
Section 1: About You

What project are you applying for?
Celebrating learners’ accomplishments.

Why are you interested in working with Oppia, and on your chosen project?
When I was first introduced to the field of web development a few months ago, I soon discovered that one
of the best ways to learn new things is by contributing to open source projects. While searching for
projects for the same, I came across Oppia (which is so far the first and only open-source project I’ve
contributed to).

Due to me being a newbie in terms of experience in working with the technologies used in Oppia, the
sheer number of resources and documentation available for new contributors to make use of was
certainly something that compelled me to contribute to Oppia’s development. Not to mention Oppia’s
mission of providing quality education to those who lack access to it, which I find amazing and would love
to be a part of.

All of this combined with the fact that I’d get a chance to be productive throughout my winter break was
what first got me into the Oppia project, and I’ve stuck around since thanks to the awesome community
that is trying its best to provide meaningful education to – and consequently, have an impact on the lives
of – the people who need it the most.

The reason I’ve picked this project is because I found it to be slightly on the creative side, and believe that
this is a great step in making the experience of playing through Oppia’s explorations much more enjoyable
for learners, which could potentially motivate them to invest more time into learning in general (and
particularly through Oppia). Additionally, I’ve always been rather interested in the frontend side of web
development, particularly playing around with the UI. I possess a fair amount of experience in coding in
Angular, and I believe I also have the ability to come up with practical designs to use for this project.

Prior experience
I’ve been contributing to Oppia for the past few months and am a part of the LaCE quality team. Some of
my contributions while part of the team were centered around working on the UI.

I’ve listed some of my PRs in chronological order of when they were opened, to hopefully indicate my
increasing understanding of the codebase and the practices adhered to in Oppia, as time goes on.

#14342: Replaced the sidebar on the contributor’s dashboard with a dropdown to make the dashboard
mobile friendly. Not the most impressive PR, partly due to it being an earlier one when I was still a
beginner, but helped me learn about creating customizable dropdowns, and the basics of frontend testing.
#14452: Fixed the score circle on the practice session results page. Helped me understand the
functioning of SVGs, and creating mock HTML elements to be used in frontend testing.

https://github.com/oppia/oppia/pull/14342
https://github.com/oppia/oppia/pull/14452

#14486: Implemented a new design for the search bar to make it more mobile friendly for small screen
devices.
#14527: Implemented a new design for the activity cards on the community library to make them mobile
friendly on small screen devices.
#14747: Added checks to validate explorations before they are added as chapters to a story.

Project size
This project is a medium sized one.

Project timeframe
I would prefer adhering to the default project timeframe, i.e. June 13 - September 12.

Contact info and timezone(s)
Name: Ch Vishnu Nithin Reddy
Email/Google Chat: nitinreddy226@gmail.com
Mobile no.: (+91) 70755 71557
Country and timezone: India, IST

Time commitment
13 June - 16 July: I will be able to commit around 30-40 hours/week.
17 July onwards: I will be able to commit around 20-25 hours/week as my classes would’ve begun by
then.
I am also willing to vary the time I put in based on the pace at which I’m making progress in the project.

Essential Prerequisites
Answer the following questions (for Oppia web GSoC contributors):

● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine.

https://github.com/oppia/oppia/pull/14486
https://github.com/oppia/oppia/pull/14527
https://github.com/oppia/oppia/pull/14747
mailto:nitinreddy226@gmail.com

● I am able to run one suite of e2e tests on my machine.

Other summer obligations
I do not have any summer obligations other than my classes which will resume on the 17th of July.

Communication channels
I prefer communicating over email or google chat for general discussions or resolving small queries, and
regular weekly google meets to discuss my progress on the project (and discuss and solve potential
blockers, should I encounter any), at the email ID mentioned above.

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one)

N/A

Target Audience Learners of Oppia.

Core User Need ● As a learner, I currently have no indication of how much progress I’ve made
through a chapter or when I have completed a checkpoint.

● As a learner, once I reach the end of a chapter, the further learning
recommendation I receive is limited, and is also (visually) not very prominent
on the page (represented as a single line of blue colored text).

● As a logged-out learner, the sign-up section I am presented with is easy to
miss due to it being separated from the rest of the actual card content. The
same applies to the exploration recommendations provided to me when not
in story mode.

What goals do
we want the
solution to
achieve?

● Make learners aware of how much progress they’ve made whenever they
complete a checkpoint in a curated lesson, and motivate them forward.
Include a brief message that varies based on the learners’ progress.

● Congratulate learners when they make it to the end of a chapter by adding
some flair to this event (mainly using animations).

● Expand the “further recommendations” a learner receives at the end of a
chapter to include the option of practicing their newly acquired skills.

● Make the post chapter completion recommendations the learners receive
visually more “prominent” on the page so that they draw their attention.

● Reposition (and modify) the sign-up section and the exploration
recommendations that appear at the end so that they are easy-to-spot for
learners.

Section 2.1: WHAT
This section enumerates the requirements that the technical solution outlined in “Section 2: HOW”
must satisfy.

Key User Stories and Tasks

Title User Story
Description (role,
goal, motivation)
“As a …, I need …,
so that ….”

Priority
1

List of tasks needed to
achieve the goal (this is the
“User Journey”)

Links to mocks / prototypes,
and/or PRD sections that
spec out additional
requirements.

1 Checkpoint
message

As a learner, I
need to see a
brief summary of
my progress
whenever I
complete a
checkpointed
state.

Must
have

The learner completes a
checkpointed state in a
curated lesson

Desktop: A checkpoint
message slides up from
underneath the page footer
and to the side, so as to not
obstruct the card content.

The message will be
auto-dismissed after 10
seconds; it may also be
dismissed via the CLOSE
button.

Checkpoint message mocks

Link to codepen demo (now
visually outdated, but similar)
(same link as the one in the
mocks)

Mobile: A small tooltip-like
message will pop-up onto
the screen, pointing to the
lesson-info-modal button on
the footer, that would
persist on screen for 4
seconds (since the div only
consists of a fraction
indicating their progress,
this short duration should
be enough for the learner to
understand the message,
and the quick dismissal will
ensure the message doesn’t
obstruct the card content
for too long/distract the
learner).

This message would
display their progress and a
small checkpoint flag. The
learner can tap on the
lesson-info to view their
progress bar, and they’ll be
greeted with a brief
congratulatory message if
they just completed a
checkpointed state (should

1 Use the MoSCow system (“Must have”, “Should have”, “Could have”). You can read more here.

https://www.figma.com/file/r0hgwgIhxYV3P322Pu1KOb/Congratulatory-Checkpoint-message
https://codepen.io/nithin-nithin/full/LYeprbL
https://en.wikipedia.org/wiki/MoSCoW_method

have).

The checkpoint message
text should vary based on
the learner’s progress.*

Desktop: The learner may
click on “SEE MORE”/”SAVE
PROGRESS” to open up the
lesson info modal (and
save their progress if they’re
logged out).

2 Lesson-info
modal
checkpoint
highlighting

As a learner, I
should be able to
tell if I’ve just
completed a
checkpointed
state when I open
the lesson info
modal (especially
in mobile view).

Should
have

The learner opens the
lesson info modal right
after completing a
checkpointed state in a
curated lesson.

The progress bar plays out
a subtle animation of its
most recently completed
segment filling out.

They are also shown a
checkpoint message, right
under the progress bar.

Lesson-info-modal message
mock

3 End chapter
recommend
ations and
milestone
message
for chapter
completion

As a learner, I
would appreciate
being
congratulated for
successfully
making it to the
end of a chapter,
followed by being
provided with
further learning
recommendations
that I could
quickly get
started with.

Must
have

The learner clicks
“Continue” on the
penultimate state of a
chapter.

The next state loads in with
a blank card. A “check
mark” animates in, right at
the end of which confetti
shoots out from underneath
the top-nav bar
(accompanied by a
celebratory audio clip). The
confetti then fades out, and
the check mark animates
out. The rest of the content
(such as the sign-up section
in-case the user is logged
out) will be hidden during
this period.

The check mark animating
in may be skipped by
tapping/clicking the screen
while the animation is in
progress..

Lesson completion event
mocks

Link to rough codepen demo
(slightly outdated, but similar)
(same link as the one in the
mocks)

The Content of the end

https://www.figma.com/file/r0hgwgIhxYV3P322Pu1KOb/Congratulatory-Checkpoint-message?node-id=312%3A669
https://www.figma.com/file/r0hgwgIhxYV3P322Pu1KOb/Congratulatory-Checkpoint-message?node-id=312%3A669
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=0%3A1
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=0%3A1
https://codepen.io/nithin-nithin/full/rNYoMJe

exploration card slides up
and fades into place, with
the following appended to
the end of it:

● A section that
contains a brief
message
congratulating the
learner, if this was
their nth-ever
chapter to be
completed (n = 1, 5,
10, 25, 50),

● A better integrated,
dismissable
sign-up section
that shows up for
logged out users
which allows them
to log-in/sign-up
and save their
progress,

● A section
containing
clickable cards that
could lead the
learner onto the
next chapter/to a
practice session
(shows up
regardless of
whether the learner
is logged in or not),
and a button to
take them back to
the story page.

4 Recommen
dation
choice
responses

As a learner, I
should be led to a
practice
session/to the
next chapter upon
clicking the
corresponding
cards on the end
exploration
screen of chapter.

Must
have

The learner clicks the next
chapter card (if it exists)
and the next chapter of the
story is loaded in.

Desktop: Post chapter
completion recommendation
cards

Mobile: Post chapter
completion recommendation
cards

Alternatively, the learner
clicks the ‘practice your
skills’ card, and they are led
to the corresponding
practice tab for the topic.

5 Revamped
sign-up/logi
n section
(for logged
out users)
and
exploration

As a logged-out
learner, I should
be able to easily
access the
sign-up/login
section after
completing a

Must
have

The learner reaches the end
of a chapter.

Sign up section: They are
presented with a
sign-up/login section that is
better integrated into the

Mock

https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=264%3A1075
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=264%3A1075
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=264%3A1075
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=264%3A4224
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=264%3A4224
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=264%3A4224
https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=264%3A1075

recommend
ation
section

chapter, and
should also be
able to dismiss it.

I should also be
able to view and
choose between
exploration
recommendations
I receive at the
end which should
be easy to spot
and concise.

conversation-skin.

This section is now also
made dismissable by
clicking “Don’t show me
again”.

Exploration
recommendations: The
exploration
recommendations will now
appear inside the
card-container, and each
recommendation will be
represented as a compact
card just to keep the
section as a whole concise.

A small button will be
present at the bottom to
take the learner back to the
community-library.

Mock

The learner can use the
log-in/sign up buttons in the
sign-up section to perform
the required action.

The learner can use the
exploration
recommendation cards to
navigate to the exploration
of their choosing.

*Making the checkpoint message vary based on the learner’s progress is aimed at making the
checkpoint messages dynamic and keeping them from getting stale. The message will be
selected from a predefined set of messages. The benefits of this approach are as follows:
➔ The most obvious benefit is that the checkpoint messages won’t get stale for the

learner.
➔ This will work seamlessly with both existing and future chapters, and the messages

will be dynamic for all chapters right from the moment the checkpoint celebration
mechanism is put in place.

➔ These messages will be stored as i18n keys, meaning translations for these
messages can be easily obtained via translate-wiki (using translate-wiki for i18n is
something Oppia already does, so this will integrate perfectly fine).

https://www.figma.com/file/pRDxAiJE7HpcYtKsLu42Ax/Lesson-Completion-Screen?node-id=290%3A2

Technical Requirements

Additions/Changes to Web Server Endpoint Contracts

Endpoint URL Request
type (GET,
POST, etc.)

New /
Existing

Description of the request/response contract (and, if
applicable, how it’s different from the previous one)

1. learnercomple
tedchaptersco
unthandler/

GET New Returns the number of chapters completed by the learner.

Calls to Web Server Endpoints

Endpoint URL Request
type
(GET,
POST,
etc.)

Description of why the new call is needed, or why the changes to an
existing call is needed

1. explorehandler/init
/<exploration_id>

GET This call will fetch the exploration data, which includes a dictionary of
states which will be used for the following:

● Determining checkpointed states (and storing them as an
ordered list)

We need an ordered list of checkpointed states for determining:
1. when to display the checkpoint message
2. the total number of checkpointed states
3. position of each checkpoint in the exploration (its index in a

list of all checkpoints)

the latter two will be required in the progress bar.

2. story_data_handle
r/<classroom_url_f
ragment>/<topic_u
rl_fragment>/<stor
y_url_fragment>

GET This call will fetch the story summary, which will be used to determine
the next chapter in line. This next chapter will then be displayed to the
learner as a recommendation when they make it to the end of the
current chapter.

UI Screens/Components

ID Description of new UI
component

i18n
required?

Mock/
spec
links

A11y requirements

1. Checkpoint
message
component

The component that is meant
to display progress info to
the learner whenever they
complete a checkpoint.

Yes Screen Reader support (alt text
for svg elements, etc.)

2. End-chapter
check-mark and
confetti animation

An animation involving a
check-mark “filling in” and
confetti shooting out from
the top of the screen.

No Display toned-down
animations with reduced
motion to users with vestibular
motion disorders who may
have their settings set to
disable excess
motion/animations on their
screens

3. Recommendations
section at the end of
the chapter

The section that is meant to
contain the further learning
recommendations in the
form of cards.

Yes Screen Reader support (alt text
for svg elements, etc.)

4. Milestone message
section

A small section displayed on
the end exploration screen of
a chapter if this was the
nth-ever chapter completed
by the learner.

Yes Screen Reader support (alt text
for star icon, etc.)

Data Handling and Privacy
No new user data will be collected.

Other Requirements
There are no other requirements.

Section 2.2: HOW

Existing Status Quo
● The learner currently has no knowledge of their progress through an exploration, nor do

they have any indication of having completed a checkpoint, whenever they complete one.

● Additionally, making it to the end of a lesson simply presents the learner with a single
link to the next lesson, which doesn’t do a good job of drawing the learner’s attention.

● The sign-up section is also isolated from the actual card content, which may make it
easier to miss for a learner.

● Similar to the sign-up section, the exploration recommendations too are not
well-integrated into the rest of the conversation-skin.

Solution Overview

Checkpoint celebration event
This section is concerned with the congratulatory checkpoint event. This will comprise two parts
- checkpoint-celebration.component.ts and checkpoint-celebration-utility.service.ts.

Component overview - Checkpoint celebration component
➔ This will be implemented as a new component - checkpoint-celebration.component.ts.
➔ This component’s template will be placed inside the conversation-skin component.
➔ It will receive three properties as input from its parent (i.e. the conversation-skin

component):
◆ The isLoggedIn property (already present in the conversation-skin component).
◆ The initStateName property of the current chapter (of the

ReadOnlyExplorationBackendDict object, see the next question for how it will be
obtained).

◆ The states property of the current chapter (of the
ReadOnlyExplorationBackendDict object, see the next question for how it will be
obtained).
Note: The states property is a dictionary of all the states in the current
exploration, along with all their individual properties (Eg: whether they are
checkpointed or not, etc).

➔ The isLoggedIn property will be used to pick the text to be displayed on one of the
buttons in the checkpoint message div (this will be explained in detail when discussing
the visual components of the checkpoint message div).

➔ The states dictionary will be used to obtain an array of all the checkpointed states (their
names, to be specific), in the correct order (say stateListForCheckpointMessages).
This list will be used to display to the learner their progress in the checkpoint message.

➔ The init_state_name property indicates the first state of the chapter.
➔ Additionally, the checkpoint messages will only be displayed within curated lessons, i.e.

chapters, and not within community lessons (whether or not to display the messages will
be evaluated using the inStoryMode boolean within the conversation skin).

How will the conversation-skin component obtain the states dictionary and the
init_state_name property in the first place?
➔ These will be obtained by making a call to the explorehandler endpoint via the

read-only-exploration-backend-api service, by passing in the exploration ID (already
present in the conversation-skin component). One of the properties of the response
object is ‘exploration’, which contains the required properties.

➔ The return value of this call will be an object of the following type:

➔ The rightmost type definition displays the two properties we need (underlined)-
init_state_name and states.

The function you mentioned above which retrieves the exploration data is an async
function. How will you keep the checkpoint celebration component from being initialized
until the response object is received?
➔ The component’s selector will be placed inside a div with the following ngIf directive:

<div *ngIf="states && initStateName">

<checkpoint-celebration [states] = 'states'

[initStateName] = 'initStateName'

[isLoggedIn] = 'isLoggedIn'>

</checkpoint-celebration>

</div>

Why do you need to obtain a list of checkpoints in order (i.e.
stateListForCheckpointMessages mentioned above)?
➔ The learner’s progress will be displayed as number_of_checkpoints_completed /

total_number_of_checkpoints.
➔ We need stateListForCheckpointMessages for both values:

◆ number_of_checkpoints_completed will be determined via the index of the
current checkpoint in the array.

◆ total_number_of_checkpoints will be set equal to the length of the array.

How will you obtain a list of checkpoints (in order) from the states dictionary?
➔ As mentioned above, the states property is a dictionary where each key is the state

name (unique throughout an exploration), and each corresponding value is the state’s
properties as a dictionary (the property we are concerned with being
‘card_is_checkpoint’, which is a boolean value).

➔ The individual state dictionaries present in this states property are not guaranteed to be
present in the correct order, i.e. iterating through the states property from the beginning
of the dictionary to the end and selecting states where ‘card_is_checkpoint’ is true, is not
guaranteed to result in a list that is correctly ordered.

➔ One way to obtain the checkpoints in the correct order is via a simple Breadth first
search. This makes use of the fact that checkpoints are not bypassable.

Why will a BFS work?
➔ The checkpoints of an exploration are required to be non-bypassable. This means that

all the checkpoints must be visited, and that too in only one single order – the latter can
be proved by contradiction.

➔ If there is more than one possible order in which checkpoints may be visited in an
exploration, it means that there are at least two checkpoints which have:
◆ Their own incoming paths, at least one for each (otherwise, if they don’t have at

least one incoming path for each of them, it means that the only way to the
second checkpoint would be through the first, which means there is only one
possible order anyway),

◆ More than one path between the two of them (because all paths are
unidirectional, and for a possibility of different orders to exist, there must be at
least two different paths between the checkpoints, in the opposite directions),

◆ At least one outgoing path from at least one of them (otherwise the only
possibility would be an endless loop that goes back and forth between the two
checkpoints, which is not allowed).

➔ However, the above three conditions being true would mean that one of the two
checkpoints would be bypassable, which is not possible.

➔ This means that, when starting from the initial state, there is only one possible order in
which the checkpoints will be encountered (which includes all the checkpoints).
The only problem is that there are multiple paths that can be taken to reach the terminal
state.

➔ This is where BFS (or any graph traversal method, really) comes in. It will traverse
through the entire states dictionary (covering all possible paths), making sure not to
revisit any states (thus avoiding loops), and will push a checkpointed state into the
stateListForCheckpointMessages array whenever it encounters one.

How will you perform a BFS over the states dictionary?
➔ This will be discussed in detail in the Service overview for the

checkpoint-celebration-utility service further below (more specifically, one of the three
functions in the service will be designed for this very purpose):

ngOnInit(): void {

// ...

this.stateListForCheckpointMessages =

this.checkpointCelebrationUtilityService.getStateListForCheckpointMessages(

this.states, this.initStateName);

// ...

}

Why not store the list of checkpoints as a property of the exploration in the backend?
➔ The following table summarizes the comparison between the two approaches, and why

I’ve decided to compute the list of checkpoints as needed, instead of storing a
precomputed list:

Adding a new property to the
exploration backend dict to store a list
of all checkpoints

Computing the list of
checkpoints as needed in the
frontend via a BFS

Simplicity of
implementati
on

Currently the only source for whether a
state is checkpointed or not is the states
object, which contains the properties of
each of the states of an exploration.
Adding a list of checkpoints as a property

No new property is added, all
we need to do is perform a
simple BFS after retrieving the
exploration data from the
backend, as and when needed.

of an exploration will introduce another
source for the same piece of information.

This means we would have to do the
following:

- Decide which of the two will act as
the single source of truth for this
piece of information (and ensure
the other isn’t editable by any
means other than below).

- Figure out a way to detect when
the checkpoint property of the
states of an exploration have been
changed and recalculate and store
the checkpoint list whenever a
change is detected.

Performance
when in
production
(for every
GET
request)

- The response object for every
GET request is slightly increased
in size.

- The returned object has a
precomputed list that can be
readily used.

- The response object is
the same size as it was
before.

- A BFS needs to be
performed on the
‘states’ property of the
returned object before
use.

Performance
when in
production
(for every
POST/PUT
request)

- A check needs to be performed to
determine any changes in the
states dictionary that may have
caused the checkpoint list to be
outdated.

- If yes, A BFS needs to be
performed to recompute the
checkpoint list and

- Same as before.

*The BFS mentioned in the above cells has a negligible computation cost, considering the
size of the explorations in Oppia.

Additional/re
dundant
code
required

New code needs to be added for the
following:

- Checking for changes within the
states dictionary after every post
request.

- Performing a BFS and
recomputing the checkpoints list if
the above is found to be true.

Code needs to be added only to
call the function performing the
BFS, and to filter out the
checkpointed states.

The actual BFS will be
performed using the
computeBfsTraversalOfStates()
function from the

compute-graph service, which
allows code to be reused.

How will you decide when to display the checkpoint message div?
➔ This will be achieved as follows:

◆ subscribing to the onPlayerStateChange event emitter from the
exploration-player-state service (this emitter fires whenever the current state is
completed, and also provides the newStateName).

◆ calling checkIfCheckpointAnimationToBeTriggered() whenever the emitter is fired.

this.explorationPlayerStateService.onPlayerStateChange.subscribe(

(newStateName) => {

this.checkIfCheckpointAnimationToBeTriggered(newStateName);

}

)

◆ The function triggerCheckpointCelebration will look as follows:

checkIfCheckpointAnimationToBeTriggered(newStateName: string): void {

if (!this.oldStateName) {

this.oldStateName = newStateName; // Setting oldStateName if the

component has just been initialized.

return;

}

if (newStateName === this.oldStateName) { // Checking if the state has

changed, terminating if not.

return;

}

let checkpointPosition =

this.stateListForCheckpointMessages.indexOf(this.oldStateName); // Obtaining

the position of the checkpoint in the exploration.

if (checkpointPosition === -1) { // Checking if the state is a checkpoint

(i.e. present in the checkpoint list), terminating if not.

this.oldStateName = newStateName; // Updating oldStateName before

terminating.

return;

}

this.currentCheckpointMessage =

this.checkpointCelebrationUtilityService.getCheckpointMessage(

checkpointPosition, this.stateListForCheckpointMessages.length); //

Picking a checkpoint message.

this.currentCheckpointTitle =

this.checkpointCelebrationUtilityService.getCheckpointTitle(); // Picking a

checkpoint title.

this.triggerAnimation(); // Triggering the animation with the required

message and title.

this.oldStateName = newStateName; // Updating the oldStateName to the new

one.

}

In the above function, how will you pick a checkpoint title and message based on the
checkpoint’s position?
➔ This too will be discussed in detail in the overview for the checkpoint-celebration-utility

service, further below.

How will you decide which kind of message div to trigger the animation for - the full-scale
one or the minified mobile-friendly one?
➔ This will be decided (within the triggerAnimation() function) based on the screen width

(which can be determined via the windowDimensionsService – by subscribing to the
resizeEvent and re-evaluating whether the screen is too small for the full-scale message
or not whenever the width changes).

➔ The minified message will be displayed when the screen width falls below 960px (I may
switch this out for a more suitable value during actual implementation).

How will you trigger the animation of either style of the checkpoint message?
➔ The message div will originally have a bottom property value of -100vh. This ensures the

message is hidden off-screen.
➔ The transition-property of the div will be set to bottom, and the position will be set to

fixed.
➔ Animating the message will be achieved via a function setting the value of a property

associated with the ngClass directive of the message div (for example,
showFullScaleMessage) to true – thus applying a class to the message div whose
bottom value will be equal to 50px, causing the div to move upward onto the screen.

➔ The minified message’s animation will be triggered in a similar fashion.

Service overview - Checkpoint celebration utility service
This service will contain three functions - one to obtain an ordered checkpoint list (by
performing a breadth-first search), one to pick a checkpoint message based on the learner’s
current position, relative to the total number of checkpoints in the chapter, and one to pick a
checkpoint title.
It will import the compute-graph service for performing the BFS.

FUNCTION FOR RETRIEVING AN ORDERED CHECKPOINT LIST
➔ The checkpoint list will be obtained using a breadth-first search. It will take two values

as input: the states dictionary and the initStateName string.
➔ Components of the search:

◆ A State object will be generated using the backend dict before beginning the
search.

◆ The actual search will be performed by the computeBfstraversalOfStates()
function, which will return a list of all states, in BFS order.

◆ The list will then be filtered through to obtain all the checkpointed states, which
will be added to a separate list.

The code may look something like this:

getStateListForCheckpointMessages(statesbackendDict: StateObjectsBackendDict,

initStateName: string): string[] {

let states =

this.statesObjectFactory.createFromBackendDict(statesbackendDict); // Creating

State object from the backend dict, for use with the compute graph service.

let BfsStateList =

this.computeGraphService.computeBfsTraversalOfStates(initStateName, states,

initStateName); // Obtaining a BFS ordered list of all states.

let stateListForCheckpointMessages = []; // List to store states for

checkpoint messages.

BfsStateList.forEach((state) => {

if (statesbackendDict[state].card_is_checkpoint) { // Checking whether a

state is checkpointed, and adding it to the list if so.

stateListForCheckpointMessages.push(state);

}

})

stateListForCheckpointMessages.shift(); // Removing the initial state from

the checkpoint list (see below for why).

return stateListForCheckpointMessages;

}

Why are you not keeping the first checkpoint in the checkpoint list?
➔ The initial state of an exploration is required to be a checkpoint.
➔ However, congratulating the learner for completing the very first state of an exploration

(which more than likely will be a “welcome” card, explaining what they are going to learn)
is meaningless.

➔ Thus, the first checkpoint of an exploration, i.e. the very first state of the exploration, will
not be treated as a checkpoint (even though it is one).

Based on the above code, the terminal state doesn’t seem to be included in the
checkpoint list. This means if the learner completes the last checkpoint of an exploration
but is yet to make it to the end exploration state, their progress bar will still show 100%
completion, which is misleading. How will you handle this?
➔ The number of total checkpoints will be slightly tweaked to be calculated as follows:

(Length of the checkpoint list + 1). The (+1) will account for the end exploration state,
and the progress bar won’t show 100% completion after completing the final checkpoint,
and won’t be misleading to the learner.

FUNCTION FOR RETRIEVING A CHECKPOINT MESSAGE
➔ This function is meant to return a checkpoint message based on the learner’s position in

the exploration, relative to the total number of checkpoints in the exploration. It will take
two values as input – the learner’s current position (in terms of completed checkpoints)
and the total number of checkpoints in the exploration.

➔ The function to pick a checkpoint message will look like this:

getCheckpointMessage(checkpointPosition: number, totalCheckpointCount:

number): string {

let messages = [

[

'You just completed the first checkpoint! Good start!',

'Great work completing your first checkpoint! Keep it going!',

'A perfect start! Keep it up!'

],

[

'You\'re making good progress! Keep going!',

'Amazing! You just completed your second checkpoint!',

'One more checkpoint completed, you\'re doing great!'

],

[

'You\'re halfway through, you\'ll be done in no time!',

'You just made it halfway, nice work!',

'Wow! You\'ve already made it halfway through the lesson! Amazing

work!'

],

[

'You\'re almost there! Keep it up!',

'You\'ve almost made it to the end! Keep it going!',

'Nice work! You\'re almost at the finish line!'

],

[

'Just one more to go, woohoo!',

'Let\'s go! Just one more left!',

'You\'re doing great, just one more to go!'

],

[

'You completed a checkpoint! Good job!',

'Awesome, you completed a checkpoint! Keep going!',

'Nice work! You just completed a checkpoint!'

]

]

checkpointPosition++; // To account for zero-based indexing.

if (checkpointPosition == 1) {

return messages[0][Math.floor(Math.random() * 3)];

} else if (checkpointPosition == 2) {

return messages[1][Math.floor(Math.random() * 3)];

} else if (checkpointPosition / totalCheckpointCount >= 0.5 &&

(checkpointPosition - 1) / totalCheckpointCount < 0.5) {

return messages[2][Math.floor(Math.random() * 3)];

} else if (totalCheckpointCount - checkpointPosition == 2) {

return messages[3][Math.floor(Math.random() * 3)];

} else if (totalCheckpointCount - checkpointPosition == 1) {

return messages[4][Math.floor(Math.random() * 3)];

} else {

return messages[5][Math.floor(Math.random() * 3)];

}

}

FUNCTION FOR RETRIEVING THE CHECKPOINT TITLE

getCheckpointTitle(): string {

const titles = [

'Hurray!',

'Awesome!',

'Checkpoint!',

'Good job!',

'Great work!',

'Well done!',

'You Rock!'

]

let r = Math.floor(Math.random() * titles.length);

return titles[r];

}

Note: The strings above (for the checkpoint title and the checkpoint message) will be replaced
with their corresponding I18N keys, which will be created during implementation. Actual
human-readable messages have been used here just for ease-of-understanding. Please see the
Internationalization sub-section of the Miscellaneous section further below, for how the keys will
be used to obtain translations.

Component overview - Checkpoint celebration component (continued)

FULL-SCALE DESKTOP MESSAGE
Intended design

Consists of an SVG flag (which will animate into position), an SVG timer at the top (the
message will be auto-dismissed when the timer fully depletes), an image of the Oppia mascot,
title text and message text, the progress-bar, and two buttons at the bottom (discussed in a
bit more detail down below).

How will you trigger the animation of the flag bouncing into position?
➔ The flag will be animated using a keyframes animation, by applying a class with the

required CSS animation property using the ngClass directive (the directive will be
“activated” by setting a property, say, animateFlag, to true).

➔ Additionally, the animation will be triggered inside a setTimeout() call, to ensure it only
occurs after the message div fully appears on-screen.

➔ The keyframes rule for the flag’s bounce animation will be as follows:

@keyframes flag-bounce {

0% { transform: scale(1, 1) translateY(0); opacity: 0; }

10% { transform: scale(1.05, .95) translateY(0); }

30% { transform: scale(0.90, 1.1) translateY(-30px); opacity: 1; }

50% { transform: scale(01, 1) translateY(2px); }

60% { transform: scale(1.2, 0.90) translateY(5px); }

70% { transform: scale(1, 1) translateY(0); }

100% { transform: scale(1, 1) translateY(0);}

}

How will you trigger the animation of the SVG timer?
➔ The timer SVG is a line element with start and end coordinates that lie on either edge of

the message div.
➔ Two of an SVG’s properties (among many) are its stroke-dashoffset and its

stroke-dasharray.
◆ The stroke-dasharray property defines the patterns and gaps of an svg element.

A dasharray value greater than or equal to the length of the SVG element
renders the line as completely filled.

◆ The stroke-dashoffset property defines the amount by which the line is offset
from its “resting” position. A dashoffset value set to the length of the element
completely offsets it by its entire length, thus rendering it invisible.

➔ Animating the SVG timer can be achieved by:
◆ initially setting stroke-dasharray equal to the length of the line and

stroke-dashoffset equal to 0 (i.e. the line is completely visible),
◆ setting the transition-property to stroke-dashoffset with a suitable duration

(10s),
◆ and triggering the animation by raising the dashoffset value to be equal to the

length of the line (this can be achieved by using the querySelector() method to
select the timer element, and then setting its dashoffset value to the length of the
timer (10 units)).

// ...

animateTimer(): void {

let timer = document.querySelector('.timer-element') as

SVGPolylineElement;

timer.style.strokeDashoffset = '10';

}

// ...

How will you place the Oppia mascot in the top right?

➔ It will be an image that will have its position set to absolute, and its top and left values
set to a small negative value (-15px) to have the image pushed out of the message div.

How will you auto-dismiss the message div?
➔ Similar to how the div was animated in by setting the showFullScaleMessage property

to true, a function will be used to flip the property’s value back to false, causing the div’s
bottom property to be reverted back to its original value. Since the transition-property is
set to bottom the div will animate downward, off-the-screen.

➔ This function will be called within a setTimeout() call a certain duration (10 seconds) after
the message first appears.

How will you generate a progress bar to be displayed in the message?
➔ The progress bar will be enclosed in a fixed size div regardless of the total number of

checkpoints. The number of segments in the bar will be equal to the total number of
checkpoints – this means that the width of each segment will decrease as the total no. of
checkpoints increases.

➔ Width of a segment = total width / number of checkpoints (*100 to obtain the %age of
total width).

➔ The above percentage will be set to the [style.width.%] attribute of each segment to
render the progress bar’s outline.

➔ The number of checkpoints completed by the learner will be used to determine the
number of filled (in blue) segments by calculating (width of each segment) * (number of
checkpoints completed).

➔ One additional segment of light blue color will be generated if the number of completed
checkpoints is less than the total number of checkpoints (to indicate to the learner which
segment they are currently working towards completing).

➔ Colors that the progress bar will be composed of (please view the intended design image
above for reference):
◆ Progress bar outline - #707070
◆ Yet to complete segments - #F0FFFF
◆ Currently working towards completing - #2D4A9D99
◆ Completed - #2D4A9D

The markup may look as follows (this is almost the same as the progress bar present in the
lesson-info-modal – one of the decisions made in the figma mocks’ discussions was to ensure
both the progress bars look identical):

<div class="progress">

<!-- border: 1px and border-radius: 10px -- the progress bar outline -->

<div class="progress-bar-separator-container">

<!-- position: absolute, width: 100% -- contains the lines that separate

the progress bar into different segments; the actual colored segments

indicating the progress will lie over this element since position is set to

absolute-->

<div class="progress-bar-separator" [style.width.%]="100 /

total_number_of_checkpoints">

<!-- border: 1px -- This will be n instances of this element (n =

number of checkpoints) separate the progress bar into the required number of

sections-->

</div>

</div>

<div class="completed"

[style.width.%]="(100 / total_number_of_checkpoints) *

number_of_checkpoints_completed">\

<!-- represents the completed part of the progress bar -->

</div>

<div *ngIf="completedWidth != 100"

class="working"

[style.width.%]="100 / total_number_of_checkpoints">

<!-- represents the part the learner is currently working towards

completing (meaning it will be one segment long), the ngIf ensures this will

remain invisible if the progress bar is 100% complete, so it doesn’t appear

outside of the progress bar -->

</div>

</div>

What will the SEE MORE button do?
➔ The button will read ‘SEE MORE’ for logged-in users, and ‘SAVE PROGRESS’ for

logged-out users. The text to be displayed will be chosen based on the isLoggedIn
property that is received as input.

➔ Clicking the button will open up the lesson info modal.

How will the SEE MORE button open the lesson-info modal?
➔ The component will possess an event emitter, which will be subscribed to in the

exploration-footer component.
➔ Clicking ‘SEE MORE’ will emit a signal via the event emitter and

openInformationCardModal() – the function responsible for creating a new instance of
the lesson-info modal – will be called in the exploration-footer’s subscription.

What will the CLOSE button do?

➔ It will dismiss the message (by reverting the bottom property of the message div to its
default value).

Note: The auto-dismissal of the message mentioned above will, of course, take place by
calling the necessary function inside a setTimeout() call. The return value of the call will
be stored in a variable. We need to store this in a variable because we may later need it
to clear the timeout if the close button is clicked i.e. we need to prevent the
auto-dismissal function from being called if the message is manually dismissed
by clicking CLOSE.

// ...

this.dummyTimeoutVariable = setTimeout(() => {

this.autoDismissFunction();

}, 8000);

// ...

closeButtonClicked() {

clearTimeout(this.dummyTimeoutVariable);

// Rest of the code...

}

MINIFIED MOBILE MESSAGE
Intended design

The tool-tip will appear on-screen and will remain in-place for a constant amount of time (4
seconds), before vanishing.
It will point to the lesson-info-modal button in the exploration-footer.
The tooltip will display the user’s progress, and a checkpoint flag to indicate what the displayed
value is about.

What will be different in the lesson-info modal when the user opens it after completing a
checkpointed state?

➔ The modal will additionally display a checkpoint message right below the progress bar.
➔ The progress bar itself will also exhibit a subtle animation (filling up to the current

progress) to indicate to the learner that this is what they just achieved.

When will you display a checkpoint message in the lesson-info-modal?**
➔ The approach to determine when the checkpoint message is to be displayed will be

similar to the solution for when to display the checkpoint message div, which was
outlined above (i.e. using the checkpoint-celebration-utility service to obtain a list of
checkpointed events, subscribing to the onPlayerStateChange event emitter of the
exploration-player-state service to get the newStateName whenever the state changes,
and so on).

How will you display a checkpoint message in the lesson-info-modal?**
➔ The utility service will be used for obtaining the checkpoint message.
➔ It will be displayed as simple bold text underneath the progress bar in the

lesson-information-modal.

**The solutions outlined for the above two questions are very barebones because they are
based on the current state of the code in the lesson-information-modal component – the code
is incomplete at the moment as the user checkpoints project is still underway. Once the
project is complete and I have the complete code to work with, I may/may not be able to come
up with better, cleaner solutions (note that the solutions described above will work – it’s just
that I may (or may not) be able to come up with a better solution once I have the completed
code to work with).

Ideally the user checkpoints project should be completed before the CBP (which is when I
plan on further analyzing the code to come up with more suitable solutions), but I can’t say
anything for certain right now as the “Implementation plan” section of the project’s design doc
is not complete at the moment, meaning I can’t estimate when the project will be completed.

How will you add the “subtle animation” that you mentioned above, to the progress bar?
➔ The progress-bar’s segments, as stated previously, are divs with a particular width

(which change as the learner makes more progress).
➔ Animating the progress bar in the lesson info modal will be achieved like so:

◆ Determining when the animation needs to take place, i.e. when the learner has
just completed a checkpointed state.

◆ Calculating the previously completed width = completedWidth -
widthOfOneSegment (both the properties are present in the
lesson-information-modal component’s class).

◆ Temporarily setting completedWidth to the above calculated value, instead of its
actual value.

◆ Setting applyTransitionProperty to true, which applies the following class to the
progress bars’ segments (via the ngClass directive):

https://docs.google.com/document/d/1eWHs46cOHcm7NuQl8pM9Dada9nTgg3GoCQLgQJSNmIY/edit

.set-transition-property {

transition-property: width;

transition-duration: 4s;

}

◆ Reverting completedWidth back to its actual value, thus triggering the animation
– the progress bar will show the most recently completed segment animating in
(filling in).

◆ Reverting applyTransitionProperty back to false (inside a setTimeout() call –
4.5s – to ensure the value is only reverted back AFTER the animation fully
completes).

◆ The last step is to ensure the .set-transition-property class is removed, so that
this animation won’t take place anymore for regular states (until another
checkpointed state is encountered).

End chapter celebration event
The section is concerned with the end chapter celebration event, consisting of the SVG check
mark and the confetti.

Component overview - Check mark
➔ This will be implemented as a new component - end-chapter-check-mark.component.ts.
➔ This component’s template will be placed inside the conversation-skin component.
➔ This component’s intended purpose is purely visual. There is no need for any sort of

input from its parent component.

Component overview - Confetti
➔ This will be implemented as a new component - end-chapter-confetti.component.ts.
➔ This component’s template will be placed inside the conversation-skin component.
➔ This component’s intended purpose is purely visual. There is no need for any sort of

input from its parent component.

When will you trigger the check mark and confetti animations?
➔ The animation will be triggered when the learner hits continue on the penultimate state,

i.e. the state whose immediate successor is the end exploration state.
➔ The animation will be triggered within setTimeout() calls to ensure proper timing. The

details of how the animation will be triggered (for both the check mark and the
confetti), how the skipping of the animation will function, and how the rest of the
content on the page will be presented (or hidden, rather) during this animation are
discussed below.

How will you trigger the animations?
➔ The animations will be triggered by calling functions responsible for triggering the

animations (present in their respective components) from their parent component, i.e.
the conversation-skin component.

➔ This will be achieved using the ViewChild decorator. This decorator allows the parent
component to access and call properties and methods in the child components:
◆ Import the ViewChild decorator into the parent component.
◆ Import the component class whose methods you wish to gain access to into the

parent component.

import { ViewChild } from '@angular/core';

import { ChildComponent } from '...';

◆ Create an instance of the class using the ViewChild decorator.

@ViewChild(ChildComponent) childComponent: ChildComponent;

◆ Use this instance of the class to access methods pertaining to the child
component whenever required.

How will you decide when to call the functions which will trigger the animation?
➔ As stated above, the animations are meant to be triggered when the learner hits

continue on a penultimate state, i.e. as soon as the terminal state of a chapter is loaded.
➔ The above happens when the learner clicks continue on a state whose immediate

successor is a terminal state (currently the only interaction which is terminal is the end
exploration interaction).

➔ This means the animations for the check mark and the confetti need to be triggered
when
◆ The learner hits continue on a state and
◆ The immediate successor state is an end exploration state.

➔ Clicking ‘Continue’ on a state may call one of two functions in the conversation-skin
component:
◆ showUpcomingCard() if the current interaction type is not ‘Continue’ meaning the

learner just submitted an answer and then clicked continue.
◆ submitAnswerFromProgressNav() if the current interaction type is ‘Continue’

meaning the learner clicked the only button they were presented with.
➔ Given the information above, the easiest way to trigger the animation is as follows:

◆ Call a helper function that performs some checks and then calls functions in the
child components which are responsible for triggering the animations (for

example, in case of submitAnswerFromProgressNav() the helper function call will
look like so):

submitAnswerFromProgressNav(): void {

this.currentInteractionService.submitAnswer();

if (this.displayedCard.getInteractionId() === 'Continue') { //

submitAnswerFromProgressNav() is also called whenever the submit button is

clicked (for interactions of type other than Continue), therefore this check is

necessary. Such a check isn't required in case of showUpcomingCard().

this.triggerEndAnimationIfTerminal(); // Helper function that performs

checks before calling functions from the child components (the check mark and

confetti components) that will trigger the animations.

}

}

➔ The helper function will then check whether the successor state is terminal or not
(triggering the animation if it is), like so:

triggerEndAnimationIfTerminal(): void {

if (this.nextCard && this.nextCard.isTerminal()) {

console.log('This log statement will be replaced with functions from the

check mark and confetti components which will trigger the animations. As

stated above, the child components will be made accessible here using the

ViewChild decorator.');

}

}

How is the check mark animation meant to play out?
➔ Similar to the SVG timer in the checkpoint celebration component, the check mark is

completely made up of SVG elements:
◆ The outer enclosing element is a circle SVG element,
◆ The tick within the circle is a polyline SVG element that goes through three

distinct points (vertices).
➔ The mark-up of the check mark will be as follows:

<svg class="check-mark-svg" viewBox="0 0 40 40">

<circle class="circle"

stroke="#00645c"

stroke-width="3"

fill="none"

r="15"

cx="20"

cy="20">

</circle>

<!-- The stroke-dashoffset and stroke-dasharray of the circle element will be

set to 94.26 i.e. its circumference -- the circle will initially be rendered

completely invisible. The transition-property will be set to stroke-dashoffset.

-->

<polyline class="tick"

fill="none"

stroke="#00645c"

stroke-width="3"

points="11,20 16,25 28,15" />

<!-- The stroke-dasharray and stroke-dashoffset of the tick will be set to 23

i.e. its length -- the tick will initially be rendered completely invisible.

The transition-property will be set to stroke-dashoffset. -->

</svg>

➔ The end result (after fully animating in) looks as follows:

➔ The animation is intended to play out like so:
◆ Animation begins: The circle starts animating in (filling up),
◆ 250ms after beginning: The tick starts animating in.

➔ It will be animated out in a similar fashion.

How will you trigger the check mark animation?
➔ As described in the previous section, an SVG element has two important properties

responsible for how the element ends up being rendered – its stroke-dasharray, and its
stroke-dashoffset. Both will initially be set to the lengths/circumference of the elements
for both the elements (the circle and the tick) i.e. both will initially be invisible.

➔ The function to trigger the animation may look like this:

checkMarkAnimateIn(): void {

this.circleIsShown = true;

setTimeout(() => {

this.tickIsShown = true;

}, 250);

}

➔ Each of the properties (circleIsShown and tickIsShown) will be associated with the
ngClass directive on the corresponding SVG elements. Setting these values to true will
apply a class to the elements, the only property of which will be “stroke-dashoffset: 0;”.

.check-mark-transition-class {

stroke-dashoffset: 0;

}

➔ SInce the transition-property is set to stroke-dashoffset, the SVGs will animate in upon
calling the above function. The function for the SVGs to animate out will look similar.

How is the confetti animation meant to play out?
➔ There are three kinds of confetti pieces (of various colors, a total of 17):

◆ a rectangle block piece (a simple HTML div),
◆ a circle piece (a HTML div with border-radius set to 50%),
◆ a squiggly line-like piece (an SVG element made using inkscape).

➔ They will be placed underneath the top-nav bar at different “resting” positions before the
animation is triggered, with various colors and slightly different animation-delays just to
add some randomness:

.confetti {

position: fixed;

width: 10px;

height: 34px;

top: 40px;

left: 53%;

opacity: 0;

background: #0000FF;

}

.confetti:nth-child(2n) {

left: 47%;

background: #00AA00;

width: 14px;

height: 40px;

}

.confetti:nth-child(3n) {

background: ##FF0000;

width: 8px;

height: 30px;

animation-delay: 200ms;

}

.confetti:nth-child(4n) {

width: 20px;

height: 20px;

border-radius: 50%;

animation-delay: 200ms;

}

.confetti:nth-child(7n) {

background: #FFFF00;

width: 10px;

height: 30px;

animation-delay: 400ms;

}

➔ Each individual piece of confetti is meant to shoot out from underneath the top-nav bar,
spread over the top-fourth of the screen and hang for a moment before fading out.

➔ Additionally, this audio clip will accompany the confetti shooting out, and will play
alongside it.

➔ The clip will be stored within the assets folder, within the (new) ‘audio’ subdirectory, and
will be loaded into the confetti component upon its initialization. It will then be played
along with the confetti animation.

What other clips were considered for this purpose?
➔ The following clips were considered:

◆ Option 1
◆ Option 2 (the option which ended up being selected)
◆ Option 3
◆ Option 4

➔ A short survey was then carried out, the results of which are below:

https://drive.google.com/file/d/1jJVboGAceiWpbCK1W_a0hJKb6sDLcr_G/view?usp=sharing
https://drive.google.com/file/d/1_NMh1ItaP_DUBctXwb_q5hK5pUPHLx3L/view?usp=sharing
https://drive.google.com/file/d/1jJVboGAceiWpbCK1W_a0hJKb6sDLcr_G/view?usp=sharing
https://drive.google.com/file/d/1s_E2tIK-Lfd6GW1sO2-Wxp-q5v4qQFx-/view?usp=sharing
https://drive.google.com/file/d/1K6OCmyhweyDLdflHA-ddlRpeXRWaqiD_/view?usp=sharing

➔ Despite not being the most popular option, the second clip was selected on account of it
sounding more “grand” than the rest (which, although a subjective opinion, was shared
by other reviewers as well), and it suits the event of the confetti shooting out far better
than the rest.

Will the audio clip be skippable/can it be muted?
➔ No, the clip will not be skippable. The clip is played at the end of a lesson, meaning it will

not be distracting to the learner in any way. In addition to this, according to a small
survey (among people who are NOT active Oppia developers), the most popular opinion
was that such audio clips would not be distracting to the learner:

➔ Finally, a dedicated button to mute the audio will then require the learner to go out of
their way (for example, to the user preferences page) to re-enable the audio. In contrast,
muting the device audio as and when required is a much more convenient way of
handling it, should the learner find the audio distracting.

➔ Considering the above reasons, the audio clips will not have any dedicated option/button
to have them muted.

The above two discussions are summarized below:

Which clip do you think is
suitable for this purpose?

Do you think the clips may
be distracting?

What do you think is a
good way to mute these
clips if need be?

Option 2 sounds the most
suitable, despite not being
the most popular, as it
sounds more “grand” than the
rest.

No, the audio plays upon
successfully completing a
lesson.

At this stage there isn’t much
to distract the learners from
to begin with.

I think using the device’s
built-in means (volume
buttons, etc.) are the best
way to handle this issue.

The above option allows the
user to change their choice
as need be, without having to
go out of their way from the
exploration player (which
would be the case if the
option to toggle the audio is
present in, say, the
preferences page).

How will you trigger the confetti animation?
➔ Each piece of confetti will have to be triggered individually; there will be 14 different

keyframes rules and animations, shared between the 17 pieces.
➔ The animation class will be of the following form:

.animation-class-n {

animation: confetti-anim-n 3000ms cubic-bezier(0, 0.7, 0, 1);

}

➔ The keyframes rules for each animation will be similar to the following example, just with
different arguments in the translate and rotate functions:

@keyframes confetti-anim-1 {

0% { opacity: 1; }

50% { opacity: 0.7; }

100% { transform: translate(-350px, 40px) rotate(9deg); }

}

Please visit the link to the codepen demo of the end exploration celebration event (in the key
user-stories table of the WHAT section) to view the complete set of CSS keyframes rules for the
confetti pieces.

➔ A property will be associated with the ngClass directive on each individual piece of
confetti, and when set to true, each piece will get its corresponding animation class
applied to itself, thus triggering the required animation.

➔ The property will then be flipped back to false inside a setTimeout() call after the
animation has finished, thus removing the animation class.

Accessibility concern – How will these animations be displayed to users who
‘prefer-reduced-motion’?
➔ The prefers-reduced-motion media feature will be used to determine whether to display

the full-fledged animations (the check-mark and the confetti animations both) to regular
users, or a toned-down version (described underneath the next question) of them to
users who have their settings set to reduce on-screen motion/animations.

How will the toned-down animations play out?
➔ The confetti will not be displayed to the user (Although this is subjective, my idea behind

the confetti is that it adds a bit of ‘SURPRISE!’ effect to the celebration event due to its
rapid and abrupt entry, and calm exit. Due to this very idea it is unsuitable to be
displayed to users sensitive to animations. Thus, I believe such an animation should be
hidden on the screens of such users).

➔ Each of the check-mark SVGs will fade-in instead of filling into their respective positions
(this will be achieved by tweaking the opacity property instead of the stroke-dashoffset
property when the prefers-reduced-motion media query is active).

Is there a “Don’t show me again” button for turning off the animations? Why/why not?
➔ No, there is no such button. These animations will, however, be skippable on a

per-animation basis by tapping/clicking on the screen when the animation is in progress
(will be made possible using the hostlistener decorator).

➔ Turning off these animations is not a particularly useful option, as they are simply a part
of the experience. Moreover, re-enabling them would require the learner to go out of
their way (to say, the user preferences settings page) and look for the required option. In
contrast, this issue is not existent for the sign-up section (which also has a “Don’t show
me again” button) as there is an ever-present sign-up button on the top-nav bar.

What other alternatives were considered to skip the check-mark animation?
➔ The table below summarizes the options:

Adding a skip button
which skips the

Skipping the animation in
response to a click/touch

Reducing the
duration of the

animation anywhere on the page animation

User
effort

Allows for the user to skip
the animation when they
wish to, but clicking a
small dedicated button
requires considerable user
effort.

Allows for the user to skip
the animation when they
wish to, and also
requires very little user effort
compared to the previous
option.

Requires no effort
on the user’s part
as the animation
disappears on its
own.

How the
animation
plays out

Allows the animation to be
played out in a leisurely
manner, so it doesn’t
seem jarring for the user.

Allows the animation to be
played out in a leisurely
manner, so it doesn’t seem
jarring for the user.

The animation
would seem too
rushed/jarring to
users.

Repetitiv
eness

The ability to skip the
animation makes it less
repetitive for the user, but
the act of clicking a small
button at the end of each
chapter itself may get
repetitive.

The ability to skip the
animation makes it less
repetitive for the user, and
this is achieved with a simple
tap/click on the screen.

The animation is
always played out
in full and may
become repetitive
soon.

In addition to the table, the option to skip on touch/click was the most popular among the
people I presented this issue to as part of a short survey:

What happens to the rest of the page content during the animation?
➔ The following elements will be hidden during the animation period:

◆ The end exploration card content - This section will have its
● transition-property set to transform, opacity
● opacity set to 0
● position set to fixed (to keep it out of the normal flow of the page)
● and transform set to translate(0px, 10px) (the last three will be applied via

a single class, say, .hide-content, via the ngClass directive)

◆ Once the check mark animation is over .hide-content will be removed from the
card content, thus the opacity of the card content will be reverted back to 1, the
transform will be removed and the position will be reverted back to relative.

◆ This will cause the card content to slide up and fade into place.
◆ The sign up/log-in section - This section will have its

● display property set to none to hide it during the animation period.
● It will be reverted back to the default value once the check mark

animation is over.

Milestone message
The section is concerned with the conditional milestone message which will be displayed to the
learner on the end exploration screen if the learner completes their nth-ever chapter, where n
could be one of the following: 1, 5, 10, 25, 50.

INTENDED DESIGN

Component overview - NONE
➔ This will NOT be implemented as a separate component. It will be a part of the

conversation-skin component.

How will you determine when to display this message (i.e. how will you determine the
value of ‘n’)?
➔ The primary piece of information required for this is the number of chapters completed

by the user (which I have been referring to as ‘n’ throughout the document)..
➔ This can be achieved using learnercompletedchapterscounthandler/, which returns

the number of chapters completed by the learner (like so):
class LearnerCompletedChaptersCountHandler(base.BaseHandler):

"""Provides the number of chapters completed by the user."""

GET_HANDLER_ERROR_RETURN_TYPE = feconf.HANDLER_TYPE_JSON

URL_PATH_ARGS_SCHEMAS = {}

HANDLER_ARGS_SCHEMAS = {'GET': {}}

@acl_decorators.can_access_learner_dashboard

def get(self):

"""Handles GET requests."""

(

learner_progress_in_topics_and_stories,

number_of_nonexistent_topics_and_stories) = (

learner_progress_services.get_topics_and_stories_progress(

self.user_id))

all_topic_summary_dicts = (

learner_progress_services.get_displayable_topic_summary_dicts(

self.user_id,

learner_progress_in_topics_and_stories.all_topic_summaries))

completed_chapters_count = 0

for topic in all_topic_summary_dicts:

for story in topic['canonical_story_summary_dict']:

completed_chapters_count +=

len(story['completed_node_titles'])

self.render_json({

'completed_chapters_count': completed_chapters_count,

})

➔ The response object returned by the call contains a single property –
completed_chapters_count.

➔ A call to this endpoint will be made in the onInit hook of the conversation-skin
component, and a flag will be set to true if completed_chapters_count is equal to one of
the following values: 0, 4, 9, 24, 49 (and (value + 1) will be stored in a variable for the
next step).

➔ Once the end of the lesson is reached, the milestone message will be shown if the
above flag is found to have been set to true, and the displayed value will be the same as
what was stored above.

How will you display a star next to the message?
➔ The basic star from material-icons will be downloaded as an SVG and used for this

purpose (an SVG will allow me a greater degree of customizability as opposed to an
icon-code).

Recommendations section after chapter completion
The section is concerned with the recommendations section which would appear at the end of a
chapter.

Component overview - End chapter recommendations component
➔ This section will be implemented as a new component - end-chapter-recommendations.
➔ It will be placed inside the ratings-and-recommendations component.
➔ It will receive the following properties from its parent:

◆ The getExplorationLink() function’s return value. This will be used to guide the
learner on to the next chapter if the learner chooses to.

◆ The storyNodeIdToAdd property. This will be used to identify the next story node
from the list of storyNodes which will be obtained via the
story-viewer-backend-api-service.

Note: The above two properties are actually present in the conversation-skin
component, NOT the ratings-and-recommendations component. These
properties will first be passed down from the conversation-skin component to the
ratings-and-recommendations component, which will then pass them down to the
end-chapter-recommendations component where they are needed.

INTENDED DESIGN

NEXT CHAPTER CARD
How will you obtain the details of the next chapter (in order to display the next chapter
card) if it exists?

➔ URL to the next chapter: Can be obtained via the getExplorationLink() function, as
stated above.

➔ The rest of the chapter details – the chapter image, the chapter bg color, the chapter title
– will be obtained via the story-viewer-backend-api service’s fetchStoryDataAsync()
function, which makes use of the story_data_handler endpoint.

➔ The function accepts topicUrlFragment, classroomUrlFragment, and the
storyUrlFragment strings as input.

➔ These three values can be obtained via the urlService’s getUrlParams() method:

let topicUrlFragment = this.urlService.getUrlParams().topic_url_fragment;

let classroomUrlFragment =

this.urlService.getUrlParams().classroom_url_fragment;

let storyUrlFragment = this.urlService.getUrlParams().story_url_fragment;

➔ The response object will be an object of the class StoryPlaythrough. The properties of
this object that we are concerned with are id (a string) and nodes (an array) – both
underlined.

➔ Within the nodes array itself, the three properties we are concerned with are title,
thumbnailBgColor and thumbnailFileName (explanation following the diagram):

➔ The required storyNode can be obtained by comparing the id property of each
ReadOnlyStoryNode object with the storyNodeToAdd property that the component
received as input (and selecting the node where they both are equal).

➔ Once the storyNode is identified, we can proceed to obtain the following information:
◆ Chapter title: The title property of the storynode.
◆ Chapter image background color: This can be obtained by the

thumbnailBgColor property, which itself is a color value in hexadecimal format.
◆ Chapter image: The required image URL will be obtained using the

thumbnailFileName property and the getThumbnailUrlForPreview() method of the
assetsBackendApiService, like so:

iconUrl = this.assetsBackendApiService.getThumbnailUrlForPreview(

AppConstants.ENTITY_TYPE.STORY, id, thumbnailFilename);

where id is the storyid (i.e. the id property of the StoryPlaythrough object).

PRACTICE-SESSION CARD
How will you obtain a link to the corresponding practice tab?
➔ The practice tab for a topic is located at the following URL:

/learn/{{classroom_url_fragment}}/{{topic_url_fragment}}/practice
➔ classroom_url_fragment and topic_url_fragment will be obtained using the

urlParamsService(), similar to the way they were obtained in the previous answer.
➔ Finally, the required URL will be obtained using the urlInterpolationService:

this.practiceTabUrl = this.urlInterpolationService.interpolateUrl(

TOPIC_VIEWER_PAGE, {

topic_url_fragment: topicUrlFragment,

classroom_url_fragment: classroomUrlFragment,

}) + '/practice';

➔ This URL will then be set equal to the href attribute on the practice session-card link.

How will you obtain the image to be displayed on the practice-session card?
➔ The image is already an existing asset in the Oppia codebase, and is used to represent

the practice tab on the topic-viewer-page.
➔ The image will be obtained via the getStaticImageUrl() method of the

urlInterpolationService:

<img alt="practice icon"

[src]="getStaticImageUrl('/icons/train_icon_24px.svg')">

➔ Finally, the cards will have their border-radius set to 20px, and the title section which lies
over the chapter image will be set to 85% opacity.

➔ The cards’ container will have its display property set to flex, and justify-content set to
space-around.

Revamped log-in/sign up section and exploration recommendations
The section is concerned with revamping the log-in/sign up section that currently appears at the
end of a chapter for logged-out users and the exploration recommendations that appear for
logged-in users at the end of an exploration.

Component overview - ratings-and-recommendations-component
➔ The log-in/sign up section and exploration recommendation section are both parts of a

bigger component - the ratings-and-recommendations component. This component is
currently present in the conversation-skin component, outside of the card container div.

➔ The ratings-and-recommendations component’s template will be moved inside the
tutor-card container div, and its elements will then be modified to better fit the
card-container, i.e. modified to fit within lesser width – these parts of the component are
discussed in detail below –

➔ Exploration rating section: This part does not need any adjustment – the reduced
width will simply cause the single line of text to flow into the next line, the rating stars will
fit perfectly fine in the card-container.

➔ Exploration recommendation section: The standard-sized exploration
recommendation cards will be replaced with much more compact cards, so that they fit
inside the card-container div.
◆ The “compact cards” will be obtained by making use of the fact that if a

[mobileCutoffPx] value is passed to the card component as input, the mobile
version of the card (i.e. the “compact card”) will be displayed when the screen
width falls below that value (this mechanism is already in place – #14527).

◆ The idea is to pass a very high value (5000) as [mobileCutoffPx], so that the
mobile version of the card is displayed at all times.

◆ Finally, flex-direction will be set to column and align-items will be set to center to
ensure the cards line-up perfectly.

INTENDED DESIGN

https://github.com/oppia/oppia/pull/14527

➔ Sign up/login section: Similar to the exploration rating section, this section will also
adjust itself perfectly fine with no real changes needed as far as fitting inside the
card-container is concerned. The following changes will, however, still be made:
◆ The login button’s both left corners and the signup button’s both right corners will

be rounded out via the border-radius property.
◆ This section will be enclosed inside its own container, which will be given

rounded edges and a box-shadow to indicate to the learner that the section is
something that is embedded into the page, and not something that is a natural
part of it.

◆ The above point is to ensure that the learner recognizes what will be dismissed
when they hit the “Don’t show me again” button, which will dismiss the sign-up
section for the learner and ensure it doesn’t show up again.

INTENDED DESIGN

➔ Conditionally displayed navigation links – RETURN_TO_STORY,
RETURN_TO_LIBRARY and RETURN_TO_COLLECTION:
◆ These links don’t need any adjustment with regards to fitting inside the smaller

space. They will be able to fit into the card-container correctly just the way they
are.

◆ Additionally, each of these links will be enclosed in a small rounded div, making
them appear as buttons instead of stray pieces of text (as they currently do).

How will you store the learner’s preference of hiding the sign up/login section, and
ensure that the sign-up section won’t have to be dismissed every time a logged-out
learner makes it to the end of a chapter?
➔ Once the non-logged-in learner clicks “Don’t show me again”, their preference will be

stored in their browser’s localStorage.
➔ The function for setting and retrieving the learner’s preference will look as follows:

disableSignUpSection(): void {

this.windowRef.nativeWindow.localStorage.setItem(

'hide_sign_up_section', 'true');

}

shouldSignUpSectionAppear(): boolean {

let value = this.windowRef.nativeWindow.localStorage.getItem(

'hide_sign_up_section');

if (value) {

return false;

}

return true;

}

Miscellaneous

Internationalization
Internationalization is carried out via unique I18N keys for each piece of text to be
internationalized. Translations may then be obtained in real time via:
➔ The translate pipe (in the HTML)
➔ The translate service’s instant() method.

Where are the i18n keys supposed to go?
➔ They are supposed to go into the oppia/assets/i18n folder. New keys will be created

inside en.json and qqq.json for strings that require i18n.

How will you obtain the translation?
➔ In case of the HTML translate pipe, the translation can be obtained by appending the

i18n key with the following string: ‘| translate’.
➔ In case of the translate service, the service first needs to be injected into the component,

following which the key needs to be passed into the instant() method of the service. This
will return the translated string (if it exists).

➔ Additionally, in case of the translate service, we may also need to subscribe to the
onLangChange event emitter, so that translations are updated whenever the selected
language changes.

Which strings will be internationalized?
➔ The list of strings for which i18n keys will be created (if they don’t already exist) includes:

◆ All the checkpoint messages and titles
◆ Milestone messages (for all 5 values of ‘n’)
◆ Progress-text and button-text in the checkpoint message div
◆ Text in the recommendations section (“Here’s what you could do next!”, etc.)
◆ Learner facing text in general

Third-Party Libraries
None required.

“Service” Dependencies
None.

Impact on Other Oppia Teams
The best way for Oppia’s lesson creators to harness the benefits of this project would be to
ensure checkpoints are placed in meaningful locations throughout a chapter.

Key High-Level and Architectural Decisions

Decision 1: Using standard CSS animations instead of Angular animations
An alternative is to use the latter instead.

I believe using CSS animations is a better approach because of the reasons listed in the table
below:

Alternative 1: CSS animations Alternative 2: Angular
animations

Maintainability
and future
development

(Newer) Contributors are far more
likely to be familiar with animating via
CSS, as compared to Angular
animations.

Contributors are not as likely to
be familiar with Angular
animations and this may act as a
hurdle for someone working
on/around the code
corresponding to this project,
especially if they are relatively
new to Angular.

Easier control
(via the
component
class)

CSS animations cannot be
manipulated via the component class
(ignoring cases like manipulating the
template via angular’s structural
directives, etc).

Angular animations offer more
control over the animations in a
template via its corresponding
component class.

This is, however, irrelevant due to
how many animations are actually
SVG elements with their
transition-property set to
stroke-dashoffset, while the rest
of the animations are incredibly
simple, making them just as easy
(if not more) to be implemented
via standard CSS.

Performance Operations that operate via the
compositor-thread, without interfering
with the main thread (as opposed to
paint and layout operations, which do),
do not hinder the page’s performance.
Two properties which are handled by
the compositor alone are transform
and opacity (Source: The beginning of
this Google developers article
discussing performance hits caused

“Angular's animation system is
built on CSS functionality…”

Source: Angular documentation

“Angular's animation system lets
you build animations that run with
the same kind of native
performance found in pure CSS
animations.”

https://web.dev/stick-to-compositor-only-properties-and-manage-layer-count/
https://web.dev/stick-to-compositor-only-properties-and-manage-layer-count/
https://web.dev/stick-to-compositor-only-properties-and-manage-layer-count/
https://angular.io/guide/animations

by animations) – which are the
primary means of animation I will be
using throughout the project.

The only instance where I will use a
layout property (which may have a
slightly greater performance hit than
the above two properties) is my use of
the display property which allows for
the skipping of the check-mark
animation. This is not concerning as it
will be the sole layout property change
that will occur at that moment, and will
be instantaneous. Not to mention it is
optional and will not always take
place.

Source: Archived Angular 2
documentation

Given how Angular animations
are built on native CSS, there is
bound to be very little difference
in performance between the two.

Risks and mitigations
No potential risks.

Implementation Approach

[Web only] Storage Model Layer Changes
None.

Domain Objects
None.

User Flows (Controllers and Services)

Existing controllers:
➔ New handler: LearnerCompletedChaptersCountHandler. Will return the number of

chapters completed by the learner.

[Web only] Web frontend changes

Checkpoint celebration:
➔ checkpoint-celebration.component.ts: New component for the checkpoint message (both

the full-scale div and the minified tooltip-style message).

https://web.dev/stick-to-compositor-only-properties-and-manage-layer-count/
https://v2.angular.io/docs/ts/latest/guide/animations.html
https://v2.angular.io/docs/ts/latest/guide/animations.html

◆ It will receive isLoggedIn (boolean), states (object), and initStateName (string) as
input.

◆ On initialization, it will call upon the checkpoint-celebration-utility service to obtain
a list of checkpointed states and subscribe to the onPlayerStateChange event
emitter (from the exploration-player-state service) to determine when a
checkpoint has been encountered.

◆ It will obtain checkpoint messages and titles from the
checkpoint-celebration-utility service whenever a checkpoint is encountered, and
trigger the animation.

➔ checkpoint-celebration-utility.service.ts: New helper service meant for use by the
checkpoint-celebration component.
◆ It will contain a total of three functions:

● One for obtaining an ordered checkpoint list (via a BFS) for which it will
import the compute-graph service,

● One for obtaining the I18N key of a checkpoint message, meant to loosely
indicate the progress made by a learner,

● One for obtaining the I18N key of a checkpoint title.

End chapter celebration:
➔ end-chapter-check-mark.component.ts: New component meant to carry out the check

mark SVG animation.
➔ end-chapter-confetti.component.ts: New component meant to carry out the confetti spray

animation (and play celebratory audio accompanying it).

Post chapter recommendations section:
➔ end-chapter-recommendations.component.ts: New component meant to display

recommendations to the learner when they make it to the end of a chapter.
◆ It will receive the next chapter URL and the node ID of the next storyNode

(chapter).
◆ It will call the story_data_handler endpoint to receive chapter information such

as thumbnail, bg color, etc.
◆ It will use the urlInterpolationService to generate a link to the topic’s

corresponding practice page.

Existing components:
➔ conversation-skin.component.ts and components within it: Existing component, will be

modified in the following ways:
◆ Will be modified to call the explorehandler endpoint to obtain the states

dictionary and the initStateName property, to be passed down to the
checkpoint-celebration component.

◆ Will be modified to call the learnercompletedchapterscounthandler/ endpoint
to obtain the number of completed chapters.

◆ Will be modified to include a new, small section to be shown on the terminal state
of a chapter if the learner completed their 1st, 5th, 10th, 25th, or 50th chapter.

◆ Will be modified to include the ratings-and-recommendations component within
the card-container region, when on the terminal state.

◆ Will be modified to be able to access two of its children components’ –
end-chapter-check-mark and end-chapter-confetti – methods via the use of the
ViewChild decorator.

➔ ratings-and-recommendations.component.ts: Existing component, will be modified in the
following ways:
◆ Will be modified to display recommended explorations in the form of compact

cards instead.
◆ Will be modified to now include the end-chapter-recommendations component.
◆ Will be modified to now store the learner’s sign-up section preference in the

localStorage, and retrieve the same as and when needed.

Existing backend API service:
➔ learner-dashboard-backend-api.service.ts: A new function will be added to make HTTP

calls to the learnercompletedchapterscounthandler/ endpoint.

Documentation changes
None required as the development workflow will remain unaffected.

Testing Plan

E2e testing plan

Test name Initial setup
step

Step Expectation

1. End
chapter
recommen
dations
test

A topic with
a story is
generated,
which
contains at
least two
chapters.

Head over to the story-viewer
page, and start the first chapter.

The chapter begins and the first state is
loaded into the conversation-skin.

Complete the chapter. The end-exploration screen is loaded,
which contains a section displaying the
next chapter and practice session as
recommendation cards.

Click on the recommendation
cards.

The corresponding destination is loaded
upon clicking on the card.

2. Checkpoint
celebration
test

An chapter
with two
checkpoints
is generated

Start the newly created chapter. The chapter begins and the first state is
loaded into the conversation-skin.

Make it to the checkpoint. The checkpoint message appears
on-screen.

Feature testing
Does this feature include non-trivial user-facing changes? YES

Implementation Plan
The implementation plan consists of two milestones.

Milestone 1 objective: Celebrate lesson completion in a meaningful,
actionable, and rewarding way for the learner.

Milestone 1 schedule:

No. Description of PR / action Prereq PR
numbers

Target date for
PR creation

Target date
for PR to be
merged

1 Add end-chapter completion check-mark
and confetti (along with the celebratory
audio meant to be played alongside the
confetti animation)

- 15 June

(Add a feature
gating flag
before getting
started)

19 June

2 Revamp the end-exploration
recommendations and login/sign-up
section (the ratings-and-recommendations
component)

1 21 June 25 June

3 Add post-chapter recommendations
section and milestone message
(alongwith the required endpoint)

1, 2 30 June 5 July

4 Add E2E tests (milestone 1) 1, 2, 3 10 July

(Put milestone
1 up for feature
review)

14 July

5 Bug fixes pertaining to milestone 1, if
required

1, 2, 3, 4 18 July 21 July

Milestone 2 objective: Celebrate checkpoint completion in a meaningful,
rewarding way for the learner that encourages them to continue
progressing.

Milestone 2 schedule:

No. Description of PR / action Prereq PR
numbers

Target date for
PR creation

Target date
for PR to be
merged

6 Add the checkpoint celebration utility
service

- 23 July

(Add a feature
gating flag
before getting
started)

25 July

7 Add checkpoint celebration messages 6 01 August 06 August

8 Integrate checkpoint messages with the
lesson-information-modal component

6, 7 08 August 11 August

9 Add E2E tests (milestone 2) 6, 7, 8 16 August

(Put milestone
2 up for feature
review)

20 August

10 Bug fixes pertaining to milestone 2, if
required

6, 7, 8, 9 24 August 28 August

Future Work
➔ Look into more ways of “gamifying” the experience of playing through an exploration.
➔ Monitor the feedback on the checkpoint messages feature. Determine what kind of

impact they’re having on a learner’s experience. Determine whether they could be
modified in any way (for example, by making the checkpoint messages configurable) to
potentially improve the experience.

➔ Continue my work with the LaCE quality team.

