
GSOC 2021 Proposal

Name: Nikhil Agarawal

Project: Implement Schema Validation for handler param.

About You

Why are you interested in working with Oppia, and on your chosen project?
Working with oppia is one of the most exciting tasks because its mission to provide and

create lessons in a fun and exciting way fascinates me very much.
After working with various projects regarding Apis, Json handling and request

responses, this project seems interesting and committable.

Prior experience
Considering the scope of this project, I have worked with similar ones which requires

json handling, web requests and responses, etc.

Previous experience

Link to some of my previous pull requests are as follows:

No. Title Link

1 Allow exploration owners to remove users from their
exploration.

Link: here

2 Adds async keyword in read-only-backend-api service Link: here

3 Convert object factory to model class Link; here

4 Adds decorator in run_in_transaction Link: here

5 Migrate admin_prod_mode_activities_tab directive to
angular components

Link: here

Contact info and timezone(s)

Contact Gmail: nikhil.agarwal.2019@gmail.com
Hangouts: nikhil.agarwal.2019@gmail.com
Optional gmail: nikagarwal093@gmail.com

Timezone: Indian Standard Time(IST) or GMT + 5:30

https://github.com/oppia/oppia/pull/12143
https://github.com/oppia/oppia/pull/11568
https://github.com/oppia/oppia/pull/11902/files
https://github.com/oppia/oppia/pull/11781
https://github.com/oppia/oppia/pull/11787
mailto:nikhil.agarwal.2019@gmail.com
mailto:nikhil.agarwal.2019@gmail.com
mailto:nikagarwal093@gmail.com

Time commitment
I plan to work approx 25 hours a week. The time commitment is planned with a view to

cover GSoC criteria as well as considering uncertainties that may occur during the coding
phase.

Essential Prerequisites
Answer the following questions (for Oppia web GSoC students):

● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a
successful test.)

● I am able to run one suite of e2e tests on my machine. (Show a screenshot of a
successful test.)

Project Details
Oppia’s users currently interact with backend servers or datastore by providing data via

API. Currently, the handler params are not verified correctly in all the places. This introduces a
leakage in backed API structure which leads to data corruption and unexpected server issue(s).

This doc introduces the architecture for validating the params received by the handlers in
an unified way and immediately raises an Invalid Input Exception (400) error, if the schema for
expected params does not match with the received params.

Product Design
The project adds a backend structure for validating handler’s params. It doesn't

add/remove/update any user-facing UI features.

Technical Design
This docs is presenting ideas for architecture required for Implementing schema

validation for handler params.

Technical requirements
The project requirements can be summarised as follows:

● Unified way to parse and validate params of different types int, string, unicode,
list, dict etc.

● Provides a way to add custom validations for common data/dict schema in the
codebase.

● Provides a way to handle and raise correct exceptions for invalid params.
● Provides options to enable/disable param validations for a given handler.
● Param validation enabled on at least a part of the current handlers.
● [GTH] Should normalize the given param if needed.

● [GTH] Avoid duplicate code.

*GTH: “Good to have”, these are the requirements which are optional and it would be good to
have those in the validation architecture.

The new system to validate params and provide all the requirements stated above can be
implemented using a schema validator. There are multiple options available for using schema
validators:

1. Oppia’s existing schema validation system (defined in schema_utils.py)
a. “Oppia’s SVS” term will be used in the doc to refer the schema validation

system defined in schema_utils.py
2. Third party libraries:

a. Cerberus
b. Marshmallow

Oppia’s SVS schema API:
A data can be validated using Oppia’s SVS by providing a schema for the data. A schema for a
data will be a dictionary with the following fields:

● type: The type of the data.
○ examples: bool, int, float, unicode, list, dict, html. The list and dict types have

additional fields in their schemas (see below). The type for the data which has
defined object class in objects.py will be ‘custom’ and the object class need to be
mentioned in the obj_type field of the schema (for more details check other field
of the API)

● choices: A list of values of the given type. The value entered must be equal to one of
elements in the list.

● validators: A list of validators to apply to the return value, in order.
● [for type=list] items: The schema for an item in the list. A polymorphic list should not use

this field.
● [for type=list] len: If present, the length of the list; must be an integer greater than 0. No

elements can be added or deleted.
● [for type=dict] properties: This is a list whose elements are dicts. The item in the dict

represents a schema for each key value pair in the dict. Each dict in the list should have
two mandatory keys:

○ name: The name of the field
○ schema: The schema for the value corresponding to this field.

● [for type=dict] description: optional. If present, this gives a human-readable description
of the field.

● [for type=custom] obj_type: Contains the type of the class of object, defined in
objects.py.

https://github.com/oppia/oppia/blob/63dbb38b34e34dbcba235142a1da8d97c804e5d1/schema_utils.py
https://docs.python-cerberus.org/en/stable/
https://marshmallow.readthedocs.io/en/stable/quickstart.html

Features provided by Oppia’s SVS
1. Provides a function normalize_against_schema to parse and validate params of different

types int, string, unicode, list, dict etc.
2. Provides a system to validate complex structures either by defining a simple validator

function or defining a separate object class.
3. Provides a way to combine custom validators with type checks for a given data.

a. E.g 1: To validate a user id the schema can be:

{

‘type’: ‘unicode’,

‘validators’: [{

‘id’: ‘is_valid_user_id’

}]

}

E.g 2: To validate a new role for a user the schema can be:

{

‘type’: ‘unicode’,

‘choices: [feconf.ROLE_EDITOR, feconf.ROLE_OWNER ...]

}

4. Normalizes the data against the given raw data.
5. Provides a way to define default value for the custom type.

Features provided by third party libraries

● Cerberus
1. Provides a function to parse and validate params of different types int, string,

bool, etc.
Example to validate user role:

schema = {

'role': {

'type': ‘string’,

'allowed': [

feconf.ROLE_EDITOR, feconf.ROLE_OWNER…] }}

document = { 'role': 'editor' }

v = Validator(schema)

v.validate(document)

https://github.com/oppia/oppia/blob/63dbb38b34e34dbcba235142a1da8d97c804e5d1/schema_utils.py#L67
https://github.com/oppia/oppia/blob/63dbb38b34e34dbcba235142a1da8d97c804e5d1/schema_utils.py#L453
https://github.com/oppia/oppia/blob/63dbb38b34e34dbcba235142a1da8d97c804e5d1/schema_utils.py#L453
https://github.com/oppia/oppia/blob/63dbb38b34e34dbcba235142a1da8d97c804e5d1/extensions/objects/models/objects.py#L171
https://cerberus-sanhe.readthedocs.io/usage.html

>True

2. Provides a feature to validate complex structures by defining custom rules.
Example to validate category string.

class MyValidator(Validator):

def _should_start_with(self, field, value):

if feild[0] != '(' :

self._error(field, "Must start with parenthesis.")

schema = {'category': {'type': 'string' }}

document = { 'category': '(xyz)' }

v = MyValidator(schema)

v.validate(document)

>True

3. Normalizes the data against the given raw data.
4. Provides a way to define default value for the custom type.

● Marshmallow
1. Provide a function to parse and validate params of different types like int, string,

bool, etc.
● Example for validating user roles.

class UserSchema(Schema):

role = fields.Str(validate = OneOf(

[feconf.ROLE_EDITOR, feconf.ROLE_OWNER, ..]

))

document = { 'role': 'editor' }

try:

result = UserSchema().load(document)

except ValidationError as err:

print(err.messages)

print(err.valid_data)

2. Provide a feature to write custom classes for validating params.
● Example to validate category string.

https://docs.python-cerberus.org/en/stable/customize.html
https://marshmallow.readthedocs.io/en/stable/upgrading.html?highlight=oneof#use-oneof-instead-of-fields-select
https://marshmallow.readthedocs.io/en/stable/extending.html

class BandSchema(Schema):

category = fields.Str()

@pre_load

def unwrap_envelope(self, data, **kwargs):

if data[0] != '(':

raise ValidationError('Must start with parenthesis.')

return data

sch = BandSchema()

try:

sch.load({"category": "(xyz)"})

except ValidationError as err:

err.messages

3. Normalizes the data against the given raw data.
4. Provides a way to define default value for the custom type.

Similarities between Oppia’s SVS and Third party libraries like cerberus and
marshmallow

Point of
similarity

Oppia’s SVS Third Party

Validating
simple params
like string,
boolean,
Integer.

Simple data types like
string(unicode), int, bool are
present in existing oppia’s SVS.
And the schema is further
modified by adding validators.

Validation of simple data types like
String, Integer, Boolean can be done
by using the syntax as guided in
official docs.
Link: marshmallow.
Link: Cerberus

Validating by
writing custom
validators

Apart simple types of params
custom validators can be added
in schema utils like is_atleast()

Apart from simple types of params
custom validators can be added.
Link: marshmallow.
Link: Cerberus.

https://marshmallow.readthedocs.io/en/stable/upgrading.html?highlight=oneof#use-oneof-instead-of-fields-select
https://cerberus-sanhe.readthedocs.io/usage.html
https://marshmallow.readthedocs.io/en/stable/extending.html
https://docs.python-cerberus.org/en/stable/customize.html

Distinction between Oppia’s SVS and Third party libraries like cerberus and
marshmallow.

Point of
distinction

Oppia’s SVS Third Party

Consistent
schema
structure

Oppia’s SVS is already being used
in different parts of the codebase.
Using the same schema pattern for
the params will help us have
consistent schema structure in
different parts of the codebase.

Oppia already has its own schema
validation system, adding new libs
for validation will introduce
inconsistent schema patterns for
validating data in the codebase.

Learning curve Oppia developers, working with
parts of the codebase like
schema_utils, interaction, etc are
already familiar with Oppia’s SVS. It
will be quite easier for developers
to write/review/maintain param
schema validation architecture built
using Oppia’s SVS.

Introducing a new schema pattern in
the codebase will make it
comparatively hard for developers to
write/review/maintain the param
validation system as now developers
will have to learn two different
schema validation structures.

Dependency Oppia’s SVS is independent of any
other third party libraries so it is
modified according to needs.

Using third parties like cerberus or
marshmallow over schema utils,
increases dependency for the oppia
project.

Tracking
security/regressi
on issues

Oppia's SVS functionality is being
implemented/maintained by Oppia
developers, so it will be easy to
track major issues and prioritize
fixing major issues.

The issue thread discussion as
referred to in the examples shows
that continuous track should be
needed if their feature is working
correctly or not.
Example 1
Example 2
Example 3
Example 4

Usable
validators

The validators in schema_utils.py
can be used in other places.
Eg: has_length_atmost is a

Custom Integration for handlers
param, from third parties can be
used by writing private methods,

https://github.com/pyeve/cerberus/issues/39
https://github.com/pyeve/cerberus/issues/489
https://github.com/marshmallow-code/marshmallow/issues/1190
https://github.com/marshmallow-code/marshmallow/issues/53

validator written in schema utils and
it is used for validating client data
edited by
schema_based_editor.directive.ts
and
music_phrase_editor.directive.ts

like ‘_xyz()’ so they can not be used
in other places.

Schema
compatibility on
client side

The current Oppia’s SVS schema
structure is used in client side for
client-side-validation. Using Oppia’s
SVS for params validation can
provide us an easy way to validate
data on the client side before
making https requests.

According to official documentation of
marshmallow (here), marshmallow
can be used to validate package.json.

Conclusion: As both the Oppia’s SVS and third-party libraries fulfils the major requirements for
the project and from the above similarities and distinction it can be concluded that the Oppia’s
SVS would be better to use for the project because of the following major reasons:

1. Using Oppia’s SVS will provide consistent schema structure for data validation in the
codebase.

2. Adding a new validation function for params using Oppia’s SVS will provide a reusable
validation function for the oppia codebase.

3. Oppia’s SVS schema structure can be easily used on the client-side and Oppia already
has a structure to validate data using Oppia's SVS schema. In future, param validation
can be easily implemented in the client side so that the data is validated in the frontend
before reaching the server.

Architectural Overview

Expected behaviours from the param validation architecture:

1. Validates params schema before handling the request i.e, before going through acl and
before calling request method i.e, get/post etc. methods defined in the handler class.

a. This helps us to ensure that all the data reaching acls and handler’s
request-method are valid and are in expected pattern.

b. Benefits for validating before acl:
i. Not allow reaching acl layer with invalid/malicious data in the

payload/param.
ii. Acl layer needs to make datastore calls, if we validate the schema first

then we will have a blocker which won't have to make any datastore call.
and can avoid datastore calls for malicious requests.

iii. This will help us follow the fail fast rule i.e, fail asap without waiting for
any datastore calls.

2. Does-not validate any value using datastore data.

https://github.com/oppia/oppia/tree/develop/core/templates/components/forms/validators
https://marshmallow.readthedocs.io/en/stable/examples.html

a. As this validation is going to happen as soon as the request reaches the server
and before reaching the acl decorators, we will avoid touching the datastore to
validate these data.

3. Only validates the schema of the request params and their values.
a. The validation for the values can include type, expected-values, expected pattern

checks.

Architecture

Alternative considered section includes another architecture (bookmark)

Glossary:

1base.py: Represents the BaseHandler class of base,py. Here extraction of params, schema
and calling of validate method from payload_validator is done.
2 Represents the file where the handler class is present and inside that, get_param_schema()
method should be present from which the schema of the corresponding url and method is
received.
3 schema_utils: Represents a file, which contains classes of all the param types and a method
to validate param against its schema.
4 payload_validator.py a newly added file for validation of handler params.

Flowchart Diagram of validate method

Validate method needs to be defined in payload_validator file (a new file introduced).
validate method takes params and its schema for validation and after validation, the method
raises an exception (if any).
The flowchart implementation of validate method is given below:

.

https://github.com/oppia/oppia/blob/develop/core/controllers/base.py
https://github.com/oppia/oppia/blob/63dbb38b34e34dbcba235142a1da8d97c804e5d1/schema_utils.py
https://github.com/oppia/oppia/blob/8ae754380fe109eebbed7c2dfc375862752fa6f2/schema_utils.py#L67

For Pseudocode Implementation kindly refer here: (bookmark)

Note: The dotted arrow from file of handler to schema utils represents there is an indirect
relation between these two files i.e., the types of the params are defined in schema utils.

API request journey:

1. Client makes a request to an API.
2. The handler class gets initialized (the initialization method written in BaseHandler

class.)
3. Check whether PARAM_VALIDATION_ENABLE flag is true, otherwise skip the validation

step.
4. For Validation params, schema is extracted for a particular request method, i,e., PUT/

POST/ DELETE.
5. By taking schema, validate_param_schema method calls validate method from a newly

added file i.e., payload_validator.py
6. Validate method validates the params and raises errors if any.

https://github.com/oppia/oppia/blob/26c867193adba41f7c18a29715342fcdf1d53eac/core/controllers/base.py#L142
https://github.com/oppia/oppia/blob/26c867193adba41f7c18a29715342fcdf1d53eac/core/controllers/base.py#L142

7. After validation the corresponding method (get / post / delete) gets called.

Note: Kindly refer here for description and pseudocode Implementation.

Handling cases when a param is optional
Optional cases can be handled by setting ‘optional’ key to True or false in the

schema, and by default every param is treated as a required param.

Here make_community_owned is optional and in schema its optional key value is set to True.

Adding/Updating new/existing handler using the param validator architecture:

Updating ExplorationHandler(put method) in editor.py to use the param schema
validation architecture. Steps to follow :

1. Look for all the params used in the put function [fetched using self.payload.get(..)]
a. Found the following:

i. version
ii. commit _message
iii. change_list

2. Look for corresponding param object type in objects.py
a. Found the following:

i. version → objects.Int
ii. Commit_message → objects.UnicodeString
iii. Change_list → nothing found

3. Define new param objects if needed
a. Define ExplorationChangeListParam in objects.py. (Details here)

4. Define get_param_schema in ExplorationHandler class.
5. Now the schema validation architecture will ensure the schema validation for the put

method.

Testing of above steps for ExplorationRightsHandler in editor.py for giving rights to users in
exploration.

Steps for validating params in a handler.
1. The PARAM_VALIDATION_ENABLE flag in ExplorationRightsHandler is set to True.
2. get_param_schema method should be written, which contains the schema for PUT

method.

https://github.com/oppia/oppia/blob/0fcbb2bb96e7816d960d196a4f8a60b6446ffc85/core/controllers/editor.py#L75

3. Now the architecture will validate the params.
4. Proof of validation

Here temporary print statements are added for understanding. All the required params
are validated individually, and logic for validating optional params will be added in the
implementation section.

Architecture for incrementally adding schema validators for all handlers
This project is going to implement a new system to validate params in handlers. But

there are already 100+ handlers in the codebase. There needs to be a process for incrementally

integrating all the handlers with new params validators, without affecting the development of the
existing codebase.
The steps for incrementally adding validators are as follows:

● Define PARAM_VALIDATION_ENABLE in the BaseHandler and set it to False.
● Implement the param schema validation architecture and disable the validation call using

the PARAM_VALIDATION_ENABLE flag.
● Enable the PARAM_VALIDATION_ENABLE in handler classes of three files and add

schema for all those handlers.
● Disallow writing new handlers without schema:

○ Write a wiki page explaining how to add schema for handler params and
announce on oppia-dev@

For complete reference kindly follow this bookmark.
○ Writing a backend test and lint tests ensures that only the “expected list of

handler class” have PARAM_VALIDATION_ENABLE set to False.
● Incrementally add schema for old handlers and remove handler name from “expected list

of handler class”
● Once all old handlers have schema and the “expected list of handler class” is empty

change the PARAM_VALIDATION_ENABLE to True in BaseHandler and remove
PARAM_VALIDATION_ENABLE from all child/main handlers.

Handling param validation for different types of handlers.

1. Param validation for the handler is enabled but schema for the params is not defined.
a. The backend tests will ensure that if the PARAM_VALIDATION_ENABLE flag is

true then get_param_schema() method should be present, which contains the
schema for the handler’s param.

2. Handler with some request method doesn’t need any params
a. When a handler’s request method does not need any params in its request then

get_param_schema should return an empty dict as its schema.
Example:

3. Incoming request with extra or missing params.

a. Validate method in payload_validate file should ensure that any required data
should not be missed in params and any extra data should not be passed to
params. And if the validate method receives this kind of data then it will raise an
exception.

4. Handlers containing value in their URL.
a. _get_url_param()
b. _get_url_param() should be defined in every handler class.

i. This method returns the schema for url_params
ii. The handler class which does not contain url_params, then this method

returns an empty dict.
iii. The handler class which contains the url_params but they do not have

any specific schema to validate, then the value of the key in the schema
is empty.

class ExplorationRightsHandler(EditorHandler):

"""Handles management of exploration editing rights."""

PARAM_VALIDATION_ENABLE = True

def _get_url_param(self):

return {

'exploration_id': {}

}

iv. The handler class which contains the url_params and the params require
a specific schema for validation, then the schema contains additional keys
and values like, validators, choices, etc.

5. Handlers in which SVS is not ready
a. In order to disable param validation check, the PARAM_VALIDATION_ENABLE

flag needs to be set to False explicitly, in the handler class.
i. By disabling the flag, helps me to incrementally add SVS to all existing

handlers.
b. Once all old handlers have schema and the “expected list of handler class” is

empty change the PARAM_VALIDATION_ENABLE to True in BaseHandler and
remove PARAM_VALIDATION_ENABLE from all child/main handlers.

Adding new validator for a param: [3 examples below]

Assume a developer wants to add a param validator for audio language_code.

Steps:

1. Define get_param_schema method in the handler class, which returns the schema of the
language_code param. Here type of the language_code is unicode and
is_valid_language_code is passed as validator.

2. Found is_supported_audio_language_code in schema_utils.py, thus simply used in the
schema.

@staticmethod

def is_supported_audio_language_code(obj):

"""Checks if the given obj (a string) represents a valid language

code.

Args:

obj: str. A string.

Returns:

bool. Whether the given object is a valid audio language code.

"""

return utils.is_supported_audio_language_code(obj)

3. objects.AudioLangaugeCodeParam is ready for use in any handler.

Assume a developer wants to add param validator for user_id:

steps:
1. Define the schema in the handler class and provide validator as is_valid_user_id.
2. is_valid_user_id is already defined in schema utils.
3. Thus VerifyUserModelsDeletedHandler is ready for use.

Assume a developer wants to add a param validator for ExplorationChangeList

Steps:

1. Define ExplorationChangeListParam in objects.py

2. Write get_schema_method in handler class

3. Now the change_list param is ready for use.

When to write object classes and when to write validator methods.
Steps for making a decision, when to add new validators in schema_utils.py and when to

add new object class in objects.py.

1. Observe the params type if it is simple and just needs little modification in property, then
writing validators is the correct choice.

a. Example 2 (here) mentions that when the param type is simple and as per
requirement it's schema can be modified by adding validators from schema utils.

2. When the type of the param is a bit complex like dict and its validate method is written in
domain class then writing its object class should be the most optimum way.

a. Example 3 (here) mentions that when the param type is dict and the validator
method is written in domain class then the schema should be of type custom and
obj_type key in the schema should contain the name of the newly added object
class

Implementation Approach

The project implementation part can be divided into three parts:
1. Implementation of the param schema validation architecture
2. Test/check to enforce developers to use schema validators for new handlers
3. Incrementally integrating schema validators for existing handlers.

Description of methods and variables

1. PARAM_VALIADTION_ENABLE
a. Variable with default value, False and set to True in the handler, when a handler

class is ready for schema validation.
2. validate_param_schema()

a. Method defined is the BaseHandler class. Used in order to validate params
against schema by calling validate method form payload_validator.py file (new file
written for validation of schema)

3. validate()
a. Method defined in the payload_validator file validates the params against the

schema.

Implementation of code for validating handler params

[A] : Add new class/function.
[U] : Update existing class/function/variable.

● Controllers
○ [U] BaseHandler class in base.py

■ [U] dispatch method
● If PARAM_VALIDATION_ENABLE, call validate_param_schema()

method.
■ [A] validate_param_schema()

● Extract the schema
○ Take all the schema from the handler class for a request

method.
● Extract all the params.

○ Extract all types of params that need validation.
○ request_params

■ Use of self.request.get(payload)
○ url_params

■ Use of self.request.route_kwargs
○ query_string_params

■ Use of self.request.query_string
● Call validate() method,

○ Call validate method from payload validator.

● Raise all the exceptions if any.
○ [A] payload_validator.py

■ [A] validate()
● Iterate over all the items passed through schema.
● Checks whether a particular key is optional or not.
● If optional and not passed in params then don't raise any

exception.
● If schema and params both are present.

○ Within the try block call normalized_against_schema from
schema utils by passing the params individually and its
corresponding schema.

○ Within the except block collect all the error messages and
raise all the errors, once all the params validated.

● Check for any extra or missing params in param dict and append
to the list of errors.

● Return the list of errors back to the validate_param_schema()
method.

Pseudocode Implementation

Here (…) in the code signifies the existing code, which is untouched and removed
temporarily for clear vision of newly added lines.

base.py

validate_param_schema()

payload_validator.py

return errors

Implementation of Lint checks.

Pseudo algo:
1. For invalid case with new handler:

a. Swap OLD_HANDLER_NAMES with [‘SomeOldHandler’]
b. Create dummy_code:

i. Class NewHandler(base.BaseHandler)
Pass

c. Create nodeastroid.extract_node(dummy_code)
d. Run a new lint check on the ast and expect to raise a message.

2. For valid case with new handler:
a. Swap OLD_HANDLER_NAMES with [‘SomeOldHandler’]
b. Create dummy_code:

i. Class NewHandler(base.BaseHandler)
PARAM_VALIDATION_ENABLED = true

c. Create nodeastroid.extract_node(dummy_code)
d. Run the new lint check on the ast and expect to not raise any message.

3. For old handler not enabled validation:
a. Swap OLD_HANDLER_NAMES with [‘SomeOldHandler’]
b. Create dummy_code:

i. Class ‘SomeOldHandler’(base.BaseHandler)

pass

c. Create nodeastroid.extract_node(dummy_code)
d. Run the new lint check on the ast and expect to not raise any message.

Incrementally integrating schema validators for existing handlers

Work estimation

Name of the files

The name of all the files which are under the scope of this project are:
● Milestone 1: Name of the files for milestone 1.

○ admin.py
○ classifier.py
○ classroom.py

● Milestone 2: Name of the files for milestone 2
○ collection_editor.py
○ collection_viewer.py
○ concept_card_viewer.py
○ contributor_dashboard.py
○ creator_dashboard.py
○ cron.py
○ custom_landing_pages.py
○ editor.py
○ email_dashboard.py
○ features.py
○ feedback.py
○ improvements.py
○ incoming_emails.py
○ learner_dashboard.py
○ learner_playlist.py
○ library.py
○ moderator.py
○ pages.py
○ platform_feature.py
○ practice_sessions.py

Note: Took a deeper look into each of the files/handlers and wrote all the detailed
requirements and the schema for each param in a spreadsheet.

https://docs.google.com/spreadsheets/d/1qwqlXj2CkfHyg3NdS4ce92F5CAncDhSG7TZm5jTK31M/edit#gid=0

The extracted and compressed details from the spreadsheet are as follows:

Data Frequency

Number of files 23

Number of handler classes 126

Number of Get methods 100

Number of Put methods 11

Number of Post methods 26

Number of delete methods 6

Number of params 124

Number of new object classes to be implemented

Name of new class Description Usage

ExplorationChangeParam A new class with this name should
be created which contains a
schema of type dict. It should be
implemented, as shown here.

This class is
expected to be
used for validating
3 params
.

ExplorationTaskEntriesParam A new class with this name should
be created which contains a
schema of type dict.

This class is
expected to be
used for validating
1 param.

NewRulesParam A new class with this name should
be created which contains a
schema of type dict.

This class is
expected to be
used for validating
1 param.

Occurrence of the each type of param under scope of this project

Type of param Frequency

int 21

unicode 91

bool 5

list 5

dict 7

Alternative Considered*

Architecture 1

Glossary:

1 base.py: Represents the __init__ constructor of Basehandler class in base.py. This
constructor will hold the extraction and validation of params.
2 urls_params_schema.json: Represents a file from which we get the schema of the
corresponding url and method. This file should contain urls and their corresponding schema.
Eg:
{

‘/library’: {
‘GET’: {

‘Subject’: ‘UnicodeStringObject’,
‘Language_code’: ‘ContentLanguageCodeObject’

},
‘POST’: {...}

}
}

3 objects.py: Represents a file from which we call normalize method for validating the
params. Typed objects are initialized from a raw python object. They are validated and
normalized to basic python objects (primitive types combined via lists and dicts.)

Note: The dotted arrow from file urls.json to objects.py represents there is an indirect relation
between these two files. As for validation of objects formed with help of schema (form
urls.json),
should be normalized by calling methods from objects.py

Handling cases when a param is optional
When a param is optional, then param name should be prefixed with ‘*’ in param

name.
Eg:
{

‘/library’: {
‘GET’: {

‘subject’: ‘UnicodeStringObject’,
‘*language_code’: ‘ContentLanguageCodeObject’

},
‘POST’: {...}

}
}
Here Language_code is optional i.e., users may or maynot give language code.

Handling cases when multiple type for param is allowed:
When a param accepts multiple types then the schema should contain both of the

types.
Eg:

https://github.com/oppia/oppia/blob/develop/core/controllers/base.py
https://github.com/oppia/oppia/blob/develop/extensions/objects/models/objects.py
https://github.com/oppia/oppia/blob/develop/extensions/objects/models/objects.py

{
‘/library’: {

‘GET’: {
‘Subject’: ‘UnicodeStringObject’,
‘Language_code’: [‘ContentLanguageCodeObject’ , ‘StringObject’]

},
‘POST’: {...}

}
}
Here Language_code requires any of the two data types i.e, ContentLanguageCodeObject or
StringObject.

API request journey:

1. Client makes a request to an API.
2. The handler class get initialized (the initialization method written in BaseHandler

class.)
3. While Initializing the handler class, validate the params passed in the request.

Validation algorithm in brief:
a. Extract all params from self.request.get_all() and store it in received_params.

i. received_params = self.request.get_all()
b. Find the request url using the request object.
c. Find the request method i.e., either PUT/ POST/ DELETE

i. method = self.request.environ[‘REQUEST_METHOD’]
d. We take the schema of the corresponding url and method from urls.json

i. params_schema = extract param schema using url and method

e. Now we have to validate_all_required_params_exist()
4. After validation the corresponding method (get / post / delete) gets called.

Architecture : here

Pros for architectures :

Architecture 1 Architecture 2

Unified place for all the urls and params, in
future urls_param_schema.json can be used
in the frontend to define the type of request
params. [In typescript]

The schemas are defined in the handler
itself makes it easier to
update/maintain/read.

https://github.com/oppia/oppia/blob/26c867193adba41f7c18a29715342fcdf1d53eac/core/controllers/base.py#L142
https://github.com/oppia/oppia/blob/26c867193adba41f7c18a29715342fcdf1d53eac/core/controllers/base.py#L142

Cons for architectures:

Architecture 1 Architecture 2

The schemas are not defined in the handler
class will make an isolated and independent
handler class depend on other files/json.

The schemas are defined in the handler
class and won't allow us to re-use them in
other places to avoid duplicate
structure/code like defining types of params
in the frontend.

The chances of error in this architecture is
greater because json files are not
dynamically connected to python files.

As per discussion with mentor (Vojtech) Architecture 2 got approval because of the reasons
as mentioned in the cons of architecture 1.

Third-party Libraries*

Implementation of this project does not include any third party libraries. As per
requirements of the proposal for this project, integrate all the handlers with new params
validators, without affecting the development of existing codebase. Proposal must include
comparison between oppia’s SVS and third party libraries. The comparison is given above
(Bookmark) which mentions that oppia’s SVS is favourable for validating the handlers params.

Testing Approach
The backend tests and linter tests will ensure that all the handlers should have schema

in it, so the handlers param is validated by SVS.

Pseudocode Implementation for lint checks:

Declare all the handler class which doesn't need verification in

handlers_without_param_schema.py

handlers_without_param_schema.py:

OLD_HANDLER_NAMES = [

'HandlerName1',

'HandlerName2',

....

]

In pylint_extensions.py:

import OLD_HANDLER_NAMES from handlers_without_param_schema

class DisallowNewHandlerWithoutParamSchema():

__implements__ = interfaces.IAstroidChecker

name = 'disallow-new-handler-without-param'

priority = -1

msgs = {

'C0036': (

'Please add PARAM_VALIDATION_ENABLE in the new handler.'

'Follow the guidelines for help: <link>,

'no-flag-in-new-handler'

),

'C0037': (

'Please add get_param_schema function in the new handler.'

'Follow the guidelines for help: <link>,

'no-schema-function-in-new-handler'

),

}

def visit_classdef(node):

if not "base.BaseHandler" in node.mro():

return

if node.name in OLD_HANDLER_NAMES:

return

if not node.local_attr('PARAM_VALIDATION_ENABLE'):

self.add_message('no-flag-in-new-handler', node=node)

if 'get_param_schema' not in node.mymethods():

self.add_message('no-schema-function-in-new-handler', node=node)

Mocks for errors generated by linters.\

1. When developers don't enable prama validation in a new handler.

If the param validation is enabled for a handler then it won’t work if the handler doesn’t have the
correct schema for the params/url. So we don’t need any other check for the new handler

Milestones
The details of work that need to be done under the scope of this project is given below:

Milestone 1

Key Objective:

The key objective in milestone 1 is given as following as:
● Implementation of architecture for schema validation of handler params.
● Implements backend and linter tests for architecture.
● Documenting schema validation for adding to wiki.
● Implement schema schema in files:

○ admin.py
○ classifier.py
○ classroom.py

● Create starter issue for new contributors on how to add handlers params.
○ List of all the files which needs validation and are not in the scope of this project.

■ profile.py
■ question_editor.py
■ question_list.py
■ reader.py
■ recent_commits.py
■ resource.py
■ review_tests.py

■ skill_editor.py
■ story_viewer.py
■ subscription.py
■ subtopic_viewer.py
■ suggestion.py
■ tasks.py
■ topic_ediotr.py
■ topic_viewer.py
■ topic_and_skill_dashboard.py
■ voice_artist.py

Summary

Data Frequency

Number of files 3

Number of handler classes 22

Number of params 48

Number of pull requests.

Total number of pull requests for milestone1 should be 3

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 Implements Architecture and its testing
for schema validation.

None 15/06/21 21/06/21

1.2 Write Documentation for schema
validation

1.1 22/06/21 26/06/21

1.3 Implement schema validation for files
(classroom, classifier, admin)

1.1 29/06/21 07/07/21

1.4 Create starter issues for new contributors
for remaining files.

none 03/07/21 none

Milestone 2
Key Objective:
The key objective in milestone 1 is given as following as:

● Implement schema schema in files:
○ collection_editor.py
○ collection_viewer.py
○ concept_card_viewer.py
○ contributor_dashboard.py
○ creator_dashboard.py
○ cron.py
○ custom_landing_pages.py
○ editor.py
○ email_dashboard.py
○ features.py
○ feedback.py
○ improvements.py
○ incoming_emails.py
○ learner_dashboard.py
○ learner_playlist.py
○ library.py
○ moderator.py
○ pages.py
○ platform_feature.py
○ practice_sessions.py

Summary

Data Frequency

Number of files 20

Number of handler classes 104

Number of params 76

Number of pull requests.

Total number of pull requests for milestone2 should be 4

Table for PR description and target planning

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 Implement schema validation for files
(collection_editor, collection_viewer,
concept_card_viewer,
contributor_dashboard, email_dashboard)

1.1 06/07/21 13/07/21

2.2 Implement schema validation for files
(creator_dashboard, cron,
custom_landing_pages, editor, features)

1.1 15/07/21 23/07/21

2.3 Implement schema validation for files
(improvements, incoming_emails,
learner_dashboard, learner_playlist,
library)

1.1 25/07/21 01/07/21

2.4 Implement schema validation for files
(feedback, moderator, pages,
platform_feature, practice_session)

1.1 03/08/21 09/08/21

Here every pull request is planned in a way that the effort for working on each pr is more
or less equal. As because there are some files which do not have any params in their handlers,
some files which have 5-6 handler classes while some of the files are a bit large like editor.py.
Thus working on very large and very small files simultaneously, reduces the effort over the
entire pr.

Optional Sections

Additional Project-Specific Considerations

Privacy

This feature does not collect any user data as it only validates the data of the handler
params by help of an architecture which helps in non data store link validation.

Security
This feature does not have any security consideration as it only validates the data of the

handler params by help of an architecture which helps in non data store link validation..

Accessibility

The project adds a backend structure for validating handler’s params. It doesn't
add/remove/update any user-facing UI features.

Thus this feature does not have any accessibility consideration.

Documentation Changes

Documentation needs to be added in oppia wiki on How to add schema in handler class.
● Introduction
● How to add schema for params in the handler
● How to write tests for the handler class.
● Steps to add new objects class .
● Details on when to object class and when to write validator method
● Example on how to write custom validators for some complex example like list of dicts.

Ethics
This feature does not have any ethical consideration.

Future Work
Future work can be summarised as:

1. Starter Issue created in milestone 1 for adding schema to remaining handlers.
2. If any new handler is introduced in the codebase then SVS will ensure that the handler

must have a schema.
a. Thus addition of schema for new handlers is under the scope of future work.

