, etc.

Instrumentation tests on Android are those that run on physical devices or emulators. These
Instrumentation tests cover the Integrated tests and UI Tests of the Test Pyramid, These tests
use AndroidJUnitRunner + AndroidJUnit4, Integrated tests with Espresso, and End-to-End tests
with UI Automator. To be precise an instrumentation test provides a special test execution
environment, where the targeted application process is restarted and initialized with the basic
application context.

The above figure shows how an Android Instrumentation test is run i.e, by generating two
applications, which will be installed in the device or emulator, which are the app we are
developing and the test app that includes all test cases that need to be executed on the device
or emulator. When both apps are installed on the device, the test app will interact with the
developed app via Instrumentation API, which is a part of Android ROM. Here the am
instrument is a command in ADB which is run internally to run the Instrumentation tests

Why do we need End-to-End tests?

The main purpose of End-to-End is to test the app from an end user’s experience by simulating
the real user scenario and validating the system under test and its components for integration
and data integrity.

These tests play a major role in publishing the app. It gives confidence in the final application or
a feature when it's finished and hence these tests should run on a real device or a virtual device
to make sure that our code interacts with the Android environment as expected.

This application should be the same way as the final application and should test it in the same
way that our users are going to interact with it (black-box testing)

These tests whether the application is working flawlessly from start to finish based on the user’s
perspective.

What is End-to-End Testing and Why do we need a UI Automator instead of
Espresso?

UiAutomator is a lightweight, easy-to-learn library, developed by Google to make things done
fast when you don’t want to spend lots of time on developing test code and its maintenance.

End-to-End testing is a software testing method that involves testing an application’s workflow
from beginning to end. This method aims to replicate real user scenarios so that the system can

https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/espresso

be validated for integration and data integrity. Essentially, the automated test goes through and
verifies every operation the application can perform. Usually, End-to-End testing is executed
after the Unit tests and Integrated tests as per the Test Pyramid.

End-to-End tests are slow as they require a huge amount of test cases to cover every aspect.
These are slower, and harder to set up, but very valuable since they test almost all the test
cases that are faced in real-time.

Both Espresso and UI Automator are used for Instrumentation Tests. Espresso is easy to use
and fast test automation framework, but it has one important limitation -- we are not allowed to
operate outside the app or the test application context Which makes it impossible to test
automation tests for the following use cases

● Interacting with push notifications
● Accessing system settings
● Going back to previous activity from the current application context
● Navigation to other apps
● Using common intents (like camera, map, contacts, etc.)
● Using the application shortcuts

This limitation of Espresso can be removed by using UI Automator.

Espresso tests come under the Integration tests and it is not suitable for End-to-End tests due
to its limitations, UI Automator comes under End to End Tests, UI Automator is perfect for
End-to-End as it is stable and easy to maintain highly time-sensitive operations, unlike
Espresso.

Ui Automator is a lightweight, easy-to-learn library, developed by Google to make things done
fast when you don’t want to spend lots of time on developing test code and its maintenance.

With UI Automator it is possible to access outside the app or the test application context. UI
Automator is a UI testing framework suitable for cross-app functional UI testing across systems
and installed apps.

How to Interact the app with the local development server of oppia to load
the test Data?
First, we need to set up the local development server with oppia such that it provides an API
endpoint in the localhost, we need to set up a developer-only functionality for this endpoint that
can prepopulate tests topics, stories, exploration, revision cards, skills, and questions in the
local datastore.

The only way to communicate with two different projects is with the API and the network
requests. The backend will be providing an API Endpoint and the Android app responds to
these endpoints through Network Requests.

After setting up the local Development Server, we need to set up Android Emulator networking.
The emulator provides networking capabilities that can be used to set up complex modeling and
testing environments for the app. By setting up the proxy settings in the emulator we can test
the Networking in the app without the hosted development server so that the End-to-End tests
are not flaky and faster testing as the networking using the local development server is not
dependent on the internet.

In the proxy settings (from the above figure) we can add a hostname used in the app to the port
number of the server to Interact with the app, This way we can load the test data in the app and
verify the Network Requests in the app.

End Result of the Finished Project
The End Result of the Project provides a developer-only local API from the oppia web project
that is set up using a command

python -m start.py --disable_host_checking

to start the server and call the developer endpoint which initiates the test data that includes
topics, stories, chapters, explorations, revision cards, skills, and questions using the curl
command i.e,

curl http://localhost:8181/initiate_test_data

In the app, the UI Automator will be used and set up with Bazel to run the End-to-End tests.
Bazel is a build and test tool which is cross-platform and builds Java, C++, Android, IOS, Go,
Kotlin, and a wide range of other language platforms. It speeds up your Build and test progress
through distributed caching and parallel execution. It is Extensible to your needs i.e, easily
supports new languages and platforms. Configuration files (BUILD and WORKSPACE) in bazel
are much more structured than Gradle. Bazel is a cross-platform build tool the whole application
that consists of different languages or frameworks can be Build and tested altogether.

Test targets will be added for each test suite to be able to run in bazel. Targets in bazel are
similar to declaring variables i.e, simply variable to a Bazel Rule, these targets are declared to
run or build for one or more than one file along with the dependencies that are required for the
target called as deps.

https://bazel.build/

To run the Instrumentation tests in Bazel for an existing app we require an android_binary of the
test suite and create an android_instrumentation_test with a target_device and when we run the
tests it Generates a Test apk, APK under the test instructions and their transitive dependencies.
This Creates and starts an emulator, installs the app, Runs the tests the same as how it works in
Gradle, shuts down the emulator, and finally sends a report on the tests.

The above figure shows the dependency graph of an Android Instrumentation test using bazel.
On how the test APK and the Target APK are built when Instrumentation tests are run.

Finally, the End-to-End tests will be covering the Complete user instruction for the Explorations,
Exploration is an amazing feature of Oppia which is Interactive and enjoyable for the students to
learn at their own pace. These Explorations provide feedback for every answer so that the
student can have a better understanding of the lessons and have a feeling of interacting with a
teacher. This project is a beginning point and a reference for lots of End-to-End tests in the
future for Explorations (if updated) and other parts of the app. End-to-End tests in this will also
help to find bugs around the Explorations and will ignore them till the bug is fixed.

Technical Design

Architectural Overview

The whole project in short involves creating API endpoints and respective controllers, Network
Requests, Setting up the UI Automator, Adding End-to-End tests.

Dividing the Architectural overview between the two repositories (Oppia-web and Oppia-Android)
Explaining which part of the codebase and the usage, what code goes where and the reason

Oppia-Web
Codebase of Oppia-web:
Most of the functionality goes under the core directory with the following modules based on
particular features and purposes as follows:

● Controllers
● Domain
● Platform
● Storage
● Templates
● Tests

Backend
A request to the Oppia server by performing some action (like clicking a button) that causes
some JavaScript code to issue a POST request. This request is made to a particular URL, which
main.py matches to a handler in the core/controllers directory.

/core/controllers -- [Directory] Urls from the main.py matches with the Handlers in the
Controllers directory. Controllers are meant to be a thin layer that understands and validates the
requests, These Controllers/Handlers then call a method from the core/domain.

/core/domain -- [Directory] Performs the computation/queries or changes the state of data on
the server for the respective handlers. Here we need *_service.py as it comprises the functions
based on Data.

Frontend
The developer version of the frontend code is contained in core/templates. The frontend code
contains the following sub-directories:

● components: This provides certain reusable components, structured as Angular
directives, which are used in one or more pages.

● css: Site-wide CSS. There may be other CSS blocks within individual HTML files.
● domain: The logic layer for the frontend. Contains domain object factories and core

services.
● expressions: Code to parse and evaluate expressions (which may use parameters).
● pages: Each folder in this directory represents an individual page of the site. Some of

these pages are quite simple (such as /about) whereas others are fairly complex (such
as /exploration_editor). They contain the HTML templates for the page, as well as any
page-specific services or directives.

● services: JavaScript services that handle the embedding of explorations.

Main Directory

/main.py - [File] Register new urls and their respective Controllers/Handlers through
get_redirect_route function. To add new Web URLs that redirect web page URLs to the page/
handler desired in the request

feconf.py - [File] Contains various constants that are referred to by other backend files in the
app. To add new constants for the new endpoints.

Controllers Module

/core/controllers/android_e2e_config.py - New controller for the following classes/handlers
● InitializeAndroidTestDataHandler -- new class/handler which updates the local assets to

the datastore
● AndroidTestImageHandler -- new class/handler which can access the images from the

local dev server.

/core/controllers/topic_editor.py -
● TopicFileDownloader → download topic from the datastore.
● SubtopicFileDownloader → download subtopic from the datastore.

/core/controllers/story_editor.py -
● StoryFileDownloader → download story from the datastore.

/core/controllers/skill_editor.py -
● SkillFileDownloader → download skills from the datastore.

/core/controllers/acl_decorators.py - To modify can_download_explorations to support all other
structures.

Domain Module

/core/domain/topic_services.py - Introducing support to export zip files from the topic and
subtopic and vice versa

/core/domain/topic_fetchers.py - Introducing get_subtopic_by_id function to fetch a subtopic.

/core/domain/story_services.py - Introducing support to export zip files from a Story and vice
versa

/core/domain/skills_services.py - Introducing support to export zip files from a Skill and vice
versa

/core/domain/story_services.py - Introducing support to export zip files from a story and vice
versa

Data Directory

/data/explorations - [Directory] Contains sample explorations that are bundled with the Oppia
distribution.

/data/topics - [new Directory] To add sample topics that are extracted or fetched from the
datastore

/data/subtopics - [new Directory] To add sample subtopics that are extracted or fetched from
the datastore

/data/stories - [new Directory] To add sample stories that are extracted or fetched from the
datastore

/data/skills - [new Directory] To add sample skills that are extracted or fetched from the
datastore

Oppia-Android
Oppia’s Android codebase has five modules based on particular features or purposes.

● App
● Domain
● Model
● Utility
● Data

The following diagram represents co dependency of each module with other modules.

Data - This module provides data to the application by fetching data from the Oppia backend. It
has two subdirectories

● Backend -- APIs and models which are needed to make a data request to the Oppia
backend, and convert that response to appropriate models.

● Persistence -- Information pertaining to the offline store is saved here using
PersistenceCacheStore

App - This module contains all the activities and fragments, as well as the view, view model, and
presenter layers. It also contains Robolectric test cases and integration/hermetic end-to-end
tests using Espresso.

Domain - This module contains the business logic of the application, including both frontend
controller and business service logic. It is a Java/Kotlin library without Android components,
and it is unit-tested using raw JUnit tests.

Model - This library contains all protos used in the app. It only contains data definitions, so no
tests are included.

Utility - This is a Java/Kotlin module without Android dependencies. It contains utilities that all
other modules may depend on. It also includes JUnit test cases.

The following are different from the modules Introduced for bazel

instrumentation - [Directory] New top-level Directory to be Introduced for the End-to-End tests.

BUILD.bazel - [File] Corresponds to being accessible to all Oppia targets. This should be used
for production APIs & modules that may be used both in production targets and in tests.

third_party - [Directory] This package contains all third-party dependencies that the project
depends on.

Main Directory

Utility Module

util/parser/ImageParsingModule.kt - [File] Provides image-extraction URL dependencies.

To add a test GCS prefix to android_test_images endpoint to act as a Mock GCS that
fetches images from the local server.

/.bazelrc - [File] Bazel looks for optional configuration files in the following locations, in the order
shown below. The options are interpreted in this order, so options in later files can override a
value from an earlier file if a conflict arises. All options that control which of these files are
loaded are startup options, which means they must occur after bazel and before the command
(build, test, etc).

To Add configurations for instrumentation tests to run on local emulator or different
options.

/BUILD.bazel - [File] Corresponds to being accessible to all Oppia targets. This should be used
for production APIs & modules that may be used both in production targets and in tests.

To add android_binary and android_instrumentation_test of the Bazel Android Rules
related to the End-to-End tests or Instrumentation tests.

/instrumentation/ - A newly Introduced top-level Directory for Instrumentation tests particularly
for End-to-End tests. This consists of Tests Suites (*Test.kt), BUILD.bazel for kt_android_library
based on the imports, tests.bzl a constant file similar to /third_party/versions.bzl to dynamically
run particular Instrumentation tests.

instrumentation/player/exploration/ExplorationTests → Tests that include Downloading and
Playing through an exploration user flows.

/third_party/version.bzl - To add UI Automator Dependency

Implementation Approach
Dividing the project into the further milestone or parts such that each of the following are not
dependent on others:

1. Downloading Non-Exploration structures from the datastore -- to download the topics
using a new endpoint/controller similar to /createhandler/download/<exploration-id> .

2. Create android specific custom structures -- To create sample explorations in order to
test the implemented features of android in one exploration.

3. Initiating the Test Data -- To save the local topics/explorations into the local datastore.
4. Setup UI Automator with Bazel -- To setup UI automator in order to run the UI Automator

tests.
5. Testing with UI Automator -- Writing End-to-End tests using UI Automator for End-To-End

testing.

Downloading Non-Exploration structures from the datastore
This part blocks the Initiating Test data and custom explorations part as we don’t have any
support for downloading Topics, Skills, Stories.

Note: Each of Explorations, Stories, Topics, Subtopics, Skills are represented below as
Structure or *.

First we need to create a new endpoints similar to /createhandler/download/<exploration_id>
for Topics, Skills and Stories.

For better readability we need to rename the existing endpoint for explorations downloads as
follows

/createhandler/download/<exploration_id> → /createhandler/download_exploration/<exploration_id>

To download each of the Explorations, Stores, Skills & Topics (let's call it a Structure). Here we
need to introduce 4 endpoints (Note that: Exploration is renamed here)

● /createhandler/download_explorations/<exploration_id>
● /topic_editor_handler/download_topics/<topic_id>
● /topic_editor_handler/download_subtopic/<subtopic_id>
● /story_editor_handler/download_stories/<story_id>
● /skill_editor_handler/download_skills/<skill_id>

These four endpoints redirect to a Handler from the editor controller (i.e,
core.controllers.editor.py) as are added as follows

To differentiate both endpoints and better readability.

After adding the new endpoints, these endpoints redirects to their corresponding downloaders
from the editor controller core.controllers.editor.py

In the above snippet the “ * “ represents each of the exploration, topic, subtopic, story and skill

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%2520%2520%2520%2520get_redirect_route%28%250A%2520%2520%2520%2520%2520%2520%2520%2520r%27%252Fcreatehandler%252Fdownload_*%252F%253C*_id%253E%27%252C%250A%2520%2520%2520%2520%2520%2520%2520%2520editor.*FileDownloader%29%252C

Create a new classes i.e, the downloader to which the above endpoint are redirected to
Corresponding editors as follows

● download_explorations → core/controllers/editor.py
● download_topics → core/controllers/topic_editor.py
● download_subtopics → core/controllers/topic_editor.py
● download_stories → core/controllers/story_editor.py
● download_skills → core/controllers/skill_editor.py

To get the info for each structure we need to import their respective *_fetchers and *_services
Example: fetchers and services for Topics

As mentioned above we don’t have any downloaders for Topics, Subtopics, Stories, Skills.

Downloading Topics

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=from%2520core.domain%2520import%2520topic_fetchers%250Afrom%2520core.domain%2520import%2520topic_services

Introduce a new class which is redirected by the /createhandler/download_topics/<topic_id>
endpoint i.e, TopicFileDownloader. The main purpose of this class is to download the topic from
datastore as a zip file.

The topic is fetched using the get_topic_by_id function from core.domain.topic_fetchers.py this
topic (object) is used to get the topic name and version in order to name the zip file. Finally the
zip file is fetched from the core.domain.topic_services.py where a new function is introduced i.e,
export_to_zip_file and downloaded locally.

The export_to_zip_file at a high level gets the topic from the ID, converts it into a yaml file and
adds the local assets into an images folder and then all these are added into a zip file.

Here to convert the topic to a yaml file in case if the the output_file in TopicFileDownloader,
there is a new function to be introduced in the core.domain.topic_services.py i.e,
export_states_to_yaml which converts the topic into a dictionary of the topic whose keys are
state names and values are yaml strings.

This process is the same for others all other structures i.e, Stories, Subtopics, Skills. I.e, as
follows

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=class%2520TopicFileDownloader%28EditorHandler%29%253A%250A%2520%2520%2520%2520%2522%2522%2522Downloads%2520an%2520topic%2520as%2520a%2520zip%2520file%252C%2520or%2520dict%2520of%2520YAML%2520strings%250A%2520%2520%2520%2520representing%2520states.%250A%2520%2520%2520%2520%2522%2522%2522%250A%250A%2520%2520%2520%2520GET_HANDLER_ERROR_RETURN_TYPE%2520%253D%2520feconf.HANDLER_TYPE_DOWNLOADABLE%250A%250A%2520%2520%2520%2520%2540acl_decorators.can_download_topic%250A%2520%2520%2520%2520def%2520get%28self%252C%2520topic_id%29%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2522%2522%2522Handles%2520GET%2520requests.%2522%2522%2522%250A%2520%2520%2520%2520%2520%2520%2520%2520topic%2520%253D%2520topic_fetchers.get_topic_by_id%28topic_id%29%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520version_str%2520%253D%2520self.request.get%28%27v%27%252C%2520default_value%253Dtopic.version%29%250A%2520%2520%2520%2520%2520%2520%2520%2520output_format%2520%253D%2520self.request.get%28%27output_format%27%252C%2520default_value%253D%27zip%27%29%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520try%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520version%2520%253D%2520int%28version_str%29%250A%2520%2520%2520%2520%2520%2520%2520%2520except%2520ValueError%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520version%2520%253D%2520topic.version%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2523%2520If%2520the%2520title%2520of%2520the%2520topic%2520has%2520changed%252C%2520we%2520use%2520the%2520new%2520title.%250A%2520%2520%2520%2520%2520%2520%2520%2520if%2520not%2520topic.title%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520init_filename%2520%253D%2520%27oppia-unpublished_topic-v%2525s.zip%27%2520%2525%2520version%250A%2520%2520%2520%2520%2520%2520%2520%2520else%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520init_filename%2520%253D%2520%27oppia-%2525s-v%2525s.zip%27%2520%2525%2520%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520topic.title.replace%28%27%2520%27%252C%2520%27%27%29%252C%2520version%29%250A%2520%2520%2520%2520%2520%2520%2520%2520filename%2520%253D%2520utils.to_ascii%28init_filename%29.decode%28%27utf-8%27%29%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520if%2520output_format%2520%253D%253D%2520feconf.OUTPUT_FORMAT_ZIP%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520self.render_downloadable_file%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520exp_services.export_to_zip_file%28%250A%2520exploration_id%252C%2520version%253Dversion%29%252C%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520filename%252C%2520%27text%252Fplain%27%29%250A%2520%2520%2520%2520%2520%2520%2520%2520else%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520raise%2520self.InvalidInputException%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%27Unrecognized%2520output%2520format%2520%2525s%27%2520%2525%2520output_format%29
https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%2523%2520Methods%2520for%2520exporting%2520states%2520and%2520explorations%2520to%2520other%2520formats.%250Adef%2520export_to_zip_file%28topic_id%252C%2520version%253DNone%29%253A%250A%2520%2520%2520%2520%2522%2522%2522Returns%2520a%2520ZIP%2520archive%2520of%2520the%2520topic.%250A%250A%2520%2520%2520%2520Args%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520topic_id%253A%2520str.%2520The%2520id%2520of%2520the%2520exploration%2520to%2520export.%250A%2520%2520%2520%2520%2520%2520%2520%2520version%253A%2520int%2520or%2520None.%2520If%2520provided%252C%2520this%2520indicates%2520which%2520version%2520of%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520the%2520topic%2520to%2520export.%2520Otherwise%252C%2520the%2520latest%2520version%2520of%2520the%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520topic%2520is%2520exported.%250A%250A%2520%2520%2520%2520Returns%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520str.%2520The%2520contents%2520of%2520the%2520ZIP%2520archive%2520of%2520the%2520topic%2520%28which%2520can%2520be%250A%2520%2520%2520%2520%2520%2520%2520%2520subsequently%2520converted%2520into%2520a%2520zip%2520file%2520via%2520zipfile.ZipFile%28%29%29.%250A%2520%2520%2520%2520%2522%2522%2522%250A%2520%2520%2520%2520%2523%2520Asset%2520directories%2520that%2520need%2520to%2520be%2520included%2520in%2520topic%2520download.%250A%2520%2520%2520%2520asset_dirs_to_include_in_downloads%2520%253D%2520%28%27image%27%252C%29%250A%2520%2520%2520%2520topic%2520%253D%2520topic_fetchers.get_topic_by_id%28%250A%2520%2520%2520%2520%2520%2520%2520%2520topic_id%252C%2520version%253Dversion%29%250A%2520%2520%2520%2520yaml_repr%2520%253D%2520topic.to_yaml%28%29%250A%250A%2520%2520%2520%2520temp_file%2520%253D%2520python_utils.string_io%28%29%250A%2520%2520%2520%2520with%2520zipfile.ZipFile%28%250A%2520%2520%2520%2520%2520%2520%2520%2520temp_file%252C%2520mode%253D%27w%27%252C%2520compression%253Dzipfile.ZIP_DEFLATED%29%2520as%2520zfile%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520if%2520not%2520exploration.title%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520zfile.writestr%28%27Unpublished_topic.yaml%27%252C%2520yaml_repr%29%250A%2520%2520%2520%2520%2520%2520%2520%2520else%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520zfile.writestr%28%27%2525s.yaml%27%2520%2525%2520topic.title%252C%2520yaml_repr%29%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520fs%2520%253D%2520fs_domain.AbstractFileSystem%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520fs_domain.GcsFileSystem%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520feconf.ENTITY_TYPE_EXPLORATION%252C%2520topic_id%29%29%250A%2520%2520%2520%2520%2520%2520%2520%2520dir_list%2520%253D%2520fs.listdir%28%27%27%29%250A%2520%2520%2520%2520%2520%2520%2520%2520for%2520filepath%2520in%2520dir_list%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520if%2520not%2520filepath.startswith%28asset_dirs_to_include_in_downloads%29%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520continue%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520file_contents%2520%253D%2520fs.get%28filepath%29%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520str_filepath%2520%253D%2520%27assets%252F%2525s%27%2520%2525%2520filepath%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520assert%2520isinstance%28str_filepath%252C%2520python_utils.UNICODE%29%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520unicode_filepath%2520%253D%2520str_filepath.decode%28%27utf-8%27%29%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520zfile.writestr%28unicode_filepath%252C%2520file_contents%29%250A%250A%2520%2520%2520%2520return%2520temp_file.getvalue%28%29
https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%2523%2520Methods%2520for%2520exporting%2520states%2520and%2520explorations%2520to%2520other%2520formats.%250Adef%2520export_to_zip_file%28topic_id%252C%2520version%253DNone%29%253A%250A%2520%2520%2520%2520%2522%2522%2522Returns%2520a%2520ZIP%2520archive%2520of%2520the%2520topic.%250A%250A%2520%2520%2520%2520Args%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520topic_id%253A%2520str.%2520The%2520id%2520of%2520the%2520exploration%2520to%2520export.%250A%2520%2520%2520%2520%2520%2520%2520%2520version%253A%2520int%2520or%2520None.%2520If%2520provided%252C%2520this%2520indicates%2520which%2520version%2520of%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520the%2520topic%2520to%2520export.%2520Otherwise%252C%2520the%2520latest%2520version%2520of%2520the%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520topic%2520is%2520exported.%250A%250A%2520%2520%2520%2520Returns%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520str.%2520The%2520contents%2520of%2520the%2520ZIP%2520archive%2520of%2520the%2520topic%2520%28which%2520can%2520be%250A%2520%2520%2520%2520%2520%2520%2520%2520subsequently%2520converted%2520into%2520a%2520zip%2520file%2520via%2520zipfile.ZipFile%28%29%29.%250A%2520%2520%2520%2520%2522%2522%2522%250A%2520%2520%2520%2520%2523%2520Asset%2520directories%2520that%2520need%2520to%2520be%2520included%2520in%2520topic%2520download.%250A%2520%2520%2520%2520asset_dirs_to_include_in_downloads%2520%253D%2520%28%27image%27%252C%29%250A%2520%2520%2520%2520topic%2520%253D%2520topic_fetchers.get_topic_by_id%28%250A%2520%2520%2520%2520%2520%2520%2520%2520topic_id%252C%2520version%253Dversion%29%250A%2520%2520%2520%2520yaml_repr%2520%253D%2520topic.to_yaml%28%29%250A%250A%2520%2520%2520%2520temp_file%2520%253D%2520python_utils.string_io%28%29%250A%2520%2520%2520%2520with%2520zipfile.ZipFile%28%250A%2520%2520%2520%2520%2520%2520%2520%2520temp_file%252C%2520mode%253D%27w%27%252C%2520compression%253Dzipfile.ZIP_DEFLATED%29%2520as%2520zfile%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520if%2520not%2520exploration.title%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520zfile.writestr%28%27Unpublished_topic.yaml%27%252C%2520yaml_repr%29%250A%2520%2520%2520%2520%2520%2520%2520%2520else%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520zfile.writestr%28%27%2525s.yaml%27%2520%2525%2520topic.title%252C%2520yaml_repr%29%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520fs%2520%253D%2520fs_domain.AbstractFileSystem%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520fs_domain.GcsFileSystem%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520feconf.ENTITY_TYPE_EXPLORATION%252C%2520topic_id%29%29%250A%2520%2520%2520%2520%2520%2520%2520%2520dir_list%2520%253D%2520fs.listdir%28%27%27%29%250A%2520%2520%2520%2520%2520%2520%2520%2520for%2520filepath%2520in%2520dir_list%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520if%2520not%2520filepath.startswith%28asset_dirs_to_include_in_downloads%29%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520continue%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520file_contents%2520%253D%2520fs.get%28filepath%29%250A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520str_filepath%2520%253D%2520%27assets%252F%2525s%27%2520%2525%2520filepath%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520assert%2520isinstance%28str_filepath%252C%2520python_utils.UNICODE%29%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520unicode_filepath%2520%253D%2520str_filepath.decode%28%27utf-8%27%29%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520zfile.writestr%28unicode_filepath%252C%2520file_contents%29%250A%250A%2520%2520%2520%2520return%2520temp_file.getvalue%28%29
https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=def%2520export_states_to_yaml%28topic_id%252C%2520version%253DNone%252C%2520width%253D80%29%253A%250A%2520%2520%2520%2520%2522%2522%2522Returns%2520a%2520dictionary%2520of%2520the%2520topic%252C%2520whose%2520keys%2520are%2520state%250A%2520%2520%2520%2520names%2520and%2520values%2520are%2520yaml%2520strings%2520representing%2520the%2520state%2520contents%2520with%250A%2520%2520%2520%2520lines%2520wrapped%2520at%2520%27width%27%2520characters.%250A%250A%2520%2520%2520%2520Args%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520topic_id%253A%2520str.%2520The%2520id%2520of%2520the%2520topic%2520whose%2520states%2520should%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520be%2520exported.%250A%2520%2520%2520%2520%2520%2520%2520%2520version%253A%2520int%2520or%2520None.%2520The%2520version%2520of%2520the%2520topic%2520to%2520be%2520returned.%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520If%2520None%252C%2520the%2520latest%2520version%2520of%2520the%2520topic%2520is%2520returned.%250A%2520%2520%2520%2520%2520%2520%2520%2520width%253A%2520int.%2520Width%2520for%2520the%2520yaml%2520representation%252C%2520default%2520value%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520is%2520set%2520to%2520be%2520of%252080.%250A%250A%2520%2520%2520%2520Returns%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520dict.%2520The%2520keys%2520are%2520state%2520names%252C%2520and%2520the%2520values%2520are%2520YAML%2520strings%250A%2520%2520%2520%2520%2520%2520%2520%2520representing%2520the%2520corresponding%2520state%27s%2520contents.%250A%2520%2520%2520%2520%2522%2522%2522%250A%2520%2520%2520%2520topic%2520%253D%2520exp_fetchers.get_topic_by_id%28%250A%2520%2520%2520%2520%2520%2520%2520%2520topic%252C%2520version%253Dversion%29%250A%2520%2520%2520%2520topic_dict%2520%253D%2520%257B%257D%250A%2520%2520%2520%2520for%2520state%2520in%2520topic.states%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520topic%255Bstate%255D%2520%253D%2520python_utils.yaml_from_dict%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520topic.states%255Bstate%255D.to_dict%28%29%252C%2520width%253Dwidth%29%250A%2520%2520%2520%2520return%2520topic_dict

The above mentioned functions and class have the same logic or implementation for each of
them.

The following functions that are mentioned above are not available and need to be introduced in
this project which will be used in the respective FileDownloader class

● Topics:
○ export_to_zip_file (core.domain.topic_services.py)
○ export_states_to_yaml (core.domain.topic_services.py)

● Subtopics:
○ get_subtopic_by_id (core.domain.topic_fetchers.py)
○ export_subtopic_to_zip_file (core.domain.topic_services.py)
○ export_subtopic_states_to_yaml (core.domain.topic_services.py)

● Stories:
○ export_to_zip_file (core.domain.story_services.py)
○ export_states_to_yaml (core.domain.story_services.py)

● Skills:
○ export_to_zip_file (core.domain.skill_services.py)
○ export_states_to_yaml (core.domain.skill_services.py)

export_to_zip_file

Returns the zip archive of the structure
Converts the structure to yaml (using to_yaml from core.domain.collection_domain.py)

separates the images into a different directory (named: images or assets) and finally returns the
zip.

Attribute name Description

structure_id The id of the structure to export.

version (Optional -- default is None)
Indicates which version of the structure to
export, else the latest version is exported

export_states_to_yaml

Returns a dictionary of state names and yaml strings to save as a json.
To get the json if the output file of the downloader class is of json format

Keys - state names
Values - yaml strings wrapped with width

Attribute name Description

structure_id The id of the structure to export.

version (Optional -- default is None)
Indicates which version of the structure to
export, else the latest version is exported

width (Optional -- default is 80)
Width for the yaml representation.

get_subtopic_by_id

Returns a domain object representing a subtopic.
Gets the subtopic model using the ID.

Attribute name Description

subtopic_id ID of the subtopic

strict (Optional -- default is True)
Whether to fail noisily if no subtopic with the
given id exists in the datastore.

version (Optional -- default is None)

The version number of the topic to be
retrieved. If it is None, the latest version will
be retrieved.

Create android specific custom structures
To create a new custom exploration, start the development server after following all the
installation steps, by using the command python -m scripts --save_datastore (only to preserve
the exploration and other contents in the local datastore)

Explorations can be created using the dev server itself through GUI. To create a new Topics,
Skills, and Explorations first we need to login and assign a admin role using the following
Endpoint --/admin#/roles

https://github.com/oppia/oppia/wiki/Installing-Oppia-%28Linux%29

Then open the endpoint /topics-and-skills-dashboard to create new topics, concept cards,
revision cards, etc.,

After opening the above endpoint click on “CREATE TOPIC” fill the
● Name
● Topic URL Fragment
● Description
● Topic Thumbnail

Then add the meta tag and “Page Title Fragment” -- displayed at the navbar and finally add a
subtopic. This subtopic requires a skill to be published, to add the subtopic and a skill go to the
bottom of the page and add a subtopic and a skill within the subtopic.

After adding the skill assign it to the subtopic

After publishing the Topic unless there is a story Item, the Topic is not displayed to the end user.
To create a story we have to click the “add story” under ‘’Canonical Stories”

Here the Exploration ID has to be the ID of a public pre-published Exploration that can be
created using the “Create Exploration” button from /creator-dashboard endpoint.
On Creating Explorations each Page is labeled with the name of the Input Interaction to be
tested in Android with a wrong answer feedback.
Example -

After Adding all the pages save the changes using “Save Draft” and add a commit message and
publish the exploration with all the necessary Details.

After completing all the above steps on Creating Topics, Explorations, Subtopic, etc., This is
how the final Topics flow looks like

When creating a exploration the flow is as follows

To Download these explorations we have an endpoint
/createhandler/download_exploration/<exploration-id> that downloads the Yaml file and image
assets in a zip file. Which needs to be extracted and added to local assets in the oppia-web i.e,
/data/explorations directory. But here in this project we require the whole topic as a local asset,
which can be downloaded from /createhandler/download_topic/<topic-id> and save it to a new
directory /data/topics as a representation that it has only test topics and their assets in it.

After creating all these Topics, Subtopics, Stories, Explorations, Skills use the above created
endpoints to download each of them and save to the respective directory in data
directory/module by moving them to the data directory after downloading.

The exploration flow planned to test will be as follows
This will guide on how to create explorations and test them in this project

On opening the exploration,
first displays a “Introduction to the exploration” page describing what the exploration is. After the
introduction page, all other pages cover each of the different Input Interactions of android given
feedback for wrong answers and hints and solutions for each interaction. There is a concept
card for each wrong answer for every page (same concept card for tests purposes).

After finishing all these Input Interactions and close the Exploration.

Initiating the Test Data
Here we need to update the local assets from the /data/topics, /data/explorations, /data/skills,
/data/subtopics, /data/stories into the local datastore such that we can fetch all these structures

from the datastore through the Android endpoints without changing any APIs in the android
project.

This is basically an automated process which saves the topics into the datastore instead of
creating new topics manually and publishing every time to run the End to end tests of the 2nd
Milestone or to fetch the test data in Android.

To Save local assets to the datastore we need to call the endpoint which fetch the data from the
data directory and update them to the datastore

Here we need to be able to save the structure from the local assets into the datastore. So we
need to create a function in the core.domain.*_services.py for each structure i.e,
save_new_structure_from_yaml_and_assets.

save_new_structure_from_yaml_and_assets

Saves the local data for a structure to the datastore

Attribute name Description

committer_id The id of the user who made the commit.

yaml_content The YAML representation of the exploration.

structure_id The id of the structure.

assets_list list(list(str)). A list of lists of assets, which
contains assets filename and content.

strip_voiceovers Whether to strip away all audio voice overs
from the imported structure.

This function after fetching, parsing, error handling and validations saves the structure into the
datastore using the _create_structure function in each of the structure_services.

Now to automate this process we need to trigger this function using an endpoint and hence it
requires a new endpoint/controller which will be called using a curl or any other command after
starting the server.

Create a new endpoint (i.e, /initiate_test_data) that redirects to InitiateTestDataHandler class in
the core.controller.android_initiate_test_explorations.py controller

This InitializeAndroidTestDataHandler fetches all the local test data from the /data/ directory for
each structure and calls the save_new_structure_from_yaml_and_assets function to update the
datastore. This is only a developer only endpoint and hence we use a flag and an exception
such that it wouldn’t be used in production.
Example:

Accessing images from the local dev server

Here we need to create two new handler/class AndroidTestImageHandler and
AndroidTestThumbnailHandler in the core/controllers/android_e2e_config.py as a mock GCS to
fetch the images from the endpoint as a Default GCS prefix to load the images.

This introduces two endpoints in the main.py each for images and thumbnails.

This AndroidTestImagesHandler & AndroidTestThumbnailHandler is flagged using the
constants.DEV_MODE to avoid unauthorized access.

This handler fetches images from the local assets (i.e, data directory) and are separated as two
endpoints for Images and Thumbnails

For images:
%s/%s/assets/image/%s

For thumbnails:
%s/%s/assets/thumbnail/%s

In the above mentioned urls
The first parameter is the Entity Type/Structure
The Second parameter is the Entity ID/Structure ID
And the last parameter is the url string

Example:
https://storage.googleapis.com/oppiaserver-resources/story/RRVMHsZ5Mobh/assets/thumbnail/
img_20200521_034635_46gl425jp5_height_324_width_432.svg

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%2520%2520%2520%2520%2520%2520%2520%2520if%2520constants.DEV_MODE%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2509feature%28%29%250A%2520%2520%2520%2520%2520%2520%2520%2520else%253A%250A%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520%2520raise%2520Exception%28%27Cannot%2520use%2520this%2520feature%2520in%2520production.%27%29
https://storage.googleapis.com/oppiaserver-resources/story/RRVMHsZ5Mobh/assets/thumbnail/img_20200521_034635_46gl425jp5_height_324_width_432.svg
https://storage.googleapis.com/oppiaserver-resources/story/RRVMHsZ5Mobh/assets/thumbnail/img_20200521_034635_46gl425jp5_height_324_width_432.svg

Here
“storage.goolgeapis.com/oppiaserver-resources” is the Image Download Url Template i.e,
Default GCS Prefix

“story” is the entity type or structure

“RRVMHsZ5Mobh” is the story ID

img_20200521_034635_46gl425jp5_height_324_width_432.svg is the url string

This url in the local server is referred as following
http://localhost:8181/android_test_images/assets/thumbnail/img_20200521_034635_46gl425jp5
_height_324_width_432.svg

And the in the app using the proxy server the endpoint is fetched using
http://oppia.org/android_test_images/assets/thumbnail/img_20200521_034635_46gl425jp5_hei
ght_324_width_432.svg

And finally add this endpoint to provide Default GCS prefix in the ImageParsingModule to load
the images in android using UrlImageParser.

Setting up UI Automator + Bazel

How to start:-
First, we need to add UI Automator dependency to versions.bzl which will be used as a dep for
the targets in End-to-End tests.

Creating a top-level Instrumentation directory for the End-to-End tests.

Creating a new file named tests.bzl in instrumentation similar to third_party/version.bzl which
contains all the Test suites names to make it easier to run the tests to be given as name and
test_app for android_instrumentation_test.

Creating a new file BUILD.bazel in instrumentation for all the kt_android_libraries within the
instrumentation package.

http://localhost:8181/android_test_images/assets/thumbnail/img_20200521_034635_46gl425jp5_height_324_width_432.svg
http://localhost:8181/android_test_images/assets/thumbnail/img_20200521_034635_46gl425jp5_height_324_width_432.svg
http://localhost:8181/android_test_images/assets/thumbnail/img_20200521_034635_46gl425jp5_height_324_width_432.svg
http://localhost:8181/android_test_images/assets/thumbnail/img_20200521_034635_46gl425jp5_height_324_width_432.svg
https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=MAVEN_TEST_DEPENDENCY_VERSIONS%2520%253D%2520%257B%250A%2520%2520...%250A%2520%2520%2520%2520%2522androidx.test.uiautomator%253Auiautomator%2522%253A%2520%25222.2.0%2522%252C%250A%2520%2520...%250A%257D

How to setup instrumentation Tests using Bazel

To setup Instrumentation Tests using Bazel we require the following Rules/targets.
● android_instrumentation_test

○ name
○ target_device
○ test_app

● android_binary [Test]
○ name
○ custom_package
○ instruments
○ manifest
○ Deps

● kt_android_library
○ name
○ srcs
○ custom_package
○ manifest
○ resource_files
○ deps

https://docs.bazel.build/versions/master/be/android.html#android_instrumentation_test
https://docs.bazel.build/versions/master/be/android.html#android_binary
https://bazelbuild.github.io/rules_kotlin/kotlin#kt_android_library

Above flowchart represents how the above android_rules are dependent on each other.

android_instrumentation_test

An android_instrumentation_test rule runs Android Instrumentation Tests as the name suggests.
It will start an emulator, install the application being tested, the test application, and any other
needed applications, and run the tests defined in the test package. The test_app for this rule is
a android_binary with test dependencies and sources or test suites to be tested.

Arguments

Attribute name Usage

name A unique name or label for the target

target_device android_device where the tests should run
on.

https://docs.bazel.build/versions/master/be/android.html#android_device

Note: android_device here is not an emulator
or a physical device. There is a different
approach for that.

test_app Label for the android_binary containing the
test classes

android_binary

To Produce an Android application package file (.apk) both signed and unsigned.

Arguments

Attribute name Usage

name A unique name or label for the target

custom_package Java/Kotlin package for which java sources
will be generated. By default the package is
inferred from the directory where the BUILD
file containing the rule is. You can specify a
different package but this is highly
discouraged since it can introduce classpath
conflicts with other libraries that will only be
detected at runtime.

instruments If this attribute is set, this android_binary will
be treated as a test application for
instrumentation tests. An
android_instrumentation_test target can then
specify this target in its test_app attribute.

manifest The name of the Android manifest file,
normally AndroidManifest.xml. Must be
defined if resource_files or assets are
defined.

deps List of libraries i.e, dependencies for the srcs

Eg: Targets, artifacts

kt_android_library

This Rule comes under Rules Kotlin that supports the basic paradigm of Bazel language rules,
In kt_android_libary the srcs, deps, plugins are routed to kt_jvm_library.

Simply it is android_library for kotlin, which can compile the kotlin sources into a .jar file.
android_library compiles and archives its sources into a .jar file.

Arguments

Attribute name Usage

name A unique name or label for the target

srcs List of *.kt files that needs to be processed as
a target or create a .jar file

visibility To alter the visibility of the target beyond the
package

deps List of libraries i.e, dependencies for the srcs

Eg: Targets, artifacts

Add the following line in instrumentation/BUILD.bazel to support the kt_android_library

Add Test Deps for each test suite or complete instrumentation package
These deps are targets from the third_party packages they are

● androidx_test_runner
● androidx_test_ext_junit
● androidx_test_uiautomator_uiautomator
● com_google_truth_truth
● junit_junit

https://docs.bazel.build/versions/master/be/android.html#android_library

Let’s assume there is a Test Suite (ExplorationTest) to be tested using bazel, we first need the
kt_android_library for that test case.
Eg.

For the above test suite we need a android test apk, this can be generated using the
android_binary
Eg.

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=android_library%28%250A%2520%2520%2520%2520name%2520%253D%2520%2522test_deps%2522%252C%250A%2520%2520%2520%2520visibility%2520%253D%2520%255B%2522%252F%252Fvisibility%253Apublic%2522%255D%252C%250A%2520%2520%2520%2520exports%2520%253D%2520%255B%250A%2520%2520%2520%2520%2520%2520%2520%2520%2522%252F%252Fthird_party%253Aandroidx_test_runner%2522%252C%250A%2520%2520%2520%2520%2520%2520%2520%2520%2522%252F%252Fthird_party%253Aandroidx_test_ext_junit%2522%252C%250A%2520%2520%2520%2520%2520%2520%2509%2522%252F%252Fthird_party%253Aandroidx_test_uiautomator_uiautomator%2522%252C%250A%2520%2520%2520%2520%2520%2520%2520%2520%2522%252F%252Fthird_party%253Acom_google_truth_truth%2522%252C%250A%2520%2520%2520%2520%2520%2520%2520%2520%2522%252F%252Fthird_party%253Ajunit_junit%2522%252C%250A%2520%2520%2520%2520%255D%252C%250A%29

To execute or run the above test apk, we need android_instrumentation_test, which runs the
test in a emulator or a local device
Eg.

Finally these tests can be run using the command

bazel test EndToEndTest --config=headless (creates a emulator internally but not displayed)

bazel test EndToEndTest --config=gui (creates a emulator internally and displayed)

bazel test EndToEndTest --config=local_device (run on local device or emulator)

The above mentioned configurations are to be added to project’s .bazelrc file
1. For config=headless

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=android_binary%28%250A%2520%2520%2520%2520name%2520%253D%2520%2522ExplorationTest%2522%252C%250A%2520%2520%2520%2520custom_package%2520%253D%2520%2522org.oppia.android%2522%252C%250A%2520%2520%2520%2520instruments%2520%253D%2520%2522%253Aoppia%2522%252C%250A%2520%2520%2520%2520manifest%2520%253D%2520%2522app%252Fsrc%252FandroidTest%252FAndroidManifest.xml%2522%252C%250A%2520%2520%2520%2520deps%2520%253D%2520%255B%2522%253Aexploration_test%2522%255D%252C%250A%29
https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=android_instrumentation_test%28%250A%2520%2520%2520%2520name%2520%253D%2520%2522EndToEndTest%2522%252C%250A%2520%2520%2520%2520target_device%2520%253D%2520%2522%2540android_test_support%252F%252Ftools%252Fandroid%252Femulated_devices%252Fgeneric_phone%253Aandroid_28_x86_qemu2%2522%252C%250A%2520%2520%2520%2520test_app%2520%253D%2520%2522%253AExplorationTests%2522%252C%250A%29

test:headless --test_arg=--enable_display=false

2. For config=gui

test:gui --test_env=DISPLAY
test:gui --test_arg=--enable_display=true

3. For config=local_device

test:local_device --test_strategy=exclusive
test:local_device --test_arg=--device_broker_type=LOCAL_ADB_SERVER

Testing with UI Automator
In order to use the above bazel setup for E2E tests we need few test cases to implement using
UI automator. Basically we need to setup Tests using UI Automator.

Create a Test suite ExplorationTest, Instead of the whole End to end Testing lets just test a
single and simple test case to verify if the test case is working.

Starting with the
Let the initial test be to check if the “Select your profile” TextView is visible after loading the app.

Create a ProfileTest file/class under the package add the @RunWith annotation to the class.

To open the app using UI Automator we need to perform the following
● Get a instance of UIDevice using InstrumentationRegistry
● Start the app from scratch (best for End-to-End testing)
● Get launcher package using UIDevice
● Get Context from InstrumentationRegistry
● Get intent from the Oppia package using context.packagemanager
● Load the intent using context.startActivity

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=2x&wm=false&code=%2540RunWith%28AndroidJUnit4%253A%253Aclass%29%250Aclass%2520ExplorationTest%2520%257B%250A%2520%2520...%250A%257D

● Wait for the package to load using uiautomator.Until
Following the above steps we get the following @Before function which will be executed before
each test case.

Adding an initial test case on the basis of starting the End-to-End testing. A test case verifying
whether the “Select your profile” exists or not.

Unlike Espresso here we don’t need to import org.oppia.android.R Import for the Resource ids
instead we can directly use <PACKAGE_NAME>:id/<RESOURCE_ID> for the Resource id. But

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%2520%2520%2540Before%250A%2520%2520fun%2520setUp%28%29%2520%257B%250A%2520%2520%2520%2520%252F%252F%2520Initialize%2520UiDevice%2520Instance%250A%2520%2520%2520%2520device%2520%253D%2520UiDevice.getInstance%28InstrumentationRegistry.getInstrumentation%28%29%29%250A%250A%2520%2520%2520%2520%252F%252F%2520Start%2520app%2520from%2520scratch%250A%2520%2520%2520%2520device.pressHome%28%29%250A%250A%2520%2520%2520%2520%252F%252F%2520Wait%2520for%2520launcher%250A%2520%2520%2520%2520val%2520launcherPackage%253A%2520String%2520%253D%2520device.launcherPackageName%250A%2520%2520%2520%2520assertThat%28launcherPackage%29.isNotNull%28%29%250A%2520%2520%2520%2520device.wait%28Until.hasObject%28By.pkg%28launcherPackage%29.depth%280%29%29%252C%2520LAUNCH_TIMEOUT%2520%252F*5000L*%252F%29%250A%2520%2520%2520%2520val%2520context%2520%253D%2520InstrumentationRegistry.getInstrumentation%28%29.context%250A%2520%2520%2520%2520val%2520intent%2520%253D%2520context.packageManager.getLaunchIntentForPackage%28OPPIA_PACKAGE%2520%252F*org.oppia.android.app*%252F%29%2520%253F%253A%2520throw%2520Exception%28%2522Oppia%2520is%2520not%2520installed%2522%29%250A%2520%2520%2520%2520context.startActivity%28intent%29%250A%2520%2520%2520%2520device.wait%28Until.hasObject%28By.pkg%28launcherPackage%29.depth%280%29%29%252C%2520LAUNCH_TIMEOUT%2520%252F*5000L*%252F%29%250A%2520%2520%257D
https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%2520%2520%252F**%250A%2520%2520%2520*%2520Check%2520if%2520the%2520UI%2520item%2520exist%2520within%2520the%2520screen%250A%2520%2520%2520*%252F%250A%2520%2520%2540Test%250A%2520%2520fun%2520checkIfTitleExists%28%29%2520%257B%250A%2520%2520%2520%2520val%2520title%2520%253D%2520device.findObject%28%250A%2520%2520%2520%2520%2520%2520UiSelector%28%29.resourceId%28%250A%2520%2520%2520%2520%2520%2520%2520%2520%2522%2524OPPIA_PACKAGE%253Aid%252Fprofile_select_text%2522%250A%2520%2520%2520%2520%2520%2520%29%250A%2520%2520%2520%2520%29%250A%2520%2520%2520%2520assertThat%28%250A%2520%2520%2520%2520%2520%2520title.exists%28%29%250A%2520%2520%2520%2520%29.isTrue%28%29%250A%2520%2520%257D

this makes it difficult as compared to Espresso where we can just use the auto
import/suggestion to get the resource id. This issue can be solved through Ui Automator
Viewer.

UI Automator Viewer is not any third party app or tool. It is a pre-installed Sdk tool we get within
the Android Sdk in the path /$HOME/Android/Sdk/tools/bin i.e, run the command

(NOTE: It requires JDK 8 to run.)

Using Ui Automator Viewer we can just open the current screen and check the id of the view or
view group using a single click.

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%2524HOME%252FAndroid%252FSdk%252Ftools%252Fbin%252Fuiautomatorviewer

The above test brings up only one check i.e, to verify if a view is existing or not, but how do we
navigate throughout the app similar to View Actions in Espresso.

UI Automator can do all tasks that Espresso can do but not all UI Automator features are
supported by Espresso

Analyzing the UI Automator from Espresso perspective as we already have Espresso support in
Oppia and we are familiar with Espresso.

● Handling application transitions (navigating to different activity or fragment)
○ Espresso -- Handles windows transitions automatically.
○ UI Automator -- Unlike Espresso we should explicitly use waitings for the

application transitions.
● Locating UI elements (Views or View groups)

○ Espresso -- Core Espresso onView() and onData() methods together with view
matchers or data matchers are used to locate the UI elements

○ UI Automator -- Similar to Espresso, UI Autmator has its own UIDeivce class,
which contains methods like hasObject(BySelector), findObject(BySelector) that
are used to search for an element or check its presence in the app.

● Waitings (to wait for a specific tasks to complete)

○ Espresso -- The Test coroutine Dispatcher or IdlingResource and the third-party
ConditionWatcher can be used as waiting mechanisms.

○ UI Automator -- Unlike Espresso, UI Automator has its own function wait() and
performActionAndWait() within the UIDevice class.

● UI/View Actions. (Interacting with views)
○ Espresso -- Core Espresso ViewActions do all the view actions for the tests.
○ UI Automator -- Similar to Espresso, UI Automator has a UIObject2 Class that

allows all the UI Actions.
● Device Controls (Other controls such as volume, home button...)

○ Espresso -- Not supported in Espresso
○ UI Automator -- Provides a long list of device control methods starting from home

button to orientation control.

The above differences lists a lot of unknown functions/classes related to UI Automator
framework.

Among the above features, we need to understand the following two important features to be
able to write any test case using UI Automator.

● Finding and Acting on UI Elements
● Waiting for UI Elements

Finding And Acting on UI Elements

This is the main UI Automator functionality is to locate UI Elements and performing actions on
them. To do this we need findObject() and findObjects() methods. The findObject() method
takes instances of the following classes as parameters that specify criteria for matching UI
elements in the hierarchy:

● UiSelector()
● BySelector()

Both UISelector() and BySelector() are completely similar to one another. But BySelector() is
more readable compared to UISelector.

Usage:

Waiting for UI Elements

UI Automator interacts with multiple applications unlike Epsreso so we don’t have access to the
Applications transitions or animations -- it is important to have proper waiting mechanisms that
will allow us to write more reliable test code.

UI Automator waitings are presented by the following types:
● EventCondition -- A condition that depends on a event to be occurred.
● SearchCondition -- A condition that is satisfied by searching for UI elements.
● UiObject2Condition -- A condition that is satisfied when a UIObject2 is in a Exptected

state.
EventCondition is a condition which depends on an event or series of events having occurred.
It is a parameter to clickAndWait(condition: EventCondition<R>, timeout: long) function of the
UIOjbect2 class. The following are the event conditions.

● newWindow() -- Returns a condition that depends on a new window having appeared.
● scrollFinished() -- Returns a condition that depends on a scroll having reached the end in

the given direction
SearchCondition is responsible for locating elements in the layout. The mosly used
searchConditions are

● gone() -- Condition is satisfied when the UIObject can no longer be found
● hasObject() -- Condition is satisfied when at least one element matching the selector can

be found
● findObject() -- Condition is satisfied when at least one element matching the selector can

be found and returns the first found element
UIObject2Condition is basically a Static check i.e, it doesn’t involve any interaction with the
views. They are similar to Espresso’s ViewMatchers. The most used ones are

● checkable() -- Returns a condition if the UIObject2 is in a checkable state.
● checked() -- Returns a condition if the UIOject2 is in a checked state.

https://carbon.now.sh/?bg=rgba%28255%2C255%2C255%2C1%29&t=night-owl&wt=sharp&l=auto&ds=true&dsyoff=3px&dsblur=13px&wc=false&wa=true&pv=56px&ph=56px&ln=false&fl=1&fm=Hack&fs=14px&lh=133%25&si=false&es=1x&wm=false&code=%252F%252F%2520UISelector%250A%250A%2520%2520%252F*using%2520resource%2520ID*%252F%250A%2520%2520device.findObject%28UiSelector%28%29.packageName%28%2522%2524OPPIA_PACKAGE%253Aid%252Fadd_profile_text%2522%29%29%250A%2520%2520%2520%2520%2520%2520.click%28%29%250A%2520%2520%252F*using%2520text*%252F%250A%2520%2520device.findObject%28UiSelector%28%29.text%28%2522Set%2520up%2520Multiple%2520Profiles%2522%29%29%250A%2520%2520%2520%2520%2520%2520.click%28%29%250A%2520%2520%250A%252F%252F%2520BySelector%250A%250A%2520%2520%252F*using%2520resource%2520ID*%252F%250A%2520%2520device.findObject%28By.res%28OPPIA_PACKAGE%252C%2520%2522add_profile_text%2522%29%29%250A%2520%2520%2520%2520%2520%2520.click%28%29%250A%2520%2520%252F*using%2520text*%252F%250A%2520%2520device.findObject%28By.text%28%2522Set%2520up%2520Multiple%2520Profiles%2522%29%29%250A%2520%2520%2520%2520%2520%2520.click%28%29

● enabled() -- Returns a condition if the UIObject2 is in an enabled state.
● focused() -- Returns a condition if the UIOject2 is in a focused state.
● selected() -- Returns a condition if the UIObject2 is in the selected state.
● textMatches() -- Returns a condition if the object’s text value matches with the given

text.

End-to-End test flows

As this project is basically to test Downloading and playing through an exploration. This section
provides a high level representation of how the testing flow takes place.

The test cases are written such that the @Before annotated function will open a topic so that the
tests only include the Exploration related testing (This will also favor the name of the test suite --
ExplorationTests)

@Before
Opens the app from scratch → Selecting a user → choosing a topic

This images is only when the app is open first time further it will be only the last to images. And
other will be ignored by using UI Automator’s UIObject2Conditonal waitings.

Downloading Topics

This section includes
● Downloading a Topic
● Pause Download
● Cancel Download
● Delete Downloaded Topic
● Validate Downloading with wifi
● Validate Downloading with Mobile Data
● Validate Downloading without internet connection

● Validate Progress while downloading

Adding screenshots from the mocks as this is not yet implemented

Playing through a exploration

Note: This can be tested after downloading a Topic. Not mentioning the user flow for all these,
as it would take a huge amount of test cases.

This section describes what exploration components/Input Interactions in android to be tested
● Fraction Input
● Ratio Input
● Numeric Input
● Text Input
● Drag and drop
● Drag and drop with merge
● Checkbox selection Input
● Radio button selection input
● Concept cards
● Hints and solutions

● Confetti

Third-party Libraries*
This project introduces UI Automator, a Third-party library used for End-to-End (and
Instrumentation) tests. UI Automator is compatible with Apache 2.0 license.

UI Automator maven repository

Testing Approach
As the android part of this project is especially based Testing we don’t need to include the End
to End tests.

But for the web part it is necessary to add unit tests for the controllers and domain module i.e,
for the following files.

● core/controllers/editor.py
● core/controllers/acl_decorators.py
● core/controllers/android_e2e_config.py
● core/domain/topic_services.py
● core/domain/topic_fetchers.py
● core/domain/story_services.py
● core/domain/skill_services.py

And the test cases are added under.
● core/controllers/editor_test.py
● core/controllers/acl_decorators_test.py
● core/controllers/android_e2e_config_test.py
● core/domain/topic_services_test.py
● core/domain/topic_fetchers_test.py
● core/domain/story_services_test.py
● core/domain/skill_services_test.py

Milestone 1

Key Objective: Introduce developer-only functionality in the Oppia backend to prepopulate test
topics, stories, chapters, explorations, revision cards, skills, and questions.

To Introduce downloadable setup for non-Exploration structures, and update the local datastore
using the local assets in order to fetch the data from Oppia-android as an automated process.
To Introduce a Mock GCS endpoint used to access test images from the data directory.

https://mvnrepository.com/artifact/androidx.test.uiautomator/uiautomator

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Introduce Download support for
Topics,
Subtopics, Stories and skills (new
endpoints to download these
structures)

N/A 9th June,
2021

13th June,
2021

1.2 Add sample topic, subtopics, stories,
skills and explorations to be tested in
android

1.1 15th June,
2021

19th June,
2021

1.3 Initiate test data from local assets 1.2 21th June,
2021

24th June,
2021

1.4 Send local test images as a HTTP
response

1.2 26th June,
2021

30th June,
2021

1.5 Add the mock GCS endpoint to
ImageParsingModule

1.4 1st June,
2021

5th July,
2021

Milestone 2

Key Objective: Set up infrastructure for end-to-end testing using UiAutomator & Bazel. Write
end-to-end tests for downloading and playing through one exploration.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 Setup UI Automator + Bazel N/A 20rd July,
2021

25th July,
2021

2.2 End-to-End test for downloading a
topic

2.1 27th July,
2021

1st August,
2021

2.3 End-to-End test to play through a
exploration

2.1 4th August,
2021

9th August,
2021

Optional Sections

Additional Project-Specific Considerations

Privacy

This feature does not collect any data from the user; the test data is fetched from the local
assets that were added in the data directory. And hence this project does not deal with any
privacy issues for Oppia users

Security
This feature includes adding an endpoint that fetches images and yaml strings from the data
directory i.e, initiating the tests data which might break the website if used in production. For
security measures the endpoint is surrounded by a flag that checks the user's authorization and
throws a exception in case of unauthorized access

Accessibility (if user-facing)
This project doesn’t involve only changes in the backend of oppia-web and introduces
End-to-End tests in oppia-android, and hence there are no UI Changes involved.

Documentation Changes
The following parts of this project requires Documentation changes.

● How to download test data from the data store.
● How to update test data from local assets in the data directory to the local datastore.
● How to run End-to-End tests using an UI automator.
● How to start UI Automator Viewer.
● How to write End-to-End tests.

Ethics
End-to-End tests are necessary before publishing or adding new features, this is considered a
best practice to test End-to-End tests before every release as it helps to cover all the user end
cases by replicating user behaviors in an automated and deterministic way allows us to guard
against regressions which in turn ensures users receive a consistent and correctly working app
for each release..

Future Work
After GSoC I’d love to work on the following things

1. Adding CI checks for UI Automator.

This project doesn’t involve local End to End tests for UI Automator. But further we need
to add these to CI check such that after each PR or each change in the codebase these
End-to-End tests are run and in case the app breaks or doesn’t give expected outcome, these
tests fail pointing to the code changes that triggered the failure.

2. Adding Bazel support to run Android Instrumentation tests for existing Espresso tests.

Currently the Espresso tests are only supported by Gradle, but after bazel migration
these Espresso tests need to run on bazel.

Additional Info Required

Technical Design

Q1. The image serving solution seems incomplete: there is no explanation given for how images
will be retrieved. Please add more details on how the implementation of "Accessing images from
the local dev server" would work.

A1. Please write your answer here.

To retrieve local images from the web this project introduces two handler/class
AndroidTestImageHandler and AndroidTestThumbnailHandler in the
core/controllers/android_e2e_config.py that act as a fake Google Cloud Storage to the android.

Referring from the android side (ImageParsingModule.kt) two endpoints are created for these two
handlers.

Images → android_test_images/%s/%s/assets/image/%s
Thumbnails → android_test_images/%s/%s/assets/thumbnail/%s

Each endpoint gives three parameters
● Structure type
● Structure ID
● File Name

Which are used to navigate to the images file from the test data in the data directory. These
images are then expected to be displayed similar to GCS such that this doesn’t involve any
changes in UrlImageParser.kt in Oppia-android.

So after locating the required image the image path is passed to a new function (render_image) in
core.controllers.base.py which loads the images for the endpoint.

In core.controllers.base.py a new function is created i.e, render_image() in which the image file
path is passed and it opens the image as a HTML or send the image as a HTTP response.

def render_image(self, filepath):

with open(filepath, "rb") as imagefile:

image = imagefile.read()

self.response.content_type = b'image/png'

self.response.write(image)

Using this function the endpoint returns an image response that can be directly retrieved using
Glide android image loading library to display the local test images.

Q2. Please explain how image handling will be replaced in the Android app. (Note that it needs
to be done in a way that doesn't change production app behavior.)

https://github.com/oppia/oppia-android/blob/0027ded9a10d8589bd34e1a5a6553c49c1dd94fb/utility/src/main/java/org/oppia/android/util/parser/ImageParsingModule.kt

A2. Please write your answer here.

Test images can be fetched using the above endpoint. To do so we need to change the

Default GCS prefix and Default GCS resource to and use the local server endpoints to access
the test images from the data directory in oppia-web. This process of changing the production
GCS prefix and resource can’t be automated as these are used from modules and needs Hilt
migration to do so.

Here in production the GCS prefix and GCS resource are https://storage.googleapis.com and
oppiaserver-resources.

This constants are changes to “http://oppia.org” (proxy server for localhost:8181) as GCS
prefix in the ImageParsingModule.kt
And android_test_images (new endpoint for images and thumbnails) as GCS resource in the
GcsResourceModule.kt

As this has to be done manually this can either be added as a comment or mentioned in the
wiki to run the End-to-End tests.

Q3. Please explain which initial test cases will be implemented, along with a code snippet or
pseudocode to explain the flow.

A3. Please write your answer here.

https://storage.googleapis.com
http://oppia.org
https://github.com/oppia/oppia-android/blob/0027ded9a10d8589bd34e1a5a6553c49c1dd94fb/utility/src/main/java/org/oppia/android/util/parser/ImageParsingModule.kt#L14
https://github.com/oppia/oppia-android/blob/f9eb3cdcba174fdd78690af33ffe3c7a8b547a10/utility/src/main/java/org/oppia/android/util/gcsresource/GcsResourceModule.kt
https://github.com/oppia/oppia-android/blob/f9eb3cdcba174fdd78690af33ffe3c7a8b547a10/utility/src/main/java/org/oppia/android/util/gcsresource/GcsResourceModule.kt

The initial test cases for End-to-End testing will be to “Navigating to a topic”, As this project
involves testing Downloading a Topic and Playing through a Exploration.

The following code snippets describe which resource ids and class names are used based on
the each view as displayed using UiAutomatorViewer and a basic understanding of the test
flow through the topics and explorations. Using Prototype Exploration as Example

To Navigate to a Topic.

device.findObject(UiSelector().packageName("org.oppia.android:id/profile_ch

ooser_item")).click()

device.findObject(UiSelector().packageName("org.oppia.android:id/topic_thum

bnail_image_view")).click() // Selects the first found topic

Downloading a Topic

val download_status =

device.findObject(UiSelector().packageName(”org.oppia.android:id/download_story

_count_text_view”))

assertThat(

Download_status.text, “Download Topic”

)

download_status.click()

device.findObject(UiSelector().packageName(”android:id/button1”)).click

//Download Now button in dialog

Deleting a downloaded Topic.

val download_status =

device.findObject(UiSelector().packageName("org.oppia.android:id/download_story

_count_text_view"))

assertThat(

Download_status.text, "Topic Downloaded"

)

download_status.click()

device.findObject(UiSelector().packageName("android:id/button1")).click

//confirm delete topic

Opening an Exploration and playing through it.

device.swipe(1033,1346,531,1346,20) // swipe to next page or Lessons

device.findObject(UiSelector().className("android.widget.LinearLayout").getInst

ance(0)).click() // Revealing Explorations in first story

device.findObject(UiSelector().packageName("org.oppia.android:id/chapter_contai

ner").getInstance(0)).click() // Opening the first Exploration.

device.findObject(UiSelector().packageName("org.oppia.android:id/continue_butto

n")).click() // continue button

Fraction Input Interaction.

val fraction_input =

device.findObject(UiSelector().resourceId("org.oppia.android:id/fraction_input

_interaction_view"))

fraction_input.setText("1/2")

Radio Button Interaction.

val correct _option =

device.findObject(UiSelector().resourceId("org.oppia.android:id/radio_contain

er").getInstance(2))

correct_option.click()

Checkbox Interaction

val correct_option =

device.findObject(UiSelector().resourceId("org.oppia.android:id/checkbox_contai

ner").getInstance(0))

correct_option.click()

device.findObject(UiSelector().resourceId("org.oppia.android:id/submit_answer_b

utton")).click() //submit answer

Numeric Input Interaction

val numeric_input =

device.findObject(UiSelector().resourceId("org.oppia.android:id/numeric_input_

interaction_view"))

numeric_input.setText("121")

Ratio Input Interaction

val ratio_input =

device.findObject(UiSelector().resourceId("org.oppia.android:id/ratio_input_i

nteraction_view"))

ratio_input.setText("4:5")

Text Input Interaction

val text_input =

device.findObject(UiSelector().resourceId("org.oppia.android:id/text_input_in

teraction_view"))

ratio_input.setText("finnish")

Drag & Drop Interaction

val init_position =

device.findObject(UiSelector().resourceId("org.oppia.android:id/drag_drop_item_

recyclerview").getInstance(0))

val des_position =

device.findObject(UiSelector().resourceId("org.oppia.android:id/drag_drop_item_

recyclerview").getInstance(3))

init_positon.dragTo(des_position)

device.findObject(UiSelector().resourceId("org.oppia.android:id/submit_answer_b

utton")).click() //submit answer

Drag & Drop & Merge Interaction

device.findObject(UiSelector().resourceId("org.oppia.android:id/drag_drop_conte

nt_group_item")).click()

val init_position =

device.findObject(UiSelector().resourceId("org.oppia.android:id/drag_drop_item_

container").getInstance(0))

val des_position =

device.findObject(UiSelector().resourceId("org.oppia.android:id/drag_drop_item_

container").getInstance(1))

init_positon.dragTo(des_position)

device.findObject(UiSelector().resourceId("org.oppia.android:id/submit_answer_b

utton")).click() //submit answer

Image Region Selection Interaction.

val jupiter =

device.findObject(UiSelector().className("android.view.View").getInstance

(1))

jupiter.click() // and check info for jupiter

val saturn =

device.findObject(UiSelector().className("android.view.View").getInstance

(2))

saturn.click() // to submit and exit current state

End Exploration or Return to Topic.

device.findObject(UiSelector().resourceId("org.oppia.android:id/return_to_t

opic_button")).click()

Note that for each window transition a wait() or performActionAndWait() is used.

PRs

Q1. Part of this project involves making changes on Oppia-web. Please take up at least one
Oppia-web PR that is larger in scale and that touches the domain/controller layer.

A1. Please include the link to your PR(s) here.

Created two PRs related to controllers
#12566 - Consolidate add/remove contribution rights controller handlers
#12611 - Using logging.exception instead of logging.error in controllers

https://github.com/oppia/oppia/pull/12566
https://github.com/oppia/oppia/pull/12611

