
Google Summer of Code 2021

Redesigning and Updating the learner
dashboard

Krishita Jain

About You

Why are you interested in working with Oppia, and on your chosen project?

“Education is the most powerful weapon which you can use to change the world”. I believe that
education is a human right and a necessity for modern societies to function. Unfortunately, it is
becoming a luxury for the poor, especially in developing and underdeveloped countries. Oppia’s
mission to “Provide high-quality education to those who lack access to it” is what attracted me. I
wish to contribute to it and give it my all so that students across the world have access to
high-quality free lessons.

Oppia’s unique architecture which involves explorations, classrooms and one-on-one
tutor/learner conversations make the learners focus and participate actively. It beats the
monotony of schools and provides a fun way for the students to learn and explore new things.
Apart from this, what I find distinctive about Oppia is that it provides a versatile platform for the
creators. With the tools that Oppia provides, they can illustrate their ideas in the form of
interactive lessons. Also, It’s been a great learning experience for me so far. I will continue to
contribute to Oppia even after the GSoC period ends.

What interests me about this project?

Measuring progress to your goal lets you see whether you've made a dent, are at a standstill, or
have fallen behind. At present, there is no way for a learner to track their progress in different
classrooms. This project aims to solve this and also incorporate planning and recommendation
of topics, subtopics and stories to the learners.

Prior experience

I am sufficiently familiar with the technologies that Oppia uses. I have been using Python and
JavaScript for more than a year now. In particular, I have been using the framework Oppia is built
on, Angular, for more than six months now. Some of my open-source projects that showcase my
technical skills are here.

https://github.com/krishita30j

I have been participating in competitive coding competitions for more than a year now. My
profiles: CodeChef. CodeForces.

Apart from this, I have been actively contributing to Oppia for more than five months now, by
creating PRs and filing issues. I am a member of the Learner and Creator Experience team and I
have gained sufficient knowledge regarding the parts of the codebase that are relevant to this
project.

Some of my best contributions are:

➢ Rename field activity_ids to exploration_ids in the
UserSubscriptionsModel (#11316)

➢ Remove deprecated field from UserSubscriptionsModel (#11597)
➢ Added "Hint tip" dialogue box (#11621)
➢ Adding limit to story description(#11732)
➢ Switching order of panes in the history view(#11854)

Here is the full list of PRs and list of issues I have filed.

Contact info and timezone(s)
Email: jainkrishita15@gmail.com
Github Profile: krishita30j
I will stay in India throughout the summer. The time zone will be Indian Standard Time
(GMT+5:30)

Time commitment

I plan on dedicating 30-35 hours a week to this project.
Due to COVID-19, I am not sure about the dates of my final exams. They will most likely last a
week and my work hours would reduce to 2-3 hours a day during that week. But as I plan on
starting during the community bonding period, exams won’t be an issue.

Essential Prerequisites
● I am able to run a single backend test target on my machine. (Show a screenshot of a

successful test.)

https://www.codechef.com/users/krishita30j
https://codeforces.com/profile/jainkrishita15
https://github.com/oppia/oppia/pull/11316
https://github.com/oppia/oppia/pull/11597
https://github.com/oppia/oppia/pull/11621
https://github.com/oppia/oppia/pull/11732
https://github.com/oppia/oppia/pull/11854
https://github.com/oppia/oppia/pulls?q=is%3Apr+author%3Akrishita30j+is%3Aclosed
https://github.com/oppia/oppia/issues/created_by/krishita30j
mailto:jainkrishita15@gmail.com
https://github.com/krishita30j

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a
successful test.)

● I am currently unable to run one suite of e2e tests on macOS with M1 chipset. This is
being tracked on this issue.

Other summer obligations

I have no other jobs this summer and I plan to spend my time working on this project solely.

https://github.com/oppia/oppia/issues/12492

Communication channels

I will mostly be active via email, Hangouts, and Gitter.
I plan to communicate with my mentor every other day to update them on the project’s progress
as well as to ask them doubts. I also plan to have weekly meetings to talk about the tasks I will
be doing the following week.

Application to multiple orgs
I am only applying for Oppia.

Project Details
Product Design
Oppia brings forth a platform to conduct comprehensive courses in the form of classrooms. A
classroom contains many different topics in it. Each topic is divided into two parts: Stories and
Subtopics. Stories contain questions in the form of chapters(explorations). Subtopics on the
other hand contain practice questions to refresh a particular part of the topic. A subtopic is
made up of many different skills. Each skill has many questions in it.

Four new tabs are added inside the Learner Dashboard page namely Home, Progress, To-Do List
and Community lessons which will replace the existing In Progress and Completed tabs. The
features inside each of these tabs are as follows:

1. Home tab:

a. The Home tab is added to the top of the learner dashboard menu. When a learner
is directed to the learner dashboard page, the Home tab opens up on the screen
by default. It starts with a greeting to the learner. The tab is further divided into
two sections: Continue where you left off and Suggested for you.

b. Continue where you left off: This section contains stories of the topics that the
user selects in the To-Do List tab for easy access. It displays Story cards linking
to the next incomplete chapter in the story. The cards inside this section will be
displayed in descending order ordered by the percentage of story completed by
the user. Each story card displays:
➢ Chapter name
➢ Story thumbnail
➢ Percent of the story completed
➢ Name of the story
➢ Name of the Topic.

https://xd.adobe.com/view/b54892aa-dbe6-49cf-bc4f-9bb8c77de619-e01b/

If there are more than 3 cards, they will be displayed using a carousel.
When the learner hovers over a card, a Continue button is displayed in the middle
of the card and the card background is blurred. Clicking on the Continue button
directs the learner to that chapter in the story. (i.e. directly play the exploration)

c. In case the user has not selected any topic in the To-Do List tab, the Continue
where you left off section will be empty. Hence instead of topics, it will display a
message:

‘Hmm, this looks empty. Select a topic in the TodoList to get started!’

This TodoList will be a link which will direct the learner to the To-Do List tab from
where they can select any topic of their choice.

d. Suggested for you: This section contains topic suggestions for the
learner. It displays three topic cards of the topics inside a classroom. Each row
contains four cards. The first three cards are the topic cards that link to that
topic. Each topic card displays:
➢ Topic thumbnail
➢ Topic name
➢ The number of stories inside that topic.

The last card in the row is linked to the classroom page which shows all the
topics inside that classroom. Even after the learner has completed all the topics
of a classroom, this section will still display three topics.

2. Progress tab

a. The Progress tab tracks the progress made by the learner inside classrooms. It is
divided into three sections namely Skill Proficiency, Topics in Progress and
Stories Completed.

https://xd.adobe.com/view/b54892aa-dbe6-49cf-bc4f-9bb8c77de619-e01b/screen/06e72423-f0a0-44de-b498-75f8a886f485

b. Skill Proficiency <i-icon>: When the learner starts a new topic(i.e. when the user
has completed a chapter/node in the story of that topic) or selects a topic from
the To-Do List tab, the topic along with the subtopics of that topic are autofilled in
the Skill Proficiency section and are tracked accordingly.
When the user hovers over the i-icon beside the Skill Proficiency heading, it
displays the percent of avg skill mastery of the subtopic required to receive
Bronze, Silver and Gold badges respectively.
➢ If the percent of avg skill mastery in the subtopic is between 70 to 79%,

the user will receive a Bronze Badge for that topic.
➢ If the percent of avg skill mastery in the subtopic is between 80 to 89%,

the user will receive a Silver Badge for that topic.
➢ If the percent of avg skill mastery in the subtopic is between 90 to 100%,

the user will receive a Gold Badge for that topic.

If the avg skill mastery of a subtopic is 0%, the empty badge will not be
displayed.
This section contains a list of topics. Each list item has:
➢ An Empty Badge, which will be replaced by a Bronze, Silver or Gold Badge

according to the user’s progress
➢ Name of the topic
➢ A Pie Chart illustrating the numerical proportion of the progress
➢ Progress: Percent
➢ A dropdown icon.

When the user clicks on the dropdown icon, a list of all the subtopics inside the
topic is displayed. Each subtopic inside the dropdown has:
➢ A checkbox
➢ Name of the subtopic
➢ A capsule-shaped bar that displays the percent of avg skill mastery in the

subtopic, achieved by the user.

When the user selects a subtopic, the Start Practice button will be enabled. The
user can select any number of subtopics to practice. If they select more than one
subtopics, those subtopics will be played in succession.

c. In the case when the learner has not started any topic, the Skill Proficiency
section will be empty. Hence it will display a message:

This library link will direct the learner to a classroom page (Math classroom for
now) from where they can start any topic of their choice. When the learner starts
the topic, the subtopics classified under that topic will be autofilled in the Skill
Proficiency section.

d. Topics in Progress: This section displays the topics which the learner has
started(i.e. when the user has completed a chapter/node in the story of that
topic) but not yet completed (A topic is considered to be completed when they
have finished all stories in it). Each row contains four Topic cards.
(The specifications of the topic card are the same as described above for the
Suggested for you section inside the Home tab). If the learner clicks on a topic
card, they are directed to that topic.

e. In the case when the learner has not started any topic, the Topics in Progress
section will be empty. Hence it will display a message:

This library link will direct the learner to a classroom page (Math classroom for
now) from where they can start any topic of their choice. When the learner starts
the topic, it will be displayed inside the Topics in Progress section.

f. Stories Completed <Number of stories completed> <star icon>: This section
contains all the stories that the learner has completed. Each row contains three
Story cards. Each story card contains:
➢ Story thumbnail
➢ <star icon> 100% Completed
➢ Story name
➢ Topic name

If the learner clicks on the story card, they are directed to that story.

3. To-Do List tab

a. The To-Do List tab allows the learner to set goals for themselves and keep a
track of those goals. This tab is divided into three sections namely Current Goals,
Edit Goals and Completed Goals.
(NOTE: This mock shows Mastery for Skills as well but it is not a part of this
Project)

https://xd.adobe.com/view/b54892aa-dbe6-49cf-bc4f-9bb8c77de619-e01b/screen/b192bfed-6fd3-4c4b-95a0-f68c5f872d16

b. Current Goals: This section displays the topics that the learner selects from the
Edit Goals section. For example in the above images, The learner selects the
‘Place value’ topic, ‘Division topic’ and the ‘Fractions topic’ from the Edit Goals
section. These same selected topics are displayed in the Current Goals section.
Each list item contains:
➢ Learn <Topic name>
➢ Dropdown icon
➢ Delete icon
➢ Complete a Story in the ‘<Topic name>’

(NOTE: This mock shows Mastery of Skills but it is not a part of this project)

A maximum of 5 goals can be selected as Current Goals.

When the learner clicks on the dropdown icon, story cards of all the incomplete
stories from that topic are displayed. Each row consists of 3 stories. Each story
card contains:
➢ Story thumbnail
➢ Percent of Story completed
➢ Story name
➢ Topic name

When the learner clicks on a story, they are directed to that story page.
If the learner clicks on the delete icon, it will remove the goal from the Current
Goals section.

c. Edit Goals: This section contains all the topics present in all classrooms. Each
list item contains:
➢ Topic name
➢ Checkbox

When the learner selects a topic as their Current Goal, the checkbox is filled with
green. The selected topic is automatically updated into the Current Goals
section. A learner can select a maximum of 5 goals at the same time as their
current goal.

If the learner has completed all the stories of a topic from the Current Goals
section, it will be removed from the Current Goals section. The checkbox inside
the Edit Goals section will be replaced by a Book icon for that topic and the
completed topic will be added to the Completed Goals section.
In case the learner has already completed all the stories inside a topic
without/before placing it inside the Current Goals section, the checkbox inside
the Edit Goals section will be replaced by a Book icon for that topic and the
completed topic will be added to the Completed Goals section.

d. Completed goals: This section contains all the topics that the learner has
completed from the Current Goals section. Each list item has:
➢ Learn <Topic name>
➢ Completed <Name of story>
➢ A star icon

If there is more than one story in a topic, they will be displayed with bullet points.
Also, topics will mostly have only one story.

In case the learner has already completed all the stories in a topic without/before
placing it inside the Current Goals section, it will be placed inside the Completed
Goals section.

e. In the case when the learner has not selected any topic from the Edit Goals
section, the Current Goals section will be empty.
If the learner has not completed any goals inside the Current Goals section, the
Completed Goals section will be empty.

(NOTE: This mock shows the Edit Goals section empty but this section will never
be empty as all the available topics will autofill this section when the learner
loads the learner dashboard page)
(NOTE: If the Current Goals section is empty, the text displayed will be ‘Hmm this
looks empty. To start, pick a topic from Edit Goals section’)

4. Community Lessons:

a. At present the Community Lessons i.e. the Explorations and the Collections are
displayed in the ‘In Progress’ and ‘Completed’ tabs of the learner dashboard page.

In this project, these tabs will be removed and will be replaced by a single tab called
Community Lessons.
This tab will contain a single section called Community Lessons which will display
both the exploration and collections together (This is because there are not many
collections present). All the explorations and the collections that are in progress and
completed by the learner will be displayed. Each row will contain three cards. Each
exploration and collection card will have the same specifications as they have now.

(NOTE: This mock displays Explorations as the heading but it will be Community
Lessons)
If the learner clicks on the exploration/collection card, they are directed to that
exploration/collection.
Clicking on See More will display more cards for the same.

Technical Design

Architectural Overview
Four new folders namely home, progress todo-list and community-lessons will be created inside
core/templates/pages/learner-dashboard-page. These folders will contain component files for
respective tabs which will be integrated inside the learner-dashboard component file.

➢ POST request workflow when the learner has completed the exploration

➢ POST Request workflow when the learner has left the exploration halfway:

➢ GET Request workflow:

When an exploration is completed or left mid-way, the storage models are updated with a POST
request.

When the Learner Dashboard page is loaded, it hits the ‘/learnerdashboardhandler/data’ API
endpoint with a GET request. This API fetches the data from the datastore corresponding to the
Learner Dashboard page models. This data is then formatted and displayed to the learner in the
frontend.

Implementation Approach

BACKEND (STORE AND FETCH DATA)

➢ For completed and incomplete Stories:

○ A story will be marked as incomplete when the learner has completed/started at
least one chapter(node) in it and as completed when the learner has completed
all the nodes in it.

○ To track all the stories currently being completed by the learner, a new field called
story_ids will be added inside the IncompleteActivitiesModel storage model. The
same field will also be added inside the IncompleteActivities, which is the domain
object for the incomplete activities model.

○ To track all the stories completed by the learner, a new field called story_ids will
be added inside the CompletedActivitiesModel storage model. The same field will
also be added inside the CompletedActivities, which is the domain object for the
completed activities model.

○ Both the Models are kept in sync with the StoryProgressModel which already
tracks the chapter completion in a story.

○ After adding story_ids inside CompletedActivitiesModel and
IncompleteActivitiesModel, write a migration job inside user_jobs_one_off for it.

○ POST Request (Exploration Complete event):
■ When the learner has reached the end of an exploration i.e. the next card

in the exploration is the terminal card, it will hit the
'explorehandler/exploration_complete_event' API endpoint with a POST
request. The API will pass the topic_url and the story_url of the story to
the ExplorationCompleteEventHandler inside reader.py.

■ If the exploration is being played inside a story, the story_url will be a
string else it will be null.

■ Using story_fetchers and topic_fetchers inside the
ExplorationCompleteEventHandler, will return domain objects
representing the story and topic respectively.

■ Create a new log entry inside the
CompleteExplorationEventLogEntryModel.

■ If the exploration is being played in context to a story, fetch details about
the completed nodes and the ordered nodes of the story and check for
the next incomplete node inside the story.

■ If there is a next_node_id, then the story will be marked as incomplete by
using the mark_story_as_incomplete() present in
learner_progress_service.

■ If there is no next_node_id, mark the story as complete by using the
mark_story_as_complete() present inside learner_progress_service.

■ The mark_story_as_completed() will add the story id to the list of stories
completed by the user and also remove the story id from the list of
incomplete stories ids. It will take 2 arguments:

● user_id
● story_id

■ If the story is not marked as already completed:

● Remove the story from the incomplete story list

● Update the IncompleteActivitiesModel.

● Add the story inside the list of completed activities in the story ids
list and save it inside the datastore.

■ Similarly, the mark_story_as_incomplete() will add the story id to the list
of incomplete story ids.

○ POST Request (Exploration maybe left event)
■ When the learner leaves an exploration without completing it, the

‘explorehandler/exploration_maybe_leave_event’ API endpoint is hit with a
POST request. The API will pass the topic_url and the story_url of the
story to the ExplorationMaybeLeaveHandler inside reader.py.

■ If the exploration is being played inside a story, the story_url will be a
string else it will be null.

■ Using story_fetchers and topic_fetchers inside the
ExplorationMaybeLeaveHandler, will return domain objects representing
the story and topic respectively.

■ If the story_id is not null, mark both the story and topic as incomplete.

■ After adding the story_id and topic_id in the IncompleteActivitiesModel,
create a new log entry inside
MaybeLeaveExplorationEventLogEntryModel.

○ GET Request:

■ When the user loads the Learner dashboard page, its data is fetched by
using the learner-dashboard-backend-api-service, a service to retrieve
information for the learner dashboard from the backend.

■ The learner-dashboard-backend-api-service uses a function called
_fetchLearnerDashboardDataAsync() which returns a promise containing
the data for the learner dashboard. When the user loads the learner
dashboard page, the _fetchLearnerDashboardDataAsync() hits an API
endpoint called ‘/learnerdashboardhandler/data’ with a GET request.

■ When this endpoint is hit, it calls the LearnerDashboardHandler inside the
learner_dashboard.py which handles the GET request. This handler uses
the get_activity_progress() inside the learner_progress_services to get
information on the user's learner dashboard page.

■ This function i.e. get_activity_progress() calls a function --
get_learner_dashboard_activities(), which returns the ids of all the
activities that are present in the various sections of the learner
dashboard.

■ The get_learner_dashboard_activites() uses the
fetch_multiple_entities_by_ids_and_models() inside the
gae_datastore_services.py. This function takes a list of tuples as its
argument — list(tuple(str, list(str))). The ids and their corresponding
model names for which we have to fetch entities. This function uses nbd
imported from the google.appengine.ext() to fetch the data from the
datastore corresponding to the given ids and models.

■ Using datastore_services.fetch_multiple_entities_by_ids_and_models,
fetch the model instance of the StorySummaryModel corresponding to
the ids.

■ Filter this data by using:
● _get_filtered_incomplete_story_summaries() inside the

learner_progress_service which will return a list of summaries of

the incomplete story ids and the ids of story that are no longer
present.

● _get_filtered_complete_story_summaries() inside the
learner_progress_service which returns a list of summaries of the
completed story ids and the ids of story that are no longer present.

■ The completed story will be displayed inside the Stories completed
section of the Progress tab. For this we require:

● Story thumbnail
● Story name
● Topic name

➢ For all topics inside the Todolist section

○ This will keep a track of the user progress in the To-Do List tab.

○ A new storage model with the name TodoListModel will be created inside
user/gae_model.py.

■ This will be a non-versioned model which will preserve just the current
version. Instances of this class will be keyed by the user_id.

■ It will have a:

● current_goals_to_learn class variable which is a list of topic IDs of
all the topics selected by the user for learn goals in the Edit Goals
section. It will be a StringProperty.

● current_goals_to_master class variable which is a list of topic IDs
of all the topics selected by the user for master goals in the Edit
Goals section. It will be a StringProperty. (NOTE: Master is not a
part of this project and the field will be added in the future.)

● completed_goals_to_learn class variable which is a list of topic
IDs of all the topics completed (Here completed topic refers to a
topic inside which the user has completed all the stories) by the
user for learn goals in the Current Goals section. It will be a
StringProperty.

● completed_goals_to_master class variable which is a list of topic
IDs of all the topics completed (Here completed topic refers to a
topic inside which the user has completed all the subtopics) by the
user for master goals in the Current Goals section. It will be a
StringProperty. (NOTE: Master is not a part of this project and the
field will be added in the future.)

■ For the deletion policy: The model only belongs to one user, and should be
deleted

■ Takeout policy:

● get_model_association_to_user(): Model is exported as one
instance per user.

● get_export_policy(): Model contains data to export corresponding
to a user

■ Add a has_reference_to_user_id(cls, user_id) method to the model. This
method should return True when any of the model fields contains the
given user_id.

■ As the deletion policy is DELETE, Add an apply_deletion_policy(cls,
user_id) method to the model

■ Add an export_data(user_id) method to the model. This method returns
the data fields that are associated with or refer to the given user.

■ Write a TodoListModelValidator inside user_validators.py which is a class
for validating TodoListModels.

■ This model will have a domain object in user_domain.py called TodoList.

○ The Edit Goals section of the To-Do List tab will contain a list of all the topics in
the server.

○ If a topic_id is present in the current_goal list of the TodoListModel, fill the
checkbox of that topic in the Edit Goals section with green.

○ If a topic_id is present in the completed_goal list of the TodoListModel, replace
the checkbox of that topic in the Edit Goals section with a book icon.

○ POST Request(When the learner selects goal from Edit Goals):

■ When the user selects a goal in the Edit Goals, check the length of
current_goal in the TodoListModel. If the length is less than 5, the
‘todo_list_model/data’ API is hit with a POST request. It will pass the
topic_id of the selected topic in the payload. This API will direct the
learner to LearnerDashboardTodoListHandler inside the
learner_dashboard.py.

■ This handler will receive the topic_id of the selected topic from the
payload and add the topic_id to the list of current_goal in the
TodoListModel and save it.

■ If the length of current_goal in the TodoListModel is 5, display a message
that says that ‘A max of 5 topics can be selected at a time’.

○ DELETE Request(When the user clicks on the delete icon)

■ When the user clicks on the delete icon in the Current Goals section for a
particular topic, the ‘todo_list_model/data’ API is hit with a DELETE
request. It will pass the topic_id of the deleted topic in the payload. This
API will direct the learner to LearnerDashboardCurrentGoalsHandler
inside the learner_dashboard.py.

■ This handler will receive the topic_id of the selected topic from the
payload and will remove the topic_id from the list of current_goal in the
TodoListModel and save it.

○ POST Request(When the user has completed all the stories in the topic)

■ When the user completes a chapter in the story, they are directed to the
ExplorationCompleteEventHandler inside the reader.py. There we will
check if all the stories inside the topic are completed or not. If all the
stories are completed, we will remove the topic_id from the current_goal
list of the TodoListModel, if present and save it.

■ Along with removing the topic_id from the current_goal, we will add the
topic_id to the complete_goal_ids list of the TodoListModel.

○ GET Request

■ When the user loads the Learner dashboard page, its data is fetched by
using the learner-dashboard-backend-api-service, a service to retrieve
information for the learner dashboard from the backend.

■ The learner-dashboard-backend-api-service uses a function called
_fetchLearnerDashboardDataAsync() which returns a promise containing
the data for the learner dashboard. When the user loads the learner
dashboard page, the _fetchLearnerDashboardDataAsync() hits an API
endpoint called ‘/learnerdashboardhandler/data’ with a GET request.

■ When this endpoint is hit, it calls the LearnerDashboardHandler inside the
learner_dashboard.py which handles the GET request. This handler uses
the get_activity_progress() inside the learner_progress_services to get
information on the user's learner dashboard page.

■ This function i.e. get_activity_progress() calls a function --
get_learner_dashboard_activities() which returns the ids of each of the
activities that are present in the various sections of the learner
dashboard.

■ The get_learner_dashboard_activites() uses the
fetch_multiple_entities_by_ids_and_models() inside the
gae_datastore_services.py. This function takes a list of tuples as its
argument — list(tuple(str, list(str))). The ids and their corresponding
model names for which we have to fetch entities. This function uses nbd
imported from the google.appengine.ext() to fetch the data from the
datastore corresponding to the given ids and models.

■ Using datastore_services.fetch_multiple_entities_by_ids_and_models,
fetch the model instance of the TodoListModel corresponding to the ids.

■ The topics and the stories of the topics present in current_goal will be
displayed inside the Continue where you left off section of the Home tab.
For this we require:

● Next incomplete node’s name and id.
● Story thumbnail
● Percent of the story completed
● Name of the story
● Name of the Topic.

These stories will be displayed in decreasing order of their percentage of
completion. If there are more than three stories, they will be displayed
using a carousel.

■ The Topics in completed_goal will be displayed inside the Completed
Goals section of the To-Do List tab.

➢ For avg mastery in Subtopics:
○ Calculate the avg mastery of subtopics of the topics that the user has started (if

subtopic is present) or the topics that the user has selected in the TodoList
section.

○ To get the list of all the topic_started_by_the_user, combine the list of
completed_topic_ids and incomplete_topic_ids with the current_goal inside the
learner_progress_service().

○ Iterate over the topic_started_by_the_user and for each topic_id get the values
for:

■ Classroom_url_fragment
■ Subtopics present inside the topic
■ avg_degree_of_mastery for each subtopic.

○ Append these values inside the skill_proficiency array.

○ The subtopics for a topic will be displayed inside the Skill Proficiency section of
the Progress tab. For this we require:

■ classroom_url_fragment
■ topic_url_fragment
■ topic_name
■ subtopic_id
■ subtopic_name
■ avg_degree_of_mastery
■ skill_ids in the subtopic

➢ For completed and incomplete Topics:

○ A topic will be marked as incomplete when the learner has completed/started at
least one chapter(node) inside a story and as completed when the learner has
completed all the stories in the topic.

○ To track all the topics currently being completed by the learner, a new field called
topic_ids will be added inside the IncompleteActivitiesModel storage model. The
same field will also be added inside the IncompleteActivities, which is the domain
object for the incomplete activities model.

○ To track all the topics completed by the learner, a new field called topic_ids will
be added inside the CompletedActivitiesModel storage model. The same field will
also be added inside the CompletedActivities, which is the domain object for the
completed activities model.

○ After adding topic_ids inside CompletedActivitiesModel and
IncompleteActivitiesModel, write a migration job inside user_jobs_one_off for it.

○ We need to check/update the topic completion status at only one point i.e. when
the user completes an exploration. The topic will automatically marked as
incomplete when the user leaves an exploration midway as described above for
POST Request (Exploration maybe left event) in story_ids.

○ POST Request(Exploration Complete event):

■ When the learner has reached the end of exploration, i.e. when the next
card in the exploration is the terminal card, it will hit the
'explorehandler/exploration_complete_event' API endpoint with a POST
request. The API will pass the topic_url and the story_url of the story to
the ExplorationCompleteEventHandler inside reader.py.

■ If the exploration is being played inside a story, the topic_url will be a
string else it will be null.

■ Using story_fetchers and topic_fetchers inside the
ExplorationCompleteEventHandle, will return a domain object
representing the story and topic respectively.

■ If the exploration is being played in context to a story, after marking the
story as complete/incomplete, fetch details of the list of all the stories
completed by the user using a function get_all_completed_story_ids()
inside the learner_progress_service.

■ If all the story ids of a topic are present in the completed story ids list,
then the topic will be marked completed by using the
mark_topic_as_complete() present inside learner_progress_service.

■ If not, then the topic will be marked incomplete by using the
mark_topic_as_incomplete() present inside the learner_progress_service.

■ The mark_topic_as_completed() will add the topic id to the list of topics
completed by the user and also remove the topic id from the list of
incomplete topic ids. This function will take 2 arguments:

● user_id
● topic_id

■ If the topic id is not marked as already completed:

● Remove the topic from the incomplete topic list

● Update the IncompleteActivitiesModel.

● Add the topic inside the list of completed activities in the topic ids
list and save it inside the datastore.

■ Similarly, the mark_topic_as_incomplete() will add the topic id to the list
of incomplete topic Ids. This function will take 2 arguments:

● user_id
● topic_id

○ Get Request:

■ When the user loads the Learner dashboard page, its data is fetched by
using the learner-dashboard-backend-api-service, a service to retrieve
information for the learner dashboard from the backend.

■ The learner-dashboard-backend-api-service uses a function called
_fetchLearnerDashboardDataAsync() which returns a promise containing
the data for the learner dashboard. When the user loads the learner
dashboard page, the _fetchLearnerDashboardDataAsync() hits an API
endpoint called ‘/learnerdashboardhandler/data’ with a GET request.

■ When this endpoint is hit, it calls the LearnerDashboardHandler inside the
learner_dashboard.py which handles the GET request. This handler uses

the get_activity_progress() inside the learner_progress_services to get
information on the user's learner dashboard page.

■ This function i.e. get_activity_progress() calls a function --
get_learner_dashboard_activities() which returns the ids of each of the
activities that are present in the various sections of the learner
dashboard.

■ The get_learner_dashboard_activites() uses the
fetch_multiple_entities_by_ids_and_models() inside the
gae_datastore_services.py. This function takes a list of tuples as its
argument — list(tuple(str, list(str))). The ids and their corresponding
model names for which we have to fetch entities. This function uses nbd
imported from the google.appengine.ext() to fetch the data from the
datastore corresponding to the given ids and models.

■ Using datastore_services.fetch_multiple_entities_by_ids_and_models,
fetch the model instance of the TopicModel corresponding to the ids.

■ Filter this data by using:
● _get_filtered_incomplete_topic() inside the

learner_progress_service which will return a list of the incomplete
topic ids and the ids of topic that are no longer present.

● _get_filtered_complete_topic() inside the learner_progress_service
which returns a list of the complete topic ids and the ids of topic
that are no longer present.

■ The incomplete topic will be displayed inside the Continue where you left
off section of the Progress tab. For this we require:

● Topic thumbnail
● Topic name
● The number of stories inside that topic.

➢ For all Topics present inside the server (Suggested for you):

○ To get the list of topics that are present on the server.

○ To get the ids of all the topics inside a particular classroom, fetch the data of all
the classrooms i.e. the classroom_urls and the list of topic_ids associated with
the classroom. This will be done inside the get_activity_progress() present in
learner_progress_service.

○ Fetch the data of all the classrooms present on the server by using the
CLASSROOM_PAGES_DATA declared in config_domain. From this data, store the
topic_ids inside suggested_for_you.

○ Using datastore_services.fetch_multiple_entities_by_ids_and_models, fetch the
model instance of the Topic corresponding to the ids.

○ Filter this data by using _get_filtered_suggest_for_you_topic() inside the
learner_progress_service which returns a list of the suggested for you topic ids
and the ids of topic that are no longer present.

○ The suggested_for_you topics will be displayed inside the Suggested for you
section of the Home tab. Display the topics corresponding to the related
classrooms. For this we require:

■ Classroom name
■ Topic thumbnail
■ Topic name
■ The number of stories inside that topic.

FRONTEND

➢ Home tab: A new folder called home will be created inside the
core/templates/pages/learner-dashboard-page folder which will contain the component
for Home tab.

○ For Greeting to the User:
■ A function which checks the time and greets the learner.

○ Continue where you left off:

■ When the user loads the Learner Dashboard page, data will be fetched
from the TodoListModel for topic ids in the learn of current_goal using the
GET request as described above.

■ For each topic_id in the current_goal, we will create an instance of
TopicModel and instances of StorySummaryModel for the incomplete
stories in that topic_id.

■ This data will be used to create a new list of StorySummary and Topic in
the frontend called currentGoalsStoryList and currentGoalsTopicsList.

■ If a story id is present inside the currentGoalsStoryList, it will be present
inside the canonical_story_ids list of the currentGoalsTopicsList. Hence
we will get the topic_url and the classroom_url from the
currentGoalsTopicsList for the corresponding story id.

■ Using the data from the StorySummary, we will calculate the next
incomplete node inside the story and the percentage of the story
completed by the user.

■ To display this data in the format presented in the mocks, we will create a
new directive called the learner-dashboard-story-summary-tile.

■ This directive will be passed:
● Story summary.
● topic_url
● classroom_url

■ This directive will contain a continue button, when the user clicks on it
they will be directed to the next incomplete node of the story. The url will
be calculated by:

■ The cards inside this section will be displayed in descending order
ordered by the percentage of story completed by the user.

■ If the currentGoalsStoryList is empty, we will instead display a message
‘Hmm, this looks empty. Select a topic in the To-Do List to get started!’.
The To-Do List link will direct the user to the To-Do List tab.

○ Suggested for you:

■ This will display three topics of a classroom.

■ The data from the backend will contain a list of TopicModel instances.
This data will be used to create a new list of Topic stored in
suggestedForYouList.

■ This data will be passed to topic-summary-tile.directive, which will display
the data in card format, as presented in the mocks.

■ Topics inside the same classrooms will be displayed together.

■ This section will never be empty and will remain constant.

➢ Progress tab: A new folder called progress will be created inside the
core/templates/pages/learner-dashboard-page folder which will contain the component
for Progress tab.

○ Skill Proficiency:

■ This will display a list of all the subtopics of a topic started by the user or
selected by the user in the To-Do List tab.

■ The data from the backend will contain:
● classroom_url_fragment
● topic_url_fragment
● topic_name
● subtopic_id
● Subtopic_name
● avg_degree_of_mastery

■ The avg_degree_of_mastery of the subtopic is displayed by a progress
circle.

■ If the avg_degree_of_mastery of a subtopic is between:

● 70-79%, a bronze badge will be placed before the topic name.

● 80-89%, a silver badge will be placed before the topic name.

● 90-100%, a gold badge will be placed before the topic name.

■ If the avg_degree_of_mastery of a subtopic is 0%, then no badge will be
displayed.

■ If the user selects more than one subtopic to practice on, then those
subtopics will be played in succession. (Similar to practice-tab)

○ Topics in progress:

■ This will display a list of all the topics that the user has started by not yet
completed

■ When the user loads the Learner Dashboard page, data will be fetched
from the IncompleteActivitiesModel for topic ids using the GET request as
described above.

■ The data will contain a list of TopicModel instances of the incomplete
topics. This data will be used to create a new list of Topic in the frontend
called incompleteTopicsList.

■ This data will be passed to topic-summary-tile.directive, which will display
the data in card format, as presented in the mocks.

■ If the suggestedForYouList is empty, we will instead display a message
‘Hmm this looks empty. Try browsing our library for a lesson’. The library
link will direct the learner to the default classroom page i.e. the math
classroom.

○ Stories Completed:

■ This will display a list of all the stories that the user has completed.

■ When the user loads the Learner Dashboard page, data will be fetched
from the IncompleteActivitesModel and CompletedActivitiesModel for
story ids and topic_ids using the GET request as described above.

■ The data will contain a list of StorySummaryModel instances of the
completed stories. This data will be used to create a new list of
StorySummary in the frontend called completedStoryList. The incomplete
topic ids will be stored inside the incompleteTopicList and
completedTopicList.

■ If a story id is present in completedStoryList, that means it is also present
inside:

● canonical_story_ids field of incompleteTopicList OR
● canonical_story_ids field of the completedTopicsList

■ Hence we will get the topic_url and the classroom_url from the
incompleteTopicList/completedTopicList for the corresponding story id.

■ To display this data as presented in the mocks, we will create a new
directive called learner-dashboard-story-summary-tile (as mentioned
above for Continue where you left off section)

■ If the completedStoryList is empty, we will instead display a message
‘Hmm this looks empty. Try browsing our library for a lesson’. The library
link will direct the learner to the default classroom page i.e. the math
classroom.

➢ Todo List:

○ The To-Do List tab is divided into 3 sections namely: Current Goals, Edit Goals
and Completed Goals.

○ The Edit Goals section will contain data on all the topics that are present inside
the server. This will be done inside the leaner_progress_service as described
above for Suggested for you section.

○ For topics in the current_goal of the TodoListModel, the checkbox of that topic in
the Edit Goals section will be filled with green.

○ For topics in completed_goal of the TodoListModel, the checkbox of that topic in
the Edit Goals section will be replaced with a book icon.

○ The Current Goals section will contain the data present in the current_goal of the
TodoListModel. The Completed Goals section will contain the data present in the
completed_goal of the TodoListModel.

Third-party Libraries*
This project does not require any additional third party libraries.

Testing Approach

● Test files will be added whenever changes are made in service.ts files in the frontend
along with respective PRs.

● All backend migration PRs will include test files with them.

● Unit test for the following journey or flow will be added:

● Home tab:
○ When the user loads the Learner dashboard page, the Home tab should open up.
○ It should start with a greeting to the learner.
○ It should display three incomplete stories in the Continue where you left off

section.
○ It should direct the learner to the exploration when the user clicks on any story

inside the Continue where you left off section.
○ It should display three topic cards and one grey card in the Suggested For You

section.
○ It should direct the learner to the topic when the user clicks on any topic card

inside the Suggested For You section.
○ It should direct the learner to the corresponding topic classroom when they click

on the grey card in the Suggested For You section.

● Progress tab:
○ It should display all the topics in the incomplete and completed topic list inside

the Skill Proficiency section.
○ It should display all the subtopics inside a topic when the learner clicks on the

dropdown button inside the Skill Proficiency section.
○ It should direct the learner to correct subtopics when they select the subtopics

and click the Start Practice button in the Skill Proficiency section.
○ It should display four incomplete topic cards in the Topic in Progress section.
○ It should direct the learner to the topic when they click on the topic card in the

Topic in Progress section.
○ It should display all the stories (3 in a row) completed by the user in the Stories

Completed section.
○ It should direct the learner to the story when they click on any story inside the

Stories Completed section.

https://xd.adobe.com/view/b54892aa-dbe6-49cf-bc4f-9bb8c77de619-e01b/

● Todo-List tab:
○ It should display all the topics that the learner selects in the Edit Goals section

inside the Current Goals section.
○ It should display all the stories inside the topic when the learner clicks on the

arrow button in the Current Goals section.
○ It should display all the topics present in the server in the Edit Goals section.
○ It should display all the topics completed by the user in the Edit Goals section

inside the Completed Goals section.

● E2e tests will be added to check the flow of new tabs added inside the Learner
Dashboard page as described in the Product design. This will include:

○ It should add the story selected by the user in the Edit Goals section of the
Todo-List tab to the Continue where you left off section in the Home tab.

○ It should add three topics in the server to the Suggested for You section in the
Home tab.

○ It should add all the incomplete and completed topics in the Skill Proficiency
section of the Progress tab.

○ It should add all incomplete topics in the Topic in Progress section of the
Progress tab.

○ It should add all the completed stories in the Completed Stories section of the
Progress tab.

○ It should add all the topics selected by the user in the Edit Goals section in the
Current Goals section of the Todo-List tab.

○ It should add all the topics present in the server in the Edit Goals section of the
Todo-List tab.

○ It should add all the topics completed by the user in the Edit Goals section in the
Completed Goals section of the Todo-List tab.

Milestones
I plan to have two big milestones based on the timeline provided by Google. Below are the
detailed explanations of each milestone.

Community Bonding Period (May 17 - June 7)
During this period I will continue contributing to Oppia. Also, since I have been contributing to
this community for more than 4 months now, I’m quite familiar with the codebase and the
workflow. This is why I will start working on the project right away to avoid any unforeseen delay
in the future.

The PR descriptions are as follows:

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target
date for
PR to be
merged

0.1 Adding topic_ids and story_ids inside
CompletedActivitiesModel and
IncompleteActivitiesModel

None 19th May 21st May

Milestone 1 (June 7 - July 13)
Key Objective:

● Redesigning Learner Dashboard page to include Home tab and Community Lessons.
● This will include adding functions to store and fetch data from the storage models that

are required to render and store data for learner dashboard pages.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to
be merged

1.1 Create TodoListModel along with a
validator, domain object.

None 7th June 13th June

1.2 ● POST requests and GET
requests to
CompletedActivitiesModel
IncompleteActivitiesModel for
topic_ids and story_ids.

● Along with the necessary
functions for fetching, creating
and deleting the data inside the
models.

0.1 12th June 18th June

1.3 ● POST requests and GET
requests to TodoListModel for
topic_ids and story_ids.

● Along with the necessary
functions for fetching, creating
and deleting the data inside the

1.1 17th June 23th June

models.

1.4 ● Add the Home tab inside the
learner dashboard page.
Fetching the data and
displaying it to the user in
Continue where you left off and
Suggested for you sections.
(The Continue where you left
off section won’t have any
topics in it till the Todo-List
section is built. So the Home
tab component will be hidden
under the ng-if tag based on the
constant
“HIDE_NEW_LEARNER_DASHBOARD
”. This will be removed once the
TodoList section is built in the
second milestone.)

● This will include the necessary
e2e, frontend and backend
tests.

1.1, 1.3 24th June 30th June

1.5 ● Remove the In Progress and
Completed tabs and make a
new component called the
Community Lessons in the
learner dashboard.

● This will include the necessary
e2e, frontend and backend
tests.

None 1st July 7th July

1.6 Leaving the last week empty for
solving any bug raised related to the
project

N/A N/A N/A

Milestone 2 (July 16 - August 16)
Key Objective:

● Redesigning Learner Dashboard page to include Progress tab and To-Do List tab.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to
be merged

2.1 ● Adding Progress tab in the
learner dashboard page.
Fetching the data and
displaying it to the user in the
Skill Proficiency section.

● This will include the necessary
e2e, frontend and backend
tests.

0.1, 1.2 16th July 22th July

2.2 ● Further modifying the Progress
tab in the learner dashboard
page. Fetching the data and
displaying it to the user in the
Topics in Progress and
Completed Stories section.

● This will include the necessary
e2e, frontend and backend
tests.

0.1, 1.2, 2.1 21th July 27rd July

2.3 ● Adding the To-Do List tab inside
the learner dashboard page.
Fetching the data and
displaying it to the user in
Current Goals, Edit Goals and
Completed Goals section.

● This will include the necessary
e2e, frontend and backend
tests.

0.1, 1.3 30th July 7th August

2.4 Leaving the last week empty for
solving any bug raised related to the
project

N/A N/A N/A

Optional Sections

Future Work
In future, we can ask the learner beforehand about their preferences in the classrooms. This way
the learner dashboard page can be customized according to the user’s preference like
suggesting topics of the classrooms that the user chooses or visits the most.

Additional Project-Specific Considerations
Documentation Changes
This project aims to add 4 new tabs in the learner dashboard page and will therefore need no
additions to the Oppia wiki page.

