
Make backend code typed

Hardik Katehara

Google Summer of Code

About You

Why are you interested in working with Oppia, and on your chosen project?

Oppia’s aim is to provide students with quality education irrespective of the resources they have

access to. I want to help Oppia achieve its aim. I believe that everyone should have access to

quality education.

Moreover, I was always fascinated by the idea of open source. It is very fascinating to see how

people from different backgrounds come together and create things that make a major impact. I

had a great experience contributing to Oppia. I have learned so much in just 2-3 months that

would not have been possible without the help of the community.

I chose this project because I have the required skill set to complete this project. Moreover, I like

the idea of making codebase typed as it makes it easy for new developers and makes it easy to

debug programs.

Prior experience

I have been contributing to Oppia for the past 2-3 months and have a decent idea of the

codebase.

I have been working with Python for the past 1.5 years. I also have a decent understanding of

Javascript. I am a backend developer. I have developed backends for 2 websites as a freelancer.

I used Django for both of them and also helped with the Javascript part of the frontend.

My previous works include:

1. Backend of an E-commerce website like amazon in which different sellers and buyers

come together. It also had Razorpay API integration.

2. Backend of a website on which a Diamond Showroom owner sells his diamonds online.

Links to PRs:

1. Fix part of #10049: Remove deprecated fields from ExplorationRightsModel (link)

2. Fix part of #10049: Remove deprecated fields from ExplorationModel (link)

https://github.com/oppia/oppia/pull/12052
https://github.com/oppia/oppia/pull/11998

3. Fix part of #10415: Refactor activity validators (link)

4. Fix part of #11693: Adds validation for MAX_COMMIT_MESSAGE_LENGTH (link)

5. Fix part of #7450: Modify private methods in SuggestionIntegrationTests (link)

You can find all my PRs here.

Contact info and timezone(s)

Communication

1. Email: hardikkatehara@gmail.com

2. GitHub: @hardikkat24

I will be in India throughout this summer.

The time zone will be Indian Standard Time(GMT +5:30).

Time commitment

I will be able to dedicate 6-7 hours/day for 5 days a week for 10 weeks. This can be increased if

there is any need to do so.

Essential Prerequisites

Answer the following questions:

● I am able to run a single backend test target on my machine. (Show a screenshot of a

successful test.)

https://github.com/oppia/oppia/pull/11926
https://github.com/oppia/oppia/pull/11871
https://github.com/oppia/oppia/pull/11797
https://github.com/oppia/oppia/pulls?q=is%3Apr+author%3Ahardikkat24
mailto:hardikkatehara@gmail.com
https://github.com/hardikkat24

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a

successful test.)

● I am able to run one suite of e2e tests on my machine. (Show a screenshot of a successful

test.)

Other summer obligations

I will be doing a project this summer which is compulsory in my university. It will basically be an

internship for industrial experience. I will be required to dedicate only 10-12hours/weeks to this

project.

Communication channels

I will be in continuous touch with mentors through mail and hangouts (or as preferred by

mentors). There could be biweekly meetings with the mentors through Google Meet (or as

preferred by mentors).

Project Details

Product Design

Python is a dynamically typed language. It means that python types are checked at runtime.

The aims of this project are:

● Pre-push type checks

● CI type checks

● Add documentation about adding types

● assets/constants.ts converted to protobuf

● Implement types to some part of the codebase

The users of this feature are the developers on the Oppia team.

Why type checking?

1. Help catch certain errors and increase runtime efficiency.

2. Help document code in form of type annotations.

3. Make code easier to understand and maintain.

4. Can help IDEs with code completion.

What developers must do?

Developers must add type annotations to newly added code.

Suppose their code is:

def power(x, y):

ans = x**y

return ans

Type annotated code:

def power(x: float, y: float) -> float:

ans = x**y

return ans

Now, these type annotations will be verified by mypy. Mypy is a static type checker. Mypy is a

lint-like tool and these annotations are hints for mypy, they don’t interfere while running the

program.

Checks to ensure the newly added code is typed

There will be mypy pre-push tests to ensure that the developer has added correct type

annotations to the newly added code. In these tests, mypy will check all the changed files.

Moreover there will be pre-push and CI tests to check all the type annotations (existing and

newly added) are correct.

There will be two types of files: Type annotated and not type annotated. We will be storing the

list of non type annotated files and will be annotating them.

If someone adds code to type-annotated files, added code must also be type-annotated or else

there will be a check fail.

If someone adds code to not type-annotated files, there won’t be any check fails if he doesn’t

add type-annotations.

Here is an example of how the mypy errors will look like. It has the filename, line number, the

error message and the error code(Example: no-untyped-def). If we have certain unavoidable

errors in our codebase, we can silent a particular error-code.

Protobuf

Protobuf (or Protocol Buffers) is a way of serializing structured data. It was developed by

Google.

Why Protobuf for our assets/constants.ts?

We are currently making our back-end codebase typed. It is widely adopted and has been used

for the past 15 years. Protobuf will help us introduce typing in our constants too. It is simple to

write the structure of data using Protobuf. We are already using protobuf in some part of our

code. We will be using proto3 in this project. It is the latest version of protobuf.

After the project is complete

1. There will be pre-push checks to ensure type hints are present and are correct.

2. There will be CI checks to ensure type hints are present and are correct.

3. There will be documentation to show about adding types.

4. There will be a .proto file defining the structure of file which will store the data of

assets/constants.ts

5. There will be a file which assigns data which is present in assets/constants.ts to

Protobuf.

6. Type hints will be added to core/storage , core/platform and root folder files.

Note - Another organisation, Zulip also uses mypy for implementing strict type checking.

Note - A github repo pgoapi uses protobuf.

Technical Design

Architectural Overview

Structure of files to be edited or added in this project

Following files will be added or edited for this project.

Mypy type checker script

The scripts are written in the directory scripts/

The runner script will be scripts/run_mypy_checks.py

Mypy configuration file

The configuration file mypy.ini will be kept in the root directory as /mypy.ini

https://github.com/zulip/zulip
https://github.com/pogodevorg/pgoapi

Mypy pre-push check
A function to run mypy checks before push will be added in scripts/pre_push_hook.py

Mypy CI check
The CI checks are added in .circleci/config.yml

Mypy tests
Mypy script tests will be written in scripts/run_mypy_checks_test.py
Mypy pre_push_hook tests will be added in scripts/pre_push_hook_test.py

Protobuf constants.proto file
This file goes to the assets/ directory. Its path will be assets/constants.proto

Protobuf auto-generated files
Protobuf generated files are stored in the proto/ directory.

1. Python: proto/constants_pb2.py

2. Typescript: proto/constants_pb2.ts

JSON file which stores constants
This file will store the values of our constants. This file will be placed in assets/constants.json.

constants.py
This file was used to access assets/contants.ts. But now it will use protobuf to parse
assets/constants.json

assets/constants.ts
This file stored the value of constants and exported these values. Now it will parse
assets/constants.json and will export the protobuf message.

Protobuf Tests
Protobuf tests will be written in scripts/protobuf_test.py

This project aims at making the complete backend code typed. The final aim(beyond the GSoC

period too) of this project is to add type annotations to all the backend python files.

The files to be migrated(adding type annotations) during the GSoC period are the files of

core/storage, core/platform and the root files.

Order of files to be migrated during GSoC period is:

1. core/storage files in alphabetic order of folder names

2. core/platform files in alphabetic order of folder names

3. Root folder files

Implementation Approach

This project is divided in 5 major sections:

1. Adding mypy check script, pre-push checks and CI checks

The mypy checks will be done through a script.

The code for this mypy check script is:

scripts/run_mypy_checks.py

import argparse

import os

import subprocess

import python_utils

list of non-strictly typed files

not_strict_typed_files = [

'core/controllers/base.py',

'core/controllers/admin.py',

'core/controllers/base_test.py',

'core/controllers/admin_test.py',

'scripts',

'third_party'

]

CONFIG_FILE_PATH = os.path.join('.','mypy-strict.ini')

_PARSER = argparse.ArgumentParser(

description="""

Type checking script for Oppia codebase.

""")

_PARSER.add_argument(

'--files',

help='Files to type-check',

action='extend',

nargs='+'

)

def main(args=None):

parsed_args = _PARSER.parse_args(args=args)

python_utils.PRINT('Type checking the oppia codebase')

if parsed_args.files:

process = subprocess.Popen(

['mypy', '--config-file', CONFIG_FILE_PATH] +

parsed_args.files,

stdin=subprocess.PIPE)

take files from config-file

else:

cmd = ['mypy', '--exclude', '|'.join(not_strict_typed_files),

'--config-file', CONFIG_FILE_PATH, '.']

process = subprocess.Popen(cmd, stdin=subprocess.PIPE)

if __name__ == '__main__': # pragma: no cover

main()

I will be improving this code frequently as I explore more about mypy checks.

Explanation of the above code:

1. There will be a configuration file for MyPy. Path for it is stored in

CONFIG_FILE_PATH.

2. Argparse is used to parse the arguments passed through the command-line.

3. If files are specified after --files, the test runs on those files. Else it runs on the

whole codebase except the paths specified in ‘not_strict_typed_files’.

4. The subprocess module calls the mypy command to be run.

Why denylist approach?

I think starting off with the denylist approach will be great. In our denylist, we can

mention the directories too. For example:

not_strict_typed_files = [

'core/controllers/base.py',

'core/controllers/admin.py',

'scripts',

'core/storage',

'core/domain'

]

This list contains the files with directories. This list will exclude all files of directories

scripts, core/storage, core/domain along with files base.py and admin.py of

core/controllers.

Here, I am using the ‘exclude’ configuration of mypy. It accepts the regex of files to be

excluded from the mypy checks. So we can enter the filename and directories both.

Therefore using denylist, we won’t be required to write down all the files and we can

simply add the directory. Moreover this will ensure that any new added file will be strictly

typed.

For developers, a basic documentation will be added which will show how to add type

annotations. This will prevent them from facing issues relating to adding type annotations

to newly created files.

There will be mypy pre-push checks which will check all the strictly typed files and will

notify if an already strictly typed file is not strictly typed after the changes.

This check will use mypy check script.

Mypy pre-push check code:

scripts/pre_push_hook.py

def start_mypy_checks():

task = subprocess.Popen(

[PYTHON_CMD, '-m', MYPY_MODULE])

task.communicate()

return task.returncode

Mypy CI check code:

This type of code will be added in .circleci/config.yml and similar in .github/workflows/

.circleci/config.yml

python_type_checks:

<<: *job_defaults

steps:

- checkout

- merge_target_branch

- attach_workspace:

at: /home/circleci/

- run:

name: Run python type checks on strictly implemented files

command: |

python -m scripts.run_mypy_checks

- upload_screenshots

2. Adding mypy configuration to config-file mypy.ini

It won’t allow untyped functions and variables and will give type checking error whenever

untyped functions, classes and variables are written.

mypy.ini :

[mypy]

python_version = 3.7

ignore_missing_imports = True

show_error_codes = True

follow_imports = skip

strict = True

Explanation of mypy.ini file:

1. python_version: takes the python version used.

2. ignore_missing_imports: If true, tells mypy to ignore all unresolved

imports.

3. show_error_codes: If true, adds error code to error messages.

4. follow_imports: Tells mypy how it should follow imports. ‘skip’ will not

follow imports and will silently replace module with an object of type ‘Any’.

Following are the configurations set by strict = True

5. warn_unused_configs: This flag makes mypy warn about unused

[mypy-<pattern>] config file sections.

6. disallow_any_generics: This flag disallows usage of generic types that

do not specify explicit type parameters.

7. disallow_subclassing_any: This flag reports an error whenever a class

subclasses a value of type ‘Any’.

8. disallow_untyped_calls: This flag reports an error whenever a

function with type annotations calls a function defined without

annotations.

9. disallow_untyped_defs: This flag reports an error whenever it

encounters a function definition without type annotations.

10. disallow_incomplete_defs: This flag reports an error whenever it

encounters a partly annotated function definition.

11. check_untyped_defs: This flag checks the body of every function,

regardless of whether it has type annotations (By default the bodies of

functions without annotations are not type checked).

12. disallow_untyped_decorators: This flag reports an error whenever a

function with type annotations is decorated with a decorator without

annotations.

13. no_implicit_optional: This flag causes mypy to stop treating

arguments with a None default value as having an implicit ‘Optional’ type.

14. warn_redundant_casts: This flag will make mypy report an error

whenever your code uses an unnecessary cast that can safely be

removed.

15. warn_unused_ignores: This flag will make mypy report an error

whenever your code uses a # type: ignore comment on a line that is not

actually generating an error message.

16. warn_return_any: This flag causes mypy to generate a warning when

returning a value with type Any from a function declared with a non-Any

return type.

17. no_implicit_reexport: By default, imported values to a module are

treated as exported and mypy allows other modules to import them. This

flag changes the behavior to not re-export unless the item is imported

using from-as or is included in __all__.

18. strict_equality: This flag prohibits comparisons of non-overlapping

types.

3. Adding Documentation

A wiki page will be added to demonstrate how to add type annotations. And it will also
show how to run mypy checks script.

4. Converting constants.ts to Protobuf

4.1 Writing constants.proto
The constants.ts file has a lot of data. Here I am showing a .proto file for a part of the
constants.ts file. This proto file defines message formats.
Code snippet of constants.proto:

syntax = "proto3";

message constants {

bool CAN_SEND_ANALYTICS_EVENTS = 1;

string CLASSROOM_URL_FRAGMENT_FOR_UNATTACHED_TOPICS = 2;

string DEFAULT_CLASSROOM_URL_FRAGMENT = 3;

repeated string ALL_CATEGORIES = 4;

int32 MAX_COMMIT_MESSAGE_LENGTH = 5;

message svg_attrs_whitelist {

repeated string a = 1;

repeated string altglyph = 2;

repeated string altglyphdef = 3;

}

svg_attrs_whitelist SVG_ATTRS_WHITELIST = 6;

message supported_content_languages {

string code = 1;

string description = 2;

string direction = 3;

}

repeated supported_content_languages SUPPORTED_CONTENT_LANGUAGES = 7;

}

4.2 Compiling constants.proto to python
The constants.proto file is compiled using the protocol buffer compiler from the protocol
definition. Code for running the compiler:

protoc -I=assets/ --python_out=assets/ assets/constants.proto

This creates a python file that has the automatically generated code.
The compilation of constants.proto will be done in scripts/install_third_party_libs.py . This is
because compilation of other .proto files is also done there.

4.3 Compiling constants.proto to typescript
For this, we use third-party library ts-proto. It generates .ts file from .proto files.
Code for running the compiler:

protoc --plugin=./node_modules/.bin/protoc-gen-ts_proto

--ts_proto_out=../../ --ts_proto_opt=snakeToCamel=false

assets/constants-p.proto

https://github.com/stephenh/ts-proto

snakeToCamel=false keeps the names in snake case. By default it is converted to camel case.

The compilation of constants.proto will be done in scripts/install_third_party_libs.py . This is

because compilation of other .proto files is also done there.

4.4 Storing constants in assets/constants.json
This JSON file will store values of constants.

{

"MAX_COMMIT_MESSAGE_LENGTH": 375,

"CLASSROOM_URL_FRAGMENT_FOR_UNATTACHED_TOPICS": "staging",

"ALL_CATEGORIES": [

"Algebra",

"Algorithms",

"Architecture"

],

"DEFAULT_CLASSROOM_URL_FRAGMENT": "math",

"CAN_SEND_ANALYTICS_EVENTS": true,

"SVG_ATTRS_WHITELIST": {

"a": [

"about",

"alignment-baseline",

"baseline-shift",

"class"

],

"altglyph": [

"about",

"alignment-baseline",

"baseline-shift"

],

"altglyphdef": [

"about",

"class",

"content"

]

},

"SUPPORTED_CONTENT_LANGUAGES": [{

"code": "en",

"description": "English",

"direction": "ltr"

}, {

"code": "ar",

"description": العربية" (Arabic)",
"direction": "rtl"

}, {

"code": "sq",

"description": "shqip (Albanian)",

"direction": "ltr"

}]

}

4.5 Reading from JSON and exporting constants Typescript
The assets/constants.ts file needs to be modified so that it exports the protobuf message.

// assets/constants.ts

import {constants} from '../proto/constants_pb2'

var fs = require('fs')

var data = fs.readFileSync('assets/constants.json', 'utf8');

data = JSON.parse(data)

const constants_list = constants.fromJSON(data)

export default constants_list

4.6 Reading from JSON and exporting constants Python
The /constants.py file needs to be modified to read assets/constants.json and not
assets/constants.ts and then parse to protobuf message.

/constants.py

from __future__ import absolute_import # pylint:

disable=import-only-modules

from __future__ import unicode_literals # pylint:

disable=import-only-modules

import json

import os

import re

from google.protobuf.json_format import Parse

import python_utils

from proto import constants_pb2

with python_utils.open_file(os.path.join('assets', 'constants.json'), 'r')

as f:

constants = constants_pb2.constants()

Parse(f.read(), constants)

with python_utils.open_file('release_constants.json', 'r') as f:

release_constants = Constants(json.loads(f.read())) #

pylint:disable=invalid-name

Why JSON instead of textproto?
Here are the examples of both.

1. JSON

{

"MAX_COMMIT_MESSAGE_LENGTH": 375,

"CLASSROOM_URL_FRAGMENT_FOR_UNATTACHED_TOPICS": "staging",

"ALL_CATEGORIES": [

"Algebra",

"Algorithms",

"Architecture"

],

"DEFAULT_CLASSROOM_URL_FRAGMENT": "math",

"CAN_SEND_ANALYTICS_EVENTS": true,

"SVG_ATTRS_WHITELIST": {

"a": [

"about",

"alignment-baseline",

"baseline-shift",

"class"

],

"altglyph": [

"about",

"alignment-baseline",

"baseline-shift"

],

"altglyphdef": [

"about",

"class",

"content"

]

},

"SUPPORTED_CONTENT_LANGUAGES": [{

"code": "en",

"description": "English",

"direction": "ltr"

}, {

"code": "ar",

"description": العربية" (Arabic)",
"direction": "rtl"

}, {

"code": "sq",

"description": "shqip (Albanian)",

"direction": "ltr"

}]

}

2. Textproto

CAN_SEND_ANALYTICS_EVENTS: true

CLASSROOM_URL_FRAGMENT_FOR_UNATTACHED_TOPICS: "staging"

DEFAULT_CLASSROOM_URL_FRAGMENT: "math"

ALL_CATEGORIES: "Algebra"

ALL_CATEGORIES: "Algorithms"

ALL_CATEGORIES: "Architecture"

MAX_COMMIT_MESSAGE_LENGTH: 375

SVG_ATTRS_WHITELIST {

a: "about"

a: "alignment-baseline"

a: "baseline-shift"

a: "class"

altglyph: "about"

altglyph: "alignment-baseline"

altglyph: "baseline-shift"

altglyphdef: "about"

altglyphdef: "class"

altglyphdef: "content"

}

SUPPORTED_CONTENT_LANGUAGES {

code: "en"

description: "English"

direction: "ltr"

}

SUPPORTED_CONTENT_LANGUAGES {

code: "ar"

description: "\330\247\331\204\330\271\330\261\330\250\331\212\330\251

(Arabic)"

direction: "rtl"

}

SUPPORTED_CONTENT_LANGUAGES {

code: "sq"

description: "shqip (Albanian)"

direction: "ltr"

}

Here, we see that JSON is more readable and developers know how to edit JSON files.
We see that the how ‘SUPPORTED_CONTENT_LANGUAGES’, ‘ALL_CATEGORIES’ and other
list like elements are written in text-proto, each element of a list is added independently but in
JSON we can add element like a normal list.

5. Adding type annotations
For this, we can use third party library MonkeyType for adding type annotations.
Note - MonkeyType will be used temporarily for adding type annotations to existing
codebase in this project. Developers will be writing type annotations themselves when
they write code. This library will only be used as an aid during the project.

Our codebase has 100% test coverage. This will help us a lot in adding type
annotations.
Let’s say we have a file main.py:

main.py

def add(x, y):

return x + y

def subtract(x, y):

return x - y

It has a test file test.py:

https://monkeytype.readthedocs.io/en/latest/index.html

test.py

import main

assert(main.add('a', 'b') == 'ab')

assert(main.add(1, 2) == 3)

assert(main.subtract(2,1) == 1)

Now we use MonkeyType for adding type annotation to main.py

We run:

monkeytype run test.py

This collect data about types of function used in main.py

Then we run:

monkeytype apply main

This modifies our main.py to:

from typing import Union

main.py

from typing import Union

def add(x: Union[int, float, str], y: Union[int, float, str]) -> Union[int, float,

str]:

return x + y

def subtract(x: Union[int, float], y: Union[int, float]) -> Union[int, float]:

return x - y

Adding type annotations to python files won’t affect the functioning of any of the python files.
The only issue here can be errors in running MyPy tests. This issue is solved by maintaining a
list of files and directories which don’t have type annotations. This will prevent running of type
annotation checks on untyped files.

There was one other issue, if a non-typed file is imported in a typed file, non-typed file’s type
checking was also done. This problem was solved using the configuration ‘follow_imports =
skip’. This won’t type check the imported files. This skipping of following imports has some

drawbacks like the imported files function’s type definition will not be available to the code and
the type will be ‘Any’. This reduces the strictness of checks. So this loss of strictness can be
revived after our complete backend codebase is typed. This can be done as we can allow the
imports to be followed and the imported objects will also have their types after the whole
codebase is typed.
While the backend is in a hybrid state, we cannot implement the checks which are very strict.
We must start off with skipping following imports and suppress errors of a particular code that
arise due to this. Then we can slowly add type annotation to the codebase. When it is fully
complete, we can increase the strictness.

Why MonkeyType?

MonkeyType is developed by Instagram. It works for Python3 and is configurable. We can add
type annotations using MonkeyType and then verify these annotations. There won’t be much
changes and this will help in making the codebase typed.

Examples of adding type annotation to code
Without type annotations:

def multiply_numbers(numbers):

ans = 1.0

for number in numbers:

ans = ans * number

return ans

With type annotations:

from typing import List

def multiply_numbers(numbers: List[float]) -> float:

ans = 1.0

for number in numbers:

ans = ans * number

return ans

Example of adding type annotation in core/storage/activity/gae_models.py
Before:

from __future__ import absolute_import # pylint:

disable=import-only-modules

from __future__ import unicode_literals # pylint:

disable=import-only-modules

from core.platform import models

import core.storage.base_model.gae_models as base_models

import feconf

datastore_services = models.Registry.import_datastore_services()

class ActivityReferencesModel(base_models.BaseModel):

"""Storage model for a list of activity references.

The id of each model instance is the name of the list. This should be

one

of the constants in feconf.ALL_ACTIVITY_REFERENCE_LIST_TYPES.

"""

The types and ids of activities to show in the library page. Each

item

in this list is a dict with two keys: 'type' and 'id'.

activity_references = datastore_services.JsonProperty(repeated=True)

@staticmethod

def get_deletion_policy():

"""Model doesn't contain any data directly corresponding to a

user."""

return base_models.DELETION_POLICY.NOT_APPLICABLE

@staticmethod

def get_model_association_to_user():

"""Model does not contain user data."""

return

base_models.MODEL_ASSOCIATION_TO_USER.NOT_CORRESPONDING_TO_USER

@classmethod

def get_export_policy(cls):

"""Model doesn't contain any data directly corresponding to a

user."""

return dict(super(cls, cls).get_export_policy(), **{

'activity_references': base_models.EXPORT_POLICY.NOT_APPLICABLE

})

@classmethod

def get_or_create(cls, list_name):

"""This creates the relevant model instance, if it does not already

exist.

"""

if list_name not in feconf.ALL_ACTIVITY_REFERENCE_LIST_TYPES:

raise Exception(

'Invalid ActivityListModel id: %s' % list_name)

entity = cls.get(list_name, strict=False)

if entity is None:

entity = cls(id=list_name, activity_references=[])

entity.update_timestamps()

entity.put()

return entity

After:

from __future__ import absolute_import # pylint:

disable=import-only-modules

from __future__ import unicode_literals # pylint:

disable=import-only-modules

from core.platform import models

import core.storage.base_model.gae_models as base_models

import feconf

from typings import Dict

datastore_services = models.Registry.import_datastore_services()

class ActivityReferencesModel(base_models.BaseModel):

"""Storage model for a list of activity references.

The id of each model instance is the name of the list. This should be

one

of the constants in feconf.ALL_ACTIVITY_REFERENCE_LIST_TYPES.

"""

The types and ids of activities to show in the library page. Each

item

in this list is a dict with two keys: 'type' and 'id'.

activity_references = datastore_services.JsonProperty(repeated=True)

@staticmethod

def get_deletion_policy() -> str:

"""Model doesn't contain any data directly corresponding to a

user."""

return base_models.DELETION_POLICY.NOT_APPLICABLE

@staticmethod

def get_model_association_to_user() -> str:

"""Model does not contain user data."""

return

base_models.MODEL_ASSOCIATION_TO_USER.NOT_CORRESPONDING_TO_USER

@classmethod

def get_export_policy(cls) -> Dict[str, str]:

"""Model doesn't contain any data directly corresponding to a

user."""

return dict(super(cls, cls).get_export_policy(), **{

'activity_references': base_models.EXPORT_POLICY.NOT_APPLICABLE

})

@classmethod

def get_or_create(cls, list_name: str) -> ActivityReferencesModel:

"""This creates the relevant model instance, if it does not already

exist.

"""

if list_name not in feconf.ALL_ACTIVITY_REFERENCE_LIST_TYPES:

raise Exception(

'Invalid ActivityListModel id: %s' % list_name)

entity = cls.get(list_name, strict=False)

if entity is None:

entity = cls(id=list_name, activity_references=[])

entity.update_timestamps()

entity.put()

return entity

Third-party Libraries*

1. MyPy: This library is needed to do static type checks on the codebase. It is licensed

under MIT license.

2. Monkey Type: This library will be used as an aid for adding types to existing files. It is

licensed under BSD license. This will be used temporarily by me locally. There is no

need to add it to the requirements.

3. ts-proto: This library will be used to compile .proto into TypeScript file. It is licensed

under Apache License 2.0 .

Testing Approach

In this project, we are adding mypy check script. There will be tests for this script.

scripts/run_mypy_checks_test.py

from __future__ import absolute_import # pylint: disable=import-only-modules

from __future__ import unicode_literals # pylint: disable=import-only-modules

import subprocess

import tempfile

from core.tests import test_utils

import python_utils

PYTHON_CMD = 'python3'

MYPY_SCRIPT_MODULE = 'scripts.run_mypy_checks'

class MypyCheckTests(test_utils.GenericTestBase):

def setUp(self):

super(MypyCheckTests, self).setUp()

def test_mypy_valid(self):

tmpfile = tempfile.NamedTemporaryFile(suffix='.py')

tmpfile.write(

"def add(x: float, y: float) -> float:\n"

" return x + y"

)

tmpfile.seek(0)

cmd = [PYTHON_CMD, '-m', MYPY_SCRIPT_MODULE, '--files', tmpfile.name]

https://github.com/python/mypy/blob/master/LICENSE
https://github.com/Instagram/MonkeyType/blob/master/LICENSE
https://github.com/stephenh/ts-proto/blob/main/LICENSE

process = subprocess.Popen(cmd, stdout=subprocess.PIPE,

stderr=subprocess.PIPE)

output = process.communicate()

tmpfile.close()

self.assertEqual(output[0], 'Success: no issues found in 1 source file\n')

def test_mypy_invalid(self):

tmpfile = tempfile.NamedTemporaryFile(suffix='.py')

tmpfile.write(

"def add(x, y):\n"

" return x + y"

)

tmpfile.seek(0)

cmd = [PYTHON_CMD, '-m', MYPY_SCRIPT_MODULE, '--files', tmpfile.name]

process = subprocess.Popen(cmd, stdout=subprocess.PIPE,

stderr=subprocess.PIPE)

output = process.communicate()

tmpfile.close()

self.assertIn('error', output[0])

Explanation of the code:

1. The tests in this test class use tempfile. These are files which are created temporarily

and here are used only for the testing purpose.

2. Then the subprocess module is used to run the mypy checks script on the temporarily

created file.

3. The output of the runs is then checked.

There will also be tests for pre_push_hook.py and they will be added in pre_push_hook_test.py

There will be tests for protobuf:

scripts/protobuf_test.py

from __future__ import absolute_import # pylint:

disable=import-only-modules

from __future__ import unicode_literals # pylint:

disable=import-only-modules

from core.tests import test_utils

from proto import constants_pb2

import python_utils

class ProtobufTests(test_utils.GenericTestBase):

def setUp(self):

super(ProtobufTests, self).setUp()

def test_protobuf_equal(self):

constants = constants_pb2.constants()

constants.CAN_SEND_ANALYTICS_EVENTS = True;

constants.ALL_CATEGORIES.append('A')

constants.ALL_CATEGORIES.append('B')

constants.ALL_CATEGORIES.append('C')

json = MessageToJson(constants)

new_constants = constants_pb2.constants()

Parse(json, new_constants)

self.assertEqual(constants, new_constants)

def test_protobuf_not_equal(self):

constants = constants_pb2.constants()

constants.CAN_SEND_ANALYTICS_EVENTS = True;

constants.ALL_CATEGORIES.append('A')

constants.ALL_CATEGORIES.append('B')

constants.ALL_CATEGORIES.append('C')

new_constants = constants_pb2.constants()

new_constants.CAN_SEND_ANALYTICS_EVENTS = False;

self.assertNotEqual(constants, new_constants)

The protobuf tests verify that when a protobuf message is converted to bytes and then

converted back to protobuf message, the message remains the same.

Now we can add a test which reads the JSON file and imports the protobuf message

‘constants’. Then we can compare the keys of the JSON file and the fields of empty protobuf

message ‘constants’ to ensure that the JSON file constants.json has all the keys which are

defined in the proto definition constants.proto.

Milestones

Milestone 1

7 June - 12 July
Key Objective: The objectives are:

1. Adding mypy script

2. Adding mypy pre-push check to check the type annotations

3. Adding mypy CI check to check the type annotations

4. Replacing assets/constants.ts with protobuf messages

No. Description of PR Prereq PR

numbers

Target date

for PR

submission

Target date

for PR to be

merged

1.1 Add mypy type checking script 13/06/2021 20/06/2021

1.2 Add mypy pre-push check to check type

annotations

1.1 16/06/2021 23/06/2021

1.3 Add mypy CI check to check type 1.1 20/06/2021 27/06/2021

annotations

1.4 Add documentation for running mypy

checker script and how to add type

annotations

21/06/2021 28/06/2021

1.5 Add contants.proto file and add the

compilation of .proto to python and

typescript

25/06/2021 02/07/2021

1.6 Add constants.json, edit constants.py and

constants.ts to migrate to protobuf

1.5 28/06/2021 05/07/2021

1.7 Create an issue for type annotation to be

added to the codebase.

1.1-1.4 28/06/2021 -

Milestone 2

13 July - 23 August
Key Objective: The objective is adding type annotations to:

1. core/storage

2. core/platform

3. root files

No. Description of PR Prereq PR

numbers

Target date

for PR

submission

Target date

for PR to be

merged

2.1 Add type annotations to core/storage

files of:

● activity

● app_feedback_report

● audit

● auth

03/07/2021 10/07/2021

2.2 Add type annotations to core/storage

files of:

● base_model

● classifier

● collections

08/07/2021 15/07/2021

2.3 Add type annotations to core/storage

files of:

● config

● email

● exploration

● feedback

13/07/2021 20/07/2021

2.4 Add type annotations to core/storage

files of:

● improvement

● job

● opportunity

● question

● recommendation

● skill

17/07/2021 24/07/2021

2.5 Add type annotations to core/storage

files of:

● statistics

● story

● subtopic

● suggestion

● topic

24/07/2021 31/07/2021

2.6 Add type annotations to core/platform

files of :

● user

● app_identity

30/07/2021 06/08/2021

● auth

2.7 Add type annotations to core/platform

files of :

● cache

● datastore

● email

● search

● taskqueue

● transactions

● users

04/08/2021 11/08/2021

2.8 Add type annotations to files in root

folder and core/platform file model.py

10/08/2021 17/08/2021

Optional Sections

Additional Project-Specific Considerations

Privacy

No, this project does not collect additional user data.

Security

No, this project does not provide any new opportunities for users to gain unauthorized access.

This project will only add scripts for checking python type annotation, change the constants.ts

file and add type annotations to python files.

Accessibility (if user-facing)

No, this project is not user-facing.

Documentation Changes

A wiki page will be added to show how mypy checks script works.

The documentation will have:

1. Reasons as to why we need type annotations and static type checks.

2. Steps to run mypy checks script for the whole codebase and for a particular file.

3. Basics on how to add type annotations.

4. Steps to add new constants in constants.json. This will require changes in both proto file

and json file.

Ethics

No, there are no ethical considerations that should be taken into account.

Future Work

I will be opening an issue for adding type annotation to files.

These files will be all the python files except core/storage , core/platform and root folder files.

After all the files are type-annotated. Mypy Tests can be made more strict and ‘following import’

restrictions can be lifted and changes can be made accordingly.

