
Why are you interested in working with Oppia, and on your chosen project?
The word Oppia means to learn. An organization whose mission is to help anyone learn anything
they want in an effective and enjoyable way. I would love to be a part of this beautiful mission
which helps in spreading learning. A majority of the world does not have access to proper
education facilities, and here, Oppia plays its role of helping those unprivileged children who
lack these facilities. I would like to add my contribution to this global mission as much as I
could. Oppia provides me a platform to be a part of this mission and I am therefore interested in
working with Oppia and will do my best to make this mission successful.

Why the project: Static Analysis Checks + Improvements ?

A messy code can be written easily just to make the things work, while it may take a
comparatively longer time to write a clean code. But, when we think of the long run, a clean code
is far better than a messy code. I always think of things from the perspective of the long run,
and hence this project interests me the most. I would love to make the process of code
reviewing faster, so that we can save the time spent in fixing the lint and other similar errors
during code reviews, and instead utilize it on reviewing the actual feature implementation or bug
fix. The current codebase has static analysis checks to ensure this, but still it lacks numerous
other very important checks, which are a must to be added. This project will help me in gaining
more expertise on maintaining clean code and developing custom static analysis checks.

Prior experience
I am Sparsh Agrawal, an undergraduate in Indian Institute of Technology Roorkee pursuing
Electronics and Communication Engineering. My love for development began in the 10th
standard when I learned my first programming language. From there, I was introduced to the
world of development. In my freshman year, I explored android development, and have been
doing that from the past year. Also, I am an active member of the Information Management
Group (IMG), IIT Roorkee which is a group of passionate developers and designers who
constantly strive to lead in the innovation, development, and maintenance of advanced
information technologies including computer systems, software and database systems in the
institute. At IMG, I learned to work along in a product cycle with a team of approximately 50
members. In my pursuit of acquiring development skills, I started contributing to the open
source community from the past one year, so that I can give back to the organizations whose
products have been valuable assets to me. I have been involved in the both: Web and Mobile
App development. I have been contributing to Oppia from the past 2-3 months, and therefore
gained familiarity with the codebase via working on the issues and submitting the
corresponding PRs.

My Github profile: Sparsh1212

https://www.iitr.ac.in/campus_life/pages/Groups_and_Societies+IMG.html
https://www.iitr.ac.in/campus_life/pages/Groups_and_Societies+IMG.html
https://github.com/Sparsh1212

My open source contributions in the past one year:
1. Oppia:

a. PRs:
i. #2856: Update ongoing topic logic
ii. #2656: Fix talkback bug on activity transition to topic screen
iii. #3030: Shift RecyclerViewMatcher to Central testing utility (Almost

completed)
iv. #2750: Add label for FAQList screen
v. #2699: Remove event_logger_java_proto_lite export

vi. #2645: Admin add pin
b. Issues Filed:

i. #2860: Variable name is displayed instead of actual incorrect answer

A list of all my contributions to Oppia can be found: here

2. Mifos Initiative:
a. PRs:

i. #1059: Add instructions to get the latest apk from artifacts (Github Actions)
ii. #195: Setup ci using GitHub actions
iii. #1579: Remove unnecessary ndk specifications from build.gradle files
iv. #1603: Update fabric crashlytics to firebase crashlytics
v. #1596: Redesign splash screen as per new design

vi. #201: Convert null checks in Network.kt to kotlin style
b. Issues Filed:

i. #199: Add network change receiver

3. CircuitVerse:
a. Issues Filed:

i. #17: Disable add button on empty input field of Add Group Members
ii. #18: Search button and hamburger menu not working in the webview
iii. #19: Spelling error in image picker bottom sheet

4. Catrobat:
a. PRs:

i. #4010: Localize variable NO_VARIABLE_SELECTED

5. Mozilla:
a. PRs:

i. #9869: Trim search query
ii. #9874: Hide search-btn outline

b. Issues Filed:
i. #9866: Search query is not trimmed
ii. #9865: Search button alignment improper when clicked

https://github.com/oppia/oppia-android/pull/2856
https://github.com/oppia/oppia-android/pull/2656
https://github.com/oppia/oppia-android/pull/3030
https://github.com/oppia/oppia-android/pull/2750
https://github.com/oppia/oppia-android/pull/2699
https://github.com/oppia/oppia-android/pull/2645
https://github.com/oppia/oppia-android/issues/2860
https://github.com/oppia/oppia-android/pulls?q=is%3Apr+author%3A%40me+is%3Aclosed
https://github.com/openMF/mobile-wallet/pull/1059
https://github.com/openMF/mifos-mobile-cn/pull/196
https://github.com/openMF/mifos-mobile/pull/1579
https://github.com/openMF/mifos-mobile/pull/1603
https://github.com/openMF/mifos-mobile/pull/1596
https://github.com/openMF/mifos-mobile-cn/pull/201
https://github.com/openMF/mifos-mobile-cn/issues/199
https://github.com/CircuitVerse/mobile-app/issues/17
https://github.com/CircuitVerse/mobile-app/issues/18
https://github.com/CircuitVerse/mobile-app/issues/19
https://github.com/Catrobat/Catroid/pull/4010
https://github.com/mozilla/addons-frontend/pull/9869
https://github.com/mozilla/addons-frontend/pull/9874/files
https://github.com/mozilla/addons-frontend/issues/9866
https://github.com/mozilla/addons-frontend/issues/9865

Contact info and timezone(s)
Email - sparshagrawal1212@gmail.com
Phone - +91 7987255297
Timezone - Indian Standard Time (IST) (+5:30 GMT)
Preferred Method of communication - Email or Phone

Time commitment
● I would be working on the GSoC project throughout the 10-week period, from 7th June to

16th August.
● I would commit at least 5 hours per day during the coding period, and may increase it if

necessary.

Other summer obligations
I have no other commitments during the summer. So, I will be able to devote the full time of my
summer holidays to this project.

Communication channels
Reachable anytime through email, gitter, slack, contact number, or a planned video-session.

Essential Prerequisites
Answer the following questions (for Oppia Android GSoC students):

● I am able to run a single Robolectric test target on my machine via Android Studio. (Show
a screenshot of a successful test.)

● I am able to run a single Espresso emulator test target on my machine via Android Studio.
(Show a screenshot of a successful test.)

Project Details

Product Design

What is static analysis ?

Static Code Analysis is a method of debugging by examining source code before a program is
run. It’s done by analyzing a set of code against a set (or multiple sets) of coding rules.

Why static code analysis is essential ?

It takes time for developers to do manual code reviews. Automated tools are much faster.
Static code checking addresses problems early on. And it pinpoints exactly where the error is in
the code. So, the developer will be able to fix those errors faster.

Development flow without static analysis

Development flow with static analysis

We can see how a static analysis tool (in this case a linter) simplified the flow and saved the
time of both the developer and the reviewer which was wasted earlier in correcting the lint
errors. Hence, it is very essential to have Static Analysis checks in the development workflow of
a project so as to save the precious time of the developers and the reviewers.

Also, the more we can improve these static checks on the codebase, the more we will be able to
keep the code intact with the standard guidelines and conventions and will ensure that we
maintain the best practices as the codebase gets bigger.

The users of this project are the developers of the Oppia team.

Current status of the static code analysis of the oppia-android codebase:

There are 4 lint tools which are currently used for the static code analysis of the codebase.

1. Checkstyle
This ensures all the java code present in the codebase adheres to a coding standard.

2. Ktlint
A static analysis tool which analyzes the kotlin part of the codebase

3. Buf
This tool provides consistency and maintainability across a Protobuf schema.

4. Buildifier
This takes care of the static analysis of Bazel BUILD and .bzl files.

With all these tools present in the project already, there are still numerous essential static
analysis checks which the project currently lacks. The default behaviour of these linting tools is
not enough to meet all the best current practices. This project aims to add all those essential
static analysis checks which the project currently lacks so that the development team reaches
optimal efficiency, the codebase remains clean, fully documented and without any violation of
standard practice.

This project aims to add these additional checks with the combination of these tools/approach
so as to utilize the best available option for achieving the corresponding use case/ implementing
the particular check

Note: A detailed description of how these checks are going to be implemented in the project is
provided in the Technical Design section of the proposal. This is just an overview of the
approach.

1. Integrating the project with Github Super Linter: This project will make use of Github
Super Linter as the linter to ensure all the XML files follow the team’s style guide.

2. Use of Scripts (Preferably Kotlin or Bash): To implement the custom checks for this
particular use case, this project will involve writing custom Kotlin/bash scripts to
implement the static checks mentioned in the Project idea.

https://github.com/checkstyle/checkstyle
https://github.com/pinterest/ktlint
https://github.com/bufbuild/buf
https://github.com/bazelbuild/buildtools/blob/master/buildifier/README.md
https://github.com/github/super-linter

Note: In the Technical Design Section of the proposal, to demonstrate the
implementation of checks, python scripts have been used. However as per the
actual Project Plan, the final scripts will be written in either Kotlin or bash. Python
is just used in the proposal for demonstration purposes only.

3. Use of Github Actions: Since, the static analysis checks have to be executed during the
CI workflow, this project will involve extensive use of Github Actions to run these checks
during the CI.

Github Actions: Github Actions helps us to automate the tasks within the software
development cycle. They are event-driven. Event-driven means that we can run a series of
commands after a specified event has occurred. For ex: When someone closes an issue, we
can automatically run a command that executes a custom script to check if the corresponding
TODO of the issue has been addressed or not.

Components of Github Actions:

● Workflow: The workflow is an automated procedure that we add to the repository. It
consists of one or more jobs and can be scheduled or triggered by an event. We can
create a workflow to build, test, package, release, or deploy a project on GitHub.

● Events: It is a specific activity that triggers a workflow. For ex: activity can originate from
GitHub when someone creates an issue, closes it, pushes a commit to the repository
etc. Here is the link for ref. to all the Events that trigger workflows.

● Jobs: It is a set of steps that execute on the same runner. By default, a workflow with
multiple jobs will run those jobs in parallel. We can also configure a workflow to run jobs
sequentially by using needs:

jobs:

one:

- do stuff -

two:

needs: one

- do more stuff -

● Steps: A step is an individual task that can run commands in a job. It can be either an
action or a shell command.

https://github.com/features/actions
https://docs.github.com/en/actions/reference/events-that-trigger-workflows

● Actions: These are standalone commands that are combined into steps to create a job.
Actions are the smallest portable building block of a workflow. We can create our own
actions, or use actions created by the GitHub community.

● Runners: It is a server that has the GitHub Actions runner application installed. A runner
listens for available jobs, runs one job at a time, and reports the progress, logs, and
results back to GitHub.

GitHub Actions uses YAML syntax to define the events, jobs, and steps. The YAML files are
stored in a directory called .github/workflows.

Analysis of the essential checks that the project current lacks, the problems that the developers
(users also in some worst cases) have to face because of the absence of these checks and how
this project will improve the current scenario:

1. Verify activities have accessibility labels

For the A11y users, activity labels are very important for the transition purposes. Suppose, on
the button click, the app transits to a new activity. A regular user will face no problem in
understanding that a new screen/activity has opened. But A11y users need a form of feedback
so that they could somehow understand/be notified that the transition to a new Activity has been
successfully made. When this label is missing in the Activities, the screen readers don't speak a
meaningful representation, and therefore the user (A11y in this case) will face problems in
understanding which Activity has opened.
Currently in the codebase, there are no checks to ensure that the activities include the
accessibility labels. As a result of absence of this check, the team has faced several issues in
the past which are as follows:

https://github.com/actions/runner

Because of the missing label on the activity, the Talback reads this screen as Oppia at the start,
whereas it should be Frequently Asked Questions (FAQs).

Issue references: #2633 #2823 #2822 #2816 and many more similar issues.

This project will make sure that instances like these do not happen and every activity (which is
meant for the users of the app) has these accessibility labels, and whenever any developer
misses these labels, the script written for checking the accessibility label in the Activity will
report the issue and will notify that which particular Activity lacks the accessibility label. Also, the
CI workflow will fail because of the failure of this check. This will ensure that the app is
accessible for users of all kinds and the developers do not miss these labels in any scenario.

Note: This check of testing whether the activity has accessibility labels will be tested only on
those activities which are meant to be for the users of the app. The activities present in the
codebase which are for testing purposes and not for the users of the app will not be tested for
this check. For ex: ConceptCardFragmentTestActivity, AudioFragmentTestActivity,
BindableAdapterTestActivity and other similar activities will be skipped for this check.

https://github.com/oppia/oppia-android/issues/2633
https://github.com/oppia/oppia-android/issues/2823
https://github.com/oppia/oppia-android/issues/2822
https://github.com/oppia/oppia-android/issues/2816

2. Ensuring All XML files follow the XML style guide

Oppia-Android Style Guide: here
The current codebase does not have any lint checks to ensure that the XML files follow the style
guide or not. This project will integrate the current code base with Github Super Linter support,
so that on every push, pull_request and workflow_dispatch the lint checks for the XML files will
be triggered and if anywhere the linter founds the issue, it will report it and the workflow will fail.
This way we will ensure that all the XML files are well formatted (just like ktlint is used currently
for the kotlin files of the codebase).
Note: I have left a note for the maintainers regarding the lint tool for the XML files in the
Technical Design section. Please refer to it.

3. Verify all production files have a corresponding test file

Testing is a very important phase in the development cycle of any project. We must test all the
features, UI and every other thing present in the app thoroughly so that the app is error-prone
and the users have a good experience using the app. Many times it happens that, while
developing a particular feature for the app, the developer forgets to add a corresponding test
and then pushes the code without writing a test for the feature implemented. This leads to a lot
of time wastage, because the reviewer has to remind the developer to write the test during the
review. This leads to longer development cycles, and in some cases where the reviewer also
forgets to check that a test is present or not, it is possible that a feature gets added in the
codebase without a proper test written for it. Hence, it is very essential that, during the workflow,
we have to check that every production file has a test file associated with it, so that if the
developer somehow forgets to add a test, the workflow fails and notifies to add a test file for the
new production file added.

Note: This check will run only on the appropriate production files, for ex: XML, BAZEL, gradle,
etc will be skipped for this check. The strategy of excluding them is explained in detail in the
Technical Design section.

https://github.com/oppia/oppia-android/wiki/XML-code-style-format
https://github.com/github/super-linter

4. Ensure KDocs are present for every non-private class, method, and field (even
trivial ones)

Documenting code is a very essential step, and it should not be missed at any cost. It helps the
new contributors and even the already existing ones, to understand what the particular piece of
code performs. It makes the process of understanding the codebase much easier. Hence, it is
essential to check that any new class, method and field contains an associated KDoc with it.

5. Ensuring future checks on file names and file contents

In the current codebase, there are no checks to ensure that the proper file naming conventions
are followed. Also, there are several instances where the filenames and identifiers are not in
accordance with the standard convention. Hence, it is very important to make sure via checks
that naming follows the convention.

For example:

File naming convention: https://developer.android.com/kotlin/style-guide#camel_case

The following files are violating this convention:

● https://github.com/oppia/oppia-android/blob/develop/app/src/sharedTest/java/org/oppia/a
ndroid/app/faq/FAQListFragmentTest.kt

● https://github.com/oppia/oppia-android/blob/develop/app/src/sharedTest/java/org/oppia/a
ndroid/app/faq/FAQSingleActivityTest.kt

● https://github.com/oppia/oppia-android/blob/develop/app/src/main/java/org/oppia/android
/app/help/faq/RouteToFAQSingleListener.kt

And many more such files ...

Reference discussion: here

Also, the project currently lacks checks on the file contents, to ensure that we aren’t using any
attributes like marginLeft in the project.

Here is a list of all those attributes which must be checked:

● marginLeft
● marginRight
● paddingLeft
● paddingRight
● drawableLeft
● drawableRight
● layout_alignLeft
● layout_alignRight

https://developer.android.com/kotlin/style-guide#camel_case
https://github.com/oppia/oppia-android/blob/develop/app/src/sharedTest/java/org/oppia/android/app/faq/FAQListFragmentTest.kt
https://github.com/oppia/oppia-android/blob/develop/app/src/sharedTest/java/org/oppia/android/app/faq/FAQListFragmentTest.kt
https://github.com/oppia/oppia-android/blob/develop/app/src/sharedTest/java/org/oppia/android/app/faq/FAQSingleActivityTest.kt
https://github.com/oppia/oppia-android/blob/develop/app/src/sharedTest/java/org/oppia/android/app/faq/FAQSingleActivityTest.kt
https://github.com/oppia/oppia-android/blob/develop/app/src/main/java/org/oppia/android/app/help/faq/RouteToFAQSingleListener.kt
https://github.com/oppia/oppia-android/blob/develop/app/src/main/java/org/oppia/android/app/help/faq/RouteToFAQSingleListener.kt
https://github.com/oppia/oppia-android/pull/2750/files/6cdd8dec9064d490be65de5eb9df33b1539ae8bf#r581676598

● layout_alignParentLeft
● layout_alignParentRight
● layout_toLeftOf
● layout_toRightOf
● gravity=”left”
● gravity=”right”
● textAlignment=”start”

The reason for checking these particular attributes is to support different languages and cultures.
This project will ensure sure the app remains RTL supported as much as possible.

This project will make sure that all the files follow the file naming convention, and will add proper
checks to check the usage of any of the above-listed attributes in the XML files. Violation of any
check will result in the CI workflow with appropriate logging of the lint failures.

6. Introduce TODO Verification

In the current codebase, for every TODO, that is listed, a corresponding open issue must be
present. And if the issue status is changed, (say the issue is closed), then this project will trigger
a workflow check that the corresponding TODO is addressed. If not, then the issue must be
reopened.

This workflow will ensure that all the TODOs in the project are maintained properly, and no issue
gets closed without its corresponding TODO getting addressed. If any issue is closed without all
of its TODOs being addressed then the issue will be reopened again with a new comment
added (providing details of the files/LOCs of all of its unaddressed TODOs).

https://developer.android.com/training/basics/supporting-devices/languages

Approaching the project with Custom Android Lint Rules:
The custom checks can also be implemented with the use of Android Lint. But because of the
following reasons the approach of using Android Lint as the tool for this project was rejected:

● This project requires some custom static analysis checks, and the default rules of Android Lint
do not include those checks which fulfills our use case. Hence, if we want to implement those
custom checks, then we have to write our custom Android Lint rules. The problem with custom
Android Lint rules is that: It's a Gradle project. Ref could be found here (official page of android
tools). And since, oppia-android will be fully migrated to the BAZEL build system in some time,
so using some gradle stuff for the static analysis does not seem appropriate. Because that
way, we won’t be gradle free in complete sense.

● Also, officially the custom Android Lint rule is not supported for the BAZEL build system. I
asked the question of building the custom lint rules without using gradle build system in the
official google group of Android Lint, and it was answered by the current maintainer of the
Android Lint project: Tor Norbye. To that question, the official answer was: “Sorry, no -- that
will depend on the build system you're using and we only support Gradle”
Reference to this conversation: here.

● In addition to this, the same question was asked in the form of an issue on the BAZEL build
system Github repository to add the support of building Lint rules in BAZEL. To that issue, the
reply from the maintainers side was: “currently there are no plans to support Android Lint
for BAZEL”. Reference for the conversation: here. Hence, officially there’s no support to use
the Android Lint tools for the BAZEL build system. We have to use Gradle for building it. There
might be some hack to use it with the BAZEL build system (although there’s no info about it on
the internet) but using some hackish way to implement the checks for this project which isn’t
supported officially doesn't seem appropriate in the long run.

● Another problem with the custom Android Lint rules is that it has no documentation of its APIs
currently. Its documentation is released only recently (in the month of March this year), and
that too is not complete. There’s not much description of its APIs in it. This will lead to many
problems in developing the custom lint rules, because of no proper documentation and
resources, we might end up into some trouble while trying to develop the custom lint checks.
Maintaining it in the long run may also lead to some additional costs because of very few
resources available, only those who have some prior experience and very-decent knowledge
on custom Lint rules can maintain the custom lint checks written in Android Lint for this project.

Hence, because of no official support for the BAZEL build system, no or very less
documentation, very less resources, the approach of using Android Lint Lint was rejected for
this project.

http://tools.android.com/tips/lint-custom-rules
https://github.com/tnorbye
https://groups.google.com/g/lint-dev/c/b-Rr26tWJcE/m/bRAFLjAzAQAJ
https://github.com/bazelbuild/bazel/issues/5643#issuecomment-458013409

Technical Design

Note:
● The implementation algorithms mentioned in the later sections of the proposal are not

final. They might need a second thought/revision before finally implementing them in the
actual codebase so as to optimize them to the best extent possible.

● To make them highly optimized, further revisions might be done to them during the
coding period under the guidance of the mentors.

● Here to demonstrate the implementation of checks, python scripts have been used.
However as per the actual Project Plan, the final scripts will be written in either Kotlin or
bash. Python is just used for demonstration purposes only.

Architectural Overview:
This project involves extensive use of Github Actions to implement the custom static checks and
run them during the CI/CD workflow.

Understanding how the static_checks.yml workflow gets triggered:

name: Static Checks

on:

workflow_dispatch:

pull_request:

push:

branches:

- develop

● The name of this workflow is “Static Checks”
● This workflow gets triggered on the events: workflow_dispatch, pull_request and

push (to the develop branch)
Note: Here workflow_dispatch is added so that we can also trigger this workflow
manually.

This project has been broken down into three subtasks and for achieving every subtask, the
respective architectural overview is as follows:

Subtask-1: Ensuring XML style enforcement

For this, the project will make use of the Github super-linter
The lint checks for the XML files will run in the Github Actions workflow.

https://github.com/github/super-linter

For running this check in the CI/CD workflow the static_checks.yml file will be modified to
perform the linting of the XML files.

workflows
┣ build_tests.yml
┣ main.yml
┣ static_checks.yml (Modification)
┣ unit_tests.yml
┣ workflow_canceller.yml

File-tree overview

Subtask-2: This subtask will comprise of implementing these checks

1. Ensuring future checks on file names
2. Ensuring future checks on file contents
3. Verifying all production files have a corresponding test file
4. Verifying activities have accessibility labels
5. Verifying that TODOs correspond to current, open issues on GitHub
6. Ensure KDocs are present for every non-private class, method, and field (even trivial

ones).
7. Ensure activities/fragments/views can't be used outside of the app module, or in testing

To implement these checks, one file will be added:
● A custom script (Preferably Kotlin/Bash) in the scripts directory

One file will be modified:
● The static_checks.yml in the .github/workflows directory has to be modified to add the

code to run the new script checks

-scripts
┣ custom_script (Addition)
-.github
┣ workflows
┣ static_checks.yml (Modification)

File-tree overview

All these checks will run on Github Actions workflow via the static_checks.yml file.
Along with the current static checks, this workflow file will run the new script custom_script in
the workflow environment.

The custom_script is a script (Preferably Kotlin) which consists of functions to implement the
mentioned custom checks.
Overview of how the custom checks will run in the CI environment (Github Actions):

An overview of the main functions in custom_script:

function to ensure future checks

on Filenames

def generic_regex_matcher_filename():

function to ensure future checks on File

contents.

def generic_regex_matcher_filecontent():

function to check the usage of any Non-RTL

support attribute (say marginLeft)

def attribute_usage_checker():

function to verify that test files are

present for every production file

def test_files_present_checker():

function to ensure activities have accessibility labels

def activity_accesbility_label_checker():

function to ensure that every TODO

corresponds to current open issue on Github

def todo_open_issue_verifier():

function to ensure that KDocs are present for every

non-private class, method and field

def kdoc_checker():

function to ensure that activities/fragments/views can't be used

outside of the app module, or in testing

def afv_layer_checker():

Subtask-3: Ensure that no issue is closed without its corresponding
TODO being addressed

To implement this check, two files will be added as follows:
1. issue_todo_checker_script in the scripts directory
2. issue_closed.yml in the .github/workflows directory

-scripts
┣ issue_todo_checker.py (Addition)
-.github
┣ workflows
┣ issue_closed.yml (Addition)

The issue_closed.yml is a workflow that will be triggered whenever any issue is closed, it
will run the issue_todo_checker_script and will pass the ${{

github.event.issue.number }} as a command line argument to the script.
This script verifies that the corresponding TODO for this issue has been addressed. If it founds
that the TODO for the issue hasn’t been addressed then it will reopen the issue (along with a
comment added) and in the end it will fail the issue_closed.yml workflow

An overview of the main functions of issue_todo_checker_script:

function to walk over the codebase and check that if any TODO is

present corresponding to issue provided in the command line argument (

sys.argv[1])

def todo_crawler(issue_number):

function which makes a PATCH request to reopen the issue

def reopen_issue(issue_number):

Implementation Approach

To implement the script and the workflow files to run the scripts during the CI/CD workflow, the
code samples are as follows:

1. Ensuring XML style enforcement:

Note for the reviewers:

When we search for the linting options for the XML files, there appears only to be two possible
best solutions which work during the Github Actions workflow.

1. Using Github Super Linter (which uses xmllint to lint the Xml files)
2. Using Android Lint

The main advantage of using Android Lint over Github Super Linter for linting the XML files is
that it offers tons of lint checks when we compare it to Github Super Linter.

Both AndroidLint and Github Super Linter were run on the codebase to get a comparative
study of all the lint errors reported by both of them.

Lint errors/warnings reported by AndroidLint: Workflow link: here
● MissingContentDescription check
● UnusedResources check
● HardcodedText check
● OldTargetApi check
● VectorRaser check (warns limiting vector sizes to 200x200 to keep icon drawing fast)
● LockedOrientationActivity check
● Typos check
● Use CompoundDrawables check
● and many more ...

Lint errors/warnings reported by Github Super Linter: Workflow link: here
● No error/warning was reported.

Conclusion: Android Lint checks are much more powerful when compared to xmllint
(Github Super Linter). On one side Android Lint reported almost 10 errors/warnings
and on the other side xmllint didn’t report even a single error/warning.

But for our project, there are some problems associated with using Android Lint in the CI
workflow.
Android Lint can be run by two methods:

1. By invoking the lint task using the gradle wrapper (Reference: here)
2. Running Lint as a standalone tool. (Reference: here)

Since, we will completely migrate to Bazel in some time so the first option is of no use. Hence,

https://github.com/Sparsh1212/oppia-android/runs/2290001434?check_suite_focus=true
https://github.com/Sparsh1212/oppia-android/runs/2248571654?check_suite_focus=true
https://developer.android.com/studio/write/lint#commandline
https://developer.android.com/studio/write/lint#standalone-lint

we have to use the second option i.e. to by running Lint as a standalone tool.

Now, we have to run the lint checks in the Github Actions workflow, so first we have to set up
the Android SDK tools in the workflow environment.
For achieving this the only Github Action I found that seems to work is: setup-android

Now, when I tried to run the Android Lint as a standalone tool over the codebase using this
Github Action,
It throwed this error:
Error: build.gradle: Error: "app" is a Gradle project. To correctly
analyze Gradle projects, you should run "gradlew lint" instead.
[LintError]

This error tells us that, to run lint on a gradle project, we must have to use the gradle wrapper.
if we would run lint using a standalone tool it will give this error.
To find a fix for this error, I searched for a solution on stackoverflow. Here is the link to it.
The solution suggests a hacky approach i.e. what it says is to first delete the gradle files from
the repository, perform the lint checks and then again add the gradle files back to the repo
once we are done with the linting part.
I applied the similar approach and here’s the link to the code.
Well, the solution works too but here are some associated problems with it:

1. Because of deleting the gradle files, the linter started reporting the following error:
Class referenced in the layout file,
androidx.constraintlayout.widget.ConstraintLayout, was not found in the
project or the libraries [MissingClass]

Well, we can actually suppress this error/Issue by changing its severity from ERROR to
IGNORE in the lint.xml file. More reference on this: here
So, I did the similar thing by adding a lint.xml file with this code:

<?xml version="1.0" encoding="UTF-8"?>
<lint>
<!-- Disable the given check in this project →
<issue id="MissingClass" severity="ignore" />
</lint>

● But unfortunately that didn’t work. The linter again reported the same error. Link to the
workflow: here. This seems to be a problem because of the Github Action that we are
using. Because as per the Android Lint documentation this approach to suppress the
Lint error must work, and there seems no reason to why it shouldn’t work here, so it is
most likely a problem with this Github Action.

● Another problem I observed with this Github Action was that, when the Lint is reporting
ERRORs the workflow should fail, but here the workflow isn’t failing in the end
despite the Linter throwing errors. This seems another problem with this Github Action.

Conclusion: Among the two options for linting the XML files, Android Lint is undoubtedly a
better option than Github Super Linter, but for our case since we can’t use the gradle wrapper

https://github.com/android-actions/setup-android
https://stackoverflow.com/questions/62149318/how-do-i-run-standalone-lint-from-android-sdk-tools-on-a-gradle-project
https://github.com/Sparsh1212/oppia-android/blob/test-android-lint/.github/workflows/android_lint.yml
https://developer.android.com/studio/write/lint.html#sample-lint.xml-file
https://github.com/Sparsh1212/oppia-android/actions/runs/726865999

because of shifting to Bazel in some time we have to use lint as a standalone tool during the
Github Actions workflow, but here we saw that, there are some problems associated with the
Github Action which sets up the Sdk Tools. And this is the only Github Action present which
somehow works. There are no other Github Actions to achieve this or even if there are, they
don't seem to work.

Also, there is no option to enforce the team’s style guide (oppia-android Style guide) in any of
the two options. It seems like it is only a IntelliJ specific thing. And no possible linting solution
gives us the customizability to enforce this style guide.

So, this is actually a problematic situation because on one side we have Github Super
Linter which performs very few lint checks and on the other side there is Android Lint,
which in our case is associated with the problems as mentioned above. Also, I have
researched thoroughly and it seems like there are no other possible lint options for the
Xml files other than these two that work during the Github Actions workflow. Since
both the possible solutions are having these associated problems with them, I think
that this is the case where the oppia-android team has to make some critical decisions
on what should be done.

In the proposal I am continuing with the Github Super Linter approach to lint the Xml
files (but we do have to compromise on the no. of checks that it performs) because the
Android Lint solution is a hacky one and that too has many problems associated with
it.

● The project makes use of Github Super Linter to perform the linting of the XML files.
● This linter works during the CI workflow.
● It is a collection of several linters, but since we need only the XML linter for our use case

because we already have linters present for the other types of the files, hence I have
customised the workflow file so that, the Github Super Linter only lints the XML files.

Workflow code to run the Github Super Linter to lint the XML files during the CI workflow:

- name: Lint Code Base
uses: github/super-linter@v3
env:
VALIDATE_ALL_CODEBASE: true
VALIDATE_XML: true
DEFAULT_BRANCH: master
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
FILTER_REGEX_INCLUDE: .*app/.*

I intentionally made some Xml syntax errors in the layout files to check what all errors the Github
Super Linter is able to catch.

https://github.com/oppia/oppia-android/wiki/XML-code-style-format

Here is a list of all the errors that the linter was able to catch:

● Intentionally two root elements were put in one of the Xml files and the linter caught it
successfully.

● The XML Prolog (<?xml version="1.0" encoding="UTF-8"?>) was intentionally
put at the end of the Xml file and the linter was able to identify this issue.

● For one of the elements, the closing tag was missing and the linter successfully caught
it.

● The same attribute was used twice for an element and the linter reported this error.
● In one of the elements the closing tag was improper (“/” was missing) and the linter was

able to catch this.
● In one of the elements the case of the closing tag was made different from the opening

tag and the linter was able to catch this syntax error.
● The linter also reported the illegal character (“<”) used in the Xml elements.
● It also checks for the correct syntax of the comments in Xml files.

Snapshots of the workflow for reference:

Link of the workflow: here

2. Ensuring future checks on file contents

Implementation Algorithm:

● First we have to create a list of all the prohibited attributes (say
noRtlSupportAttributes) that we want to check for in the XML files.

● The next step is to iterate through the files and check if the file is an XML file by checking
the file extension.

● The next step involves parsing the XML file to a XML tree so that we can iterate through
the elements in the tree.

https://github.com/Sparsh1212/oppia-android/runs/2391593413?check_suite_focus=true

● Using the element iterator we have to traverse through each and every element in the
root tree, its sub trees, their sub trees and so on.

● The final step would be to check that for every element, extract the list of all its attributes
and check that if any attribute belongs to the list noRtlSupportAttributes, if true
then log the details of the element for which the violation was found, after doing this for
every element for which the violation occurred, fail the script check in the end with the
exit code 1 (so as to fail the workflow)

● We can also filter this by folder too. It is necessary because this check is helpful for the
layout/*.xml files whereas for colors.xml it is not much helpful. To filter by folder, we just
have to change the target directory path (where it scans/looks for XML files) in the
function.

Sample Implementation in Python:

def attribute_usage_checker():

target_dir = './app/src/main/res'

global problem_flag

noRtlSupportAttributes = ['marginLeft', 'marginRight', 'paddingLeft'

, 'paddingRight']

for (root_dir_path, sub_dirs, files) in os.walk(target_dir):

for file in files:

if file.endswith('.xml'):

try:

accessibilityTree = \

ET.parse(os.path.join(root_dir_path, file))

except:

continue

for elem in accessibilityTree.iter():

for attrib in elem.attrib:

for prohibitedAttrib in noRtlSupportAttributes:

if attrib.endswith(prohibitedAttrib):

problem_flag = True

print (prohibitedAttrib \

+ ' usage found in: ' + init_path \

+ os.path.join(root_dir_path,

file)[1:])

Note: This function currently checks for the usage of four prohibited attributes, if we want to
check for any other attribute then, we just have to add that attribute to the
noRtlSupportAttributes list. This way adding more checks in the future would be easy
because we just have to add an extra item to the list.

3. Ensuring Generic Regex pattern matching against file names:

Implementation Algorithm:

● To implement this particular check we have to supply the two Generic Regex
patterns to the function.

● Namely Matching file paths generic regex (say matchingFilePathRegEx) and
Prohibited name generic regex (say prohibitedNameRegEx).

● Now how the function will work is that it will iterate through the files of the
codebase and will match the file path patterns as per the provided
matchingFilePathRegEx. What this will result in the end is that we will finally have
a matching set of files on which we desire to perform the file name check.

● Now once we have got the matching set of files, we would then iterate over the
file names to match them against the prohibitedNameRegEx.

● If any of the filename matches with the prohibited RegEx then we will fail the
workflow in the end along with proper logging of the details where all it failed.

● This generic Regex pattern matching will apply for every type of files present, we
just have to pass the matchingFilePathRegEx to make it search for the
desired type of files that we want to check.

Example usage:

● For example: We can make use of this Generic Regex pattern matcher to check
that the XML files are snake_case.

● By providing xmlFileRegEx and notSnakeCaseRegEx to the generic function
mentioned above. It will iterate through the codebase, will find all the XML files
based on the xmlFileRegEx file path pattern and then on the matched set of files
it will apply the notSnakeCaseRegEx check to check that if the file naming is not
done as per the snake_case convention.

Sample Implementation of generic regex name matcher in Python:

def generic_regex_matcher_filename(filePathPatternRegEx,

prohibitedFileNameRegEx):

matching_files = []

for (root_dir_path, sub_dirs, files) in os.walk(target_dir):

for file in files:

currentFilePath = os.path.join(root_dir_path, file)

if re.match(filePathPatternRegEx, currentFilePath):

matching_files.append(currentFilePath)

for filePath in matching_files:

fileName = file_name(filePath)

if re.match(prohibitedFileNameRegEx, fileName):

print ('Prohibited file naming for file: ' + filePath)

4. Ensuring Generic Regex pattern matching against file contents:

Implementation Algorithm:

● To implement this particular check we have to supply the two Generic Regex
patterns to the function.

● Namely Matching file paths generic regex (say matchingFilePathRegEx) and
Prohibited content generic regex (say prohibitedContentRegEx).

● Now how the function will work is that it will iterate through the files of the
codebase and will match the file path patterns as per the provided
matchingFilePathRegEx. What this will result in the end is that we will finally have
a matching set of files on which we desire to perform the file content check.

● Now once we have got the matching set of files, we would then iterate over the
file line by line.

● For every line string of the file, if the string matches with the
prohibitedContentRegEx pattern, then we will fail the workflow (with logging
the details of all failures)

Example usage:

● For example: We can make use of this Generic file content RegEx matcher to
implement the attribute_usage_checker() function.

● Note that, earlier we implemented this function by first parsing the XML file and
then traversing over the XML tree generated and then many other steps involved
further.

● But using the generic RegEx matcher, we can achieve the same functionality by
just passing the two RegEx patterns to the generic matcher. First is the XML
layout file pattern Regex (say layoutXmlRegEx) and the second is the prohibited
attribute RegEx (say prohibitedAttrRegEx). That's it! The rest of the job will be
done by the generic Regex content matcher that we created. It will iterate over
the codebase to first create a set of all the layout XML files and will then scan the
XML files to match the prohibited attribute RegEx pattern.

● This shows how easy it will be to add the future file content checks.

Sample Implementation of generic regex file content matcher in Python:

def generic_regex_matcher_filecontent(filePathPatternRegEx,

prohibitedContentRegEx):

matching_files = []

for (root_dir_path, sub_dirs, files) in os.walk(target_dir):

for file in files:

currentFilePath = os.path.join(root_dir_path, file)

if re.match(filePathPatternRegEx, currentFilePath):

matching_files.append(currentFilePath)

for filePath in matching_files:

f = open(filePath, 'r')

for linestr in f:

if re.match(prohibitedContentRegEx, linestr):

print ('Prohibited content usage found in: ' + filePath)

5. Verifying activities have accessibility labels

Implementation Algorithm:

● The first step will be to provide the path of the AndroidManifest.xml to the XML
parser so that the XML file could be parsed into an XML tree and then we could traverse
it.

● In the XML tree generated we then have to iterate over every activity element and
check the following conditions.

● Not every activity has to be checked for the accessibility labels, the Test Activities are not
meant for the general users of the app and hence, we don’t need to do the accessibility
label check for those activities. So we have to make sure that these activities are
skipped for the check.

● The way we will skip them is by checking the name attribute of the activity element. If the
value of the name attribute includes the testing package then it implies that the
corresponding activity is a Test activity and hence we will skip it.

● For the activity elements which do not have the testing package in their name attribute,
those are the ones for which the check needs to be done and we will ensure that they
have labels present or not by just checking whether they have the label attribute
present in the attributes list or not.

● If not then that implies the corresponding activity does not have the accessibility label
present and we will then log the detail for this activity element so as to provide the details
of which activity failed this check.

● In the end, just like the previous cases we will fail the workflow if the check fails for any
of the activity.

Sample Implementation in Python:

def activity_accesbility_label_checker():

global problem_flag

accessibilityTree = ET.parse('./app/src/main/AndroidManifest.xml')

accessibilityRoot = accessibilityTree.getroot()

for neighbor in accessibilityRoot.iter('activity'):

if not 'testing' in neighbor.attrib.get(name_attrib):

if not label_attrib in neighbor.attrib:

problem_flag = True

print ('No accessibility label found for ' \

+ neighbor.attrib.get(name_attrib).split('.')[-1])

6. Verifying all production files have a corresponding test file

Implementation Algorithm 1:

1. Every prod. File is present in its corresponding sub package.

Now here the question arises: How we will be find these prod files:

● The answer to this is that the production files are spread across different
modules. But we don’t need to have a Test file for every type of file. For example:
in the app module we don’t need to have a Test file for “TopicActivityPresenter” or
for “ViewPageAdapter”.

● So to find the correct set of prod. Files (the prod. Files for which we actually need
to check for corresponding Test files present) some one-time manual work would
be required. By one-time manual inspection, we first have to create a list of all
those types of files which we think should be checked for the corresponding
Test files present. For ex: Activity files, Fragment files, Controllers, and so on.

● After figuring this out, we will have to create a generic regex pattern(s) (either a
single RegEx which covers all the cases or a list of Regex patterns for each type)
to match the pattern of these types of files.

● Once we are ready with the generic Regex pattern which matches those files
which needs to be checked for the presence of a Test file in the codebase, we
can then simply iterate throughout the codebase and will apply this Regex on the
file paths to get the list of all the desired prod files which needs to be checked for
their corresponding Test files. Then we can move to the next step of the
algorithm.

● We first have to collect all the prod file names in a list (say prod_files_list)
by traversing through the codebase and checking if the file path pattern matches
the prod file Regex pattern and then appending the file name in this list if it
matches.

● Then we have to iterate over all the files in the test directories and append the
name of all the Test files in a list (say test_files_list).

● After completing step-1 and step-2, we will have two lists i.e prod_files_list
and test_files_list in which the former contains the names of all the prod
files and the latter contains the names of all the test files in the codebase.

● The final step involves checking that for every file_name present in the
prod_files_list, file_name + ’Test’ must exist in the
test_files_list.

● If for any file this is not true, then that implies that the particular prod file does not
have a corresponding Test file present in the codebase. And hence, after logging
the details for the particular file, we will fail the workflow if this check is not true
for any of the files.

● Hence this approach will work even for the subpackages having multiple files
because we are collecting all the prod files.

Running these checks on CI:

Implementation Algorithm:

● To run the scripts in the CI environment, we first have to mention the events for which
the workflow should get triggered

● The next step would be to define the job and the first step of the job is to checkout the
repository

● The next step involves changing the directory to the scripts directory and then run the
desired script.

● For example: Here we are running the Python script, so before running the script we also
have to setup Python in the workflow and then run the Python script, similarly we can
adopt this procedure for any other script say bash/kotlin or any other scripts.

Sample workflow implementation to run Python script:

name: Custom Static Checks

on:

workflow_dispatch:

pull_request:

push:

jobs:

run-custom-linter-job:

name: Lint using custom Python Walker

runs-on: ubuntu-latest

steps:

- name: Check-out the repo under $GITHUB_WORKSPACE

uses: actions/checkout@v2

- name: Set up Python 3.8

uses: actions/setup-python@v2

with:

python-version: '3.8'

- name: Run walker

run: |

cd scripts

python custom_linter.py

Working Proof:

● Intentionally, marginLeft and marginRight were used as attributes in one of the XML
files to check the custom lint checks, and it successfully caught those during the
workflow.

● The filenames for many of the kotlin files were not as per the camelcase convention. The
custom lint checks made, were successfully able to detect the file naming violation.

● The accessibility labels were missing for many of the activities (meant for the general
users of the app). The custom lint checks identified those activities and reported them.

Link to the workflow: here
Link to the commit: here

7. Ensure KDocs are present for every non-private class, method, and
field (even trivial ones)

Implementation Algorithm:

1. Iterate through the codebase and check if the file is a Kotlin file.

2. The next step involves parsing the Kotlin file and then while traversing through the AST
check if elementType == CLASS is true.

3. The next step will be to check if the class is a non-private class. That could be done by
accessing the child property of the node element. In this we have to check if the child
has the MODIFIER_LIST, and in the MODIFIER_LIST check if it has the children’s
elementType as private present. If not then, we have to check for the presence of
KDoc for this class, since it's a non-private class.

4. To check if KDoc is present we just have to check whether it has the elementType ==
KDoc present in its children.

5. The name of the library that will be used to parse the kotlin files to AST is kotlinx/ast
The Github Link of the library can be found: here.

Note: This approach was to check the presence of KDoc for a non-private class, we could extend this to
functions and fields also.

https://github.com/Sparsh1212/oppia-android/runs/2317282079?check_suite_focus=true
https://github.com/Sparsh1212/oppia-android/commit/ef3b0b3712c9bf292bc22243b4ba2a44f05e178a
https://github.com/kotlinx/ast

8. Verify that TODOs correspond to current, open issues on GitHub

Implementation Algorithm:

Approach for scraping the current open issues:
● In this approach we will make use of Github CLI to collect the issues in the Github

Actions workflow.
● GitHub CLI comes pre-installed in GitHub Actions virtual environments. Hence, we can

directly use its commands in the Github Actions workflow.
● To collect the all the open issues of our repository we will make use of the gh command:

gh issue list [flags]
● Here we will pass the flag: --limit 500 so as to fetch a maximum of 500 open issues.
● If we won’t pass this flag then by default it results in displaying the recent 30 open

issues. But for our case we want all the open issues hence, we will pass 500 to get all of
them.

● Note that we can also limit it to 1000 or 2000 to be on a safer side, here 500 is just used
as an example.

● This results in displaying all the open issues of the repository. We can then feed this
issue data to the script by saving the output of the above command to a file.

POC of collecting all the open issues by the optimized approach:

Sample workflow code to collect the open issues:

steps:

- uses: actions/checkout@v2

- name: List open issues

run: |

gh issue list --limit 500

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

Workflow Results:

https://github.com/cli/cli

At the time of running this workflow, there were a total of 399 open issues in the repository.
And we can clearly see that it reported the most recent issue #3106 at line no. 6 of the workflow
run and the least recent open issue #18 at line no. 404.
Since, at every new line an issue is displayed so we can count the total no. of issues displayed
as 404 - 6 + 1 = 399 which matches exactly with the no. of open issues in the repository. Hence,
we can conclude that this approach works correctly.

Link to the workflow: here.

● The next step is to extract all the TODOs present in the codebase by using the RegExp
pattern of TODOs. We can achieve this by iterating on every line of the file, and check if
the line string matches the TODO regex.

● For the line string which matches the TODO regex, the next task would be to extract the
issue number from the string. We can achieve this easily by the string functions or
maybe from RegExp patterns. And then append the TODO issue numbers to the
todo_issues_list

● The final step will be to verify that every issue no. present in the todo_issues_list
should also be present in the open_issues_list. And in the end fail the workflow if
atleast one TODO didn’t pass the check.

Sample Python code for extracting the TODO issues from the codebase:

def todo_extractor():

target_dir = './'

to_do_list = []

issues = []

keyword = 'TODO'

regPattern = '^(?!.*([\'"]).*\\b' + keyword + '\\b.*\\1)(?!.*\\b' \

+ keyword + '\\.\\w)(?!.*\\b' + keyword + '\\s*=).*\\b' \

+ keyword + '\\b'

for (root_dir_path, sub_dirs, files) in os.walk(target_dir):

for file in files:

if file.endswith('.kt'):

filePath = os.path.join(root_dir_path, file)

f = open(filePath, 'r')

for x in f:

if re.match(regPattern, x):

x = x.replace('\n', '')

to_do_list.append(x)

to_do_list = list(set(to_do_list))

for todo in to_do_list:

https://github.com/oppia/oppia-android/runs/2398041400?check_suite_focus=true

issues.append(issue_extractor(todo))

issues = list(set(issues))

print (issues)

Working proof of this function:

Here, we can see that this function extracted the list of all issues from the TODOs present in the
kotlin files of the entire codebase. Note that this extractor function could extract the TODOs for
every type of file, but for this example it is limited to kotlin files only.

8. Verify that the TODO of the closed issue has been addressed

Implementation Algorithm:

1. The first step involves triggering a workflow on the event issue closed.

2. The workflow then passes the issue no. ${{ github.event.issue.number }} of
the closed issue to the script (via command line argument), where the task of the script
will be to check that if the TODOs of the passed issue no. is still present in the codebase
or not.

3. To check that the TODOs of the passed issue no. is still present in the codebase we will
use the same algorithm like we did in the previous case where we iterate through the
files, then in every file iterate through every line and match the TODO RegExp and then
extract the issue number from the TODO. Then after creating a list of all TODO issue
numbers, we will verify that if ${{ github.event.issue.number }} in
todo_issues_list .

4. If true, then reopen the issue by following this approach:

● We will make use of the Github CLI command in the Github Actions workflow to reopen
the issue.

● GitHub CLI comes pre-installed in GitHub Actions virtual environments. Hence, we can
directly use its commands in the Github Actions workflow.

● To reopen the issue we will make use of the gh command:
gh issue reopen {<number> | <url>}

● We can access the issue number through : ${{ github.event.issue.number }}
● Combining the above two points, we can simply reopen the issue when the check fails in

the CI workflow with the single command:
gh issue reopen ${{ github.event.issue.number }}

Flow diagram representing the working of the workflow

Adding Comment before reopening the issue:

● Before sending the PATCH request to reopen the issue, we will first send the post
request to this endpoint:
“https://api.github.com/repos/oppia/oppia-android/issues/{issue_n
umber}/comments” to add a comment like this: “This issue has been reopened
because of unaddressed TODOs present” and then also adding the info of the
files/LOCs where the unaddressed TODOs for this issue are found.

● We can get the info of the files/LOCs by simply maintaining a list while searching for the
TODOs in the codebase. And then adding the file-name/file-path of the file containing the
matched TODO and the line no. of the TODOs location to this list as soon as we
encounter a matched TODO. And while sending the post request to add a comment, we
can simply include this list in the body of the comment.

https://github.com/cli/cli
https://api.github.com/repos/oppia/oppia-android/issues/%7Bissue_number%7D/comments
https://api.github.com/repos/oppia/oppia-android/issues/%7Bissue_number%7D/comments

Sample workflow implementation to pass the closed issue to a script:

name: Verify TODO Addressed

on:

issues:

types: [closed]

jobs:

verify-todo-addressed:

name: Verify that TODO is addressed

runs-on: ubuntu-latest

steps:

- name: Check-out the repo under $GITHUB_WORKSPACE

uses: actions/checkout@v2

- name: Set up Python 3.8

uses: actions/setup-python@v2

with:

python-version: '3.8'

- name: Run Issue TODO checker

run: |

cd scripts

python issue_todo_checker.py ${{ github.event.issue.number }}

Sample Implementation of Python script:

def todo_crawler(issue_to_check):

target_dir = './'

to_do_list = []

issues = []

keyword = 'TODO'

regPattern = '^(?!.*([\'"]).*\\b' + keyword + '\\b.*\\1)(?!.*\\b' \

+ keyword + '\\.\\w)(?!.*\\b' + keyword + '\\s*=).*\\b' \

+ keyword + '\\b'

for (root_dir_path, sub_dirs, files) in os.walk(target_dir):

for file in files:

if file.endswith('.kt'):

filePath = os.path.join(root_dir_path, file)

f = open(filePath, 'r')

for x in f:

if re.match(regPattern, x):

x = x.replace('\n', '')

to_do_list.append(x)

to_do_list = list(set(to_do_list))

for todo in to_do_list:

issues.append(issue_extractor(todo))

issues = list(set(issues))

for issue in issues:

if issue == issue_to_check:

print('TODO not addressed for issue no. '+issue_to_check)

return True

return False

if(todo_crawler(sys.argv[1])):

comment_and_reopen_issue(sys.argv[1])

sys.exit(1)

else:

sys.exit(0)

9. Ensure activities/fragments/views can't be used outside of the app module, or
in testing

Implementation Algorithm:

● We can implement this check with the help of the generic Regex File content
matcher. What basically we will be doing here is that, we will prohibit the
Android imports for View, Fragment and Activity outside the **/app/ file
path.

● The way it will work is that we will pass the two regex patterns to the generic file
content regex matcher. The first regex pattern will be of the file path pattern
which excludes the app module (say notAppFilePathPatternRegex). This
regex pattern will lead to a set of files outside the app module. Because we want
to check for imports outside the app module.

● The second RegEx pattern will be the Android Activity/View/Fragment import
RegEx pattern (say importAVFRegEX). The way all this will work is that, first the
generic matcher will get us a list of all the desired files outside the app module
which we want to check for, and then it scans these files against the import
RegEX pattern that we have created. If it matches any of the import patterns then
that implies Activity/View/Fragment has been used outside of the app module,
hence we will fail the workflow.

Rejected approach to implement this check:
● For any module (except the testing and app module) in order to use the

activities/fragments/views from the app module it has to include the app library from
the app module as a deps.

● So if any module (say x) wants to use any activity/fragment/view from the app module,
then it must have to include “//app:app” as a deps in its BUILD.bazel file.

● Hence, the algorithm to achieve this check is to iterate over the BUILD.bazel files of
the modules (except testing and app) and then check if “//app:app” is used as a
deps or not.

● If yes then that implies that the activity/fragment or view has been used outside of the
app layer/module. Thus, after logging the details of which module(s) failed this check,
we have to fail the workflow in the end if atleast one of the modules fails this check.

Reason of rejection:
● The oppia-android project will soon migrate from having a large module-level target so

//:app will be deleted, hence this approach won’t work for that case.

Third-party Libraries*

This project does not require the addition of any new third party libraries. However, it will add a
linting tool for the XML files (in the static checks).

Testing Approach

We will add some automated tests for the scripts to ensure that they are working correctly. We
have to verify that the script output is matching with what we expected against a test file. We
will need to do this for every script check present. Some tests . PRs might also be needed for

this. We also have to do some manual testing to demonstrate that the CI checks work as
expected and the script checks are working correctly and are not reporting any faulty error.

Milestones

Milestone 1

Key Objective: The following checks now run during the Github Actions workflow:
● XML files linting support improved by the integration of an XML Linter.
● Support for generic Regex pattern matching against file names and file contents

introduced.
● Integrate script check to verify test files present for the production files.
● Introduced check for verifying that the activities are defined with accessibility labels.

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

Become familiar with the scripting syntax
of the scripting language finalized for the
project (Kotlin/Bash)
[During the Community Bonding Period]

None May 17,
2021

June 7,
2021

1.1 PR that fixes all the lint errors reported by
the tool (by first running the lint checks
locally)

None June 10,
2021

June 13,
2021

1.2 Integrate XML file linter tool to the project. 1.1 June 13,
2021

June 16,
2021

1.3 Introduce support for generic Regex
pattern matching against file names and
file contents

None June 23,
2021

June 27,
2021

1.4 Integrate script check to verify that test
files are present for the production files

1.3 July 01,
2021

July 05,
2021

1.5 Integrate script check to verify the
activities are defined with accessibility
labels.

None July 05,
2021

July 08,
2021

Milestone 2

Key Objective: The following checks now run during the Github Actions workflow:

● Added check to ensure that all the TODOs correspond to current open issues on Github
and all those issues have been reopened whose TODOs were not addressed and
removed/updated those TODOs.

● For Issue status changes, verification added to check all the corresponding TODOs are
addressed. Failure results in the issue being reopened with a comment mentioning all
unaddressed TODOs.

● Introduced KDoc enforcement
● Script check added to ensure activities/fragments/views can’t be used outside of the

app module.
● All the documentation changes are done providing the information of the new checks

added in the development workflow

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 Introduce script check to verify all TODOs
correspond to open issues

None July 17,
2021

July 21,
2021

2.2 Reopen all the issues whose TODOs are
not addressed or remove/update those
TODOs

2.1 July 22,
2021

July 25,
2021

2.3 Introduce check to verify TODOs
addressed for closed issue

2.1 and 2.2 July 26,
2021

July 29,,
2021

2.4 Introduce script check to ensure
activities/fragments/views can’t be used
outside of the app module

1.3 August 01,
2021

August 05,
2021

2.5 Introduce KDoc enforcement 1.3 August 07,
2021

August 10,
2021

2.6 Make all the documentation changes All PRs August 10,
2021

August 13,
2021

Optional Sections

Additional Project-Specific Considerations

Privacy

No this project does not collect any new user data or change how user data is collected.

Security
No, this feature does not provide any new opportunities for users to gain unauthorized access to
user data or otherwise impact other users' experience on the site in a negative way.

Accessibility (if user-facing)

No, this project doesn't have any user facing components.

Documentation Changes*

Yes, we will be requiring some documentation changes for this project. We have to update the
static checks readme to include the XML Linter and the custom checks developed, and also info
about the new TODO verification system integration.

Ethics*

This project makes the process of code reviewing faster, so that the developers can save time
spent in fixing the lint and other similar errors during code reviews, and instead utilize it on
reviewing the actual feature implementation or bug fix.

Future Work

There are many File Content checks that could be added in the future. We can plan to research
more on them and then work on integrating them in the static analysis checks. Also, it was a
great experience contributing to the oppia-android project and I would love to continue
contributing to the project as much as I could and also provide my support to the team in any
way possible.

