
1

Google Summer Of Code
2021 Proposal

Integrating the Oppia blog with Oppia.org
by Rijuta Singh

ABOUT ME 2

PROJECT DETAILS 5

PRODUCT DESIGN 5
THE BLOG DASHBOARD 6
THE BLOG POST PAGE 11
THE BLOG HOME PAGE 12
THE BLOG CARD 13
THE BLOG EDITOR 13
ADDING TAGS FOR BLOGS 16

TECHNICAL DESIGN 17
Architectural Overview 17
Implementation Approach- 23
BACKEND

INTRODUCING NEW CONSTANTS 23
BLOG STORAGE MODELS 23
ENLISTING STORAGE MODELS TO MAKE THEM VALID 25
ADDING MODELS IN USER STORAGE MODEL 25
CONTROLLERS 26
DOMAIN 29
ADDING ROUTES 35

FRONTEND
COMPONENT FILES (templates/pages/blog) 36
FOR BLOG DASHBOARD 36
FOR BLOG CARD 41
TO ENABLE ADMIN ADD PRE-DEFINED TAGS AND ADDING ROLE 41

TESTING APPROACH 42
MIGRATING BLOGS FROM MEDIUM TO OPPIA: 42
MILESTONES 43

Community Bonding Period 43
Milestone 1: Complete Backend 43
Milestone 2 : Complete Frontend. 45

OPTIONAL SECTIONS 46

2

ABOUT ME

Why am I interested in working with Oppia, and on this project?
I've always been passionate about giving back to society and have felt deeply that it is one of my duties to do my
personal best to be able to help those who have been less privileged. From a very young age, I had decided to do
something for underprivileged children around me so that they at least get to study and get educated. I believe I
am being educated to enable and empower those children.

I found Oppia while going through the list of GSoC organizations and it instantly drove my attention as I read
about the website more and thought to myself that this is what I have been waiting for.
Oppia is a community of learners and teachers to help everyone learn whatever they want effectively and
enjoyably. Oppia focuses on making this world a better place. It provides a platform to gain and share knowledge
without any hurdles. And thus it was my place.

To add to this, the work environment in Oppia also motivates me to learn and contribute. Mentors and Leads are
always available to help and review my work whenever I am stuck. Contributing to Oppia in the last few months
has boosted my technical knowledge and has also taught me the importance of working in a team and helping
fellow contributors. I would want to continue to contribute to Oppia even after the GSoC period ends for the
reasons it serves and the environment it provides to its contributors and users.

I am interested in this project since it’s a full-stack project which aims to create blogging functionality within the
Oppia web base. This project will thus not only make the website richer with its content but will also allow an easy
mode of sharing experience for all its contributors, learners, and volunteers with the world directly from the Oppia
Website. This project involves writing code on both the frontend and backend and also provides me an
opportunity to participate in the design process. Thus, this project promises to give me a full-stack dev experience
and also makes me cherish how the addition of services and data models in the oppia codebase can be used to
allow blogging and make such a great impact on the website. I would like to make this functionality as smooth as
possible and provide an easy go way to its users.

Prior experience
It’s not been long since I first heard about open source and web development. The COVID’19 lockdown that came
into force in March 2020 made a 2nd-year Mechanical Engineering student try her hands on learning something
new. The very philosophy of open source fascinates me and contributing to it is now becoming my passion,
primarily because it feels nice to be surrounded by a bunch of like-minded people!

It was only in April 2020 that I started learning web development along with some competitive programming in
Python. Since then I have given some contests on CodeChef, CodeForces, and Leetcode to get my hands on
Python. I have also completed a series of courses on python using Coursera such as:

● Python Data Structures: link

https://coursera.org/share/bbf3fe266953aa8df78826d99dd1054e

3
● Crash Course on Python by Google: link
● Using Python to interact with the Operating System by Google: link
● Create Your First Chatbot with Rasa and Python: link

And a few more like ‘python and openCV’ etc…

Oppia was my first open-source organization, I started contributing to. And since then I have been working with
Oppia as a member of the LACE team and have more than 20 successfully merged PRs.Most of these PRs are
concerned with work in Typescript, Angular, AngularJs, and HTML/CSS.
It was difficult in the beginning but as time passed, I understood the code structure of Oppia, went through
tutorials on Angular, searched whatever I could not understand in Oppia’s codebase. Now I feel I have a good
command over it. I have become much familiar with the Frontend karma and E2E tests. I am now able to help my
fellow mates in the team on solving issues encountered by them while writing the karma tests.

Some of the PRs I have raised are:
1. The new Teach Page which is a part of the integration of Oppia.org with the Oppia Foundation Website:

1.1. #11467
1.2. Some responsiveness bugs were found later in the page and were fixed in :#12038

2. Adding creator-guidelines page: #12070
3. Migrating Splash page to Angular from Angular js: #11826
4. Solving question Editor Issue: #12308

All other PRs can be found at Submitted PRs

I have also raised some issues (a few of which were raised during release testing):
1. #11750
2. #11912
3. #11715

Contact info and timezone(s)
Timezone: I will stay in India throughout the summer. The time zone will be Indian Standard Time
(GMT+5:30)
Contact:

Mail: rijuta_s@me.iitr.ac.in
Mobile no. : +91- 8699815957 (Whatsapp)
Github Profile: Rijuta-s

Time commitment
I will be working on the project from the first day itself i.e June 7.
I will be having my summer vacations from May 29 till August 2.
From June 7 to August 2: Working hours:- [9 AM - 7 PM]--[10 PM to 1 AM]
From August 2 to August 18: Working hours:- [6 PM to 9 PM] -- [10 PM--2 AM] weekdays.

https://coursera.org/share/1541ff74dd6fbd74dbc45ad8583adda0
https://coursera.org/share/d1298ca6a7468a16ba55c3cb0ebdc0ba
https://www.coursera.org/account/accomplishments/verify/ERDGJRQLZ4WE?utm_source=link&utm_medium=certificate&utm_content=cert_image&utm_campaign=sharing_cta&utm_product=project
https://github.com/oppia/oppia/pull/11467
https://github.com/oppia/oppia/pull/12038
https://github.com/oppia/oppia/pull/12144
https://github.com/oppia/oppia/pull/11826
https://github.com/oppia/oppia/pull/12308
https://github.com/pulls?q=is%3Apr+author%3ARijuta-s+archived%3Afalse+user%3ARijuta-s+user%3Aoppia+is%3Aclosed
https://github.com/oppia/oppia/issues/11750
https://github.com/oppia/oppia/issues/11912
https://github.com/oppia/oppia/issues/11751
mailto:rijuta_s@me.iitr.ac.in
https://github.com/Rijuta-s

4
On average, I will be able to devote 6-7 hours per day. I may have some other engagements on the 3rd and 4th
Saturdays of the month(mentioned in summer obligations) reducing the working hours to maybe around 4-5 hours
on Saturdays. Other than that as the college reopens on 2nd August, my working hours will reduce to 5-6 hours
per day. Also, we do not have much work at the beginning of the semester, and to meet the deadlines, I will
increase my working on weekends to 8-9 hours after the college reopens.

Essential Prerequisites
Answer the following questions:

● I can run a single backend test target on my machine. (Show a screenshot of a successful test.)

● I can run all the frontend tests at once on my machine.

● I can run one suite of e2e tests on my machine.

5
Other summer obligations
I am involved in a research project under the guidance of my professor which might also require me to work
during the GSoC period. Most of the work for it is done on the 3rd and 4th Saturday of the month. Thus on
average, it requires me to give at most 6 hours per week only and thus I believe I should be able to manage it as
well. Also, the working hours will get reduced substantially as we reach towards the end of the research statement
in July. Apart from that, I will be having my summer vacation till August 2. As the normal college session resumes
from August 2, I will be involved in lectures for roughly about 5 hours a day, 5 times a week. Thus for around the
last 15 days in the GSoC period, I will have my college classes as per the current schedule released by the college
administration. However, we do not have much work at the beginning of the semester hence I will be able to
manage in that period as well.

Communication channels
Full name: Rijuta Singh
Preferred mode of communication: Hangouts, Mails, Discord, and Whatsapp
Email-Id: rijuta_s@me.iitr.ac.in
Mobile Number: +91-8699815957
Meeting with mentor: 2 times per week(flexible) [Google-Meet, Discord, or any other platform]
I will try to provide daily updates as much as possible to ensure smooth working and doubts clarification.
[I check my email regularly and can be contacted on any of the above-mentioned platforms]

Application to multiple orgs
I will be submitting only one proposal - “Integrating the Oppia blog with Oppia.org”

Project Details

Product Design
Currently, Oppia.org’s blogs are hosted on a separate site, Medium. I would like to create a new interface inside
Oppia’s website to directly enable the team members and users to share their stories with the world through it.
There will be 2 parts of the interface -

mailto:rijuta_s@me.iitr.ac.in
https://medium.com/oppia-org

6
The link to complete page mocks: Link

NOTE: UNDER THE GSoC TIMELINES ONLY BLOG DASHBOARD WILL BE COMPLETELY IMPLEMENTED.
PRODUCT DESIGN CONTAINS BOTH HOMEPAGE AND DASHBOARD TO DEMONSTRATE THE FLOW.

There are two dropdowns from where the users can access the blog interface. If they aren’t logged in or are not
authorized to write a blog(that is they are neither assigned the role of “blog_editor” nor are admins), they can
only go to the blog page by clicking on the “Blog” link inside the “About” dropdown menu (future work). If they are
logged in and are also authorized to write blogs, then they can not only access the blog interface from the “About”
dropdown but can also find the link to the “Blog Dashboard” from the “profile/Account” dropdown.

The users (mostly members of the Oppia Team) who are authorized to write the blogs (“blog editors” and
“admins”) can navigate to the Blog Dashboard by clicking on the "Blog Dashboard” option from the ‘Account’
drop-down menu.

Let us first walk through the “Blog Dashboard” :
(Only accessible to blog editors and admins)

THE BLOG DASHBOARD:
● Clicking on the Blog Dashboard link will take the user to the Main Page of the ‘Blog Dashboard’ Interface

where their already published blog cards will be visible. They will find a “New Post” button which will take
them to the blog editor interface, availing them to write a new blog. The user will also find links to “Drafts”
and “Statistics” in the bar below the button. In case, they have not created any blog, a message “It looks
like you haven’t created any blog yet” will be displayed, where the button “Create your Blog” will take them
again to the Blog Editor Interface.

● In the mock below, On clicking on Drafts, the same way cards (tiles of individual blogs) of unpublished
(drafts) blogs will be displayed.

https://xd.adobe.com/view/9bb82409-cdca-432a-b11c-88324643e2c0-ceeb/screen/94da3200-afa1-406e-a451-bb443b473cbb/

7

● On clicking the 3 dots on the blog card- Dropdown with edit, unpublish and delete will appear.
On clicking delete- a warning pop-up for confirmation of action will appear.

The dashboard will have the message box and no “new-post” button if the user has not created any blogs yet.
Except for these two changes, the wireframe mock-up will resemble the above dashboard mock.

8
* NOTE : Frontend and backend view of Statistics tab will be implemented afterward and is detailed in “future
works” .

● On clicking “Statistics”, a bar graph representing the total number of views on their blogs collectively will
be visible :

● On clicking the “new post” button, the user will be taken to the Blog Editor interface :

9

1. The ‘thumbnail’ option will allow the author to select the main image to be visible on the blog card on the
blog page.

2. Then the blog can be deleted, saved as a draft, or published after making all the desired changes.

3. The blog editor will be visible in the body section of the blog. It will be the CKE-editor (Reasons for using
CKE-editor), the base of Oppia’s RTE editor here. The editor will have its toolbar at the top with various
plugins and features. All the features that will be provided are detailed in “The blog editor”.

4. Clicking on the “Eye Icon” will load the preview of the blog card which will be displayed on the blog page.

5. Here, the author can select up to 5 tags through which the blog can be searched later on the Blog Page.

○ Initially, the tags will be defined by admins in order to ensure that we have sufficient blogs on these
topics. See adding tags for blog.

○ As soon as this is achieved, we will move onto user-defined tags which will be added by the user in
the blog-dashboard itself. We will have an ‘add’ button below all the already defined tags to enable
the user to add the tag.

10

● After entering all the content of the blog and clicking outside the editor box, the editor will disappear and
the content will appear like this (which will be a kind of preview of the blog page):

● To publish a blog minimum of one tag is required and a thumbnail should be added. Along with that the
title and minimum 50 words in the body should be added to enable the “publish” button.

● They can publish the blog after selecting at most 5 tags or can save it as a draft and can come later to
finish it. If the user clicks on the “Publish” button, a confirmatory dialogue box will appear with a few fields:

11

Displaying summary text will be necessary as not every blog’s beginning and the title gives an insight into the
actual content of the blog. It will be of at most 45 words. As such, all the blogs will appear in the order of the date
published. However, we will definitely not want a few blogs such as those highlighting Oppia importance and its
recent achievements to be not present on the top of the list and are shadowed by other blogs. There can be a
maximum of 10 priority blogs.

● To ensure such blogs always remain on the top of the list the check box “This blog is a priority blog”
should be selected.

● Priority blogs can only be authored by admins.
So only admins will be able to see the checkbox.

● This will make a dropdown menu visible which will contain the “titles” of the current high priority blog. And
the input field where the position of the blog can be entered.

Clicking on the publish button in the dialogue box will take the author to the blog post page.

THE BLOG POST PAGE :

*NOTE: [IMPLEMENTATION IS A PART OF FUTURE WORK(Added here to demonstrate the flow)]

● Clicking on the share icon - “link of the blog” will be shown which can be copied then and shared.

● Also at the bottom, depending upon the tags and the author selected by the user, upto 2
recommendations of blogs will be shown.

12

● Clicking on the back button will take the user to the Blog Dashboard
Lets now explore the blog home page:

THE BLOG HOME PAGE:
*NOTE: [IMPLEMENTATION OF BLOG HOMEPAGE IS A PART OF FUTURE WORK (Added here to show the need of

search handlers in the code base and to demonstrate the flow .)]

● Users can select the “blog” option from the ‘About’ drop-down menu. This will land the user on the Blog
page:

13
1. The user can not only search the blogs from the author's name and the title but can also select tags or

months to sort out blogs and get the list of required blogs.

2. Blog Cards, which will be displayed on the page, will contain the author’s name, date of publication, and a
short summary of the blog.

3. A maximum of 10 blogs will be displayed on a page.
a. Clicking on the blog card will take the user to the blog post page (as shown above).
b. Clicking on the author's name on the blog story page will again display a list of blog cards on the

blog page written by the author.

4. “High Priority blogs” will occupy the top positions in case they are present. Instead of the heading being
“Latest Post” it will be “Highlights” below which all priority blog cards will be displayed and after that below
“Latest Post” all the cards in the order of their publishing date will appear.

THE BLOG CARD :
Each story will be represented on the Blog Homepage and Blog Dashboard by its “Blog Card”.

1. It will contain the thumbnail of the blog.
2. The title of the blog.
3. The author’s name and profile photo.
4. The short summary text describing the blog.
5. The date of publishing the blog.

Clicking on the card will take the user to the “Blog Post Page”

THE BLOG EDITOR :
Blogs are more than general text articles. They depict experiences, emotions, and views that may not
find words to be sufficient enough to communicate them well to the general users. Thus we will need
features and plugins to help them.

14

Why CKEditor:
Currently, Oppia uses CKEditor version 4.12.1.

1. Below are some of the features that CKEditor offers to make the user journey while writing a blog, fun,
easy and engaging. This will enable a user to produce blogs that are attractive and colorful to its
readers.[Plugins are already available in Oppia’s codebase but currently, some are removed from the build
as they are currently not being used in Oppia’s RTE for explorations].

Toolbar with some useful plugins enabled.

a. Inserting emojis:

b. Allows using different font families, font color, and features like Bold, Italics, Strikethrough,
and many others:

15
Rendered view

c. Enables adding special characters.

And many more like adding images, Iframe, etc which are necessary to make a blog attractive enough and
ensure that it is not merely a long piece of text!

2. One of the major reasons to use this editor is that Oppia’s Explorations are created using the RTEditor
which is just a wrapper around CKEditor and hence the CKEditor is already well implemented inside
Oppia’s code base thus, removing the need to add any other third-party libraries or files.

a. RTE is used to create explorations and thus it disables some of the plugins offered by CKEditor
instance to ensure user-friendliness as they aren't required for making explorations and skills.

b. Therefore, inside the blog editor, some extra features may be required. So instead of using RTE as a
base, I will prefer using the CKEditor directly.Above this CKEditor, a ‘blog-editor’ wrapper will be
applied which will be the same as current RTE but with all listed plugins enabled.

16
No new additional plugins are required to be downloaded. They are just to be enabled to offer more
features (i.e are to be included in the build and config) to make the blog editor more interactive and
powerful.

3. Final List of Features to be included in the toolbar for the blog editor is as follows:

Bold Sub-Script Font-Style and Size Emojis Underline Table

Italics Super-Script Headings Special Characters Image Copy and Paste

Strike-Through Font-Color Font-alignments Types of lists I-Frame Spell-check

ADDING TAGS FOR BLOGS:
Adding tags that will be visible in the blog dashboard to assign categories to blogs can only be done by

Admins. (Until we support user-defined tags as explained above).
To add tags:

● Users should be logged in as admin. This will make the admin page accessible.
● Navigate to “admin page” via the profile drop-down.
● Go-to “config-tab”.
● Click on the “add tag” button in front of the “Add Blog Tags to be visible in Blog Dashboard for blog

categories” config property.
● This will open the schema-based editor to input character strings.

● Clicking on “Save Button” will make the added tags visible in the dashboard.

17

Technical Design

Architectural Overview

To create a blogging feature, the general structure for new files will be as follows:

● New storage model in (oppia/core/storage/blog)

● Related domain objects and services accompanied by their tests and storage model validator in
(oppia/core/domain/)

● Controllers (for handling requests) from both the dashboard and editor accompanied by their tests in
(oppia/core/controllers/)

18
● Component frontend files in (template/pages/blog) with their services and test.

19

Sequence diagram :

Sequence diagram to convey system structure between controllers and domain services.

20

21
To have a clear view of the Sequence diagram for Blog Dashboard Implementation: visit the
Sequence diagram. Snap of the diagram.

https://drive.google.com/file/d/1HMcOFF0DmeIZipWtiFHfRcOrxsqqoaZI/view?usp=sharing
https://drive.google.com/file/d/1HMcOFF0DmeIZipWtiFHfRcOrxsqqoaZI/view?usp=sharing

22

● Apart from the creation of new files, the following existing files will be modified (for details see
Implementation approach) :

● feconf.py to add new constants (for example: user role ID, blog status).

● role_services.py to add the new role.

● models.py in core/platform to include the newly created blog storage model.

● Files related to user storage :
Inside storage/users :

● gae_models.py
● gae_models_test.py

Inside domain :
● user_services.py
● user_services_test.py
● user_domain.py
● user_domain_test.py
● user_validators.py
● user_jobs_one_off.py

● main.py will be added with new routes.

● app_dev.yaml and app.yaml will be modified to remove the plugins for cke-editor from the list
that removes them from build. (See app_dev.yaml and app.yaml)

● Webpack.common.config.ts, lighthouserc.js, and lighthouserc-accessibility.js will be modified to
add the new blog pages.

● components/top_navigation_bar/top_navigation_bar_directive.html: Another element to be
added to the dropdown called Blog Dashboard. It will only be visible if the user has “blog_editor”
role.

● To add new config property (to add tags which can be then assigned to blogs):
● admin-backend-api.service.ts
● config_domain.py
● config_services.py
● admin.py and admin_test.py (controllers for admin page)
● Other related files like config_validators

● To create a search handler for the blogs-
In core/domain -

● search_services.py (and respective test file).

23

Implementation Approach-

INTRODUCING NEW CONSTANTS:
New constants will be added inside the feconf.py file some of which are:

○ NEW_BLOG_URL : ‘/blog_editor_handler/create_new_blog’

1. This URL will handle POST requests which will hit whenever the “New-Post” button or

“Create Your Blog” is clicked.

○ BLOG_EDITOR_DATA_URL_PREFIX: ‘/blog_editor_handler/data'

1. This URL will handle PUT requests in case of updating the blog.

2. It will also manage GET requests to populate the blog’s data in the

blog editor.

○ BLOG_EDITOR_URL_PREFIX: ‘/blog_editor’

1. This URL will handle GET requests to fetch tags, and other data on the

blog dashboard’s editor.(mainly to get the predefined tags set by

admin)

○ BLOG_DASHBOARD_DATA_URL : '/blog_dashboard/data'

1. This URL will handle GET requests to fetch the data for blog

dashboard.(published and draft blog cards and the user data)

2. It will also respond to DELETE requests to delete a particular blog.

○ ROLE_ID_BLOG_EDITOR : 'BLOG_EDITOR'

○ BLOG_DASHBOARD_URL: '/blog_dashboard’ to render the mainpage.html on GET request.

1. BLOG STORAGE MODELS:

Under core/storage, a new folder named blog with the following files will be created:
○ __init__.py: An empty file to initialize the blog model.
○ gae_models.py: Inside it models for Oppia’s blogs will be added containing the blog’s content,
author-id, and other data storage classes.
○ gae_models_test.py: A file containing tests for corresponding gae_models. “Gae_model.py” for
blog storage will be completely tested inside this file

BLOG STORAGE MODELS:
Inside gae_models.py:
There will be 3 classes namely :

1. ClassBlogDataModel
2. ClassBlogSummaryDataModel
3. ClassBlogRightsModel

24
In ClassBlogDataModel: The main schema of the blog and its associated functions. We do not require a
versioned model for blogs.Thus this will be basic base models.It will have the following fields:

Each instance of this model will be keyed by blog-id which will be of the form [author_id].[generated string].
Blog-id will be unique for every blog.

Field Name Property type To store.. Required/Indexed

author_id String Property The user_id of the author Required and Indexed

title String Property Title of Blog Required and Indexed

content JSON Property The content entered in blog-RTE Required but not indexed

url_fragment String Property The unique URL fragment for the
blog.

Required but not indexed

time_publish DateTimeProperty Storing time of publish Required and Indexed

time_updated DateTimeProperty Storing the time when the blog was
last updated

Required but not indexed

For this data model following policies will be applied:

For export :
‘get_export_policy‘ class method will be defined. The model contains the user-id of the author and it will be
exported.
For deletion :
‘get_deletion_policy’ class method will be defined. The model contains data to locally pseudonymize
corresponding to a user - author_id.
For model association to user :
‘get_model_association_to_user()’ class method will be defined inside which, under which model will be
exported as one instance per user.
It will have the following class method to generate a unique string to ensure that no 2 blogs have same
blog_id :

25
In ClassBlogSummaryDataModel: It can be used whenever the content of the blog is not required. It will
mainly populate data in the Blog Cards and will be used during searches.

Field Name Property type To Store.. Required/Indexed

author_id String Property The user_id of the author Required and Indexed

title String Property Title Of Blog Required and Indexed

summary Text Property The summary of the blog. Required but not indexed

thumbnail_filename String Property Storing the unique URL
fragment for the blog.

Required but not indexed

time_publish DateTimeProperty Storing time of publish Required and Indexed

time_updated DateTimeProperty Storing the time when the
blog was last updated

Required but not indexed

tags String Property Storing the tags Required and Indexed

For this data model following policies will be applied:
For export :
‘get_export_policy‘ class method will be defined. The model contains the user-id of the author and it will be
exported.
For deletion :
‘get_deletion_policy’ class method will be defined. The model contains data to locally pseudonymize
corresponding to a user - author_id.
For model association to user :
‘get_model_association_to_user()’ class method will be defined inside which, under which model will be
exported as one instance per user.

In ClassBlogsRightsModel: To store rights related to a model. And also to track blog status.

Field Name Property type To Store.. Required/Indexed

editor_ids String Property The user_ids which have edit
access to the blog.

Required and Indexed

blog_status Boolean
Property

published/draft status. Will be
true if published.By default, it will
be false.

Required and Indexed

For this data model following policies will be applied:
For export :
‘get_export_policy‘ class method will be defined. The model contains the user-ids of the editors and it will
be exported.
For deletion :

26
‘get_deletion_policy’ class method will be defined. The model contains data to locally pseudonymize
corresponding to users - editor_ids.
For model association to user :
‘get_model_association_to_user()’ class method will be defined inside which, under which model will be
exported as one instance per user.

2. ENLISTING STORAGE MODELS TO MAKE THEM VALID:

In platform/models.py:
○ The blog models have to be added to the ‘NAMES’ list so that they can be enlisted as valid model
names.
○ In the function import_models() in class _Gae, the above models have to be added to the if-elif
statements to import the created gae_models.py file for each in core/storage.

3. ADDING MODELS IN USER STORAGE MODEL :
Class UserBlogContributionsModel: It will be added to store IDs of blogs created by the user and will be
used when a user visits the blog-dashboard to populate the dashboard with the blog created by the
user.Instances will be keyed by user-id.

Field Name Property type To Store.. Required/Indexed

blog_ids String Property The blog_ids of blogs
created by user

Required and Indexed

To handle users ability to export and delete model:
For export :
‘get_export_policy‘ class method will be defined. It contains data to be exported corresponding to the
user- blog-ids. However it does not contain any specific user detail (such as user id)
For deletion :
‘get_deletion_policy’ class method will be defined. The models contain data to be deleted corresponding to
the user : blog-id fields.
For model association to user :
‘get_model_association_to_user()’ class method will be defined inside which, under which model will be
exported as one instance per user.

27
4. CONTROLLERS:

1. blog_dashboard.py:

● Class BlogDashboard: To render the frontend html page when the URL for the blog dashboard is
called. This will fetch the global information about blogs created by the user (using the id) and
render their respective html page for the dashboard using the function self.render_template() .

● Class New Blog: It will be a type of post request handler that will create a new blog with default
values for all fields (will raise a call to blog_domain.create_new_blog()) through which a unique
blog_id will be generated(blog_service.create_new_blog_id). The blog_id of the newly created blog
is returned.

● Class BlogDashboardDataHandler: It will be completely responsible for loading data on the
dashboard. This will reduce the number of “GET” requests to be placed and also will make it easier
as only one handler will be loading the page data initially, fetch the user_id, profile picture and using
get_blogs_list(user_id) to get the list of blog_ids and then if the length of the list is greater than 0, it
will be fetching both blogsRights and blogSummaries

● Class BlogPostHandler: It is to be created with the function get_blog_data() which will return a
dictionary of values based on the blog_id and this will be called by a get() function which will then
return the values to the frontend components. It will also have put() and delete() functions for
updating and deleting the blog.

● Class BlogTagsHandler : It will contain the get() function to retrieve the list of blog tags to
populate the dashboard with the tags which can be used to categorize the blog. This controller will
make calls to config_domain.py .

2. blog_dashboard_test.py:

It will be the test file to completely test blog_dashboard.py. Some test functions are:
1. test_access_blog_dashboard_page(): This will make sure that users with the blog-editor role

can only access the dashboard.

2. test_editable_blog_handler_put_can_access(): This will make sure that only blog-editors can
do a put request to the ‘blog post handler’.

3. test_publish_blog(): This would test the working of the blog publication process. Thus a
complete testing of the separate blog dashboard components will be done here.

4. test_fetch_blog_handler(): This will create a few blogs (some published and some drafts) then
assign them to a user and test whether the ‘FetchBlogsHandler’ returns the correct set of blogs
with their correct status.

28

3. blog_home_page.py:

● Class BlogHomepage: To render the frontend html page when the URL for the blog homepage is
called. It will fetch the information about all the blogs published till date and render the Html page
for the homepage using the function self.render_template() .

● Class BlogHomepageHandler: This will have the get_all_cards() function which will return the
published blogs for the blog homepage page.

● ClassBlogpostHandler: get_blog_data() function which will return a dictionary of values based on
the blog_id and this will be called by a get() function which will then return the values to the
frontend for Blog-Post-Page.

● ClassSearchHandler: This will have a get() function which will return the list of blogs dicts
satisfying the user’s query. It will call get_matching_blog_dicts() as defined above.
It will format the query string into a form which can be used for searching,that is,all punctuations
will be removed and will be replaced by spaces. Any other required formatting will also take place
here .It will supply all the parameters provided in proper order to get_matching_blog_dicts()
function .Snap of a part of function :

29
● Function get_matching_blog_dicts(): Given the details of a query i.e title, metatags or

categories, authors name, and a search offset, it will return a list of blog dicts that satisfy the query.

4. blog_home_page_test.py:

It will be a test file to completely test blog_home_page.py. Some functions in it are :
1. test_blog_homepage_handler(): First, a few sample blogs can be created with some random

publishing dates, and then, the handler function can be tested to make sure it returns the correct
blog with the correct date.

2. test_blog_post_page_handler(): The blogs created above will be checked for returning correct
values in Blog-Post-Page .

3. test_search_handler(): Multiple query strings will be created and checked for returning correct
blogs from the above-created blogs.

30

5. DOMAIN:
Inside the ‘domain’ directory, new files will be created namely:

1. blog_domain.py:

● class Blog: It would be present to handle all functions related directly to the Blog model. The
constructor will create a Blog object having all related fields and return it.
Some functions (class methods) inside it will be :

1. __init__() : Initializes a Blog domain object.
2. blog_id() : Returns the Blog ID corresponding to the blog.
3. require_valid_blog_id(): It validates the blog-id.
4. to_dict() : It will return a dict representation of the blog object.
5. from_dict(): It will return a Blog domain object from a dict.
6. create_new_blog(): function would just call the constructor with all default values of

the Blog.
7. validate(): To validate the domain object.

Similar validations will be added for other required fields

● class BlogSummary: It would be present to handle all functions directly related to the Blog
summary model.

Some functions (class methods) inside it will be :
1. __init__() : Initializes a Blog Summary domain object.
2. to_dict(): It will return a ‘dict’ representation of the blog summary object.
3. from_dict(): It will return a Blog summary domain object from a ‘dict’.
4. create_new_blog_summary(): function would just call the constructor to initialize.

31

5. validate(): To validate the domain object. To validate the tags list :

2. blog_domain_test.py:

It would be the test file with test functions to ensure that the model objects are created, modified, and
updated in a proper state and are correctly defined. blog_domain.py will be completely tested in it.

3. blog_services.py:

Some function inside it will be:
● create_new_blog_id(): It will call the create_new_blog_id() function in GeneralBlogDataModel

(part of base_model).

● create_blog (): This will create a new BlogModel object with all the relevant fields and save it to
the Database.

● create_blog_summary(): This will create the Blog summary model object of the blog being
created.

● get_blog_by_id (blog_id): This would return the blog content and other fields.

32

● get_blog_id_by_month (month): This would return the list of blogs by the month of them being
published.

● get_blog_id_by_tags (list(tags)): This would return the list of blogs by the tags assigned to them.

● update_blog (): update the blog models with changes when edited.

● get_blog_cards (status): Returns a dict with blogSummary domain objects as values, keyed by
their blog_id.This function will take status as parameter.

● get_blog_ids_matching_query() : A list of blog titles is returned corresponding to a given query.

● register_blog_view(): This will increase the count of the total views on the blogs by the user. It will
call user_services.py to update the UserBlogViewsModel.

● save_blog ():
1. It will call the create_blog() function which will create and save the blog in the database

irrespective of it being published or not.
2. It will also call user_services.py to update the user storage and register the new blog

authored by the author.

33

● add_blog_tag (): Appends the tags to the list of tags in the datastore model.

● delete_blog_tag (‘tag’): Will remove the given tag from the list of tags.

● get_blog_tags (): Returns a list of blog tags

● is_blog_title_taken () : It will take the title of the blog as parameter and will raise a call to the
following class method in class BlogDataModel in storage/blog and will return boolean values
depending on the result :

● is_blog_tag_valid(): it will take the tags attached to the blog and verify that all the tags are
a part of those tags which are added by admin using the config tab.

4. blog_services_test.py:

It would be the test file with test functions to ensure that the model services are completely tested . Some
of the test functions inside it will be:

1. test_no_errors_are_raised_when_creating_new_blog (): The blog creation process can be tested by
using this function. It will raise a call to blog_domain.create_new_blog(). A new blog should be
created with provided values with errors.

2. test_fetching_blog_by_id(): The get_blog_by_id(user_id) function can be tested to make sure it
returns the correct blog list.

3. test_search_blog_by_query(): The get_blog_id_by_tags(), get_blog_id_by_month(),
get_blog_ids_matching_query() functions can be tested inside this. It will call
get_blog_ids_matching_query() which will then call get_blog_id_by_tags() and
get_blog_id_by_month().

34
Also inside the domain directory already existing user_domain.py, user_services.py will be modified and
other files related to them too.

5. blog_validators.py:

The blog storage model classes will be validated inside this file.
Some classes inside it will be :

● BlogModelValidator: Class will have functions to validate general blog models. It will have
functions like:

1. _get_model_id_regex:

2. _get_external_id_relationships: To validate the user id (author of the blog).
3. _get_model_domain_object_instance: To get the model object instance.
3. _validate_has_title: validates title of the blog .
4. _validate_date_publish: validates the date and time of publication of blog or last saved .
5. _validate_model_id: validates model id using the id returned in _get_model_id_regex.
6. _validate_date_updated: validates the date and time of the last update of blog .

● BlogSummaryModelValidator: Class will have functions to validate general blog summary models.
It will have functions like:

1. _get_model_id_regex: to validate the model id.
2. _get_external_id_relationships: to validate the user id.
3. _validate_datetime: validates the date and time of publication and editing of blog. It should

be less than the current date and time.
4. _validate_has_summary: validates the summary of the published blog.It should not be

empty.
5. _validate_is_published: validates the status of the blog to be published.
6. _validate_model_id: validates model id using the id returned in _get_model_id_regex.

6. blog_validators_test.py:
This will have the test functions to validators functions. The “blog_validator.py” will be completely tested
inside it.

7. blog_jobs_one_off.py:
This will have jobs to audit the blog models. Currently it will be an empty file, mostly.

35
8. blog_jobs_one_off_test.py:

This will have test functions to test blog_jobs_one_off.py.

9. search_services.py:
To allow user to search through various blogs, search_services will be modified accordingly and following
functions will be added:

● index_blog_summaries():

● _blog_summary_to_search_dict():

● clear_blog_search_index() : To clear blog search index.
● search_blogs(query, tags, months, offset=None): Will perform the search taking in

SEARCH_INDEX_BLOG obtained from index_blog_summaries.

10. user_domain.py:

● Class UserBlogContribution: It would be present to handle all functions related directly to the
User Blog Contributions model. The constructor will create an object having all related fields and
will return it.

36
Some functions (class methods) inside it will be :

1. __init__() : Initializes the domain object.
2. validate(): To validate the domain object (user_id, published_blog_ids, draft_blog_ids)
3. add_blog_id_to_list(): It will add the created blog id to the end of respective list

depending upon their status(published/ draft).
4. remove_blog_id(): It will remove the blog_id from the lists in case the blog is deleted

by the user.

11. User_services.py:

● add_created_blog_id(): Adds an blog_id to a user_id's UserBlogContributionsModel of the created
blog.

● get_blogs_list (user_id): This would return the list of blogs along with their status created by the
user.

● remove_blog_id(): Will remove the blog_id from their respective list when deleted.

12. user_services_test.py:

This file will be modified to test the above newly created functions. This can be done by creating few blogs
and then editing and deleting them. All the functions introduced will ensure that the service file is
completely tested for introduced functions.

Accordingly, the validators file for user’s storage models and jobs_one_off.py file for users will be
modified for the new storage model classes introduced and these will be tested in corresponding
test files.

6. ADDING ROUTES:

main.py: New routes are to be created to create new blogs in the database as well as for viewing the blogs.

● /blog_dashboard/<user-id>: This will call the BlogDashboard class in blog_dashboard.py, to initialize the
blog dashboard with the data in the backend corresponding to the passed user_id.

● /create_new_blog : This route will call a class that is a part of controllers/blog_dashboard.py. The class
called NewBlog will be declared and it will call the required functions from blog_domain.py and
blog_services.py in core/domain to create a new blog. This will serve the data to the blog editor when a
new blog is to be created.

● /blog_dashboard/blog_editor/<blog-id> : This route will call class BlogPostHandler from
blog_dashboard.py to provide data to be edited in blog-editor.

37
● /blog_page/<blog_id>: This will call the class BlogPostHandler in blog_home_page.py, to initialize the blog

page with the data in the backend corresponding to the passed blog_id.

● /blogs: This will call the class BlogHomepage in blog_home_page.py to initialize the blog homepage.It will
call all the other necessary functions from blog_domain.py and blog_services.py.

● /blogs/search : It will call the Search-Handler class inside the blog homepage when a user inputs a query
to display specific blogs.

● /blog_dashboard/<user-id>/get_stats: It will call class TotalViewsHandler of blog_dashboard.py which will
call related functions in core/domain files- user_domain.py and user_services.py to feed the statistics
page of the blog_dashboard.

COMPONENT FILES (templates/pages/blog):

FOR BLOG DASHBOARD:

1. Inside blog-dashboards.component.html:

1. It will have a button - “new post” which on clicking will call createNewBlog() function in the
blog-dashboards.component.ts . It will be visible only when the user has created any blogs before.

2. On the bar below user information, there will be -

1) Drafts - Clicking on it will call showDrafts() in the component.ts file and will enable blog
cards that are yet to be published to be visible.

2) Published - Clicking on it will call showPublished() in the component.ts file and will enable
blog cards that are published to be visible.

3) ** Statistics - The front end of the statistics tab that is shown in mocks will be implemented
afterwards and its implementation is detailed in “Future Work”.

Each of the two tabs’ HTML will be written inside separate section tags which will have “ *ngIf ” to make
only the desired section visible. Inside each section “ *ngFor ” will be used to display the blog cards which
will iterate over the list of blog-summaries defined in BlogDashboard.component.ts.

In case the user has not worked on any blogs yet,(no drafts and published blogs are present for the user in
the datastore) then “activeTab” value from component.ts will be “none” which will hide all the three tabs
and then “ Create Your Blog” button will be visible in the main area of the dashboard with the

38
The HTML of blog cards will be defined in a separate component so that the same code can be reused
again and again.

2. Inside blog-dashboards.component.ts:

It will contain typescript functions which will serve as the backbone of the html.
Some functions inside it are-

1. ngOnInIt(): It will set the default values of variables and will call the necessary functions required to
initialize and populate the values on the page. Some variable inside it will be:-

● activeTab : It will have the default value as “published” if the length of the list of publishedBlogs is not
zero. If it is zero, then the value will be “drafts”. In case both are zero, the active tab will be “none”.

● publishedBlogs : It will be a list containing blog summary dictionaries as its item.The values will be
provided by the blog-dashboard.service.ts .

● draftBlogs : It will be a list containing blog summary dictionaries as its item.The values will be
provided by the blog-dashboard.service.ts .

● username : It will be the user-name that will be displayed on the dashboard.

2. showDrafts(): It will be called on clicking the draft button on the page. This will change the value of
“activeTab” flag to “drafts”.This will inturn resolve the statement defined in the html for *ngIf in drafts
section to return true, making the drafts section visible.

3. showPublished(): It will be called on clicking the publish button. This will change the value of “activeTab”
flag to “published”.This will inturn resolve the statement defined in the html for *ngIf in the published
section to return true, making the published section visible.

4. createNewBlog(): It will initialize the process for creating a new blog.It will make the blog dashboard’s blog
editor visible which will be populated with the default values for the blog field.

● Note: Only the blog cards of the active tab will be loaded initially. But once loaded they will remain in the
view. This will ensure no unnecessary calls are made. [example -If the user does not shift to drafts
section no draft blog cards will be loaded. Hence reducing loading speed on the initial page load and
also there will be no unnecessary data in the memory store.] Thus according to active tab value, call will
be raised to blog-dashboard.service.ts

3. Inside blog-dashboard.component.spec.ts:

It will contain test functions which will ensure that the .ts file is completely and efficiently tested.

39
4. Inside blog-dashboard-backend-api.service.ts:

It will have a class that will contain functions which will provide data to the frontend from backend.These
functions will place http requests to controllers. Both post and get requests will be placed in order to retrieve
and store data from and to the datastore.
The class name will be “BlogDashboardBackendApiService”.
It will have the following functions:

● _fetchBlogDashboardDataAsync() : It will return a promise containing data to be displayed on the
dashboard. When the blog dashboard is loaded by the user it will place a request on
“/blog_dashboard/data” handler.

● _fetchBlogCardsAsync() : Taking user-id as parameter it will place a get request to the
“FetchBlogsHandler” in the controller layer.

● _fetchBlogPostPageDataAsync() : It will take blog-id as parameter and will place a get request to
“BlogPostHandler”.

● deleteBlog : parameter will be blog-id and will place a delete request in the “BLOG_DASHBOARD_DATA_URL”

● updateBlog : parameter will be blog-id and will place a put request in the “BLOG_DASHBOARD_DATA_URL”

● _createNewBlogIdAsync() : It does a POST request to the backend () to actually create the Blog. This
returns the id of the created blog. Now, the url is redirected to ‘/blog_editor/create/<id>’ using
UrlInterpolationService. This URL is then redirected by the backend to render the html page at blog_editor
folder to show the blog-editor.

● _createBlogSummaryAsync(): It does a POST request to the backend () to actually create the Blog
summary.

● _createBlogDataAsync(): It will perform a post request with the data for “BlogDataModel” to the handler.

● _fetchBlogTagsListAsync(): It will perform a get request to retrieve all the pre-defined tags which can be
assigned to blogs.

● publishBlogs() : It will update the blog to the backend with content and will make the blog status- “publish”.

5. Inside blog-dashboard-backend-api.service.spec.ts:
It will contain test functions that will ensure that the .ts file is completely and efficiently tested.

6. Inside blog-dashboard.service.ts:
It will have all the other necessary functions required for the blog dashboard such as “fetching_user_data”
to be displayed on the dashboard. It will also be used to provide functions required for routing between
blog editors , the blog dashboard and the blog post page.

40
7. Inside blog-dashboard.service.spec.ts:

It will contain test functions which will ensure that the .ts file is completely and efficiently tested.

8. Inside blog-editor folder:
As stated above in the product design section, In order to avoid mingling of features and plugins between
RTE and the blog-editor, I will be directly using the cke-editor. To achieve this new files will be created
New files -

○ blog-cke-editor.component.html
○ blog-cke-editor.component.ts
○ blog-cke-editor.component.spec.ts
○ blog-cke-editor-widget.initializer.ts

○ main-blog-editor.component.html
○ main-blog-editor.component.ts
○ main-blog-editor.component.spec.ts

The code inside the first 4 files will be similar to the files inside
‘core/templates/components/cke-editor-helper’ present in our codebase.

Toolbar configuration in will be as follows in the blog-cke-editor.component.ts to load plugins and features
:

Inside main-blog-editor.component.html:
1. It will first contain the button to upload the thumbnail image. It will call “uploadThumbnail()”

function in the ts file.Its functionality can be borrowed from the current topic thumbnail uploader.
2. It will then have the blog-cke editor.
3. It will have a side pane in which tags under which blog can be categorized will be visible. Clicking

on each tag will call a function addTag() which will append the name of the tag in the tags list in
the ts file for the blog.

41
4. It will have “ save as draft “ and “publish” buttons which will call saveDraft() and publishBlog()

functions respectively in its ts file.
5. It will have an “eye” icon which will call the loadPreview() function.This will make the preview of the

blog card visible.

Inside main-blog-editor.component.ts:
It will contain typescript functions which will serve as the backbone of the blog editor.

Some functions inside it are-
1. ngOnInIt(): It will set the default values of variables and will call the necessary functions required to

initialize and populate the values on the page.
● availableTags : It will be containing the list of predefined tags among which the user can

choose.
● username : It will be the user-name that will be displayed on the editor side pane.

2. SaveDraft(): It will call the updateBlog function in the blog-dashboard-backend-api.service which
will the place necessary requests to the controller to update the blog in the backend.In this case
the status of the update blog in the storage model will is “STATUS_BLOG_IS_DRAFT” .

3. publishBlog(): It will also call the updateBlog function in the service but in this case the status of
the blog will change to “STATUS_BLOG_IS_PUBLISHED”.

4. loadPreview(): It will make the preview of the blog card visible by providing values to
blog-card.component files.

Inside main-blog-editor.component.spec.ts:
It will contain test functions which will ensure that the .ts file is completely and efficiently tested.

Inside app.yaml and app_dev.yaml:
All the plugins required for CKEditor will have to be included in the build hence they will be removed from
the list which removes them from build(below is the SS showing that they removed from build).

42
FOR BLOG CARD:

1. Inside blog-card.component.html:
It will contain the code for the blog-card which can be used in both blog-dashboard and the
blog-homepage. It will have the following parts:

1. A picture tag for displaying the thumbnail image.
2. A div containing a picture tag for displaying the user profile image of the author. Along with it in

the same line user-name of the author will be displayed. Below it the time of publishing the blog
post will be displayed.

3. A div containing the blog summary text.

On clicking the blog card , a function called “loadBlogPost()” will be called and the page will redirect to ‘blog post’
page of the blog card.

2. Inside blog-card.component.ts:
It will contain the typescript functions such as :

1. ngOnInIt(): It will set the default values of variables and will call the necessary functions required
to initialize and populate the values on the page.
2. loadBlogPost(): It will pass the blog-id to a function in “blog-dashboard.service.ts” which will
load the blog post page for the given id (This function will then call
_fetchBlogPostPageDataAsync() in the “blog-dashboard-backend-api.service.ts”).
[NOTE : BLOG POST PAGE IS A PART OF FUTURE WORK]

3. Inside blog-card.component.spec.ts:
It will contain the unit tests for complete and efficient testing of blog-card.component.ts.

NOTE : Blog homepage ,Blog Post Page, And the statistics tab frontend will be
implemented afterwards and is a part of future works.

TO ENABLE ADMIN ADD PRE-DEFINED TAGS:
1. In domain/config_domain.py:

● In class Registry: A new config property namely “Predefined_Blog_Tags” will be added.
It will be of the following schema: SET_OF_STRINGS_SCHEMA
This will automatically introduce the required type of input in the admin page’s config tab.

2. In templates/domain/admin :
● admin-backend-api.service.ts: In interface ConfigPropertyValues,a new field

“Predefined_Blog_Tags” with “string[]” value will be added.

ADDING NEW ROLE:
A new blog-editor role will have to be added. Therefore the following steps will be followed to achieve this:

43
● As specified in changes made to feconf.py the following role will be added-

ROLE_ID_BLOG_EDITOR : 'BLOG_EDITOR'
● In core/domain/role_services.py : Under ‘UPDATABLE_ROLES’ and ‘VIEWABLE_ROLES’ it will be

added.
○ In ‘HUMAN_READABLE_ROLES’ corresponding string will be added : “blog editor”.
○ In ‘PARENT_ROLES’ - key and value will be added.
○ In ‘ROLE_ACTIONS’ - key and value will is added.
○ Actions will be added for the role added -

1. ACTION_EDIT_OWNED_BLOG = 'EDIT_OWNED_BLOG'
2. ACTION_PUBLISH_OWNED_BLOG= 'PUBLISH_OWNED_BLOG’'
3. ACTION_UNPUBLISH_OWNED_BLOG = 'UNPUBLISH_OWNED_BLOG'
4. ACTION_DELETE_OWNED_BLOG = ‘DELETE_OWNED_BLOG’

● Corresponding decorator for the role action will be added in controllers/acl_decorators.py
All Validations (front end and backend):
In frontend : Inside blog.model.ts : It is the model class that will create the frontend model for the main blog
domain object. It will have a validate() method defined which will validate the fields of the object to be saved as
draft. It will also have isTitleValid() and prepublishValidate() method to validate the fields of blog being published.

validate() method will ensure that the title and the content fields are not empty when the blog is being saved(as
draft).

44

prepublishValidate() method will ensure that the blog has at least one tag and at most five tags selected. It will
ensure that a thumbnail is selected and that the title is a little descriptive (by validating that it is longer than a
certain number of chars).

The function isTitleValid() will use is_blog_title_taken() in the blog_services.py to validate the title only if it is
unique.

In backend:
1. Inside class blog in blog_domain.py - validate() function will exist that will validate the properties of

the blog domain object.
It will validate the author_id,title,content and url_fragment by ensuring that they are string and also
that they are not empty. url_fragment will also be validated when it is unique. Inside the
blog_services.py it will be ensured that whenever a new title is being stored it is unique.

2. Inside class blogSummary in blog_domain.py - validate() function will exist that will validate
author_id, title and summary are not empty and are strings.
The thumbnail_filename will also be validated using
“utils.require_valid_thumbnail_filename(thumbnail)”.It will also validate the tags to be a list where
each tag is a string.
The length of summary will also be checked and validated by ensuring that it doesn’t exceed the
set limit of characters.
In the service layer we will ensure that all the selected tags are a part of the list of tags set by the
admin.

3. Inside classblogRights , validate() will check if the editor_id is string and is not empty and that the
status is a boolean value.

4. Inside blog_validator.py there will be 3 classes to validate their respective models.
All three will be using “BaseModelValidator)

Inside blog_validators.py :
● BlogModelValidator: Class will have functions to validate general blog models. It will have

functions like:
1. _get_model_id_regex:

2. _get_external_id_relationships: function will ensure that correct ids are returned when
external models are called.

3. _get_model_domain_object_instance: To get the model object instance.

● BlogSummaryModelValidator: Class will have functions to validate general blog summary models.
It will have functions like:

1. _get_external_id_relationships: function will ensure that correct ids are returned when
external models are called

45
2. _validate_has_summary: validates the summary of the published blog.It should not be

empty.
3. _validate_model_time_fields: Validates the last_updated and created_on fields of a model

instance.
4. _get_model_id_regex: Will ensure that the id is in the expected form.

● BlogRightsModelValidator:_
1. _get_model_id_regex: Will ensure that the id is in the expected form.
2. _get_external_id_relationships: Function will ensure that correct ids are returned when

external models are called.
3. validate_blogrights_blog_ids_in_author_blog_ids : A validator that can be written to check

that all the blogs for a given user in the blogsRights model have there blogIds in the
userContributionsModel for the given user.

4. _get_custom_validation_functions: It will return
“_validate_blogrights_blog_ids_in_author_blog_ids”.

Testing Approach
All the files and functions that will be introduced will be thoroughly tested.

1. End to End tests:
All automated tests will be written for both blog dashboard will be inside blogPage.js in
tests/protractor_utils and blog.js in tests/protractor_desktop.

2. Karma tests:
All the component.ts and services.ts files will be accompanied by their respective spec files. This will
ensure all the frontend files are tested.

3. Backend tests:
All the backend files will be accompanied by their test files.

4. Lighthouse tests:
All the new pages url will be added to the lighthouserc.js, and lighthouserc-accessibility.js to perform
accessibility tests on the webpage.

MIGRATING BLOGS FROM MEDIUM TO OPPIA:
I will be doing a manual transfer as medium though allows to export blog but renders the content of the blog in a
form of html file.Thus a manual transfer will be far more simpler whereas a trying an automated approach will
require other functionality in the codebase.The fact that there are some free plugins available which allow
rendering of medium blogs support wordpress editor format after being provided the html files in zip format(which
is downloaded from medium itself) will contain few unnecessary fields as claps, feedback thread which aren't
being handled by the oppia’s blog interface.Moreover, the achieved formatting won't be same as that expected.
Our editor might not support the html tags the way intended as we do not support the features of the
medium’s blog editor in the same format. Automated transmission might sound easy to achieve and will

46
definitely require less time but can have major unseen issues.Manual transmission will not require more than 4
days and will be quite easy to achieve.Also manual transmission guarantees that all blogs will be shifted with no
formatting errors which is hard to promise in an automated transmission.

Milestones
The parts of the product that will be completely covered within the GSoC timelines are

1) BLOG DASHBOARD [Complete backend and frontend except frontend of statistics tab]
2) BLOG EDITOR [Both frontend and backend]
3) BLOG HOMEPAGE [Only Backend will be done[controllers], No frontend will be done]
4) BLOG-CARD
5) MIGRATING BLOGS FROM MEDIUM TO OPPIA

Community Bonding Period:
In the community bonding period, I will finalize all the technical and design details with my mentor. I have been
contributing to this community for more than 6 months now, I’m much familiar with the workflow in the codebase.
Thus, I will start working on the project, if my Mentor allows, to ensure I will be able to cope up with any difficulties
in the future.

Milestone 1: Complete storage models and other related backends
along with their tests for blog dashboard and editor.
The coding period begins from 7th June and ends on 12th of July.

Key Objective:
1. In the first milestone storage model for blogs and changes in user storage model will be

done.
2. All the domain files and controllers will be added along with the validators for all the new

files as well as for those modified.
3. Admin page’s Config tab will be modified to enable the admin to add predefined tags.All

related changes in backend and front end will be completed.

No. Description of PR Prereq
PR num

Target date for PR
submission

Target date for PR
to be merged

1.1 Adding blog and user storage models in
core/storage and enlisting them in
platform/models.py to make them valid.

○ As a result 3 new files inside a
folder named blogs in the
core/storage folder are added.

○ User storage file has a new model.

none 10th June 16th june E.O.D

47

1.2 Adding domain files for blog storage
models i.e:

1) blog_domain.py
2) blog_services.py
3) blog_validators.py
4) blog_jobs_one_off.py(EMPTY

FILE)

These will be accompanied by their tests.
○ As a result 8 new files will be

added (4 above mentioned files +
4 test files of these files.)

1.1 16th June 22nd june
E.O.D

1.3 Modifying domain files for adding new
model in user’s storage models.Files that
will be modified in it will be:

1) user_domain.py
2) user_services.py
3) user_validators.py

These changes will be accompanied by
their testing in their respective test files.

none 18th June
E.O.D

23rd June
E.O.D

1.4 New role blog editor will be added and
role action will added, accordingly
feconf.py will be modified

Changes to controllers/acl_decorators.py

Controllers for the blog dashboard will be
done in this PR.
2 new files will be added in
core/controllers namely

○ blog_dashboard.py
○ blog_dasboard_test.py

1.2
1.3

25th June 30th June
E.O.D

1.5 Modifications in search_services.py will
be done to build search handler for blogs.

1.1
1.4

28th June 2nd July E.O.D

1.6 Controllers for blog homepage will be
done in this PR
2 new files will be added in
core/controllers namely

○ blog_homepage.py
○ blog_homepage_test.py

1.2
1.3
1.5

2nd July 6th July E.O.D

1.7 Enabling Admin to add predefined tags
via the config tab.
Changes in the following files will be
done:

○ config_domain.py
○ config_validators.py
○ admin-backend-api.service.ts

none 4th July
E.O.D

8th July

48

As a result both frontend and backend for
the config tab in the admin page are
done.
All the introduced fields will have their
tests in their respective tests file.

1.8 All reported errors and bug fixes will be
done.

6th-11th 12th July

MILESTONE ENDS ON 12TH JULY.
JULY 16TH IS THE MILESTONE’S EVALUATION DEADLINE.

Milestone 2 : Complete frontend with their tests for blog dashboard
and editor. Making it accessible to the users via drop-down.
The milestone begins on 13th July and ends between 16th-23rd August.

Key Objective:
1. In this milestone all the frontend files for the blog dashboard and the editor will be

implemented.
2. Frontend of blog-card will be done to load the blog-cards in the blog dashboard.
3. Blogs from the medium will be exported to oppia.

Last week is kept empty to handle bugs in the project.
All the PRs from milestone one will be required for PRs in milestone two.

No. Description of PR Prereq
PR
number
s

Target date for
PR submission

Target date for
PR to be
merged

2.1 Basic Structure for Blog Interface will be created
Empty folders will be added. Blog folder under
core/templates/pages will have 3 folders namely-
blog-dashboard, blog-homepage and blog-card.

● Inside blog-dashboard, in blog-editor folder
blog-cke-editor files will be done.

○ blog-cke-editor.component.html
○ blog-cke-editor.component.ts
○ blog-cke-editor.component.spec.ts
○ blog-cke-editor-widget.initializer.ts

● All the required plugins will be included in
build and therefore app_dev.yaml and
app.yaml will be modified.

none 18th July
E.O.D

23rd July
E.O.D

49

2.2 Services required for the blog dashboard are done.
Following files inside blog/blog-dashboard in
core/templates/pages will be added:

○ blog-dashboard-backend-api.service.ts
○ blog-dashboard.service.ts

These will be accompanied by their test files.

21st July 26th July
E.O.D

2.3 Blog-Card frontend is complete. 2.2 24th July 29th July E.O.D

2.4 Blog-Editor frontend is complete.
○ main-blog-editor.component.html
○ main-blog-editor.component.ts
○ main-blog-editor.component.spec.ts

2.1
2.2
2.3

27th July E.O.D 1st August

2.5 Blog-Dashboard frontend is complete.
Following new files will be created:

○ blog-dashboards.component.html
○ blog-dashboard.component.ts
○ blog-dashboard.component.spec.ts
○ blog-dashboard.component.mainpage.html

2.1
2.2
2.3
2.4

2nd August 7th August

2.6 Adding E2E tests and making the blog-dashboard
accessible from the drop-down. Adding new pages
to lighthouserc.js and lighthouserc-accessibility.js.

2.1
2.2
2.3
2.4
2.5

5th August 10th August

2.7 Adding all the blogs present on medium to Oppia

(NO CODE MAJOR CODE ADDITION PR WILL BE
RAISED THUS BUG AND ERRORS CAN BE ALSO
FIXED IN THIS TIME)

(a period of 5
days(7-13)to
handle any
unseen
problem in
manual
transmission)

13th August

2.8 All errors and bug fixes in the project will be done. 18th August

With the current target date , I can make my final submission on the 19th. The final last submission date is 23rd
August. Thus in the worst case I will still have a period of 4 days to complete and fix things.

Optional Sections
Privacy
No new user data will be collected. Already saved username and profile picture are the sensitive information being
used in the blog-dashboard,blog card and the blog homepage to show author details.However this is the data
already added by the user.

50
Security

No security issues are related as such. Users can only view the name and profile picture of the author and the
date of publishing of the blog. Thus no security issues will arise due to the project.

Accessibility (if user-facing)

The project will enable the team members to share their thoughts and stories by directly using the blog dashboard
and thus not going for any other site. Using the blog-editor, users will be able to write engaging blogs. After the
features mentioned in “Future Work” are implemented all the users of Oppia will be able to know about the latest
features of the site, and the stories of the team-members , volunteers and students from our website itself.

Future Work

I am keenly interested in completing the blog interface. Thus after this project is completed , Blog-homepage and
statistics tab as shown in the product design will be implemented.
In the statistics tab in the blog-dashboard, count of views on each blog and collectively count on all the blogs will
be represented graphically.Representation of total views is shown in the picture.

Blog-Homepage will be implemented so that all the users are able
to read the blogs written by our members. It will be made accessible from the
About drop-down as stated in the product design section.

Also in future , I will make both blog homepage and blog dashboard accessible
for all devices with all kinds of screen sizes.

