
Google Summer of Code - 2022
Fix Validation Errors for Explorations

Proposal by - Hitesh Tomar

Section 1: About You

What project are you applying for?
Fix validation errors

Why are you interested in working with Oppia, and on your chosen project?
I'm not sure if I can find a place where I can learn and help at the same time. You are learning and working
with some great minds who have the same mindset of helping others. I think Oppia is the most welcoming
community I've been part of than any other community out there.
The reason I choose the Fix validation errors project is that I'm solely interested in the backend and got
introduced to Apache beam jobs just a few months back and I'm really enjoying learning it.

Prior experience
I've been working on Apache beam jobs for a few months now, currently I'm leading one of the projects you
can take a look at here. Currently, I've been reviewing all of the PRs related to the project.
I've also worked on the backend validations as we will require some for this particular project.
Also, I'm currently doing my internship as a backend developer which is giving me more clarity on how
things work in the backend.

Some of my PRs are -

- Exploration title length should have a max length of 36.
- I did some research work regarding this PR as we wanted to make sure after we add a

backend validation regarding this it doesn't break anything. You can find a detailed analysis
here.

- Validate skill medium rubrics explanations.
- List all filepath-with-value state fields as an empty string.
- Story nodes and skill rubrics backend validation.
- Validation for Continue, Text Input, Multiple choice interaction.

http://github.com/oppia/oppia/issues/13822
https://github.com/oppia/oppia/pull/14748
https://docs.google.com/document/d/10hvFDowbn00xEG83lFB6HyB__4p_q14eHNanbX7zTLU/edit?usp=sharing
https://github.com/oppia/oppia/pull/15235
https://github.com/oppia/oppia/pull/15172
https://github.com/oppia/oppia/pull/14159
https://github.com/oppia/oppia/pull/13838


Project size
large (~350 hours)

Project timeframe
June 13 - November 13

Contact info and timezone(s)
● Mob - +91 8696001333
● Mail - lkbhitesh07@gmail.com
● Timezone - Indian Standard Time (GMT +5:30)
● Preferred mode of communication - Google hangouts, Gmail, WhatsApp (or any mode will also

work)

Time commitment
As I will be contributing to the large project, I will be working 20 hrs/week on this project and if required I
can totally extend accordingly.

Essential Prerequisites
Answer the following questions (for Oppia Web GSoC contributors):

● I am able to run a single backend test target on my machine. (Show a screenshot of a successful
test.)

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a successful
test.)

mailto:lkbhitesh07@gmail.com


● I am able to run one suite of e2e tests on my machine. (Show a screenshot of a successful test.)



Other summer obligations
I might start my full-time job around August or September. I will be graduating in a few months and I will be
looking for jobs but that won't affect the contribution here on the project.
That's the reason I took the long project and will contribute a decent amount of time per week.

Communication channels
I would like to have twice a week interaction with my mentor so that I can update and ask doubts. Any mode
of communication will work.

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one)

N/A

Target Audience Release Coordinator, Oppia Developers

Core User Need There are some validation errors that need to be fixed because as a developer or
release coordinator when I access the storage layer data or run the jobs, I get several
errors.
As a learner, the validation errors will result in harder to access the data and will end
up lowering my experience on the website.

What goals do
we want the
solution to
achieve?

This will enable us to validate various attributes of our models and fix any
consistency errors that are detected. Previously we did not have any validations
while storing the data so there is a strong possibility of having some invalid data in
our datastore, our end goal is to take out all the invalid data and fix them after that
apply the validations so that it does not happen in the future.
This project majorly focuses on the errors related to the Explorations which are
General State Validations, General RTE Validations, and General Interaction
Validations.

Additionally, we will have a way to communicate with GCS and perform actions like
Read file, Write file, Get all the contents of the folder, and edit the metadata of file.
All the audio files will have 'audio/mpeg' as the MIME type.
All the profile images in the UserSettingsModel will be migrated to GCS and it's webP
will be generated.



Section 2.1: WHAT
This section enumerates the requirements that the technical solution outlined in “Section 2: HOW”
must satisfy.

Key User Stories and Tasks

# Title User Story Description
(role, goal, motivation)

Priority List of tasks needed to
achieve the goal (this is the
“User Journey”)

Links to
mocks/prot
otypes,
and/or PRD
sections
that spec
out
additional
requirement
s.

1.1 Exploration
State

Lesson creators should be
aware when there is an
error in their lesson state,
and should not be able to
save or publish the
exploration until it is fixed.
Also, the user should have
a great learning
experience.

High Validations for the following:

See specific validation in the
below section.

N/A

1.2 Exploration
Interactions

Lesson creators should be
aware when there is an
error in their lesson state,
and should not be able to
save or publish the
exploration until it is fixed.
Also, the user should have
a great learning
experience.

High Validations for the following

See specific validation in the
below section.

N/A

1.3 Exploration
RTE

Lesson creator should be
aware when there is an
error in their lesson state,
and should not be able to
save or publish the
exploration until it is fixed.
Also, the user should have
a great learning
experience.

High Validations for the following

See specific validation in the
below section.

N/A



2 Move and
fix data in
GCS

It should be easy for
developers to fetch data
from the GCS, data like
audio, and images.

High ● Introduce GCS IO for
Beam jobs (should
be placed in
core/jobs/io), which
will allow Beam jobs
to work with files in
GCS.

● Validate that
existing files in GCS
have the correct
MIME types
(#13480), and fix
those types if
needed.

● Migrate profile
images from
UserSettingsModel
to GCS and also
generate WebP for
profile images (does
not include frontend
changes)

N/A

Section 2.2: HOW

Step 1: Write Beam Job to get all Exploration validation
errors
The beam job to collect the validation errors -

1. PR #15563 - This PR validates the following
a. General state validations

i. tagged_skill_misconception_id should be None
ii. The default outcome should have a valid destination node
iii. destination_id should be non-empty and match the ID of a state in the

exploration
iv. Outcome labelled_as_correct should not be True if destination ID is “(try

again)”
v. The answer group should have at least one rule spec

https://github.com/oppia/oppia/pull/15563


vi. refresher_exploration_id should be None for all lessons

b. General RTE validations
i. Image tags contain filepath, alt, and caption attributes, where caption can

be an empty string with at most 160
characters and alt should have at least 5 characters.

ii. Math tags contain math_content, raw_latex, and svg_filename attributes,
where svg_filename of curated exp has an SVG extension.

iii. Skillreview tags contain text attributes, text is non-empty
iv. Video tags contain video_id, start, end, and autoplay attributes, where

start is before end
v. Link tags contain text and url attributes, where text is non-empty

c. General interactions validations
i. Continue

1. Text should be non-empty and have a max-length of 20.
2. Should only have a default outcome (and no answer groups)

associated with it.
ii. End Exploration

1. Should not have a default outcome or any answer groups.
2. Should be at most 3 recommended explorations Note: crossover

with Exploration
iii. Numeric Input

1. For x in [a, b], a must not be greater than b
2. For x in [a-b, a+b], b must be a positive value

iv. Fraction Input
1. All rules should have solutions in the simplest form if the simplest

form setting is turned on
2. All rules should have solutions in proper form if the allow improper

fraction setting is turned off
3. Rule 'exactly equals' should have a solution without integer parts

when the allow nonzero integer parts setting is turned off
4. Fractional denominator should be > 0

v. Number With Units Input
1. equal to should not come after equivalent to if they have the

same value
vi. Multiple Choice Input

1. Answer choices should be non-empty and unique
2. No answer choice should appear in more than one answer group
3. If all MC options have feedback, do not ask for a "Default

Feedback"
vii. Item Selection Input

1. Min number of selections should be no greater than max num



2. There should be enough choices to have min num of selections
3. All items should be unique and non-empty
4. == should have between min and max number of selections

viii. Drag and Drop Input
1. All inputs should be non-empty, unique
2. There should be at least 2 items
3. Multiple items can be in the same place iff the setting is turned on
4. == +/- 1 should never be an option if the "multiple items in same

place" option is turned off
5. for a < b, a should not be the same as b

2. PR #15748: This PR validates the following
a. General RTE validation

i. Every tag should contain there attributes even if they are empty.
b. General interaction validation

i. Numeric Input
1. Each answer group should not be a subset of any answer group

that comes before it.
ii. Fraction Input

1. All rules should have solutions that do not match previous rules'
solutions

iii. Item Selection Input
1. None of the answer groups should be the same

iv. Drag and Drop Input
1. `==` should come before idx(a) == b if it satisfies that condition
2. `==` should come before == +/- 1 if they are off by at most 1 value

v. TextInput
1. Text Input height should be between integer between 1 and 10,

inclusive
2. contains should always come after any other rule where the

contains string is a substring of the other rule's string
3. starts with should always come after any other rule where a starts

with string is a prefix of the other rule's string
vi. EndInteraction

1. All recommended explorations should be valid

3. PR #15714: This includes the check from #15563 which required further investigation
and the result is categorized in Private, Public and Curated entities. Checks are as
follows

a. refresher_exploration_id should be None for all lessons
b. Text should be non-empty and have a max-length of 20

(Continue Interaction)

https://github.com/oppia/oppia/pull/15748
https://github.com/oppia/oppia/pull/15714
https://github.com/oppia/oppia/pull/15563


c. == should have between min and max number of selections
(ItemSelection Interaction)

d. Multiple items can be in the same place iff the setting is
turned on (DragAndDrop Interaction)

e. == +/- 1 should never be an option if the "multiple items in
same place" option is turned off (DragAndDrop Interaction)

f. alt should have at least 5 characters (RTE image)
g. Image should have an SVG extension (RTE image)
h. Start value is before end value (RTE video)

4. PR #15172: RTE image should have valid 'filepath-with-value' attribute

NOTE: Details to this check is present in the "General State RTE validations" in the
image part

Step 2: Fix all validation errors

Validation Checks for Exploration State
General state validations
tagged_skill_misconception_id should be None
^ has no errors Frontend validation Backend validation

The default outcome should have a valid destination node
^ has no errors Frontend validation Backend validation

destination_id should be non-empty and match the ID of a state in the exploration
^ has no errors Frontend validation Backend validation

Outcome labelled_as_correct should not be True if destination ID is (try again)
^ has 8 errors Frontend validation Backend validation

- Description of Errors: The `labelled_as_correct` value of an answer group is true even
when its destination node is the state itself or in other words, the destination id is (try
again). If any answer group is marked as correct then its destination node should be in
some other state so that the user can move to the next part or card.

- Why did the error occur in the first place: Previously we did not have any frontend
validation for this and that might be the reason that the creator accidentally marked the
answer group as `labelled_as_correct` and still set the destination node as the state
itself.

- Plans to Fix Errors: Ways to fix the error -

https://github.com/oppia/oppia/pull/15172


● One way to fix this error would be to simply uncheck the `labelled_as_correct`
value or mark the value as False the reason being is if any answer group has a
destination id of (try again) it only means that the answer that user has given is
wrong and creator wants the user to try again. Future updates of the models will
have no effect on the data as we are only modifying the value. I can think of two
ways to fix this particular error -

○ To fix it manually - We can totally fix this particular error by manually
visiting the exploration and unchecking the value the reason being as we
have only 8 errored values.

○ To fix it via job - We can totally write the job and can change the value of
the `labelled_as_correct` value. To be specific it is present inside
Interaction -> AnswerGroup -> Outcome -> labelled_as_correct

○ Another way to fix this error would be to use a conversion function, we
can write a conversion function that will fix the error even if the user
reverts back to the errored lesson.
I will be receiving the exploration states as an argument in the conversion
function and as this check should be present in all the 3 entities which are
private, public, and curated I will simply filter out the invalid state and
assign `labelled_as_correct` as False.

I'm planning to go ahead with the third approach which is to use the conversion function
to resolve the error. The problem with the first approach is that the user can revert back
to the errored lesson and that way we will have the error again. Even if we use the
'PutModel' approach to fix the error that will only fix the current data in the datastore and
if the user reverts back then the data will become invalid again and we do not want that.
If we use the second approach which is the conversion function approach then all the
current data will be fixed with the help of the state migration job and even when the
creator reverts to an invalid lesson the data will be passed by the conversion function
and become valid again.

The answer group should have at least one rule spec
^ has no errors Frontend validation Backend validation

refresher_exploration_id should be None for all lessons
^ has 13 errors Frontend validation Backend validation

- Description of Errors: The `refresher_exploration_id` for all lessons should be None for
the explorations but here we got several states having some value.

- Why did the error occur in the first place: We do not have frontend validation for this
so that might be the reason why this error has occurred.

- Plans to Fix Errors: I think we can simply change the `refresher_exploration_id` to
None as it does not make sense when it's present in the Exploration I think this particular
field is only for the Question part. Please note that before changing the value to `None`
some edits need to be made to the errored explorations like we may need to create new



cards in the exploration to support the remedial part that would now be taken away. I
have submitted the list of errored explorations to Sean and he will be fixing it manually.
Please note that all of the errored explorations are curated and they will be fixed
manually.

Validation Checks for Exploration Interaction
General rules: These are some general rules that are applicable to the interactions below.

1. If the solution to checks is to simply remove the `rule_spec` from the `answer_group`
and after removing them if the `answer_group` becomes empty then the `answer_group`
will also be removed.

2. There is a strong possibility that in case we remove the `answer_group` and it may result
in the state disconnection. So for all the checks where I plan to remove the `rule_specs`
and `answer_groups` if appropriate, I ran an audit job to see how many explorations may
result in the state disconnection. You can find the job here.

3. Some of the solutions require removing the `rules`, `answer_group` and `choices` from
the state and each of them consists of `content_id`. We need to edit the
`WrittenTranslations` and `RecordedVoiceovers` sections as they may have the
`content_ids` that we have deleted.
For this we will need to edit the state dictionary, we have 2 fields inside the state which
are `written_translations` and `recorded_voiceovers`. I will keep track of all the content
ids that I'm going to delete in a state and in the end, I will iterate over these 2 fields and
remove those `content_ids` from here.

Continue
Text should be non-empty and have a max-length of 20.
^ has 869 errors Frontend validation Backend validation

- Description of Errors: The length of the text value of continue interaction is more than
20.

- Why did the error occur in the first place: The reason for this is that we did not have
any frontend validation for this part and creators were allowed to have text value of more
than 20 characters in length but now we have added the frontend validation for this part.

- Plans to Fix Errors: The possible solution I can think of
- One solution to fix this error would be to simply replace the value with the default

one which would be `Continue` for the explorations present in the English
language. If we want we can manually edit the curated explorations(if any) and
can change the text value accordingly and for all the other explorations we can
simply assign the default values.

- Another possible solution can be to leave it as it is, Now as soon as the creator
will edit the exploration our frontend validation will take care of this error, the
creator will not be able to save the exploration until unless they edit the text value
of Continue interaction.

https://github.com/oppia/oppia/pull/15846


- One approach would be to simply trim the text value to length 20 but that way the
`text` will not make any sense and it will be confusing for the learners.

Method to fix: The safest approach would be to go ahead with the conversion function. I
will write the check in the conversion function and filter out all the invalid continue
interactions that have text values more than specific and then I will be setting the value
to the default, for `en` is 'Continue'. For each of the language code, I will translate
`Continue` word to that specific language and replace the text value of the interaction.
The errored language codes are -

- es
- en
- nl
- ru
- sr
- bg
- fr
- ca
- hu
- zh
- it
- fi
- pt
- de
- ar
- cs
- tr

I will receive exp state dictionary as an argument to the state conversion function and
from there I will iterate and filter out the invalid states and then make them valid.

Should only have a default outcome (and no answer groups) associated with it.
^ has no errors Frontend validation Backend validation

End Exploration
Should not have a default outcome or any answer groups.
^ has no errors Frontend validation Backend validation

All recommended explorations should be valid
^ has 208 errors Frontend validation Backend validation

- Description of Errors: End explorations have recommended explorations and they
need to be valid which means they should exist and should be public, In our case, we
found 208 states that have invalid recommended explorations.



- Why did the error occur in the first place: One reason could be that the explorations
that are present in the recommended explorations section are now deleted or made
private.

- Plans to Fix Errors: We are not planning to fix the data that is currently present
because even if we do that then more bad data will come eventually as we would not
know when an exploration may become private or gets deleted. We do have a robust
frontend present as when an exploration is marked private or does not exist, it does not
show up to the learner as a recommended exploration. On the lesson creator side, it
raises a validation error. So as a result nothing needs to be done here as this will be
handled by the creator itself.

Should be at most 3 recommended explorations
^ has 10 errors Frontend validation Backend validation

- Description of Errors: End exploration should only have 3 recommended explorations
but got more than that.

- Why did the error occur in the first place: Previously we did not have any frontend
validation regarding this so creators might have added more than 3 recommended
explorations but now we have a robust frontend validation for the same.

- Plans to Fix Errors:
● As these are only the recommended explorations we can simply remove the last

few to make the count 3.
● Another possible solution can be to leave it as it is, Now as soon as the creator

will edit the exploration our frontend validation will take care of this error, the
creator will not be able to save the exploration until unless they edit the number
of recommended explorations.

Method to fix: I will be using the conversion function to fix the error. The approach
would be simply to filter all the end explorations and then count the number of
recommended explorations it has, if the value is more than 3 we can simply remove the
extra values from the list.

Numeric Input
For x in [a, b], a must not be greater than b
^ has 1 error Frontend validation Backend validation

- Description of Errors: The rule type `IsInclusivelyBetween` has values `a` and `b`
which tells the user if the answer is between `a` and `b`, we found out that the value of
`b` is greater than the value of `a` and that should not be valid.

- Why did the error occur in the first place: Previously we did not have any frontend
validation regarding this so creators might have mistakenly assigned wrong values, I
guess that's why we have only 1 error.

- Plans to Fix Errors:



● One approach to resolve this error would be to simply do it manually so that we
can take a look at the whole exploration and make the values correct which
means simply swapping the value.

● Another approach would be to write the job to resolve the error and we can
simply swap the values of `a` and `b` because that would make more sense.

● The safest approach would be to go ahead with the conversion function. I will add
this check inside the state conversion function and if any value has `a` greater
than `b` I will simply swap those values.

I'm planning to use the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons
the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will
edit the current datastore data.

For x in [a-b, a+b], b must be a positive value
^ has 1 error Frontend validation Backend validation

- Description of Errors: The rule type `IsWithinTolerance` have two values which are `x`
and `tol` which simply tells if the answer of the user is between `x+tol` and `x-tol` and it is
mandatory that the value of the `tol` should not be negative.

- Why did the error occur in the first place: We do not have frontend validation for this
part and that's the reason we might have encountered this errored value which is the
negative value of `tol`.

- Plans to Fix Errors:
● One approach to resolve this error would be to simply do it manually so that we

can take a look at the whole exploration and make the values correct which
means simply we can make the value positive the reason being is that the range
will not change because we are calculating the range by both subtracting and
adding the `tol` value.

● Another approach would be to write the job to resolve the error and we can
simply make the `tol` value positive.

● The safest approach would be to go ahead with the conversion function. I will add
this check inside the state conversion function and if any value has `tol` value as
negetive I will simply make it positive. If the value will be 0, I will simply convert
the rule to the `Equals` rule. (Though I will check if a similar rule already exists
first – if so, then I will just delete the toI=0 rule.)

I'm planning to use the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons
the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will
edit the current datastore data.



Note - We only have one error for this check and that exploration was a test exploration
which is now deleted.

`IsLessThanOrEqualTo` rule contains string value
^ has 30 errors Frontend validation Backend validation

- Description of Errors: The rule `IsLessThanOrEqualTo` should only contain int or float
values but it contains string values in our case.

- Why did the error occur in the first place: The reason might be the frontend
validation, previously we did not have frontend validation for this so the string values
might got saved in the datastore.

- Plans to Fix Errors: To fix this, the optimal way would be to simply remove the rule
because we should not allow string values to the numeric input interaction. Remove the
answer groups if no rules are left. We will not be able to convert the string values to float
or int because the values that are present is of something like `{{Magician Number}}`

- Method to fix:
● One approach would be to write the job to resolve the error and we can simply

remove the rule.
● Another approach would be to use the conversion function and that would be

more optimal here.

I'm planning to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

Note - All the rules present in the `NumericInput` interaction which has a string value, I
tend to delete them. To check if the deletion of invalid rules does not result in the
disconnection of the current state to the next state I wrote a job, you can find that here.
The errored explorations are as follows, though a strange thing happened that all these
explorations contain same state names and the same errored answer group and rule
specs -
- 096K9qLLmvQi, {State_names - "PlayerGuessing", "Player Guess Setup", "practice ranges",
"worst case bigger", "Worst Case Guess", "worst case smaller", "practice ranges lowest"}

- rMFcJ8LO2npk
- y7RCIl0Rn-Tv
- 2
- 9buUiVlCQxPv
- HQKR8LTzJolI
- znJCURVhZ0j8
- 1F3igZt4mpVT
- VyOM3LNvTS6g

https://github.com/oppia/oppia/pull/15846


- N9x-GUMCS6fT

The `2` exploration was public and all the other explorations follows the cloned_from
property and are clone of the `2` exploration and that is why the errored states are same
for all the explorations. The `2` exploration is now unpublished.
If the state disconnection happens to a private exploration then it will probably be okay
as the creator will not be able to publish it until unless the creatore resolves it.
Please note that all the explorations are private now so it will be fine if state
disconnection happens.

`IsGreaterThanOrEqualTo` rule contains string value
^ has 60 errors Frontend validation Backend validation

- Description of Errors: The rule `IsGreaterThanOrEqualTo` should only contain int or
float values but it contains string values in our case.

- Why did the error occur in the first place: The reason might be the frontend
validation, previously we did not have frontend validation for this so the string values
might got saved in the datastore.

- Plans to Fix Errors: To fix this, the optimal way would be to simply remove the rule
because we should not allow string values to the numeric input interaction. Remove the
answer groups if no rules are left. We will not be able to convert the string values to float
or int because the values that are present is of something like `{{Magician Number}}`

- Method to fix:
● One approach would be to write the job to resolve the error and we can simply

remove the rule.
● Another approach would be to use the conversion function and that would be

more optimal here.

I'm planning to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

`Equal` rule contains string value
^ has 70 errors Frontend validation Backend validation

- Description of Errors: The rule `Equal` should only contain int or float values but it
contains string values in our case.

- Why did the error occur in the first place: The reason might be the frontend
validation, previously we did not have frontend validation for this so the string values
might got saved in the datastore.

- Plans to Fix Errors: To fix this, the optimal way would be to simply remove the rule
because we should not allow string values to the numeric input interaction. Remove the



answer groups if no rules are left. We will not be able to convert the string values to float
or int because the values that are present is of something like `{{Magician Number}}`

- Method to fix:
● One approach would be to write the job to resolve the error and we can simply

remove the rule.
● Another approach would be to use the conversion function and that would be

more optimal here.

I'm planning to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

`IsLessThan` rule contains string value
^ has 90 errors Frontend validation Backend validation

- Description of Errors: The rule `IsLessThan` should only contain int or float values but
it contains string values in our case.

- Why did the error occur in the first place: The reason might be the frontend
validation, previously we did not have frontend validation for this so the string values
might got saved in the datastore.

- Plans to Fix Errors: To fix this, the optimal way would be to simply remove the rule
because we should not allow string values to the numeric input interaction. Remove the
answer groups if no rules are left. We will not be able to convert the string values to float
or int because the values that are present is of something like `{{Magician Number}}`

- Method to fix:
● One approach would be to write the job to resolve the error and we can simply

remove the rule.
● Another approach would be to use the conversion function and that would be

more optimal here.

I'm planning to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

`IsGreaterThan` rule contains string value
^ has 60 errors Frontend validation Backend validation

- Description of Errors: The rule `IsGreaterThan` should only contain int or float values
but it contains string values in our case.



- Why did the error occur in the first place: The reason might be the frontend
validation, previously we did not have frontend validation for this so the string values
might get saved in the datastore.

- Plans to Fix Errors: To fix this, the optimal way would be to simply remove the rule
because we should not allow string values to the numeric input interaction. Remove the
answer groups if no rules are left. We will not be able to convert the string values to float
or int because the values that are present is of something like `{{Magician Number}}`

- Method to fix:
● One approach would be to write the job to resolve the error and we can simply

remove the rule.
● Another approach would be to use the conversion function and that would be

more optimal here.

I'm planning to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

All rules should have solutions that do not match previous rules' solutions
^ has 150 errors Frontend validation Backend validation

- Description of Errors: The answer group should not be a subset of any answer group
that comes before it because as it will never be matched. This means if any rule spec
comes in the range of another rule spec then it will never going to get matched. For
example, if we have a rule `IsLessThanOrEqualTo` having value 10 and we have
another rule `Equals` having a value 5, then the `Equals` rule will never going to get
matched. Currently all of the rule specs that are present in the interaction can cause this
error by intersecting each others range, the rule specs are -

- `IsLessThanOrEqualTo`
- `IsGreaterThanOrEqualTo`
- `IsLessThan`
- `IsGreaterThan`
- `Equals`
- `IsWithinTolerance`
- `IsInclusiveBetween`

To be specific rules that can intersect the ranges can be -
- `IsLessThanOrEqualTo` -> IsLessThan, Equals, IsWithinTolerance,

IsInclusiveBetween
- `IsGreaterThanOrEqualTo` -> IsGreaterThan, Equals, IsWithinTolerance,

IsInclusiveBetween
- Why did the error occur in the first place: The reason might be the frontend

validation, previously we did not have frontend validation for this.



- Plans to Fix Errors: I will be simply be removing the answer group which is subset of
the answer group that comes before it. We can simply remove it because it will never
going to match anyways.

- Methods to fix:
● One approach would be to write the job to resolve the error and we can simply

remove the rule.
● Another approach would be to use the conversion function and that would be

more optimal here. I will simply be removing the invalid answergroup or the
invalid rule spec inside it.

I'm planning to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

Fraction Input
All rules should have solutions in the simplest form if the simplest form setting is turned on
^ has no errors Frontend validation Backend validation

All rules should have solutions that do not match previous rules solutions
^ has 96 errors Frontend validation Backend validation

- Description of Errors: All the rules present inside the answer groups should have a
solution that does not match the previous rules solution, if it does the rule will become
redundant and will never be matched. This means if any rule spec comes in the range of
another rule spec then it will never going to get matched. We have some rule specs like
`IsLessThan`, 'IsGreaterThan', 'Equals', so for eg if we have one check - `has fractional
part less than 5/2`, then `has fractional part equals 3/2` should come before it otherwise
it will not going to match.
The different cases where this error can occur will be -

- `HasDenominatorEquals` rule comes before the following -
● `HasFractionalPartExactlyEquals`

- `IsLessThan` having some range, and these rule specs are present within that
range then the rules will never be matched -

● `IsEquivalentToAndInSimplestForm`
● `IsExactlyEqualTo`
● `IsGreaterThan`
● `IsEquivalentTo`

- `IsGreaterThan` having some range, and these rule specs are present within that
range then the rules will never be matched -

● `IsEquivalentToAndInSimplestForm`
● `IsExactlyEqualTo`



● `IsLessThan`
● `IsEquivalentTo`

- Why did the error occur in the first place: The reason might be the frontend
validation, previously we did not have frontend validation for this.

- Plans to Fix Errors: I will be simply be removing the rules which cannot be matched.
- Methods to fix:

● One approach would be to write the job to resolve the error and we can simply
remove the rule.

● Another approach would be to use the conversion function and that would be
more optimal here. I will simply be removing the invalid answer group or the
invalid rule spec inside it.

I'm planning to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

All rules should have solutions in proper form if the allow improper fraction setting is turned off
^ has no errors Frontend validation Backend validation

Rule 'exactly equals' should have solution without integer parts when the allow nonzero integer
parts setting is turned off
^ has no errors Frontend validation Backend validation

Fractional denominator should be > 0
^ has no errors Frontend validation Backend validation

Number With Units Input
equal to should not come after equivalent to if they have the same value
^ has no errors Frontend validation Backend validation

Multiple Choice Input
Answer choices should be non-empty and unique
^ has 7 errors Frontend validation Backend validation

- Description of Errors: We know that in multiple-choice input we have several options or
choices from which we select and it would not make any sense it any of the choices are
empty or duplicate and we found some choices having the errored values. We have 6
error places where the choices are duplicates and we have 1 error place where the
choice is empty.



- Why did the error occur in the first place: Previously we did not have any frontend
validation regarding this so creators might have mistakenly added the empty and
duplicate values but we now have a robust frontend validation for this purpose.

- Methods to fix errors:
● One approach to resolve this error would be to simply do it manually so that we

can take a look at the whole exploration and make the values correct which
means simply we can remove the choices which are empty and duplicate.

● Another approach would be to go ahead and write the job to resolve this error in
which we can simply remove the empty and duplicate values.

● The safest approach would be to use the conversion function to perform this. For
duplicate values there are two possibilities - one is that the values are not empty
and we can simply remove the latter choice. Another possibility is that the values
are empty, in that case, I will simply be replacing the choices with "Choice 1" /
"Choice 2". If only one choice is present and is empty I will simply be removing
that. Please note that I will also remove the rules which were associated with the
removed choices, for that I ran an audit to check if that can result in the state
disconnection, I found that there is one exploration in which this can happen and
the details are, exp_id - X8cVxz-mQo9_ -> {'state_name': 'Instrument Design',
'ans_group_idx': [0]}. There are 3 empty choices present inside this, I will simply
be resolving it with the "Choice 1" / "Choice 2" method.

I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

No answer choice should appear in more than one answer group
^ has 81 errors Frontend validation Backend validation

- Description of Errors: We know that no answer choice can appear in multiple answer
group as that particular choice will have multiple destination nodes and which is not
practically possible and we have found some choices which are present in more than
one answer group.

- Why did the error occur in the first place: Previously we did not had any frontend
validation regarding this so creators might have mistakenly added the multiple answer
group for a single choice but now we have frontend validation for this part.

- Plans to Fix Errors: If the choice is present in more than one answer group then all the
other answer groups will be redundant and will never be matched and I think it will be
safe to simply remove that rule spec from the answer group and in case that answer
group has only one rule spec we can simply remove the complete answer group, to be
specific we will be removing the later rule_spec which got repeated.

- Methods to solve:
● I can use beam job to resolve the error.



● I'm planning to go ahead with the conversion function approach. With the help of
the conversion function I can simply filter out the invalid values which is the
duplicate rule_specs and I will simply be removing the later rule_spec and the
answer group if no rules are left. The reason to use the conversion function is
that even when the creator reverts to the invalid lesson the data will still be
passed from the conversion function and it will become valid again.

If all MC options have feedback, do not ask for a "Default Feedback"
^ has 6069 errors Frontend validation Backend validation

- Description of Errors: If all the choices are provided with the feedback then there is no
need of the "Default Feedback" and we have found several places where we have
feedbacks for every choice and still we have default feedback.

- Why did the error occur in the first place: The reason behind this is that we do not
have frontend validation as of now also the "Default Feedback" section is predefined as
soon as you select the interaction, you only have to add "What you'll say to the learner in
case of default feedback". I think as soon as we'll implement the frontend validation this
issue will be resolved.

- Plans to Fix Errors:
● One approach can be to simply remove the default outcome from the interaction.
● Another approach can be to leave the default outcomes as it is and robust our

frontend, which will be our safest bet. If the creator edits the exploration in future
they will be able to see the frontend validation error and will remove the default
feedback.

Item Selection Input
Min number of selections should be no greater than max num
^ has 1 error Frontend validation Backend validation

- Description of Errors: The minimum number of item selections at one time cannot be
greater than the maximum number of item selections at one time. We found one case
where this happens.

- Why did the error occur in the first place: Previously we did not had any frontend
validation and that could be the reason that the creator might have mistakenly put up the
wrong values.

- Plans to Fix Errors: The good part is that we only have 1 error and that can be resolved
easily. Now the best approach would be to simply replace the `min value` and `max
value`.

- Methods to Fix:
● One approach would be to manually perform this action by simply visiting the

exploration and swapping both the values, that way we will be able to look at the
answer groups and rule specs and can check if we are performing it in the right
way or not.



● Another approach would be to simply write the job to perform this task and in the
job will be simply swapping the value.

● The safest approach would be to go ahead with the conversion function and fix
the error. I will simply be going through each states and checking on the
ItemSelectionInput interaction for the `max` and `min` values and if the `min` is
greater than the `max` I will simply swap those values.

I would be using the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons
the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will
edit the current datastore data.

There should be enough choices to have min num of selections
^ has 2 errors Frontend validation Backend validation

- Description of Errors: The total choices we have are less than the total of minimum
number of item selections at one time(`min value`). It do not make sense as we do not
have enough choices to select for `min value`.

- Why did the error occur in the first place: Previously we did not had any frontend
validation and that could be the reason that the creator might have mistakenly put up the
wrong values.

- Plans to Fix Errors: The good part is that we only have 2 errors so that it will be easy
for us to resolve them.
If we will take a look at the errored values we'll get to know that the number of choices is
only 1 and the `min value` is 2, so I think we can simply change the `min value` to 1
though it is strange that we only have one choice in Item Selection input.

- Methods to fix:
● One approach would be to manually perform this action by simply visiting the

exploration and change the `min value` which according to me is more efficient
way to resolve this error.

● Another approach would be to simply write the job to perform this task and in the
job will simply change the value to 1.

● Another approach to fix the error would be to go ahead with the conversion
function and fix the error. I will simply be going through each state and checking
on the ItemSelectionInput interaction for the check. If I find the number of choices
less than the number of min value, I will simply set the min value to 1.

I would like to go ahead with the third approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the
invalid lessons the data will still pass through the conversion function and it will
become valid again. After writing the conversion function a migration job will be
run which will edit the current datastore data.



All items should be unique and non-empty
^ has 1 error Frontend validation Backend validation

- Description of Errors: The choices we have should not be empty or duplicate that will
be invalid, in our case we got one error in which we do have a duplicate value.

- Why did the error occur in the first place: Previously we did not had any frontend
validation and that could be the reason that the creator might have mistakenly put up the
duplicate values.

- Plans to Fix Errors: The good part is that we only have 1 error so it will be easy for us
to resolve.
The best approach to resolve this error would be to simply remove the duplicate value as
simply that value makes no sense.

● One approach would be to manually perform this action by simply visiting the
exploration and changing the choices by removing the duplicate value which
according to me is a more efficient way to resolve this error.

● Another approach would be to simply write the job to perform this task and in the
job will simply be removing the duplicate value, which to be specific will be
present in the State -> Interaction -> customization_args -> choices -> values

● Another approach to fix the error would be to go ahead with the conversion
function and fix the error. For duplicate values there are two possibilities - one is
that the values are not empty and we can simply remove the latter choice.
Another possibility is that the values are empty, in that case I will simply be
replacing the choices with "Choice 1" / "Choice 2". If only one choice is present
and is empty I will simply be removing that. Please note that I will also remove
the rules which were associated with the removed choices.

I would like to go ahead with the third approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the
invalid lessons the data will still pass through the conversion function and it will
become valid again. After writing the conversion function a migration job will be
run which will edit the current datastore data.

NOTE - Please note that it only occurs in one exploration and after looking at it we found
that it does not have any answer group only default outcome was present so there is no
chance of state disconnection. In general if this occurs then I will not be deleting the
rules, will check for the state disconnection and do the manual work where required.

== should have between min and max number of selections
^ has 146 errors Frontend validation Backend validation

- Description of Errors: Rule spec of type `Equals` can have multiple choices present
and now those choices should be more than `min value` which means the minimum
number of selection at one particular time and should be less than `max value` which is
maximum number of selection to one particular time. We found several errors violating
the condition.



- Why did the error occur in the first place: Previously we did not had any frontend
validation and that could be the reason that the creator might have mistakenly put up the
more or less values.

- Plans to Fix Errors:
● To resolve this error one possible solution would be to simply change the `min

value` or `max value`, we cannot make changes in the choices part because that
might result in an invalid answer group or the whole state. So if the number of
choices present is less than the `min value` then we can simply change the `min
value` to the number of choices present or if it is greater than the `max value`
then we can change the `max value` to number of choices present there. This
solution may go against the creators intend.

● Another possible solution would be to simply go ahead and delete the rule and
the answer group if only one rule was present, I think this would be the safest
approach to go ahead with.

● One solution would be to simply wait and let the frontend handle this part
because as soon as the creator will open the exploration for edit purposes then
the frontend will show the errors and it will be mandatory for the creator to
resolve that inorder to save the exploration. This will not be the correct way to
resolve this as we don't if the exploration is going to get edited and if so then
when its going to get edited.

- Methods to fix:
● One solution would be to use the beam job to perform the opertation in which I

will simply be deleting the invalid rule.
● To use the conversion function to perform the task, we can simply filter out the

invalid rule and can delete it.

I'm planning to go ahead and use the second plan to fix the error which is to simply
delete the rule. I will be using the conversion function to perform the task as this would
be the more optimal one, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

None of the rules should be the same
^ has 70 errors Frontend validation Backend validation

- Description of Errors: None of the rules should be same as it will lead to redundancy,
in our case we have `Equals` rule which have same values at multiple places.

- Why did the error occur in the first place: Previously we did not had frontend
validation so that might be one reason.

- Plans to Fix Errors: To fix the error I'm planning to simply go ahead and remove the
later rule as it will never going to match.

- Methods to fix:



● One solution would be to use the beam job to perform the operation in which I will
simply be deleting the invalid rule.

● To use the conversion function to perform the task, we can simply filter out the
invalid rule and can delete it.

I'm planning to go ahead and use the second method to fix the error which is to use the
conversion function and simply remove the errored rule, the reason would be even if the
user reverts back to the invalid lessons the data will still pass through the conversion
function and it will become valid again. After writing the conversion function a migration
job will be run which will edit the current datastore data.

Drag and Drop Input
All inputs should be non-empty, unique
^ has no errors Frontend validation Backend validation

There should be at least 2 items
^ has no errors Frontend validation Backend validation

Multiple items can be in the same place iff the setting is turned on
^ has 13 errors Frontend validation Backend validation

- Description of Errors: Multiple items or choices should not be in the same place when
`Allow multiple items at the same place` setting is turned off and we have found 13
errors that are violating this condition.

- Why did the error occur in the first place: Previously we did not have any frontend
validation and that could be the reason that the creator might have mistakenly forgotten
to click the checkbox.

- Plans to Fix Errors: There are a total of 4 explorations containing 13 errors and that is a
good part as we will be able to resolve them quickly.

● One possible solution would be to simply click on the checkbox and mark it as
True, here the checkbox refers to `Allow multiple items at the same place`. This
way we can simply make the error resolves and we will not require any changes
in the answer group or rule specs. This solution may entail changing the intent of
the question.

● Another solution would be to simply delete the rules which do not follow this
check. I would like to go ahead with this solution.

- Methods to fix:
● One approach would be to simply visit these 3 explorations and remove the

errored rule spec manually.
● Another way would be to write the job and remove the errored rule spec.
● The most efficient approach would be to simply go ahead and use the conversion

function to delete the invalid rule.



I'm planning to go ahead and use the conversion function method to resolve the error by
simply removing the rule spec, the reason would be even if the user reverts back to the
invalid lessons the data will still pass through the conversion function and it will become
valid again. After writing the conversion function a migration job will be run which will edit
the current datastore data.

== +/- 1 should never be an option if the "multiple items in same place" option is turned off
^ has 53 errors Frontend validation Backend validation

- Description of Errors: Rule spec of type
`IsEqualToIrderingWithOneItemAtIncorrectPosition` should not be present when `Allow
multiple items at same place` setting is turned off, we have found some places which
violates this condition.

- Why did the error occur in the first place: Previously we did not had any frontend
validation and that could be the reason that the creator might have mistakenly forgotten
to click the checkbox.

- Plans to Fix Errors:
● One way to resolve this error is to simply click on the checkbox or make the value

True because we cannot simply change the values of rule specs or answer
groups that might result in an invalid answer group or maybe the whole state.
This approach may change the intent of the creator.

● One another approach would be to simply remove the invalid rule. I'm planning to
go ahead with this approach.

- Methods to fix:
● I can use beam job to simply remove the invalid rule.
● I can use conversion function to complete the operation which is to simply go

ahead and remove the invalid rule.
I'm planning to use the conversion function method to resolve this issue, the reason
would be even if the user reverts back to the invalid lessons the data will still pass
through the conversion function and it will become valid again. After writing the
conversion function a migration job will be run which will edit the current datastore data.

for a < b, a should not be the same as b

^ has 2 errors Frontend validation Backend validation
- Description of Errors: Rule spec of type `HasElementXBeforeElementY` should not

have the value `X` equals to the value `Y` because that would not make any sense and it
wouldn't be possible to perform this.

- Why did the error occur in the first place: Previously we did not had any frontend
validation and that could be the reason that the creator might have mistakenly added the
same value at `X` and `Y`.

- Plans to Fix Errors: The good part is that we only have 2 errors so it will be easy to
resolve them.



To fix this particular error I think we can simply remove the rule spec from the answer
group as the rule spec makes no sense and will never be matched.

- Methods to fix:
● One approach would be to resolve this error manually, simply we can visit the

exploration and move to the desired state and can remove the rule spec from
there.

● Another approach would be to write the job to resolve the error, we can simply
visit the answer group and the rule spec present there and can simply remove
the rule spec.

● Another approach to fix the error would be to go ahead with the conversion
function and fix the error. I will simply be going through each states and checking
on the DragAndDropInput interaction for the check. When I'll find the errored
rule_spec I will simply be deleting it.

I would like to go ahead with the third approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the
invalid lessons the data will still pass through the conversion function and it will
become valid again. After writing the conversion function a migration job will be
run which will edit the current datastore data.

== should come before idx(a) == b if it satisfies that condition
^ has 2 errors Frontend validation Backend validation

- Description of Errors: `Equals` rule should always come before the
`HasElementXatPositionY` rule otherwise it will become redundant and will never be
matched.

- Why did the error occur in the first place: Previously we did not had frontend
validation for this.

- Plans to Fix Errors: I'm planning to simply remove the `Equals` rule as it is never going
to match.

- Methods to fix:
● We can manually visit the exploration and remove the `Equals` rule from there.
● I can write beam job to remove the `Equals` rule.
● I can use conversion function to resolve the error, I will simply remove the equals

rule.
I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

== should come before == +/- 1 if they are off by at most 1 value
^ has 6 errors Frontend validation Backend validation



- Description of Errors: `Equals` rule should always come before the
`IsEqualToIrderingWithOneItemAtIncorrectPosition` rule otherwise it will become
redundant and will never be matched.

- Why did the error occur in the first place: Previously we did not had frontend
validation for this.

- Plans to Fix Errors: I'm planning to simply remove the `Equals` rule as it is never going
to match.

- Methods to fix:
● We can manually visit the exploration and remove the `Equals` rule from there.
● I can write beam job to remove the `Equals` rule.
● I can use conversion function to resolve the error, I will simply remove the equals

rule.
I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

`IsEqualToOrdering` rule have empty values
^ has 39 errors Frontend validation Backend validation

- Description of Errors: `IsEqualToOrdering` rule have empty values which it shouldn't.
- Why did the error occur in the first place: Previously we did not had frontend

validation for this.
- Plans to Fix Errors: I'm planning to simply remove the `IsEqualToOrdering` rule as it is

never going to match.
- Methods to fix:

● We can manually visit the exploration and remove the `IsEqualToOrdering` rule
from there.

● I can write beam job to remove `IsEqualToOrdering` rule.
● I can use conversion function to resolve the error, I will simply remove the

`IsEqualToOrdering` rule.
I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

Text Input
Text Input height should be integer between 1 and 10, inclusive
^ has 64 errors Frontend validation Backend validation

- Description of Errors: Text row height should be between 1 and 10 inclusive.



- Why did the error occur in the first place: Previously we did not had frontend
validation for this.

- Plans to fix: To reduce the text row height to 10.
- Methods to fix:

● I can use beam job to fix the issue, will simply change the row value to 10.
● I can use the conversion function to resolve the error.

I'm planning to go ahead with the conversion function approach, the reason would be
even if the user reverts back to the invalid lessons the data will still pass through the
conversion function and it will become valid again. After writing the conversion function a
migration job will be run which will edit the current datastore data.

`contains` should always come after the `Equals_without_taking_case_into_account`,
`Starts-with` and `Contains` rule where the contains rule string is a substring of the other rule's
string
^ has 125 errors Frontend validation Backend validation

- Description of Errors: `contains` rule should always come after the `Equals`,
`Contains` and `Starts-with` rule otherwise it will become redundant and will never be
matched.

- Why did the error occur in the first place: Previously we did not had frontend
validation for this.

- Plans to Fix Errors: I'm planning to simply remove the rule that have `contains` rule
substring rule as it is never going to match.

- Methods to fix:
● I can write beam job to simply go ahead and remove the contains rule spec.
● I can use conversion function to resolve the error, I will simply remove the errored

rule.
I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

`starts-with` should always come after `Equals_without_taking_case_into_account` and
`starts_with` rule where a `starts-with` string is a prefix of the other rule's string
^ has 47 errors Frontend validation Backend validation

- Description of Errors: `starts with` rule should always come after the `Equals` and
`starts-with` rule where a starts-with string is prefix of other mentioned rule's string
otherwise it will become redundant and will never be matched.

- Why did the error occur in the first place: Previously we did not had frontend
validation for this.



- Plans to Fix Errors: I'm planning to simply remove the rule that have prefix of the `starts
with` rule as it is never going to match.

- Methods to fix:
● I can write beam job to simply go ahead and remove the contains rule spec.
● I can use conversion function to resolve the error, I will simply remove the errored

rule.
I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

Validation Checks for Exploration RTE
RTE tags

Image tags
Contain filepath, alt, and caption attributes, where caption can be an empty string with at most
500 characters and alt should have at least 5 characters also image should be an svg
extension.

caption can be an empty string with at most 500 characters
^ has no errors Frontend validation Backend validation

alt should have at least 5 characters
^ has 2842 errors Frontend validation Backend validation

- Description of Errors: Image tag having attribute `alt-with-value` should have more
than 5 characters and at some places, we found that we are violating this condition. It's
simply the alternate value in case we are not able to display the image.

- Why did the error occur in the first place: We do not have frontend validation for this
part and that's why the creator may have leave the value empty or maybe less than 5
characters.

- Plans to Fix Errors:
● One way to fix the error would be to simply replace the alt value with some

default value and I think `Image` would be the right word here for English
explorations. This will make a mockery of the alt tag and will not help users who
have visual disabilities.

● Another way to fix would be fix the alt tag manually for the curated explorations
and let the backend validation fail for the private and public ones so that when
the creator will edit the exploration they will be able to resolve that. I'm planning
to go ahead with this fix. I have submitted the list of curated explorations to Sean
and he will be fixing them manually.

- Methods to fix:



● Will be done manually for the curated explorations and will add the backend
validation to prevent it from happening in the future.

Image should have an SVG extension for curated exps
^ has 52 errors Frontend validation Backend validation

- Description of Errors: Image tag having attribute `filepath-with-value` should have an
svg extenstion but we have found some places where this condition gets violated.
`filepath-with-value` simply contains the image.

- Why did the error occur in the first place: We do not have frontend validation for this
part and that's why the creator may have mistakenly uploaded the image with some
other extensions. But today if any creator adds an image then it will be mandatory to
upload the file with SVG extension. To be clear we do not have any frontend validation
which can detect the extension of the image incase any previously created exploration is
edited.

- Plans to Fix Errors: It is mandatory that all the curated lessons have the image in SVG
format and all the other explorations can have any other format. So currently an art
workstream is going on regarding this purpose and I can simply collect the details
regarding the image like Exploration, State, etc and can submit it there. I will be
coordinating with Sean and Namrata on this, as it needs to be fixed manually.

- After the images are fixed I will add the backend validation so that no new errored data
will be formed.

alt-with-value should be an attribute present inside the image tag.
^ has 1041 errors Frontend validation Backend validation

- Description of Errors: `alt-with-value` attribute is not present inside the image tag.
- Why did the error occur in the first place: Not sure on how this may have occured

because even if the field is empty we used to store the empty strings.
- Plans to Fix Errors: For the curated explorations no explorations were reported that do

not have `alt-with-value` tag inside the image tag and for the public and private I was
planning to add the attribute inside the tag and same as the above check I will let the
backend fail for this so that the creator can fix it when editing the exploration.

filepath-with-value should be an attribute present inside the image tag.
^ has 32 errors Frontend validation Backend validation

- Description of Errors: `filepath-with-value` attribute is not present inside the image tag.
- Why did the error occur in the first place: Not sure on how this may have occured

because even if the field is empty we used to store the empty strings.
- Plans to Fix Errors: Simply planning on delete the tag as we have no information of the

image. I will be using the conversion function to perform this task so that even if user
reverst back to invalid state, the invalid data becomes valid.

Math tags



Contain math_content, raw_latex, and svg_filename attributes, where svg_filename has an SVG
extension.

raw_latex value should not be empty or None
^ has 13 errors Frontend validation Backend validation

- Description of Errors: Math tag containing `raw_latex` attribute should not be empty or
None but we have found few places where the value is empty.

- Why did the error occur in the first place: Previosuly we did not had any frontend
validation for the same but it is strange that without the `raw_latex` value we have the
SVG image because what we write on `raw_latex` is then gets converted to the svg.

- Plan to Fix Errors: To resolve the error I will simply be deleting the bad tags as the tag
wouldn't make any sense.

- Methods to fix:
● One approach would be to simply perform the action manually.
● Another approach would be to use the beam job to resolve the error.
● The safest approach would be to use the conversion function and in the

conversion function, after filtering out the invalid math RTE tags which have
empty raw_latex value I will simply delete the tag.

I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

svg_filename has an SVG extension
^ has no errors Frontend validation Backend validation

Skillreview tags
Skillreview tags contain text attributes, text is non-empty
^ has 1 error Frontend validation Backend validation

- Description of Errors: Skillreview tag containing text attribute should not be empty but
we have found one place where the attribute value is empty.

- Why did the error occur in the first place: We do not have any frontend validation for
the same which might be the reason why this error has occurred.

- Plan to Fix Errors: The best part is that we only have 1 error so it will be easy for us to
fix it.
The best way to fix this can be to simply remove the tag.

- Methods to fix:
● One approach would be to simply perform the action manually.
● Another approach would be to use the beam job to resolve the error.
● The safest approach would be to use the conversion function and in the

conversion function, after filtering out the invalid skillreview RTE tags which have



empty text value I will simply delete the tag.

I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

Video tags
Video tags contain video_id, start, end, and autoplay attributes, where start is before end

start-with-value should be an attribute inside video tag
^ has 49 errors Frontend validation Backend validation

- Description of Errors: `start-with-value` attribute is not present inside the video tag.
- Why did the error occur in the first place: Not sure on how this may have occured

because even if the field is empty we used to store the empty strings.
- Plans to Fix Errors: I'm simply planning to introduce the attribute inside the tag and

assign the default value to it which is `0`.
- Methods to fix:

● One approach would be to use the beam job to resolve the error.
● I'm planning to use the conversion function to resolve the issue.

I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

end-with-value should be an attribute inside video tag
^ has 49 errors Frontend validation Backend validation

- Description of Errors: `end-with-value` attribute is not present inside the video tag.
- Why did the error occur in the first place: Not sure on how this may have occured

because even if the field is empty we used to store the empty strings.
- Plans to Fix Errors: I'm simply planning to introduce the attribute inside the tag and

assign the default value to it which is `0`.
- Methods to fix:

● One approach would be to use the beam job to resolve the error.
● I'm planning to use the conversion function to resolve the issue.

I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.



autoplay-with-value should be an attribute inside video tag
^ has 136 errors Frontend validation Backend validation

- Description of Errors: `autoplay-with-value` attribute is not present inside the video tag.
- Why did the error occur in the first place: Not sure on how this may have occured

because even if the field is empty we used to store the empty strings.
- Plans to Fix Errors: I'm simply planning to introduce the attribute inside the tag and

assign the default value to it which is `False`.
- Methods to fix:

● One approach would be to use the beam job to resolve the error.
● I'm planning to use the conversion function to resolve the issue.

I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

Start value is before end value
^ has no errors Frontend validation Backend validation

video_id should be valid
^ has 19 errors Frontend validation Backend validation

- Description of Errors: Video tag contains `video_id` attribute which has the video id
which creator wants the learner to see. `video_id` should be valid and non-empty but at
some places, we found out that `video_id` is empty.

- Why did the error occur in the first place: Previously we did not had any frontend
validation regarding the same So that might be the reason why this has happened.

- Plan to Fix Errors: The main purpose of the video tag is to present the video and that
happens via the `video_id` and if that particular attribute is empty then it does not make
any sense to keep this tag. I think one solution can be to simply remove the video tag
and that way we will be able to resolve this error.

- Methods to fix:
● I will write a beam job in which after filtering out all the invalid video tags and

removing them.
● The safest approach would be to use the conversion function and in the

conversion function, after filtering out the invalid video RTE tags which have
empty video_id value I will simply delete the tag.

I would like to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the
invalid lessons the data will still pass through the conversion function and it will
become valid again. After writing the conversion function a migration job will be
run which will edit the current datastore data.



Autoplay attribute should be boolean
^ has 627 errors Frontend validation Backend validation

- Description of Errors: The video tag has an attribute named `autoplay` which
represents if we want the video in the autoplay mode and this is a boolean field. We
have found some places where the value is not boolean.

- Why did the error occur in the first place: I'm not sure about this part because
currently, we have a checkbox which asks if we want our video to autoplay or not.

- Plan to Fix Errors: I think the safe play would be to simply assign the default value to all
of the invalid attributes which is `false`, this way we will be able to resolve the error.
Before assigning the default value I will be checking if the value in any way meant to be
`True` or `False` and will be assigning that value only. So the method to check this would
be as after fetching the data we will get that in the string format. I will strip that string
value and check if that somehow matches "true" or "false", other than that if incase I
recieve values like "True" or "False", I will try to convert those value to bool and see if
they succesfully gets converted.

- Methods to fix:
● I will be using the beam job to resolve the error in which I will simply be setting

the invalid `autoplay` to `false`.
● The safest approach would be to use the conversion function and in the

conversion function, after filtering out the invalid video RTE tags which have
autoplay as a non boolean value, I will simply mark the value as default, which is
False.

I would like to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the
invalid lessons the data will still pass through the conversion function and it will
become valid again. After writing the conversion function a migration job will be
run which will edit the current datastore data.

Link tags
Link tags contain text and URL attributes, where text is non-empty
^ has 515 errors Frontend validation Backend validation

- Description of Errors: Link tag contains `text-with-value` attribute which represents the
text for the URL. In some places, we found the value as empty and that is invalid.

- Why did the error occur in the first place: Previously we did not have frontend
validation so that might be the reason why this error has occurred.

- Plan to Fix Errors:
● The one possible way we can fix this error by simply assigning a default value

which can be `URL` or `Link` this way it will be clear to the learner that it
represents the link.

● Another possible solution is to just simply delete the tag the reason being is, as
the text value is empty so the link is not visible to the learner so we can simply



remove the link and we are not sure of what to put as a value if not delete it, we
cannot take guess here.

- Methods to fix:
● I will be using the beam job to resolve the error in which I will simply be deleting

the tag.
● The safest approach would be to use the conversion function and in the

conversion function, after filtering out the invalid link RTE tags which have empty
text value, I will simply be deleting the tag.

I would like to go ahead with the second approach which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the
invalid lessons the data will still pass through the conversion function and it will
become valid again. After writing the conversion function a migration job will be
run which will edit the current datastore data.

URL should start with http or https
^ has  errors Frontend validation Backend validation

- Description of Errors: At some places inside the `url-with-value` attribute, we have
values or urls that do not start with `http` or `https`.

- Why did the error occur in the first place: we do not have frontend validation so that
might be the reason why this error has occurred.

- Plans to fix: If the URL starts with `http` we are planning to replace it with `https` and if
other than this we simply plan to delete the tag.

- Methods to fix: Planning to go ahead with the conversion function approach, the reason
would be even if the user reverts back to the invalid lessons the data will still pass
through the conversion function and it will become valid again. After writing the
conversion function a migration job will be run which will edit the current datastore data.

Note - Currently Harsh(Lawfull2002) is working upon this issue and you can find his PR here. I
will provide my assistance where needed.

text-with-value attribute should be present in the link tag
^ has 313 errors Frontend validation Backend validation

- Description of Errors: `text-with-value` attribute is not present inside the link tag.
- Why did the error occur in the first place: Not sure on how this may have occured

because even if the field is empty we used to store the empty strings.
- Plans to Fix Errors: I'm simply planning to remove the tag.
- Methods to fix:

● One approach would be to use the beam job to resolve the error.
● I'm planning to use the conversion function to resolve the issue, I will simply

remove the tag.

https://github.com/oppia/oppia/pull/15955


I would like to go ahead with the second method which is to go ahead with the
conversion function, the reason would be even if the user reverts back to the invalid
lessons the data will still pass through the conversion function and it will become valid
again. After writing the conversion function a migration job will be run which will edit the
current datastore data.

url-with-value attribute should be present in the link tag
^ has 1 errors Frontend validation Backend validation

- Description of Errors: `url-with-value` attribute is not present inside the link tag.
- Why did the error occur in the first place: Not sure on how this may have occured

because even if the field is empty we used to store the empty strings.
- Plans to Fix Errors: I'm simply planning to remove the tag.
- Methods to fix:

● One approach would be to use the beam job to resolve the error.
● Another approach would be to simply go ahead and do it manually.
● I'm planning to use the conversion function to resolve the issue, I will simply

remove the tag.
I would like to go ahead with the third approach which is to go ahead with the conversion
function, the reason would be even if the user reverts back to the invalid lessons the
data will still pass through the conversion function and it will become valid again. After
writing the conversion function a migration job will be run which will edit the current
datastore data.

NOTE: You can find all the decisions accumulated here in this sheet.

Step 3: Move and fix data in Google Cloud Storage
This section includes 3 parts which are as follows -

● Introduction to GCS IO for Beam jobs, which will allow Beam jobs to work with files in
GCS.

● Validate that existing files in GCS have the correct MIME types (#13480), and fixing
those types if needed.

● Migrate profile images from UserSettingsModel to GCS and also generate WebP for
profile images (does not include frontend changes)

Third-Party Libraries
N/A

“Service” Dependencies
N/A

https://docs.google.com/spreadsheets/d/1kbjCeADo0VuP7ezSt84NOguA-z9tPJ2IokGGZuh1-Ts/edit?usp=sharing


Impact on Other Oppia Teams
All the teams which work upon storage models will be impacted and this will be a good add-on
for the future.

Key High-Level and Architectural Decisions
N/A

Risks and mitigations

Potential Risk Mitigation

Reliability risk - As I will be working with the
conversion function we will indirectly be working
with the datastore and it includes some potential
risk, like when we remove any answer group
from the exploration and that may lead to state
disconnection.

I think after writing the conversion function I will
have one migration audit job that can be run before
the actual migration job. I can run that audit job
several times in case some changes are suggested
as this audit job does not make any changes to the
datastore. Please note that to prevent the potential
risk that I have mentioned in the `Potential Risk`
section, I have already ran an audit job to check for
the state disconnection and have planned the
methods to prevent them. So, with this I can simply
avoid the state disconnection risk that we have.
After all the changes are done I will simply go
ahead and request for the actual migration job.
When we run audit job and migration job we also
run validations on the explorations, that will help us
to detect any irregularities in the audit job and that
way we can prevent any critical changes.

Implementation Approach - Milestone 1
I will be using conversion functions to handle all the errored datas that is reported above. As all
of the errored data is related to exploration I will be adding the conversion function to
`exp_domain.py`. Currently the latest Exploration version is `56` and the current State version is
`51`. I will be adding two functions to the file which will be `_convert_v56_dict_to_v57_dict` for
the Exploration and for the State it will be `_convert_states_v51_dict_to_v52_dict`.

The Exploration conversion function would look something like this -

@classmethod

def _convert_v56_dict_to_v57_dict(cls, exploration_dict):



"""Converts a v56 exploration dict into a v57 exploration dict.

Version 57 adds few exploration validation checks which are categorized

as General State validation, General Interaction validation and General RTE

validation.

Args:

exploration_dict: dict. The dict representation of an exploration

with schema version v56.

Returns:

dict. The dict representation of the Exploration domain object,

following schema version v57.

"""

exploration_dict['schema_version'] = 57

exploration_dict['states'] = cls._convert_states_v51_dict_to_v52_dict(

exploration_dict['states'])

exploration_dict['states_schema_version'] = 52

return exploration_dict

The State conversion function will have three functions inside it and those will be for general
state, general interactions and general RTE respectively. This way it will be easy to categorize
each checks and it will be easy to keep track of.

@classmethod

def _convert_states_v50_dict_to_v51_dict(cls, states_dict):

"""

"""

# Update general state validations.

states_dict = update_general_state(states_dict)

# Update general state interaction validations.

states_dict = update_general_state_interaction(states_dict)

# Update general state RTE validations.

states_dict = update_general_state_rte(states_dict)

return states_dict

The structure would look something like above and inside all the functions we will be changing
the values of states as per the checks.



How things will work?
Please note that I'm planning to create only one PR for all the checks related to conversion
function and 3  PR's for all the backend validations.

After completing all the work related to the conversion function and after testing it locally, I will
be submiting the request to check this on the backup server to see if everything works as
intended and it do not break anything. In this check no data will be changed it will just check if
everything works fine or not. After the check passes then we will go ahead and run a migration
job which will update the version of each exploration as well as the state to the latest one and
will update the datastore.

What happens if creator reverts to the previous version?
When the conversion function will run it will create a new history version for each exploration
given the most recent history version. Whenever a previous version of exploration is loaded the
code checks the version and if it is not latest then it will pass through the conversion functions
and will become the latest. This will ensure that our data never gets invalid again.

We can take a look at `exp_fetchers.get_exploration_by_id()` function which then calls the
`get_exploration_from_model()` function where we check the state schema version and if it is
not latest then we call `_migrate_states_schema` and from there it handles the updation of the
states until it reaches the latest.

Backend Validation
The backend validation of all the checks will be added even though no errors are reported for
some checks. The backend validation for the exp state will be added in the `validate()` function
of `Exploration` model in the `exp_domain.py` file.
The checks which are related to the interactions will be placed in `InteractionInstance.validate()`
function.
The checks related to the RTE will be placed inside the `SubtitledHtml.validate()` function
present in `state_domain.py` because the checks will be valid for both the Questions and
Explorations.

Please note that there is only one check that should only be present in the `curated` exps which
is `Image should have an SVG extension for curated exps` and this check will be present in the
`validate_exploration_for_story()` function in which checks specific to curated explorations are
present. This function is called when we edit our exploration or when we go ahead and add our
exploration to the chapter.

Steps for Milestone - 1

1. AUDIT STEP
a. Create PRs for audit jobs to detect irregularities in data
b. Run “detect irregularities” audit jobs on backup server to get list of errored data

2. Finalize PR for entity conversion code
3. Finalize PRs for backend validations
4. MIGRATION STEP on backup server



a. Deploy entity conversion PR to server
b. Run the audit job, run the code without committing any changes to the datastore.

Repeat this step until no errors reported
c. Run the entity migration job from the PR.
d. Re-run “detect irregularities” audit jobs on server to confirm all data is fixed

5. MERGE STEP
a. If all data is fixed on backup server, then can merge entity conversion PR and

backend validation PRs into oppia/develop
6. MIGRATION STEP on test server

a. Deploy entity conversion PR to server
b. Run the audit job, run the code without commiting any changes to the datastore.

Repeat this step until no errors reported
c. Run the entity migration job from the PR until it passes.
d. Re-run “detect irregularities” audit jobs on server to confirm all data is fixed

7. MIGRATION STEP on production server
a. Deploy entity conversion PR to server
b. Run the audit job, run the code without commiting any changes to the datastore.

Repeat this step until no errors reported
c. Run the entity migration job from the PR until it passes. Deploy the backend

validations to production as soon as the migration job is done.
d. Re-run “detect irregularities” audit jobs on server to confirm all data is fixed



Implementation Approach - Milestone 2
It includes 2 parts which are as follows -

● Introducing GCS IO capability for Beam jobs, which will allow Beam jobs to work with
files in GCS.

● Migrate profile images from UserSettingsModel to GCS and also generating WebP for
profile images (does not include frontend changes)

Introduction to GCS IO for beam jobs
For introduction of GCS IO to the beam jobs I'm planning to use `apache_beam.io.gcp.gcsio`
module, you can find the documentation here. The reason why I'm not using the
`apache_beam.io.gcp.gcsfilesystem` is because under the hood this module is using the `gcsio`
module only, for properties that we are planning to implement such as `open`, `write`, `delete` it
is using `gcsio`.
I will be creating a new file named `gcs_io.py` inside `core/jobs/io`, which will include the
following properties -

● Reading from files
● Writing into files
● Modifying file metadata
● Deleting files
● Getting the list of files in a folder

For this we should know some key terms that google uses, such as `Organization`, `Project`,
`Bucket` and `Object`.

● Organization: Your company, called Example Inc., creates a Google Cloud organization
called exampleinc.org.

● Project: Example Inc. is building several applications, and each one is associated with a
project. Each project has its own set of Cloud Storage APIs, as well as other resources.

● Bucket: Each project can contain multiple buckets, which are containers to store your
objects. For example, you might create a photos bucket for all the image files your app
generates and a separate videos bucket.

● Object: An individual file, such as an image called puppy.png.

We will have in total of 5 classes each inheriting from `beam.PTransform`. The classes are

● ReadFile
● WriteFile
● ModifyFileMimeType
● DeleteFile
● GetFiles

https://beam.apache.org/releases/pydoc/2.2.0/apache_beam.io.gcp.gcsio.html


Each class will consist of `expand()` function where the actual logic will go. Our structure would
look something like below -

class ReadFile(beam.PTransform):

"""Read file data from GCS."""

def expand(

self, pbegin: pvalue.PBegin

) -> beam.PCollection[datastore_services.Model]:

"""Returns PCollection with file data."""

return (

pbegin.pipeline

| 'Read the file %s' % self.path >> beam.Map(

self._read_file()

)

)

def _read_file(self, filename):

"""Helper function to read the contents of a file."""

gcs = io.gcsio.GcsIO()

return gcs.open(filename, mode='r')

class WriteFile(beam.PTransform):

"""Write file data to GCS."""

return (

pbegin.pipeline

| 'Read the file %s' % self.path >> beam.Map(

self._write_file()

)

)

def _write_file(self, filename, data):

"""Logic to write into file"""

gcs = io.gcsio.GcsIO()

with gcs.open(filename, mode='w') as f:

f.write(data)

class DeleteFile(beam.PTransform):

"""Delete the file from GCS."""

gcs = io.gcsio.GcsIO()

# Will be using gcs.delete()

class ModifyFileMimeType(beam.PTransform):

"""Modify the file MIME type stored in GCS."""



# Will be using gcsio.GcsIO.open(mode='w')-

https://beam.apache.org/releases/pydoc/2.2.0/apache_beam.io.gcp.gcsio.html#apac

he_beam.io.gcp.gcsio.GcsIO.open

class GetFiles(beam.PTransform):

"""Get the files present inside the folder."""

# Will be using gcsio.GCSIO.glob()-

https://beam.apache.org/releases/pydoc/2.2.0/apache_beam.io.gcp.gcsio.html#apac

he_beam.io.gcp.gcsio.GcsIO.glob

Testing plan:

I will be using the above functionalities for the next section which is "Validate that existing files in
GCS have correct MIME types" but before that I'm planning to do a small test. I will do the
following:

- I will create a dummy file and upload to GCS
- I will fetch that file or read the data from the file
- Edit the file or write to the file
- Change the MIME type of the data
- After that I will delete the file

Migrate profile images from UserSettingsModel to GCS and also generate
webP for images

Current status

Currently the profile images are stored in `UserSettingsModel` as a base64 string which is not a
good practice. We will be migrating all our profile images from the `UserSettingsModel` to GCS.
The profile image data are stored as base64 string in `profile_picture_data_url` field of the
`UserSettingsModel`.

There are two handlers for retrieving the profile image:
● ProfilePictureHandler — used for retrieving the profile image of the logged user
● ProfilePictureHandlerByUsernameHandler — used for retrieving the profile image of the

user with a particular username

If the user did not set up their profile image, they should most probably have Gravatar identicon
set up as their image, because gravatar is added for all new users (#1672) and all the old
UserSettingModels were migrated (#1778). I will be writing a one off job to verify that the
`profile_picture_data_url` field is set.

https://en.gravatar.com
https://github.com/oppia/oppia/pull/1672
https://github.com/oppia/oppia/pull/1778


Expected status

The profile image will be saved in the GCS under path user/<username>/profile_image.png (the
file format can be different than png; similar to how exploration images are saved
exploration/<exploration_id>/some_image.png). We can also perform one thing which is to
convert the base64 string to webP image and then store it to GCS. I will make sure that if the
`username` is changed then the appropriate name is also changed for the image. We need not
to be worried about the filepath as everything will be present inside the GCS bucket and GCS
has no concept of nested folders, it is just for our convinience that we name our files using `/` so
that it will be easy to understand.

`ProfilePictureHandler` and `ProfilePictureHandlerByUsernameHandler` handlers can be
removed since they would not be needed.

The current existing images will need to be migrated to GCS and then the
`profile_picture_data_url field` should be removed from the `UserSettingsModel`.

For newly created users we will generate the gravatar image and upload it to the GCS. When a
user uploads a new version of their image it will replace the one that is already in GCS.

The Big Picture

This section will include 3 beam jobs -

1. Find and fix pictures: One job will include the filtering of invalid
`profile_picture_data_url` field inside the `UserSettingsModel`. In case we find some
models that do not have correct `profile_picture_data_url` in models I will be generating
the gravatar for it in the another job. Details to this section can be found in the `Step 1`
of `Approach` section.

2. Store images to GCS: This job will include the conversion of base64 string to both
webP and PNG image and then store it to the GCS. I will be using webptools library to
generate the webP image. Details to this can be found in the `Step 2` of the `Approach`
section.

3. Modify the frontend and backend: Modify the frontend and backend accordingly as we
will no longer be fetching the base64 string from the `profile_picture_data_url` field.
Details to this can be found in the `Step 3` of the `Approach` section.

4. Cleanup: This job will simply remove the `profile_picture_data_url` field from the
`UserSettingsModel` as we will no longer be requiring it. This will be the part of the `Step
4` in the `Approach` section.

We won't require to introduce any new field to the model as we can simply retrieve the data by
this URL - `user/username/profile_picture.png`.

So in total this section will consists of 4 PR's.

Approach

https://pypi.org/project/webptools/


Step 1: Find and fix pictures

This section will consist of 2 Jobs:

1. AuditInvalidProfilePictureJob
2. FixInvalidProfilePictureJob

First of all we will run `AuditInvalidProfilePictureJob` to check if we have any invalid
`profile_picture_data_url` field or to be precise we will check if this field is None or an empty
string. Other than this, convert the base64 string to image and then check for the dimensions,
filter out the images having dimension other than 150x150.

Now assuming that we will be getting some errored data, we will next run the
`FixInvalidProfilePictureJob` to fix the profile picture. This job will include generating "gravatar"
for the invalid model and I will be using `user_services.get_gravatar_url()` method to generate
the profile picture for the users.
For the images with non standard dimension we are planning to manually edit the images and
then upload directly to GCS.

Now to verify that we have fixed the invalid models we will be running
`AuditInvalidProfilePictureJob` again.

Step 2: Store images in GCS

As we have now introduced GCS IO to beam jobs, I will be using the `WriteFile` to write the files
to the GCS. Before doing that I will be converting the base64 string to webp, for this I will be
using webptools library. I would require to use BeamJob to perform this.

It would look something like -

import webptools

def _convert_base64_to_webp(base64str: str):

"""Convert base64 to webp image."""

return webptools.base64str2webp_base64str(

base64str=base64str, image_type="webp", option="-q 80", logging="-v")

base64_to_webp_images = (

self.pipeline

| 'Get all user settings model' >> ndb_io.GetModels(

user_models.UserSettingsModel.get_all(include_deleted=False))

| 'Map to user profile picture and username' >> beam.Map(

lambda model: (model['profile_picture_data_url'], model['username']))

| 'Convert base64 to webp' >> beam.Map(

lambda model: (self._convert_base64_to_webp(model[0]), model[1]))

| 'Write file to GCS' >> beam.Map(

lambda model: gcs_io.WriteFile(

https://pypi.org/project/webptools/


model[0], 'user/%s/profile_image.webp' %(model[1]))

)

)

Step 3: Modify the frontend and backend

Frontend changes: Currently to get an image we use `image-preloader.service.ts` file inorder
to get the base64 data from the backend and then converting them to image and then we load
it. Instead of this we will be using `profile-link-image-backend-api.service.ts` file functions to
directly call the GCS via API to get our image. As the file structure in GCS would be something
like `user/<username>/profile_image.png` by this we will directly get our image.

Now we will also need to make the changes to the file where we edit our profile picture image
and that can be found in the file `edit-profile-picture-modal.component.ts`.

Please note that I will be coordinating with Eric regarding the frontend changes in order to make
sure that the complete section works correctly.

Handling the frontend changes in backend: So after the changes will take place we will no
longer be saving the base64 string we will directly be storing the image to the GCS and the
method would look something like I have mentioned in the `update_profile_picture_data_url`
function below. Now we will also need to make changes to the controller layer as the data will be
passing through that.

We will be able to fetch the data for the profile from storage in the frontend only, so we need not
to perform any changes to send the URL for the retrieval.

I will be editing the `PreferencesHandler` present inside the `core/controllers/profile.py`. Both
the `get` and `put` request will be edited as we no longer have to send the URL for the profile to
the frontend as it can be fetched directly.

I will remove the `ProfilePictureHandler` and `ProfilePictureHandlerByUsernameHandler` that is
present in the `core/controllers/profile.py` as we will no longer be needing it.

We will need to modify the `update_profile_picture_data_url` function to upload the image to
GCS, that could look something like -

raw = incoming_image

filename = filename_from_frontend

filename_prefix = filename_prefix

try:

file_format = image_validation_services.validate_image_and_filename(

raw, filename)

except utils.ValidationError as e:

raise self.InvalidInputException(e)



fs = fs_services.GcsFileSystem(entity_type, entity_id)

filepath = '%s/%s' % (filename_prefix, filename)

if fs.isfile(filepath):

raise self.InvalidInputException(

'A file with the name %s already exists. Please choose a '

'different name.' % filename)

image_is_compressible = (

file_format in feconf.COMPRESSIBLE_IMAGE_FORMATS)

fs_services.save_profile_picture_to_gcs(

filename, entity_type, entity_id, raw, filename_prefix)

We are not planning to have another field to keep track of the profile picture, as the URL will be
something like `user/username/profile_picture.png`. So please note that as soon as the
username is updated we have to update the directory in GCS, so whenever the user changes its
username we will be renaming the blob. To rename our file we can do something like this -

def rename_blob(bucket_name, blob_name, new_name):

"""Renames a blob."""

# The ID of your GCS bucket

# bucket_name = "your-bucket-name"

# The ID of the GCS object to rename

# blob_name = "your-object-name"

# The new ID of the GCS object

# new_name = "new-object-name"

storage_client = storage.Client()

bucket = storage_client.bucket(bucket_name)

blob = bucket.blob(blob_name)

new_blob = bucket.rename_blob(blob, new_name)

Step 4: Cleanup

Now we can simply remove the `profile_picture_data_url` field from the `UserSettingsModel`, I
will write a beam job to remove this field from our models.

Launch Plan
1. Audit and fix invalid profile pictures in UserSettingsModel.

a. Deploy the PR to the backup server.
b. Run AuditInvalidProfilePictureJob to audit invalid profile pictures.
c. Run FixInvalidProfilePictureJob to fix the invalid profile pictures.



d. Run AuditInvalidProfilePictureJob to check if all the profile pictures are fixed.
e. After the successful run of all the jobs, merge the PR to develop.

2. Backend and frontend changes to store profile pictures directly to GCS and to handle
takeout and wipeout services.

a. Deploy the combined PR to the backup server.
b. Run StoreProfilePictureToGCSJob to push the profile pictures to GCS.
c. Run AuditProfilePictureFromGCSJob to check the images stored on GCS and

the images in model are same.
d. Try to upload a dummy profile picture to any user in order to see if it gets stored

to GCS.
e. After the successful run of all the jobs, merge the PR to develop.

From now on the images will be directly deployed to GCS.
3. Cut the release with (1) and (2) to production.

a. Run AuditInvalidProfilePictureJob to audit invalid profile pictures.
b. Run FixInvalidProfilePictureJob to fix the invalid profile pictures.
c. Run AuditInvalidProfilePictureJob to check if all the profile pictures are fixed.
d. Run StoreProfilePictureToGCSJob to push the profile pictures to GCS.
e. Run AuditProfilePictureFromGCSJob to check the images stored on GCS and

the images in model are same.
4. Remove all the occurrences of the profile_picture_data_url field from UserSettingsModel.

a. Deploy the PR to the backup server.
b. Run RemoveProfilePictureFieldJob, this will remove the field from the

UserSettingsModel.
c. Run the jobs from step 2, which are StoreProfilePictureToGCSJob and

AuditProfilePictureFromGCSJob.
d. After the successful run of all the jobs, merge the PR to develop.

5. Deploy (4) to production.
a. Run RemoveProfilePictureFieldJob, this will remove the field from the

UserSettingsModel.
b. Run the jobs from step 2, which are StoreProfilePictureToGCSJob and

AuditProfilePictureFromGCSJob.

[Web only] Storage Model Layer Changes
N/A

Domain Objects
N/A

User Flows (Controllers and Services)
N/A



Documentation changes
N/A

Testing Plan

E2e testing plan

# Test name Initial setup
step

Step Expectation

1. Testing
conversion
function

I will create
invalid data
by
commentin
g out the
frontend
validation

I will create some bad data on
the develop branch and after
that will move to the branch
with the conversion function
implementation and then will
publish it again and then
check.

Expectation is to have all the data
become valid.

2. Backend
test file

I will write a
test file for
each and
every job.

After writing the beam job I
will write a test file for that.

Test files should be passed with
expected outputs.

I will also check via being a
"Release Coordinator"

Everything should work fine while
testing everything as a "Release
Coordinator"

Feature testing
Does this feature include non-trivial user-facing changes? NO

Implementation Plan

Milestone Table (include both PRs and other actions that need to be taken
prior to launch)

Milestone 1

1.1
Write the bulk of the Beam Job that audits all
explorations and outputs validation errors July 9



1.2

Write a supplemental Beam Job that performs
additional investigation into specific validations
given the previous output; splitting output by
private, public, and curated lessons July 18

1.3

Of all of the exploration validations, categorize
the checks into ones that should be applied to
private, public, and/or curated lessons July 18

1.4
Conversion function fixes all the State,
Interaction and RTE data September 12

1.5
Add backend validation checks for exploration
State (6 checks) September 12 <-- raise PR by

1.6
Add backend validation checks + logic for
exploration Interactions (32 checks) September 12 <-- raise PR by

1.7
Add backend validation checks + logic for
exploration RTE components (7 checks) September 12 <-- raise PR by

Milestone 2

2.1 Introduction of GCS Io to the beam jobs November 3 <-- raise PR by

2.2.1
AuditInvalidProfilePictureJob +
FixInvalidProfilePicturesJob November 3 <-- raise PR by

2.2.2
MoveImagesFromNDBToGCS +
AuditImagesOnGCS November 6 <-- raise PR by

2.2.3
Frontend and backend changes to handle the
images on GCS November 10 <-- raise PR by

2.2.4 Cleanup of the image data from NDB November 11 <-- raise PR by

Future Work

I don't think any extra work would be required in the future but in case we lead to some
decisions which need to be implemented I will surely complete them.



NOTE - The below section is not included in the Milestone-2, we decided
to cover only 2 sections that are mentioned above. Keeping the below
section for future references.

Validate that existing files in GCS have correct MIME types

Problem statement
This section will validate the data that is present inside the GCS. We won't be requiring the
validation before storing/updating the data as in our case the `content_type` is reused as the
MIME type when we store the data in GCS. For reference you can take a look here where we
commit our data to the GCS.
We already have validation for the image part as we only save the images with the following
extension to the GCS -

- jpeg
- jpg
- png
- svg
- gif

For the audio part we currently store `audio/mp3` as an accepted MIME type and this needs to
be replaced with `audio/mpeg`, for reference you can take a look here.

This section consists of mainly 2 parts -
1. Checking if the MIME type and the content type of the files present in GCS are equal or

not.
2. All the audio files present in GCS should be `audio/mpeg`.

For the first part, We will need to check the MIME type and the content type which is a metadata
associated with the files that are stored in the GCS. Here we are validating the data that is
present inside the GCS. We don't need to validate the incoming data as in our case the `content
type` and the MIME type are equal and while storing our data we passed the content type as the
MIME type.

For the second section, Currently in our codebase, for the audio files the content type is
`audio/mp3` and it is not the correct MIME type, the correct MIME type is `audio/mpeg` and we
want to remove all the occurrences of `audio/mp3` from both our codebase and our storage.
Need to validate all the audio files that are stored in GCS and fix the content type – but before
fixing the existing data inside the GCS, we need to fix the data that is committed to GCS. We
also have an issue opened for this here.

Solution

https://github.com/oppia/oppia/blob/develop/core/platform/storage/dev_mode_storage_services.py#L74
https://github.com/oppia/oppia/blob/cacab2da1ec3b85f8eba286f22966f2cb854459c/core/feconf.py#L495
https://github.com/oppia/oppia/issues/13480


Checking if the MIME type and the content type are equal or not
I'm planning to use the `mimetypes` library with the help of which I will be able to get the MIME
type of the file and I will check if it is equal to the `content type` or not.
If they are not equal I will simply make them equal.

All the audio files present in GCS should be `audio/mpeg`
To avoid getting audio files with `audio/mp3` as an MIME type I will be editing all the occurences
of `audio/mp3` to `audio/mpeg` so that we can stop the commiting of `audio/mp3` files.

I can think of 2 methods inorder to fix the content type of the existing audios stored in the GCS.
Both of the methods include to fetch the data from the GCS then validate them and update them
with the correct MIME type which is `audio/mpeg`. Please note that we will only be fetching the
audio files.

Method 1
There is no direct way in which we can filter out the files on the basis of MIME types. One
method that we can use is `list` method that is part of the object, here object simply refers to the
file that we want to put into the bucket. While calling the `list`(you can find this function here) in
the arguments we will pass `bucket` and `delimiter`. In the bucket we will send the name of the
bucket as well as the delimiter as `audio/mp3` which will list all the objects inside the bucket that
has `audio/mp3` in their path and we can simply return it.

Method 2
Another method is to check the file metadata, specifically the 'content-type', So whenever we
push our image file to the GCS we pass the `content type` as the MIME type. We can simply get
the `content type` of the file and then check if it is `audio/mpeg` or not, if it is not we will simply
be changing the type to `audio/mpeg`.

I'm planning to go ahead with Method 2 because this is the more general approach I can think
of. I can directly use `gcs_io.GetFiles` to get all the files inside the folder and after that I can
map them with the `content-type` and filter out.

The Big Picture
This section will consist of 2 jobs -

1. Filter out the incorrect MIME types: I will write one job to first filter out all the files that do
not have correct MIME type in our case we will check for the `content_type`. I'm planning
to use `mimetypes` library. I will also filter out the audio files that do not have
`audio/mpeg` as content type. This will be a one-off job which will just be used to filter
out the data and details to which can be found in the 'Approach' section below.

2. Fix the MIME types: I will make the content type and MIME types equal if they are not
and also make the audio files content type to `audio/mpeg`.

https://docs.python.org/3/library/mimetypes.html
https://cloud.google.com/storage/docs/json_api/v1/objects/list
https://docs.python.org/3/library/mimetypes.html


Firstly, as I have to filter out the files I can simply use the above approach to perform that
and after that I'm planning to use the custom class that I have wrote previously to edit
the metadata of a file which is `gcs_io.ModifyFileMetadata`. The details can be found in
the `Approach` section below.

Approach

1. For the first job to take place, we can do something like below -

self.pipeline

| 'Get all the files' >> gcs_io.GcsIOGetFilesInsideFolder()

| 'map with content type' >> beam.Map(

lambda file: (file.name, file.content_type)

)

| 'filter mp3 files' >> beam.Filter(

self.filter_for_incorrect_mime_types

)

def filter_for_incorrect_mime_types(self, content_type):

"""

"""

mime_type = mimetypes.guess_type(file)[0]

if mime_type != content_type:

return True

return False

def filter_incorrect_audio_files(self, content_type):

"""

"""

if content_type == 'audio/mp3':

return True

return False

2. For the second job as we now have all the files with incorrect MIME types we can
replace them. As we know that what we call as `file` is actually an `object` in GCS terms
and it consists of the metadata that we have to edit. The field that we need to replace is
the `content_type` present in metadata, can be found here.

all_invalid_files_with_incorrect_mime_types

| 'Change content-type metadata of the file'

>> gcs_io.ModifyFileMetadata(metadata_to_edit='content_type', value=

mimetype_of_file)

https://cloud.google.com/storage/docs/metadata#content-type


all_invalid_files_with_incorrect_audio_files

| 'Fix the content type of the audio files'

>> gcs_io.ModifyFileMetadata(metadata_to_edit='content_type',

value='audio/mpeg')


