
GSoC’22 Proposal: Interactive
Onboarding Flow
By Jishnu Goyal

Section 1: About You

What project are you applying for?
Project 6.2. - Interactive Onboarding Flow

Why are you interested in working with Oppia, and on your chosen project?
Oppia's mission is to help anyone learn anything they want in an effective and enjoyable way.
With this vision in mind, I wish to contribute to oppia to make free, quality education accessible
and enjoyable for students all across the world. I also choose Oppia because of the talented and
experienced team working here. I believe I will be able to learn a lot by working with them.

Prior experience
My name is Jishnu Goyal and I started Android Development when the lockdown first started in
March 2020.

I have been contributing to Oppia since October 2021 and have learnt a lot in these 6 months.

1. The first app I ever built is called Assignments (5000+ installs) [Firebase] which enables
teachers and students in sending and receiving assignments and receiving a grade in the
2020 lockdown (available on Google PlayStore)

2. Interned with UpTodd under supervision of graduates from MIT, Stanford and IITs,
building a highly scalable app in a team of 3. (Link to the app)

3. I believe in sharing what I learn - I run a YouTube Channel to teach what I learn, and
create the content in a way tailored for beginners to grasp easily. I also have an
Instagram Page where I regularly share good coding practices and tips in Android.

4. First Prize winner at State Level Science Innovation contest - promoted for National
Level. An Arduino based health tracking device. (Link)

mailto:jishnugoyal007@gmail.com
https://play.google.com/store/apps/details?id=my.app.assignments
https://www.uptodd.com/
https://play.google.com/store/apps/details?id=com.uptodd.uptoddapp
https://www.youtube.com/channel/UCT0y1HRWXI9kLpVoyblWtQA
https://www.instagram.com/jishnugoyal/
https://www.instagram.com/jishnugoyal/
https://www.facebook.com/ryanschools/videos/1631090990307800/?app=fbl

5. Created a hand-gesture-universal remote control system using Arduino to control
devices and appliances.

6. I love to compose digital music at my home studio and play football in my free time

My Contributions at Oppia:
PRs:

1. https://github.com/oppia/oppia-android/pull/4081: Entirely new tested utility
“ProfileNameValidator” introduced.

2. https://github.com/oppia/oppia-android/pull/4204: Engineered a way to affect platform
parameter values before consuming those in tests; Hide general settings options and
gate this functionality by introducing a new platform parameter.

3. https://github.com/oppia/oppia-android/pull/3977

Issues created:

1. https://github.com/oppia/oppia-android/issues/3993

Project size
Large (~350 hours)

Project timeframe
I’ll be working during the default GSoC coding period, i.e June 13 - September 12

Contact info and timezone(s)
Name: Jishnu Goyal
University: Maharaja Institute Of Technology, Delhi
Country: India
Email: jishnugoyal007@gmail.com
Github: https://github.com/JishnuGoyal
Timezone: Indian Standard Time (IST) (+5:30 GMT)
Preferred method of communication: Hangouts, e-mail and Gitter.

https://github.com/oppia/oppia-android/pull/4081
https://github.com/oppia/oppia-android/pull/4204
https://github.com/oppia/oppia-android/pull/3977
https://github.com/oppia/oppia-android/issues/3993
https://github.com/JishnuGoyal

Time commitment
I am committed to spending 5-6 hours a day on this project on weekdays (Monday to Saturday).
The time I devote to the project on Sunday will depend upon the work to be completed in the
project in that week. In total, I am committed to working at least 35 hours a week.

Essential Prerequisites
Answer the following questions (for Oppia Android GSoC contributors):

● I am able to run a single Robolectric test target on my machine via Android Studio. (Show a
screenshot of a successful test.)

●

● I am able to run a single Espresso emulator test target on my machine via Android Studio. (Show a
screenshot of a successful test.)

●

Other summer obligations
During the second and third week of June, I’ll be having my End term examinations and will be
able to give less time to the project. Apart from that I don’t have any other obligations.

Communication channels
I am comfortable with any mode of communication that the mentor chooses, be it email, gitter
or gmeet. Mentors can expect a response from me in about an hour.

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one)

Oppia Android Lightweight Onboarding PRD

Target Audience Learners using the Oppia android app for the first time

Core User Need The current onboarding workflow that the Oppia Android app offers is not
intuitive enough according to the study conducted mentioned in this PRD.

Users get confused or spend more time than necessary figuring out the
features and how to navigate in the app due to lack of a better onboarding
workflow.
Sometimes users do not use a feature available to them that can ease their
learning journeys due to lack of information

What goals do
we want the
solution to
achieve?

We want the best possible onboarding experience for a user that
experiences the app for the first time. The goal is to create an onboarding
experience using spotlights to help users easily navigate through the app
and be able to start their learning process with minimum effort.

We do this by not only creating a spotlight experience but also by
redesigning some parts of the UI which are otherwise confusing, or not as
intuitive as they can be. The project includes adding, removing, hiding and
redesigning some UI elements.

The spotlight experience created should be easy to understand; shouldn’t
require too many clicks, shouldn’t be text heavy and be easily dismissable.

The changes we make to the app should be gated behind a platform
parameter where possible.

Section 2.1: WHAT
This section enumerates the requirements that the technical solution outlined in “Section 2: HOW”
must satisfy.

https://docs.google.com/document/d/1o9yiFhNmPTF1Hl1zJxXp8Mv4Q1hoc5Os_SrvE4sUpQg/edit#
https://docs.google.com/document/d/1o9yiFhNmPTF1Hl1zJxXp8Mv4Q1hoc5Os_SrvE4sUpQg/edit#

Key User Stories and Tasks
Please note, the word ‘Spotlight’ in this context means “Highlighting UI using the Spotlight
library’’

Title User Story
Description (role,
goal, motivation)
“As a …, I need …,
so that ….”

Priority1 List of tasks needed to
achieve the goal (this is the
“User Journey”)

Links to mocks / prototypes,
and/or PRD sections that
spec out additional
requirements.

1 Spotlight
buttons to
navigate
through
onboardin
g screens

As a new user, I
need to know how
to navigate to the
next screen or skip
the onboarding
screen entirely

Must-ha
ve

Spotlight ‘next’ (right arrow)
button on the onboarding
screen and show a hint for
the same

Link

3 Spotlight
parts of
home
screen

As a new user, I
need a general
idea of how the
home screen
works

Must-ha
ve

When the user opens the
app for the first time, show
only all topics (and not
recommended stories)

Link

Spotlight a promoted story
and tell user about this new
section once it appears
(after the first visit)

Link

4 Spotlight
parts of
topic
screen

As a new user, I
need a general
idea of how the
topic screen works

Must-ha
ve

Remove info and practice
tabs.

When the user is using the
app for the first time, show
a spotlight on the lessons
tab.. After the user has
completed 1 chapter, show
a spotlight on the revisions
tab. In case the user clicks
on the revisions tab before
completing the chapter out
of curiosity, show a
spotlight describing this
tab.

Link,
Link

1

https://docs.google.com/document/d/1o9yiFhNmPTF1Hl1zJxXp8Mv4Q1hoc5Os_SrvE4sUpQg/edit#heading=h.f81u6knqcek2
https://docs.google.com/document/d/1o9yiFhNmPTF1Hl1zJxXp8Mv4Q1hoc5Os_SrvE4sUpQg/edit#heading=h.f81u6knqcek2
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.tbymizdf1y5w
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.jxt8extwk1w
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.6y232wdl5bc3

Redesign lessons list.

Have the lessons list open
by default.

Show a lock button that lets
the user know which
lessons are locked.

Spotlight ‘lessons’ tab.
Spotlight a ‘lesson’ to show
how to select a lesson to
start learning.

When the user has
completed at least one
lesson, spotlight the
revisions tab.

Link

5 Design
changes
for
lessons
screen

As a new user, I
need to know what
all features on the
lessons screen are
available for me to
start learning
effectively

Must-ha
ve

Change the current speaker
icon to be the headphones
instead of the current
speaker icon.

Link

Using a spotlight
walkthrough to tell the user
what this button does. Note
that this will not be shown
to the user the first time
they open the app. It will be
shown when the user has
already made some
measurable progress in the
lesson.

Link

Using a spotlight
walkthrough to tell the user
how to change the
language of the voiceover

Link

Changing the current hints
icon to be animated to
attract user attention.

Link

https://docs.google.com/document/d/1o9yiFhNmPTF1Hl1zJxXp8Mv4Q1hoc5Os_SrvE4sUpQg/edit#heading=h.f81u6knqcek2
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.hg0fobhrb8i9
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.hg0fobhrb8i9
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.pweisq8ef42
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.se1xm7cgjb7f

Implement a
“TextInputLayout” where the
answer expects a user
input. It creates a boundary
around the type-able area
and also adds a cursor.
Moreover there also is a
label in a TextInputLayout.
This label should be similar
to the default placeholders
used in the oppia web app.

Link

Using the spotlight to
highlight that the (X) button
should be used in order to
exit the lesson. This
spotlight also tells the user
that their progress shall be
saved.

Link

As a learner I find
it difficult to
navigate through
the app at the
initial stage. For
instance, from the
screenshot below,
they didn’t know
they should click
on the continue
button to proceed.

should-h
ave

Jiggle the button Link

6 Design
change for
revision
screen

As a user I should
be able to
differentiate
between lesson
and revision tabs

Should-
have

Coloring the headers in a
different color for revision
cards.

Link

As a user I should
be able to to the
next revision card

Must
-have

Implement next and
previous card options as
shown in the mock for

Link

https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.mfhq8ulslm5g
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.mfhq8ulslm5g
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.zc4f7kvesn8c
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.jxt8extwk1w
https://docs.google.com/document/d/1GRPgoJUDmqVUMXRyiTgMYNI96jKmuMjcY6gNjmXsBsU/edit#bookmark=id.39h6lq8trx6p

without having to
go back to the
topic page

quicker navigation

Technical Requirements

Additions/Changes to Web Server Endpoint Contracts
No new additions/changes are needed to be made to the web server endpoints.

Calls to Web Server Endpoints
No new calls are needed to web server endpoints

UI Screens

Please find: Link to all required mocks at a glance
Link to prototype of entire app flow with spotlight

[NOTE: The hint texts shown in the mocks are just for the prototype; The latest hint texts have
been added to the spotlight table at the bottom of this doc.]

ID Description of new UI
component

i18n required? Mock/spec links A11y
requir
emen
ts

https://www.figma.com/file/2AjiYntkiQVdjKUoGgGcsT/?node-id=77%3A86
https://www.figma.com/proto/2AjiYntkiQVdjKUoGgGcsT/jishnu-gsoc-mocks-android?page-id=77%3A86&node-id=77%3A93&scaling=contain&starting-point-node-id=77%3A93&show-proto-sidebar=1

1. Onboarding
screen
spotlight

Spotlight screens
highlighting the ‘’Next’
button

Yes Mock
Prototype

Yes

3 Home
screen
spotlight

Spotlight screens
highlighting
promoted/recently
played stories. (This is
a quick navigation
guiding a new user to
view recommended
stories when he enters
the app for the second
time)

Yes Mock
Prototype

Yes

https://www.figma.com/file/2AjiYntkiQVdjKUoGgGcsT/?node-id=0%3A1
https://www.figma.com/proto/2AjiYntkiQVdjKUoGgGcsT/jishnu-gsoc-mocks-android?page-id=0%3A1&node-id=3%3A21&scaling=contain&starting-point-node-id=3%3A21
https://www.figma.com/file/2AjiYntkiQVdjKUoGgGcsT/?node-id=56%3A35
https://www.figma.com/proto/2AjiYntkiQVdjKUoGgGcsT/jishnu-gsoc-mocks-android?page-id=56%3A35&node-id=56%3A35&scaling=contain&starting-point-node-id=56%3A69

4 Topic
screen
spotlight

1) Spotlight
screens
highlighting
tabs such as
lessons tab
where lesson
will be
started;
revisions tab

2) New design
for the
chapter list
recycler
adapter.

Yes Mock
Prototype

New design for the recycler
adapter.

Yes

https://www.figma.com/file/2AjiYntkiQVdjKUoGgGcsT/?node-id=56%3A35
https://www.figma.com/proto/2AjiYntkiQVdjKUoGgGcsT?page-id=56%3A35&node-id=56%3A38&scaling=contain&starting-point-node-id=56%3A38&show-proto-sidebar=1

5 Exploration
screen
spotlight

Spotlight screens
highlighting that the
user can exit anytime
using the (X) button
without losing any
progress;
how audio can be
muted/unmuted[this
one will be shown
when the user has
completed at least
three cards in the
lesson].

Yes Mock
Prototype

Yes

https://www.figma.com/file/2AjiYntkiQVdjKUoGgGcsT/?node-id=77%3A86
https://www.figma.com/proto/2AjiYntkiQVdjKUoGgGcsT/jishnu-gsoc-mocks-android?page-id=77%3A86&node-id=77%3A212&scaling=contain&starting-point-node-id=77%3A212&show-proto-sidebar=1

Data Handling and Privacy

Type of data Description Why do we need to
store this data?

Anonymized? Can the user opt out? Wipeout
policy

Takeout
policy

1. SpotlightView
State

The data about
which screen’s
onboarding
(walkthrough) has
already been
seen.

We need this to
determine whether
to show or not the
walkthrough to the
user when they open
the app. If the user
has already seen the
walkthrough, do not
show it again.

No, this data is
specific to the
user.

No. This data is
required otherwise
the app won’t know
whether to show a
walkthrough or not.
This data is saved
only on the client
side, and also there
isn’t any privacy
concern.

Delete when
the user
deletes their
account

N/A, since
this data is
not saved on
the server
side.

2. Login_count This counts how
many times a
user has logged
into the app.

Visibility of some UI
elements is based
on how many times
the user has entered
the app.

No, this data is
specific to the
user.

No. Delete when
the user
deletes their
account

N/A, since
this data is
not saved on
the server
side.

Section 2.2: HOW

Existing Status Quo
The current onboarding flow in the Oppia App is not intuitive and sufficient enough for users
who are not very familiar with using mobile devices. This leads to users missing out on some
features and even getting confused as to how to use the app properly.

The users of the Oppia app will be able to utilize the full potential of the app and would be able
to make use of each feature efficiently. They will also get a guided path as to how to start using
the app and will become much more familiar with it as a new user.

Solution Overview
This project can be divided into four broad parts:

1) Using the spotlight library and creating an onboarding experience for the user – and
gating this entire functionality behind a platform parameter.

2) Using persistence to record onboarding SpotlightViewStates– This means recording
whether or not to show the user the onboarding flow. And also knowing, from ‘where’ to
resume the onboarding flow again, in case the user exited the app in-between the
onboarding flow. Essentially, this part is about making a mechanism to save, retrieve
and modify SpotlightViewStates.

3) Writing tests that cover the entire onboarding flow. This involves making a new
end-to-end test suite that mimics the entire journey a user would take; Unit tests to test
the individual onboarding flows.

4) Redesigning some elements/app flows to make the user journey smooth such as using
gifs/animations to draw user attention at elements that require quick focus (like hints
button); redesigning the chapter list recycler adapter and so on, adding elements that
guide and ease navigation and accessibility options for the added functionality in the
project.

Third-Party Libraries

No. Third-party
library
name and
version

Link to
third-party
library

Why it is needed License (if2

third-party
library)

[Android only]
Min / target / max
SDK version that
the library supports

1 Spotlight
(v2.0.5)

Link For the solution to this
problem, Spotlight library
helps to “highlight” specific
parts of the UI to provide a
walkthrough which will be
used to guide new users

Apache 2.0 Min SDK: 14
Target SDK: 30
Compile SDK: 30

“Service” Dependencies
No new services required.

Impact on Other Oppia Teams
This project has all the changes in the app itself, meaning there are no calls to the server and no
data related to this project leaves the app - that being said, the project doesn’t impact the other
teams in any way.

Key High-Level and Architectural Decisions
Implementing this project will touch the following modules. The module wise implementation of
the project is represented as follows.

Added
Modified

1. model module
a. spotlight.proto

i. Addition of protobufs to store the spotlight progress made by the user.
b. profile.proto

i. Addition of an int field ‘number_of_logins’ to profile.proto to store how
many times ‘this’ user has entered the app. We need this information
since visibility of some of the spotlights/views depends on whether the
user is viewing this screen for the first or second time.

2. domain module
a. SpotlightStateController Package: spotlight

2

https://github.com/TakuSemba/Spotlight

i. This injectable class is solely responsible for all spotlight related
persistence such as recording and retrieving spotlight view states for a
given feature and profileId. It is injected inside fragment presenters
requiring a spotlight highlight.

ii. Addition of new layout files that will be used as overlays.
1. Overlay_top_right.xml → when the anchor position is top right
2. Overlay_top_left.xml
3. Overlay_bottom_right.xml
4. overlay_bottom_left.xml

b. ProfileManagementController Package: profile
i. Add function to increment login count.

c. PlatformParameterModule Package: platformparameter
i. EnableSpotlightUi
ii. EnableInfoTabUi

3. app module
a. SpotlightFragment Package: spotlight

i. Helper class that automates/encapsulates placement and creation of
spotlights and overlay elements. Also automates the domain
functionality of recording and retrieving spotlightViewStates.

b. TopicFragmentPresenter Package: topic
i. spotlight lesson and revision tabs
ii. hide info tab

c. ExplorationActivityPresenter Package: story
i. change speaker icon to headphone icon in lessons screen

(exploration_activity.xml)
ii. spotlight ‘headphones icon’ and back (X) button
iii. Add a scaling to the ‘continue’ button (res/anim/scale.xml Added)

d. HomeFragmentPresenter, HomeViewModel Package: home
i. Hide the promoted stories section when the app is opened for the first

time
ii. spotlight promoted stories section

e. TopicLessonFragmentPresenter Package: topic.lesson
i. Redesign recycler adapter item (lessons_chapter_view.xml)
ii. Add recycler item for locked chapter (lessons_locked_chapter_view.xml)
iii. Spotlight first lesson

f. RevisionFragmentPresenter Package: topic.revision
i. Implement next and previous card options as shown in the mock for

quicker navigation
ii. Color headers in orange color

g. ExplorationFragmentPresenter/AudioFragmentPresenter Package: player
i. Spotlight audio options button (audio_fragment.xml)

h. Accessibility

i. For screens that require a spotlight, we make sure up to date content
descriptions are there

ii. RTL compatibility

Implementation Approach

[Android only] Model

spotlight.proto

ProtoBuffers required to record SpotlightViewStates
In order to record SpotlightViewStates, the following new ProtoBuffers will be added which will
hold this information:
The proposed structures use enums to ensure strong type-safe structures to store values and
potentially eliminate any chances of typing error.

Each ‘feature’ that requires a spotlight highlight is added to this protobuf message called
Spotlight. Here, for example, onboarding_next_button is a feature. This protobuf is analogous to
a sealed class that makes each feature ‘one of’ a spotlight.

// Superclass for all the SpotlightViewStates

message Spotlight {

oneof feature {

// feature for onboarding screen next button

SpotlightViewState onboarding_next_button = 1;

// feature for topic fragment lessons tab

SpotlightViewState topic_lesson_tab = 2;

// feature for topic fragment revision tab

SpotlightViewState topic_revision_tab = 3;

// feature for first lesson under lessons tab

SpotlightViewState first_chapter = 4;

// feature for promoted stories

SpotlightViewState promoted_stories = 5;

// feature for hint icon

SpotlightViewState hint_icon = 6;

// feature for back button in exploration screen

SpotlightViewState lessons_back_button = 7;

// feature for voice over icon in exploration screen

SpotlightViewState voiceover_play_icon = 8;

// feature for voice over language options in audio player

SpotlightViewState voiceover_language_icon = 9;

}

}

The SpotlightViewState is an enum field. When the user enters the app for the first time, the
SpotlightViewState is not seen.

// View States for a spotlight

enum SpotlightViewState {

SPOTLIGHT_VIEW_STATE_UNSPECIFIED = 0;

SPOTLIGHT_SEEN = 1;

SPOTLIGHT_NOT_SEEN = 2;

}

And each of these will be stored in SpotlightStateDatabase on a per profile basis.

// Top level proto for storing SpotlightsViewStates

message SpotlightStateDatabase {

SpotlightViewState onboarding_next_button = 1;

SpotlightViewState topic_lesson_tab = 2;

SpotlightViewState topic_revision_tab = 3;

…
}

Each feature is listed in this protobuf message.

profile.proto

Profile{

ProfileId id = 1;

…
// add this field

int number_of_logins = 13;

}

Some functionality depends on how many times the user has logged in. We count this using this
proto.

[Android only] Domain

SpotlightStateController.kt
The domain layer requires a new SpotlightStateController for spotlights. This injectable class is
solely responsible for all spotlight related persistence such as recording and retrieving spotlight
view states for a given feature and profileId. It is injected inside fragment presenters requiring a
spotlight highlight.

Flow:
1) User opens the app
2) An activity is started
3) If the EnableSpotlightUI feature flag is true, we proceed with the following steps.

Otherwise, usual app flow occurs.
4) The fragment presenter requests a spotlightViewState from the SpotlightStateController

as live data
5) The fragment presenter observes the data and initializes the spotlight targets list based

on what targets have already been previously shown. Spotlight fragment handles
showing of spotlight and notifying the domain layer that the spotlight has been seen.

6) When the user clicks ‘Next’ on any spotlight overlay screen, the SpotlightViewStates is
updated and saved by calling spotlightStateController.markSpotlightViewed() inside the
spotlight fragment.

/** Handles saving and retrieving feature spotlight states. */

class SpotlightStateController @Inject constructor()

Function to record SpotlightViewStates

/**

* Marks the [SpotlightViewState] of a spotlit feature for a given profile as seen

*

* @param profileId the ID of the profile viewing the spotlight

* @param feature the spotlight feature who's view state is to be recorded

* @param viewState SpotlightViewState of this spotlight feature

*/

fun markSpotlightViewed(

profileId: ProfileId,

feature: Spotlight.FeatureCase,

)

Function to retrieve SpotlightViewStates

/**

* Retrieves the current [SpotlightViewState] of a spotlit feature for a given profile.

*

* @param profileId the ID of the profile that will be viewing the spotlight

* @param the feature to be spotlit

*

* @return DataProvider containing the current [SpotlightViewState] corresponding to the specified [feature]

*/

fun retrieveSpotlightViewState(

profileId: ProfileId,

feature: Spotlight.FeatureCase,

): DataProvider<SpotlightViewState>

ProfileManagementController.kt
In the loginToProfile function, we increment the number_of_logins variable which was defined in
the profile.proto file.

PlatformParameterModule.kt

EnableSpotlightUI

EnableInfoTab

@Qualifier

annotation class EnableExtraTopicTabsUi

/** Default value for the feature flag corresponding to

[EnableExtraTopicTabsUi] */

const val ENABLE_EXTRA_TOPIC_TABS_UI_DEFAULT_VALUE = false

[Android only] UI changes

SpotlightFragment.kt

Launching a spotlight to highlight an element
To launch a spotlight, we simply pass the elements that are needed to be spotlit as a vararg of
SpotlightTargets to the SpotlightFragment and then call the spotlightFragment.

data class SpotlightTarget(

val anchor: View,

val hint: String = "",

val shape: SpotlightShape = SpotlightShape.RoundedRectangle,

val feature: Spotlight.FeatureCase

)

To pass an spotlightTargets to the SpotlightFragment,
spotlightFragment.requestSpotlight(spotlightTarget(s)) should be used.

Launching a spotlight (this code should be called from the fragment presenter):

spotlightFragment.requestSpotlight(

SpotlightTarget(

binding.onboardingFragmentNextImageView,

R.string.next,

SpotlightShape.Circle,

Spotlight.FeatureCase.ONBOARDING_NEXT_BUTTON

)

)

activity.supportFragmentManager.beginTransaction()

.replace(R.id.onboarding_fragment_placeholder, spotlightFragment)

.commitNow()

Main screen Overlay

The overlay screen and its components:
An overlay screen consists of these components:

● Done Button: This button ends the spotlight highlight/switches to the next spotlight in
the queue.

● Highlighted area: This is the UI element being highlighted.
● Hint: This is the extra text on the overlay screen that prompts the user to make a

decision.
● Arrow: This is a image view containing arrow vector image which points to the

highlighted element and from the hint text

The math behind Overlay component placement

Internally, there are 4 overlay files that are selected to inflate based on the position of the anchor
(highlightable element).

The diagram above shows two different cases where the anchors could be placed. The other
two possible placements of anchor positions are analogous to these.

Now, the red lines show how the text view is constrained to the arrow.
The arrows themselves get their positions by calculating the absolute position of the anchors,
taking into account the anchor’s width and height.

To summarize:
1. The absolute positions and measurements of the anchors are measured first.
2. Based on that, an overlay fragment is selected.
3. The arrows calculate their positions using math (based on positions measured in step

1).
4. The text views automatically get placed since they are constrained.

The selected overlay fragments are intelligent enough to know the rotation of arrows and the
constraint requirements of the text views so they are correctly placed.

TopicFragmentPresenter.kt
To hide Info Tab:
Add an enum field to each topic tab with new positions when there will be only 2 tabs.

Changes to TopicTab.kt:

The plan is to replace EnablePracticeTabUi with EnableExtraTopicTabsUi which will hide info
and practice tabs together.
Now there will be two possible states: 2 tabs and 4 tabs.

ExplorationActivityPresenter.kt
Change the audio_action_player button (imageView) inside exploration_activity.xml from
speaker icon to headphones icon. This will require a new vector asset which is already available
in android to be used.

We also spotlight this icon.

Scaling the ‘Continue’ button:

An animation resource file is added (scale_animation.xml)

The plan is to scale the button by first enlarging it then shrinking it back a little. This makes sure
that the readability of the button is maintained, even for the slow readers while capturing the
attention of the user.
Another idea was to use a jiggle animation, but this might have led to decreased readability for
some users.
The button which may be below the fold, will start start animation 30 seconds after it gets
visible (it gets visible after the user scrolls till the end of the screen)
For the 30 second timer, the lifecycle-safe timer factory is used.

At the end, we change all the text boxes to textInputLayouts wherever the user is expected to
type an input as the answer.

HomeFragmentPresenter.kt
In order to hide the promoted stories section for the first time the user enters the app, we will
need to check for the number of logins inside HomeViewModel and populate the
homeItemViewModelList according to the number of logins.
This will make sure promoted stories are shown only if the number of logins > 1.
We also Spotlight the promoted stories section if the user is logging in for the second time.

Accessibility

For users requiring Talkback
I plan to completely remove the spotlight flow for the talkback users.
Spotlight is completely a visual tool that tells the user “where on the screen a particular element
is that should be used now”. And for people using talkback, who can’t see what a spotlight is,
will only be annoyed/slowed by the spotlight flow, which is totally opposite to what the goal is.

Instead, what I want is the screen reader to focus on some planned UI elements (going in a
linear fashion and the linear flow is similar to what we would want a regular user to follow) and
start reading the content descriptions of these elements.

Additional concern not included in the table:
Accessibility plan for the hint button: The current plan is to do a ‘forced announcement’ when
the hint button gets visible.

Table to show accessibility plan and side by side comparison with actual spotlight flow
Spotlight in linear flow
The spotlight will be shown based on measured user progress

S.no
.

Spotlight
element

Screen
name

Accessibility Plan Hint text Additional
information

1 Next button Onboarding
screen

For talkback users,
there wouldn’t be any
distracting elements on
the screen. When they
would swipe, they
would come down
along the ‘natural app
flow’ and find the next
and skip buttons. No
changes here.

Tap here for
the next slide

2 Promoted story
(first card)

Homepage For the talkback user,
we won’t be hiding this
section. No changes
required in context to
accessibility.

From now, here
you can view
stories you
might be
interested in

This will be shown
when the user enters
the app for the second
time.

3 Lessons tab Topic
screen

Lessons tab content
description shall be
read first.
Added description:
“Start learning here
under this tab”
After that the revision
tab description. After
that the chapter list.
Specialized content
description shall be
required here to inform
them that this is the
chapter to start. From
the next time onwards,
we should make sure
that the same content
description is not read,
as they now know how
to start a chapter.

Find all your
lessons here

4 First lesson in
the list

Topic
screen

Discussed above Tap to start a
chapter

5 Revision tab Topic
screen

Add content
description:
“If you a completed a
lesson, revise your
concepts here in the
revision tab”

Revise your
concepts here
after
completing the
lesson

Will be shown only
when the user enters
the topic screen after
completing at least one
lesson.

6 Exit button (X) Lesson
screen

While going through the
natural flow of the app,
this button shall be
encountered. No
changes required.
Content description
added:
“Exit. Your lesson
progress will be saved.”

Exit anytime
using this
button. We will
save your
progress.

7 Voiceover icon Lessons
screen

Content Description
proposed: (updated)
“Voice over button. Tap
here if you would like
Oppia to read the
lesson for you.”

Would you like
Oppia to read
for you? Tap on
this button to
try!

Will be shown when the
user has completed 3
cards in the lesson.

8 Voiceover
language
options

Lessons
screen

Content Description
proposed: (updated)
“Change voice over
language”

Tap here to
change voice
over language

Will be shown when the
user clicks on the
voiceover icon.

9 Forced announcement for hint bar added. “Feeling stuck? Try using a hint at the bottom of the
screen”

For RTL users:

RTL topic screens for reference:

Technical requirements for RTL
The plan is to simply use the position, x_rtl = ScreenWidth - x for the arrow (which was
previously calculated as x) in order to flip it such that the arrow correctly points to the mirrored
element. Note: x is the absolute horizontal position of the element’s start on the screen.

The text hint view will automatically follow the arrow as it is constrained to it.
Additionally, in case of rtl, we switch from TopRightOverlay to TopLeftOverlay in order to account
for the reverse direction of the arrow curvature and reversed constraints of the textView hint.

The requirements mentioned in this wiki are being taken care of.

[Android only] Test data changes
No new testing data required.

[Android only] Testing library changes
No changes required.

[Android only] Script & CI changes
No changes required.

Documentation changes
Documentation will be added on the wiki for how to create a new spotlight for any UI element.

Testing Plan

E2e testing plan

Test name Initial setup
step

Step Expectation

1. Walkthroug
h_screens_
spotlight_t
est

The app is
launched
for the first
time

1.0) The first onboarding
screen appears

Spotlight appears highlighting ‘Next’
button

1.1) After step (1.0) user clicks
on “Done” button

Spotlight finishes. The user may choose
to skip or click the next button until the
profile screen starts.

2.0) The user exits the app after
spotlight is shown (onboarding
not completed)

When the user opens the app again,
spotlight is shown again

3 Home_scre
en_spotlig
ht_test

User logs in
For the first
time

1.0) The home screen appears All topics is shown and promoted stories
are not shown

2.0) User opens the app for the
second time

Promoted stories are shown. Spotlight
highlights the promoted stories.

3.0) User opens the app for the
third time

Spotlight is not shown for the promoted
stories

https://github.com/oppia/oppia-android/wiki/RTL-Guidelines#what-changes-in-rtl

4 Topic_scre
ens_spotli
ght_test

User taps
on any
lesson

1.0) topic screen appears Spotlight highlights the lessons tab.

1.1)user presses “done” Spotlight highlights the first chapter

1.2) user presses done Spotlight over

1.2) user completes a chapter
and comes back to the lessons
tab

Spotlight highlights ‘revision tab’ and
shows a hint

1.3) “done” button clicked Spotlight over

5 Exploration
_screen_sp
otlight_test

User taps
on any
lesson

1.0) Exploration screen starts Spotlights highlights (X) back button.

1.1) user opens the app and
sees the exploration screen for
the third time

Spotlight highlights headphone icon and
shows the usage of voiceover feature

1.2) User clicks on “done”
button and then clicks the
headphone icon

Spotlight highlights how voice over audio
language can be changed

1.3) “done” button clicked Spotlight over

Feature testing
Does this feature include non-trivial user-facing changes? YES

Implementation Plan

Milestone Table (include both PRs and other actions that need to be taken prior to
launch)

Milestone 1

No. Description of PR / action Prereq
PRs

Target date
for work
start

Target date
for PR
creation

Target date
for PR to be
merged

1.1 Add a method in
profileManagementController
to count the number of logins
per user

Add unit tests

July 15 July 15 July 18

1.2 Lesson Screen:

Change speaker icon to
headphone icon

Add scale animation for
continue button

Fix placeholders for text based
interactions

Add unit tests

July 18 July 23 July 26

1.3 Add EnableInfoTabUi platform
parameter

Modify Topic screen:
Hide info and practice tabs;
gate this behind a feature flag

Add unit tests

1.1 July 23 July 27 July 30

1.4 Modify HomeScreen:
Hide promoted story section
for the first time user
Add CTA for the All topics
section

Add unit tests

1.1 July 27 Aug 5 Aug 15

1.5 Lessons Tab:
Modify the design of recycler
adapter list item
Create new recycler item view
for locked lessons
Have lessons list expanded by
default

Aug 5 Aug 10 Aug 22

Add unit tests

1.6 Revision Screen:

Color the revision toolbars in
orange;

Add “next” and “previous”
chapter image views to
navigate between revision
cards

(implementation for mobile
devices only)

Add unit tests

Aug 10 Aug 20 Sept 2

1.7 Add EnableSpotlightUi

Add spotlight.proto

Implement
SpotlightStateController to
record and track states.

Add unit tests for this class

Aug 20 Sept 3 Sept 14

Milestone 2

No. Description of PR / action Prereq
PR
number
s

Target date
for work
start

Target date
for PR
creation

Target date
for PR to be
merged

2.1 Implement SpotlightFragment
class
Implement 4 overlay xml files
for different combinations of
anchor placements.

+ Add RTL functionality
to all spotlights. Add
function to suspend
spotlights for talkback

1.8 Sept 20 Sept 26 Oct 5

users in spotlight
fragment

Add unit tests

2.2 Lesson Screen
Spotlight ‘headphones’ icon
Spotlight (X) Back button

Add unit tests

1.2, 2.1 Oct 1 Oct 3 Oct 7

2.3 Lessons Tab
Spotlight first chapter

Add unit tests

1.6, 2.1 Oct 3 Oct 5 Oct 8

2.4 Modify HomeScreen
Spotlight promoted stories
when the user visits the
second time

Add unit tests

Oct 5 Oct 6 Oct 12

2.5 Modify Topic screen
Spotlight lessons and
revisions tabs

Add unit tests

Oct 8 Oct 7 Oct 18

2.6 Audio Fragment
Spotlight voiceover language
option

Add unit tests

Oct 11 Oct 12 Oct 21

2.7 Add wiki documentation for
how to start a new spotlight

Oct 18 Oct 20 Oct 25

2.8 Accessibility:

Add content descriptions to
all elements requiring
spotlight highlights

Add forced announcement for
hint icon

Add unit tests

Oct 20 Oct 23 Oct 31

N/A <Flexible padding for exams
since exact dates aren’t
known>

N/A Nov 1-Nov 14 (if exams
occur at the end)

Future Work
● Add spotlight for the “Next” button for onboarding screens and unit test
● Use textInputLayout in place of text box in all text based interactions

Appendix

Definitions
ProtocolBuffer (Protobuf) is a free and open-source cross-platform data format used to serialize
structured data. It is useful in developing programs to communicate with each other over a
network or for storing data.

