
About You

Why are you interested in working with Oppia, and on your chosen project?

Since high school, I have been interested in programming and have consistently tried to improve

my skillset in that regard. To this end, I started looking for open source organizations that I

could work with and contribute code. During this process, I came across the Oppia organization.

In addition to a high quality and interesting codebase, Oppia’s objective, to create a set of free,

high-quality lessons regardless of where they are and or what traditional resources they have

access to, really spoke to me. My original hometown is a remote village and a platform such as

Oppia would allow children and adults living there to get access to quality education regardless

of what resources they have access to.

When I was running through the list of ideas, this particular project caught my eye. In addition to

the idea itself, I believe that working on this project will help me understand the overall

codebase better. Even though the idea looks easy at first look, the details in this project make

the implementation a challenge. Specifically, to work on this project, one needs to not only

understand the working of the directive that is being tested but also all the services and other

dependent elements being used in the file. Writing tests is also of immense value and can be

viewed as being synonymous with writing code documentation.

Prior experience

I had started with no knowledge in writing frontend unit tests but as time went by I started to

see the complexity and thought that goes into testing. The common misconception is that the

tests are easy to write. However, one has to understand the working of the complete file and

also other files and functions used in the file one is going to write unit tests for.

As I started writing more frontend tests I started to gain more knowledge on how to write a

frontend unit test and I have helped other contributors in Gitter to write frontend tests.

https://gitter.im/oppia/oppia-chat

PRs

1. Wrote a complete service along with the frontend test file. - #11654

2. Wrote a frontend unit test file for AngularJS directive admin-navbar. - #11962

3. Migrated the files from AngularJS directive to Angular Component and wrote a complete

frontend unit test file. - #12354

4. This was the first time I had worked with Angular, Typescript, and frontend tests. I had

learned a lot from this PR. I thank Kevin Thomas and Sandeep Dubey for explaining and

teaching me the ropes. Not the most impressive PR but one that I had learned the most

in. - #11690

5. Identified an unused directive - #11201

Contact info and timezone(s)

Email: praneethg2001@gmail.com

Hangouts: praneethg2001@gmail.com

Timezone: IST

Time commitment

From To Hours

17/5 14/6 5 hours/week

15/6 18/7 70 hours/week

19/7 23/8 30 hours/week

https://github.com/oppia/oppia/pull/11654
https://github.com/oppia/oppia/pull/11962
https://github.com/oppia/oppia/pull/12354
https://github.com/oppia/oppia/pull/11690
https://github.com/oppia/oppia/pull/11201
mailto:praneethg2001@gmail.com
mailto:praneethg2001@gmail.com

Essential Prerequisites

Answer the following questions:

● I can run a single backend test target on my machine.

● I can run all the frontend tests at once on my machine.

● I can run one suite of e2e tests on my machine.

Other summer obligations

- I have my College classes till May 28th

- I have my College exams from 29th - 15th

Communication channels

● Meeting twice a week on google meet to discuss how the tasks are going.

● Hangouts chat for quick messages and questions.

● Google sheet to track what files I’m working on and their PR status.

Application to multiple orgs

I have applied only to Oppia for my GSoC 2021

I have applied only to Oppia for my GSoC 2021

I have written 2 proposals for Oppia.

I have no particular preference between the 2. Hence I’m going with the order I have written the

proposals in

1. Write frontend tests

2. Solving dev-workflow issues

Project Details

Product Design
Oppia is an educational online platform that has taken a new approach to provide education and

knowledge to the world. When “the world” is mentioned it not only means places with good

connectivity with the internet but also places that have low network coverage/internet speed.

Oppia is able to achieve this thanks to a couple of features such as, pre-load lessons as soon as

the first card appears, continuously improving the speed at which the website loads, etc…

In order to have features supporting all kinds of activities, Oppia has a large codebase, and to

make sure that all these features and the user experience don’t get affected, Oppia’s codebase

is tested in numerous methods (e2e test, backend test, frontend test, Lighthouse, to mention a

few).

In a frontend test, the code is tested for its functionality and not its coverage, i.e., the number of

lines tested. This way it helps to ensure that none of the Oppia’s features get affected. This is

done with the help of unit testing. A Unit is the smallest group of code that can be maintained

and executed independently.

Importance of Unit tests:

● Provides Documentation: Unit testing provides documentation of the system. Anyone

looking to learn what functionality is provided by a unit of code and how to use it can

look at the unit tests to gain a basic understanding of its functionality.

● Maintains healthy code: Unit tests make sure that every unit of code functions as

intended, hence drastically reducing the chance of a regression (re-occurrence of a fixed

bug) or a new bug.

● Ensures quality of interactions: We can test components and directives that affect the

frontend of a website. This ensures that the user experience is consistent and does not

introduce bugs.

Goal:

● 100% coverage of Component, Directive, and Services.

● Accelerate the process of migration by converting AngularJS Directive to Component

Technical Design

Architectural Overview

Oppia file structure:

Oppia:

● Core/Templates

○ All the frontend directives, controllers, filters & services.

● Extensions

○ interactions: contains interactions supported on the Oppia website.

○ objects: contains various typed editors like boolean editor, file path editor, etc.

○ rich_text_components: contains rich text components supported on Oppia RTE.

○ value_generators: contains value generators used in Oppia.

○ visualizations: contains visualizations used in Oppia.

File Type Total Lines Covered Lines Uncovered Lines

Component 7646 7254 392

Directive 10794 2658 8136

Service 11636 10247 1389

Other 9828 9028 800

Table: No: of lines covered by frontend tests

Components

Components are the main building block for Angular applications. Each component consists of:

● An HTML template (declares what renders on the page)

● A Typescript class (defines behavior)

● A CSS selector (defines how the component is used in a template)

● CSS styles applied to the template (Optional)

Currently, we have components and directives that are supposed to be converted to

components due to the presence of `restrict: E`. The presence of `restrict: E` indicates that the

file will be used as an element, .i.e, <oppia-component> (More Details in Migrate AngularJS

Directive to AngularJS Component)

Directives

Directives are custom HTML attributes that tell angular to change the style or behavior of the

Dom elements.

The directive files are generally of 2 types:

● Component Directives

○ These form the main class having details of how the component should be

processed, instantiated, and used at runtime.

● Attribute Directives

○ Attribute directives deal with changing the look and behavior of the DOM

element. You can create your directives as shown below.

Given below are 35 directive and component files that are required to be tested. I have also

included information with respect to number of lines and if a *Spec file is already present.

S. No: File Name No.of
Lines

Complexity Is Migrated Category Spec file

1. learner-vie
w-info.dire

105 Medium No core/templ
ates

No

ctive.ts

2. list-of-tabs-
editor.direc
tive.ts

71 Easy No extensions
/objects

No

3. list-of-unic
ode-string-
editor.direc
tive.ts

49 Easy No extensions
/objects

No

4. logic-error-
category-e
ditor.directi
ve.ts

77 Easy No extensions
/objects

No

5. logic-quest
ion-editor.d
irective.ts

103 Medium No extensions
/objects

No

6. math-expr
ession-con
tent-editor.
directive.ts

172 Medium No extensions
/objects

No

7. mathjax-bi
nd.directiv
e.ts

45 Easy No core/templ
ates

No

8. misconcep
tion-editor.
directive.ts

174 Medium No core/templ
ates

No

9. music-phra
se-editor.di
rective.ts

88 Easy No extensions
/objects

No

10. nonnegativ
e-int-editor.
directive.ts

52 Easy No extensions
/objects

No

11. normalized
-string-edit
or.directive
.ts

99 Easy No extensions
/objects

No

12. number-wit
h-units-edit

59 Easy No extensions
/objects

No

or.directive
.ts

13. object-edit
or.directive
.ts

74 Easy ?? core/templ
ates

No

14. oppia-inter
active-cod
e-repl.direc
tive.ts

270 Hard No extensions No

15. oppia-inter
active-cont
inue.comp
onent.ts

81 Easy Yes extensions
/interaction
s

No

16. oppia-inter
active-drag
-and-drop-
sort-input.d
irective.ts

120 Medium No extensions
/interaction
s

No

17. oppia-inter
active-end-
exploration
.directive.t
s

121 Medium No extensions
/interaction
s

No

18. oppia-inter
active-ima
ge-click-in
put.directiv
e.ts

232 Medium No extensions
/interaction
s

No

19. oppia-inter
active-inter
active-map
.directive.t
s

184 Medium No extensions
/interaction
s

No

20. oppia-inter
active-item
-selection-i
nput.directi
ve.ts

142 Medium No extensions
/interaction
s

No

21. oppia-inter 323 Hard No extensions No

active-logic
-proof.dire
ctive.ts

/interaction
s

22. oppia-inter
active-mult
iple-choice
-input.direc
tive.ts

119 Medium No extensions
/interaction
s

No

23. oppia-inter
active-mus
ic-notes-in
put.directiv
e.ts

880 Hard No extensions
/interaction
s

No

24. oppia-inter
active-num
ber-with-un
its.directive
.ts

121 Medium No extensions
/interaction
s

No

25. oppia-inter
active-num
eric-input.d
irective.ts

82 Easy No extensions
/interaction
s

No

26. oppia-inter
active-pen
cil-code-ed
itor.directiv
e.ts

212 Medium No extensions
/interaction
s

No

27. oppia-inter
active-set-i
nput.directi
ve.ts

114 Medium No extensions
/interaction
s

No

28. oppia-inter
active-text-
input.direct
ive.ts

90 Easy No extensions
/interaction
s

No

29. oppia-noni
nteractive-
collapsible.
directive.ts

47 Easy No extensions
/rich_text_
component
s

No

30. oppia-noni
nteractive-i
mage.direc
tive.ts

142 Medium No extensions
/rich_text_
component
s

No

31. oppia-noni
nteractive-l
ink.directiv
e.ts

74 Easy No extensions
/rich_text_
component
s

No

32. oppia-noni
nteractive-
math.direct
ive.ts

107 Medium No extensions
/rich_text_
component
s

No

33. oppia-noni
nteractive-
skillreview.
directive.ts

89 Easy No extensions
/rich_text_
component
s

No

Services

Services allow you to define code that's accessible and reusable to other files. A common use

case for services is when you need to communicate with the backend to send and receive data.

Given below are 35 service files that are required to be tested. I have also included information

with respect to number of lines and if a *Spec file is already present.

S.No: File Name No.of Lines Complexity Is Migrated Spec file
present

1. answer-classification
.service.ts

200 M Not needed Yes

2. audio-player.service.
ts

177 M Not needed No

3 audio-preloader.serv
ice.ts

139 Medium Not Needed Yes

4 audio-translation-ma
nager.service.ts

92 Easy Not Needed Yes

5 autogenerated-audio 78 Easy Not Needed No

-player.service.ts

6 base-interaction-vali
dation.service.ts

124 Medium Not Needed No

7 change-list.service.t
s

262 Hard Not Needed No

8 code-repl-prediction.
service.ts

335 Hard Not Needed Yes

9 collection-editor-stat
e.service.ts

219 Medium Not Needed Yes

10 collection-update.ser
vice.ts

284 Hard Not Needed Yes

11 context.service.ts 308 Hard Not Needed Yes

12 contribution-and-revi
ew.service.ts

125 Medium Not Needed Yes

13 contribution-opportu
nities-backend-api.s
ervice.ts

201 Medium Not Needed Yes

14 contribution-opportu
nities.service.ts

132 Medium Not Needed No

15 csrf-token.service.ts 64 Easy Not Needed Yes

16 current-interaction.s
ervice.ts

167 Medium Not Needed Yes

17 editable-collection-b
ackend-api.service.t
s

149 Medium Not Needed Yes

18 editable-story-backe
nd-api.service.ts

266 Hard Not Needed Yes

19 email-dashboard-dat
a.service.ts

120 Medium Not Needed Yes

20 entity-creation.servic
e.ts

82 Easy Not Needed Yes

21 exploration-creation.
service.ts

122 Medium Not Needed No

22 exploration-diff.servi
ce.ts

373 Hard Not Needed No

23 exploration-engine.s
ervice.ts

480 Hard Not Needed No

24 exploration-player-st
ate.service.ts

263 Hard Not Needed Yes

25 exploration-save.ser
vice.ts

468 Hard Not Needed No

26 exploration-states.se
rvice.ts

536 Hard Not Needed Yes

27 expression-evaluato
r.service.ts

133 Medium Not Needed Yes

28 expression-interpola
tion.service.ts

105 Medium Not Needed Yes

29 fatigue-detection.ser
vice.ts

73 Easy Not Needed No

30 fraction-input-validati
on.service.ts

327 Hard Not Needed Yes

31 graph-detail.service.
ts

81 Easy Not Needed No

32 graph-input-rules.ser
vice.ts

225 Medium Not Needed Yes

33 graph-input-validatio
n.service.ts

137 Medium Not Needed Yes

34 graph-layout.service
.ts

625 Hard Not Needed No

35 hint-and-solution-mo
dal.service.ts

77 Easy Not Needed Yes

Implementation Approach

For implementation purposes, I am dividing files based on the number of lines present. I have

referred to the 4057 issue. However, this method is not accurate as the difficulty may vary

depending on the experience in testing various parts of the code.

Complexity Easy Medium Hard

Number of lines up to 100 lines up to 250 lines at least 250 lines

Flowchart:

Fig - Flowchart on how to write frontend tests for a file

Parts of the code that could take more time than expected:

● Tricky scenarios

1. Number of lines to be tested per student = 3,300 lines of code

2. Amount of time = 10 weeks

3. NO: of lines per week = 3,300/10 = 330 lines of code

4. Assuming 4 hours a day is spent on writing tests

5. No: of lines per day = 330/4 = 12 (approx.)

Note:

When writing frontend tests not only includes writing tests but also understanding the file going

to be tested, other files being utilized within the file being tested, and much more. This will be

explained in detail in the next section.

https://github.com/oppia/oppia/issues/4057

Testing Approach

Analyze the file

Before writing tests for the file we must have a clear understanding of the functionality of the

file and how it achieves it. It will also require us to understand the services being used by that

file.

1. Find where the file is being implemented on the Oppia website.

2. Run localhost and understand how each function works with the help of the console log.

Google Chrome developer tools will also be helpful here to place breakpoints in the code

to understand what is present in the variables.

3. We then have to determine if the file has more than 1 high-level task since these will

become the initial describe functions. Ex: for webpages we have:

describe('when the device is narrow', () => {

…

}

describe('when device is not narrow', () => {

…

}

Fig - settings-tab-component.spec.ts

a. In the above image, we are testing with 2 describe() functions since one of the

functions present in the file is only triggered when the device is narrow. In this

test, the WindowDimensionsService is mocked to set the window as narrow.

4. We then write a unit test. This is explained in detail in the subsequent sections.

Migrate AngularJS Directive to AngularJS Component

Which files to Migrate?
● The AngularJS directive files that have restrict: ‘E’ have to be migrated to an AngularJS

component file to make it easier to test and assist in Angular Migration.

● The presence of `restrict: E` indicates that the file will be used as an element, .i.e,

<oppia-component>. Hence after converting it to a component we no longer have to use

`restrict: E` (Since components can be elements only)

Migration Explained

Given below are examples converting an AngularJS directive file to anAngularJS component file.

Example - 1
/contributor-dashboard-page/opportunities-list-item/opportunities-list-item.directive.ts
angular.module('oppia').directive('opportunitiesListItem', [

'UrlInterpolationService', function(

UrlInterpolationService) {

return {

restrict: 'E',

scope: {

getOpportunity: '&opportunity',

onClickActionButton: '=',

isLabelRequired: '&labelRequired',

isProgressBarRequired: '&progressBarRequired',

getOpportunityHeadingTruncationLength:

'&opportunityHeadingTruncationLength'

},

bindToController: {},

templateUrl: UrlInterpolationService.getDirectiveTemplateUrl(

'/pages/contributor-dashboard-page/opportunities-list-item/' +

'opportunities-list-item.directive.html'),

controllerAs: '$ctrl',

controller: [

Converted to

/contributor-dashboard-page/opportunities-list-item/opportunities-list-item.component.ts

angular.module('oppia').component('opportunitiesListItem', {

bindings: {

getOpportunity: '&opportunity',

onClickActionButton: '=',

https://github.com/oppia/oppia/blob/b8e073a864dea862a3878bc506a3129006ff68ce/core/templates/pages/contributor-dashboard-page/opportunities-list-item/opportunities-list-item.directive.ts#L25-L43
https://github.com/marianazangrossi/oppia/blob/7f1179c46266a97c826448b784e143eca211ee2d/core/templates/pages/contributor-dashboard-page/opportunities-list-item/opportunities-list-item.component.ts#L25-L35

isLabelRequired: '&labelRequired',

isProgressBarRequired: '&progressBarRequired',

getOpportunityHeadingTruncationLength:

'&opportunityHeadingTruncationLength'

},

template: require('./opportunities-list-item.component.html'),

controller: [

Example-2

angular.module('oppia').directive('scoreRing', [

'UrlInterpolationService', function(UrlInterpolationService) {

return {

restrict: 'E',

scope: {},

bindToController: {

getScore: '&score',

testIsPassed: '&testIsPassed'

},

templateUrl: UrlInterpolationService.getDirectiveTemplateUrl(

'/components/score-ring/score-ring.directive.html'),

controllerAs: '$ctrl',

controller: ['$scope', 'COLORS_FOR_PASS_FAIL_MODE',

Converted to

angular.module('oppia').component('opportunitiesListItem', {

bindings: {

getScore: '&score',

testIsPassed: '&testIsPassed'

},

template: require('./score-ring.directive.html'),

controller: [

Steps to convert AngularJS Directive to AngularJS Component

1. Change .directive(to .component(This registers the directive as a component
2. Remove restrict: 'E', since it is no longer required. (Since components can be elements

only)
3. Change scope and bindToController to bindings
4. Remove controllerAs: '$ctrl', since it is no longer required.

5. Convert templateUrl to template with require

Unit tests in General

Components of a *.spec.ts file
● Import/requires - This is used to import services, directives, etc.. required for testing the

file.

● describe - This is almost like a high-level test suite. Within the describe() function, the

unit tests are present.

● beforeEach - To avoid repeated code we use this function to execute all the code that is

to be run before the execution of each unit test

● afterEach - This is the same as `beforeEach` but the code present in afterEach runs after

each unit test.

● expect - We use this to test the result of the function/variable bearing tested. This is

commonly paired with matchers. Some commonly used matchers are. toBe(), toEqual,

toBeNull() etc...

Unit tests format

A unit test can be split into the following categories:

● Setup - inputs/environment needed for the test are prepared in this step

● Baseline verification - check the initial values here. The values should be checked again

in the endline verification. This is done to make sure the action is working (expected

change occurs).

● Action - perform the action or function call that leads to the expected change.

● Endline verification - check if the values present in the baseline verification have

changed,i.e., the expected change has occurred.

The code inside the it(‘ ‘ …. Function will be separated into the categories mentioned above by an

empty/blank line. Ex:

it('should set profileDropdownIsActive to false', () => {

// Setup

ctrl.profileDropdownIsActive = true;

// Baseline verification

expect(ctrl.profileDropdownIsActive).toBe(true);

// Action

ctrl.deactivateProfileDropdown();

// Endline verification

expect(ctrl.profileDropdownIsActive).toBe(false);

});

Approach to write unit tests:

1. Test whether all the variables initialized with the correct values and the functions are

called in the init function.

2. Write a test for each possible test case (test all possible scenarios, .i.e, all the cases that

the unit to be tested can be used for).

Difference between an Angular 2+ unit test and an AngularJS test:

Mentioned below are a couple of notable differences seen in unit tests for Angular 2+ and

AngularJS testing.

AngularJS Angular 2+

HTTP $httpBackend httpTestingController with
fakeAsync() and
flushMicrotasks()

Import Uses require Uses import

Injecting service/component injector TestBed

Testing a Component

Given below is a boilerplate that can be used for writing a frontend test for an Angular 2+

Component. We can start a new spec file using this boilerplate. (Source: WIKI)

import { async, ComponentFixture, TestBed } from '@angular/core/testing';

import { BannerComponent } from './banner.component';

describe('BannerComponent', () => {

let component: BannerComponent;

let fixture: ComponentFixture<BannerComponent>;

https://github.com/oppia/oppia/wiki/Frontend-unit-tests-guide#angular2

beforeEach(async(() => {

TestBed.configureTestingModule({

declarations: [BannerComponent]

})

.compileComponents();

}));

beforeEach(() => {

fixture = TestBed.createComponent(BannerComponent);

component = fixture.componentInstance;

fixture.detectChanges();

});

it('should create', () => {

expect(component).toBeDefined();

});

});

● Import the files required for writing the frontend tests
● We can inject all the dependencies using TestBed.configureTestingModule

○ declarations: It is the component being tested
○ providers: List all the dependencies here.

beforeEach(async(() => {

TestBed.configureTestingModule({

declarations: [PromoBarComponent],

providers: [

WindowRef,

{

provide: PromoBarBackendApiService,

useClass: MockPromoBarBackendApiService

}]

}).compileComponents();

}));

○ If a service need to be mocked we need to put provide: {Service} useClass:
{MockService}

○ For a normal dependency we can inject using TestBed.get()
ecs = TestBed.get(StateEditorService);

○ fixture.detectChanges(); It is similar or $scope.apply() in AngularJS. It is used for
change detection. It is usually accompanied by a tick() (Used to simulate
passage of time) which can be used only inside a fakeAsync()

Testing a Directive

The AngularJS directive files that have to restrict: ‘E’ will have to be migrated to an AngularJS

component file to make it easier to test. The presence of `restrict: E` indicates that the file will

be used as an element, .i.e, <oppia-component>

The steps for migration are listed in the Migrate AngularJS Directive to AngularJS Component

Section.

The following are the advantages of converting an AngularJS directive to an AngularJS

component:

● simpler configuration than plain directives

writing component directives will make it easier to upgrade to Angular 2+

Testing a Service

Possible extensions under service:
● *.service.ts
● *Factory.ts
● *.factory.ts
● *.tokenizer.ts

Steps to write frontend tests for services

● Import the files required for writing the frontend tests
● We can inject all the dependencies using TestBed.configureTestingModule

○ declarations: It is the component being tested
○ providers: List all the dependencies here.

beforeEach(async(() => {

TestBed.configureTestingModule({

declarations: [ExampleComponent],

imports: [HttpClientTestingModule],

providers: [

WindowRef,

{

provide: ExampleBackendApiService,

useClass: MockExampleBackendApiService

}]

})

httpTestingController =

TestBed.get(HttpTestingController);

}));

○ If a service needs to be mocked we need to put provide: {Service} useClass:
{MockService}

○ In AngularJS we use httpBackend instead of HttpTestingController.
■ Along with HttpTestingController we use flush and flushMicrotasks

Tricky Tests

Given below are some of the cases that are tough to write a frontend test for.

1. Reloading a web page

○ There are a few instances when the page has to be reloaded or redirected which

results in a full page reload. However, Reloading a page in the frontend test

results in an error being raised in Karma.

○ Example: core/templates/pages/about-page/about-page.component.spec.ts

Given below is a mock window used for testing location.href since changing

location.href causes a full page reload.

class MockWindowRef {

_window = {

location: {

_hash: '',

_hashChange: null,

get hash() {

return this._hash;

},

set hash(val) {

this._hash = val;

if (this._hashChange === null) {

return;

}

this._hashChange();

},

reload: (val) => val

},

get onhashchange() {

return this.location._hashChange;

},

set onhashchange(val) {

this.location._hashChange = val;

}

};

get nativeWindow() {

return this._window;

}

}

2. HTTP call

○ This involves finding the URL that is used to perform the HTTP call. The URL can

be found by running on localhost and triggering the HTTP request.

○ The URL will be seen in the terminal.

○ We can also use the console log to see the contents of the http request.

○ Example:

EndExploration/directives/oppia-interactive-end-exploration.component.ts

if (ctrl.isInEditorPage) {

// Display a message if any author-recommended

explorations are

// invalid.

$http.get(EXPLORATION_SUMMARY_DATA_URL_TEMPLATE, {

params: {

stringified_exp_ids: JSON.stringify(

authorRecommendedExplorationIds)

}

}).then(function(response) {

var data = response.data;

var foundExpIds = [];

data.summaries.map(function(expSummary) {

foundExpIds.push(expSummary.id);

}); ...

○ Test

const httpResponse = {

summaries: [{

id: '0'

}]

};

...

...

...

const explorationIds = ['0', '1'];

const requestUrl = '/explorationsummarieshandler/data?' +

'stringified_exp_ids='+ encodeURI(JSON.stringify(explorationIds));

...

...

...

$httpBackend.expectGET(requestUrl).respond(httpResponse);

ctrl.$onInit();

$httpBackend.flush();

$scope.$apply();

3. Subscribe to an event

○ This involves testing an Observable. This can be tested by mocking the

eventemitter. This will run the code present inside the .subscribe

○ Example: exploration-editor-page/settings-tab/settings-tab.component.ts

○ Code:
ctrl.directiveSubscriptions.add(

UserExplorationPermissionsService.onUserExplorationPermissionsFetched

.subscribe(

() => {

UserExplorationPermissionsService.getPermissionsAsync()

.then(function(permissions) {

ctrl.canUnpublish = permissions.canUnpublish;

ctrl.canReleaseOwnership = permissions.canReleaseOwnership;

// TODO(#8521): Remove the use of $rootScope.$apply()

// once the controller is migrated to angular.

$rootScope.$applyAsync();

});

}

)

);

○ Test

it('should display Unpublish button', function() {

ctrl.canUnpublish = false;

expect(ctrl.canUnpublish).toBe(false);

userExplorationPermissionsService.

onUserExplorationPermissionsFetched.emit();

$scope.$apply();

expect(userExplorationPermissionsService.getPermissionsAsync)

.toHaveBeenCalled();

expect(ctrl.canUnpublish).toBe(true);

});

4. Promises

○ In some cases, a mock object is required to be created which will be returned

from the promise.

○ The promise can be returned by either spying on the function or creating a

mocking of the service itself.

■ Spying Ex:

spyOn(explorationImprovementsBackendApiService,

'getConfigAsync')

.and.returnValue(Promise.resolve(newExpImprovementsConf

ig(true)));

■ Mocking the service

class MockQuestionBackendApiService {

fetchTotalQuestionCountForSkillIdsAsync() {

return Promise.resolve(1);

}

}

○ We can use promise.reject() for testing failed promises.

○ Example - 2 (Angular 2+):

■ Code:

async fetchStoryDataAsync(

topicUrlFragment: string,

classroomUrlFragment: string,

storyUrlFragment: string): Promise<StoryPlaythrough> {

return new Promise((resolve, reject) => {

this._fetchStoryData(

topicUrlFragment, classroomUrlFragment,

storyUrlFragment,

resolve, reject);

});

}

■ Test

it('should handle errorCallback for fetching an existing

story',

fakeAsync(() => {

let successHandler = jasmine.createSpy('success');

let failHandler = jasmine.createSpy('fail');

storyViewerBackendApiService.fetchStoryDataAsync(

'abbrev', 'staging', '0').then(successHandler,

failHandler);

let req = httpTestingController.expectOne(

'/story_data_handler/staging/abbrev/0');

expect(req.request.method).toEqual('GET');

req.flush('Invalid request', {

status: 400,

statusText: 'Invalid request'

});

flushMicrotasks();

expect(successHandler).not.toHaveBeenCalled();

expect(failHandler).toHaveBeenCalled();

})

);

■ This test involves testing a promise that is returned along with a success

or reject callback.

5. Error

○ Errors cannot be tested how functions are normally tested since the problem is

that the exception is thrown before an expect() can deal with it, therefore it slips out

and fails the test case. To fix this the call has to be wrapped in a function which

Jasmine will invoke from within expect

○ Example: core/templates/domain/story/story-node.model.ts

○ Test

it('should correctly throw error when duplicate values are added

to arrays',

() => {

expect(() => {

_sampleStoryNode.addDestinationNodeId('node_2');

}).toThrowError('The given node is already a destination

node.');

expect(() => {

_sampleStoryNode.addPrerequisiteSkillId('skill_1');

}).toThrowError('The given skill id is already a prerequisite

skill.');

expect(() => {

_sampleStoryNode.addAcquiredSkillId('skill_2');

}).toThrowError('The given skill is already an acquired

skill.');

});

6. UI actions

○ For this, I’m taking an example of testing the scroll action.

○ This was a tricky scenario to test when I first attempted to help a contributor on

Gitter write a frontend test involving the scroll action.

○ It is always better to mock UI elements. Since this has a chance to flake if it is not

mocked (Source)

https://github.com/oppia/oppia/pull/12064/files

○ it('should animate html and body to 20px top when calling

function' +

○ ' from option 1', function() {

○ ctrl.$onInit();

○

○ var elementMock = $(document.createElement('div'));

○ spyOn(window, '$').withArgs('html,

body').and.returnValue(elementMock);

○ spyOn(elementMock, 'animate');

○

○ $scope.TRANSLATION_TUTORIAL_OPTIONS[1].fn(false);

○

○ expect(elementMock.animate).toHaveBeenCalledWith({

○ scrollTop: 20

○ }, 1000);

○ });

○ The code above mocks a UI element <div>. The scroll value is checker with

respect to this <div>.

7. Difficult to reach code

○ There are cases where a variable or function cannot be accessed directly for

testing. In these cases, we have to fake function calls/responses, create a mock

service or window, etc…

○ General solution:

■ Understand the requirements that are needed to be satisfied for the code

to be executed.

● Note: This might involve understanding the functionality of other

files too.

● Running localhost can help to understand how each function

works. The utilization of console logs can assist in this method.

■ Check which functionalities have to be mocked to satisfy the

requirements.

■ After satisfying the requirements the difficult to reach code should

execute.

○ Some scenarios

■ Anonymous functions are tough to test since they cannot be accessed

directly. We must use the function that calls the anonymous function to

test it.

■ Local variables defined using var, let, etc.. cannot be used for testing a

function. Instead, we have to test functions or variables that it directly or

indirectly affects.

■ In very rare cases a function or the complete file itself is not being utilized

anywhere. In these cases, we have to search if the function is being

utilized anywhere either by doing a global search for a function or trying to

find its implementation by running localhost.

○ For callbacks, a mock function has to be created to

○ Example: Anonymous functions

■

■ Here we notice that there are 3 functions that are to be tested. However,

we cannot directly access the _isSuggestionHandled, _isSuggestionValid,

and _hasUnsavedChanges directly. Hence we must test them by using

getSuggestionButtonType function instead.

■ getSuggestionButtonType calls the difficult to reach functions and we can

test them using the value returned.

■ Adding the test below covers all the 3 functions. However only using this

test will result in another problem known as Branch not covered. The

branch not covered issue can be resolved by writing another test to test

the getSuggestionButtonType function to return ‘default’ instead.

it('should evaluate suggestion button type to be default

when a feedback' +

' thread is selected', function() {

var thread =

suggestionThreadObjectFactory.createFromBackendDicts({

status: 'open',

subject: '',

summary: '',

original_author_username: 'Username1',

last_updated_msecs: 0,

message_count: 1,

thread_id: '1',

}, {

suggestion_type: 'edit_exploration_state_content',

suggestion_id: '1',

target_type: '',

target_id: '',

status: 'open',

author_name: '',

change: {

state_name: '',

new_value: '',

old_value: '',

},

last_updated_msecs: 0

});

spyOn(threadDataBackendApiService,

'getThread').and.returnValue(thread);

spyOn(threadDataBackendApiService,

'getMessagesAsync').and.returnValue(

$q.resolve());

ctrl.setActiveThread('1');

$scope.$apply();

expect(ctrl.getSuggestionButtonType()).toBe('default');

});

Flaky test

A flaky test is a test that both passes and fails periodically without any code changes. A flaky

test not only causes delays but also wastes computer resources. Since each time a flaky test

fails then the test has to be restarted.

Some of the causes:

● Tests failing due to timeout

○ This occurs when done is used in the unit test. Usage of done is error-prone and

must be avoided. In place of done, async() can be used in the unit test.

● Incomplete isolation

○ If the setup and cleanup after each test is over are not done properly it can lead

to flakes.

○ Example:

○ An HTTPRequest that is generated in one test is flushed in the next test.

● Spying on a window rather than mocking it for testing UI.

○ Example: #12064

■ In this example, window is spied upon with spyOn, and this leads to a

flaky test.

■ To resolve a dummy div was added for testing it and removed at the end

of the test.

How to avoid

● Run the frontend tests multiple times

● Following the format for unit tests mentioned here.

● Clean setup before each test (beforeEach()) and cleanup after each test (afterEach()).

Note: afterEach() is used in cases like http tests etc.

afterEach(() => {

httpTestingController.verify();

});

https://github.com/oppia/oppia/pull/12064/files

What to do if a flaky test is encountered?

To handle flakes we can follow a general plan:

1. Run all the frontend tests multiple times. This will show the flaky tests.

2. Identify the test suite which might contain the flaky test.

3. Run the flaky test multiple times by using fit(...).

a. It determines whether the method of testing for that unit test is the cause or not.

b. Collect error logs to obtain as much information about the flaky test.

4. Run the describe(...) where the flaky test is present multiple times by using fdescribe(...).

a. It determines whether the other unit tests are interfering with the current test.

5. Fix flake

a. Given below are some scenarios that might cause a flaky test.

b. Multiple $timeouts

i. When testing a $timeout callback, another $timeout in the unit tests was

called to wait for the original callback to be called. This lead to errors

ii. Hence when testing $timeout use $flushPendingTasks instead.

c. Reassigning global values with a spy

i. Example: #9660#issuecomment

ii. This should be resolved by finding another approach

d. Forgotten to remove a mock HTML body element.

i. Fix: document.body.removeChild(dummyDiv);

I’m planning to allot some time to address issues such as flaky tests, PR Reviews, tricky tests,

etc…

In case a flaky test has been discovered. I will revert the PR as soon as a flaky test is discovered

and attempt to resolve the issue within 48 hours. If I’m facing issues in resolving the flaky tests

then I will consult with my mentors on what steps I could potentially take to resolve the flaky

test.

FAQ

1. How to deal with code I have no experience testing?

https://github.com/oppia/oppia/issues/9660#issuecomment-649705475

a. I would first analyze the file. Then I would write unit tests to test the files. In some

places, we might experience tricky tests. This can be resolved by either referring

to similar tests or searching the internet for a similar test. I have also written

some tricky tests and Difficult to reach code from my experience.

2. What would you do if a particular line of code is not easily reachable? What steps would

you take to unblock yourself in this scenario?

a. In cases like these, I’ll have to use the function that indirectly runs the Difficult to

reach code. I will find the function that indirectly runs the Difficult to reach code,

understands the requirements required to execute the code, and then tests it.

3. How will you prevent flaky tests from being added to the codebase? Can we do anything

to protect against flakes?

a. This something I would like to avoid in the first place. It will not only waste time

but also consume resources (computing resources). I have written a basic plan in

this section.

4. What is your plan of action in case a test that you wrote starts to flake once it has been

merged to develop? Considering that it would add to your already planned tasks?

a. This information has also been written in this section in the last paragraph.

My Experience:

Prevent-page-unload-event.service.ts

This was the First service file I had written completely on my own. This PR taught me the

thought process that goes into implementing just one feature. This initially started as simple PR

with less than 20 lines of code changes, but as we started to look from the user perspective we

found that this could cause a lot of problems. It was decided to implement a service file instead

to display an alert on top when a user reloads/closes a page.

In this PR I had learned how to write tests for services. I had trouble with triggering the alert

modal since it required the page to be reloaded and reloading a window is not permitted while

running jasmine tests.

I had to mock the window reload event.

var reloadEvt = document.createEvent('Event');

reloadEvt.initEvent('mockbeforeunload', true, true);

reloadEvt.returnValue = null;

reloadEvt.preventDefault = () => {};

// Mocking window object here because beforeunload requres the

// full page to reload. Page reloads raise an error in karma.

var mockWindow = {

addEventListener: function(eventname: string, callback: () => {}) {

document.addEventListener('mock' + eventname, callback);

},

location: {

reload: () => {

document.dispatchEvent(reloadEvt);

}

}

};

Admin-navbar.directive.ts

I had written a test for this AngularJS directive. Writing a test for this was fairly easy however it

was the first time I wrote a new and complete *.spec.ts file for a directive. Writing a test for this

was a stepping stone for me to understand how to write a whole new *.spec.ts for a directive.

Here I had to make sure that every possible tab that could be open was tested. This would
make the test more robust and potentially reduce the number of bugs that could be created.
it('should be routed to the activities tab by default', () => {

expect(component.isActivitiesTabOpen()).toBe(true);

expect(component.isConfigTabOpen()).toBe(false);

expect(component.isFeaturesTabOpen()).toBe(false);

expect(component.isRolesTabOpen()).toBe(false);

expect(component.isJobsTabOpen()).toBe(false);

expect(component.isMiscTabOpen()).toBe(false);

});

I had also Found a function that was not being used at all. I was able to do this since when I
was analyzing the file. I noticed this function was not being utilized anywhere.

ctrl.showTab = function() {

return AdminRouterService.showTab();

https://github.com/gp201/oppia/blob/0d4daa3fcecbd9f84f464b5e4b372b1e2aa675e2/core/templates/pages/admin-page/navbar/admin-navbar.directive.ts#L40-L42

};

Milestones

Milestone 1

Key Objective: Write frontend tests to Cover 1650 approximately.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Cover 100 lines 07/06 13/06

1.2 Cover 390 lines 14/06 18/06

1.3 Cover 390 lines 19/06 24/06

1.4 Cover 390 lines 25/06 01/07

1.5 Cover 390 lines 02/07 07/07

1.6 Buffer 08/07 11/07

Milestone 2

Key Objective: Write frontend tests to Cover 1650 approximately.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 Cover 390 lines 17/07 21/07

2.2 Cover 315 lines 22/07 26/07

2.3 Cover 315 lines 27/07 31/07

2.4 Cover 315 lines 01/08 05/08

2.5 Cover 315 lines 06/08 10/08

2.6 Buffer time 11/08 16/08

Optional Sections

Future Work

● Make debugging Frontend tests easier

