
Google Summer of Code 2022

“Helping learners when they get stuck”

Manan Rathi

Section 1: About You

What project are you applying for?
Helping learners when they get stuck.

Why are you interested in working with Oppia, and on your chosen
project?
Education is a basic necessity for every human and its significance cannot be stressed
enough. Unfortunately, not all have access to it. Even those who are enrolled in schools
might not be getting the necessary, effective education. Enter Oppia, a
community-driven organization that aims to provide high-quality education that reaches
millions of students in a sustainable way. Within the brief time that I’ve been contributing
to this organization’s purpose, I have understood that Oppia strives to make learning
engaging, effective and easily accessible. A solid example of the same is this amazing
project itself.

Getting stuck while solving problems is quite natural. All of us have faced this issue,
sometime or the other. In fact, I believe that struggling with a question, and finding the
correct answer without any help from tutors or peers, is a great way to boost

confidence. It also helps develop real problem-solving skills, which is essentially the
actual, deeper purpose of education.

At the same time, when a learner gets stuck on a problem, he/she might often feel
helpless and lose the motivation to try again. So, we must ensure that we give the
learner just the right amount of assistance necessary to get “unstuck”. It is essential that
the learner learns the metacognitive skills to deal with “stuck-ness”.

“Helping learners when they get stuck” aims to remove many roadblocks that a learner
might face while trying to solve a question. This project will go a long way in making the
learning experience at Oppia more encouraging, engaging and effective. I want to work
on this project because I’m genuinely interested in finding ways in which we can best
address the learner’s confusion. I would strive to ensure that neither does the learner
feel stuck nor does she always need to look out for assistance (Learned helplessness).

I love the fact that my contributions to Oppia are actually helping make a difference out
in the real world. I really want to work on this project because it will make the core
learning experience at Oppia much more enjoyable and fruitful. Working with Oppia is a
valuable experience for me, and I’ve come to learn a lot of new things in this brief
period. Not just a new tech stack, but also collaboration, writing clean code, working as
a team, and more. This journey from a contributor to a member at Oppia has been an
amazing, enriching experience.

Prior experience:
For the past 5 months, I have been actively contributing to Oppia and working with
AngularJS, Angular 2+, Jasmine, Karma and Python. As a member of the LaCE-quality
and Automated QA team for some months now, I’ve had a great experience fixing
frontend bugs, server issues, and writing frontend and backend tests. I have gained
sufficient knowledge regarding the parts of the Oppia codebase that are relevant for this
project. In this brief period, I have raised 20 PRs (19 of which are merged) and 2 issues.
(Last Updated: 31 March 2022).

Project Experience with Oppia:

Earlier, the learners would lose their progress if they quit the exploration midway. Also,
they had no way of tracking their progress through the exploration. Clearly, this was

https://georgiatestprep.com/how-to-help-students-get-themselves-unstuck/
https://github.com/oppia/oppia/pulls?q=is%3Amerged+is%3Apr+author%3AManan-Rathi+
https://github.com/oppia/oppia/issues?q=is%3Aissue+author%3Amanan-rathi+

really frustrating for the learners. The aim of the User Checkpoints project was to add
support for checkpointing and implement numerous other additions.

I have implemented the entire frontend of the logged-in experience in the User
Checkpoints (TDD) project headed by Sean Lip. I’ll also be implementing the backend
for the logged-out experience. This project has considerably improved my
understanding of the codebase dealing with both the creator-end and learner-end
frontend, and their integration with the backend.

Links to 5 Merged PRs in Oppia:
1. Fix #11560: Add "Lesson Info" Modal.
2. Minor UI enhancements in Goals Tab on Learner Dashboard.
3. Fix parts of #14219: Increase backend coverage of two files to 100%
4. Fix parts of #12912: Enables no-else-continue and

no-else-raise pylint checks
5. Fix part of #14187: Add frontend tests for

normalize-whitespace-punctuation-and-case.pipe.ts

Project size
Medium (~175 hours)

Project timeframe
Extended Timeline of June 13 - October 15.

Contact info and timezone(s)
Ph. No: +91 888-136-4466
Email: rathimanan27@gmail.com
Timezone: Indian Standard Time (GMT +5:30)
GitHub Handle: Manan-Rathi
Preferred Mode of Communication: Email, Google Hangouts, Whatsapp, Discord

Time commitment
I’ll be able to dedicate 20 hours/week for the project and thus, be able to complete it within the
stipulated time period.

https://docs.google.com/document/d/1eWHs46cOHcm7NuQl8pM9Dada9nTgg3GoCQLgQJSNmIY/edit#heading=h.liiqbmwmz8j8
https://github.com/oppia/oppia/pull/15065
https://github.com/oppia/oppia/pull/14863
https://github.com/oppia/oppia/pull/14610
https://github.com/oppia/oppia/pull/14504
https://github.com/oppia/oppia/pull/14504
https://github.com/oppia/oppia/pull/14586
https://github.com/oppia/oppia/pull/14773
https://github.com/oppia/oppia/pull/14773
https://github.com/Manan-Rathi

Essential Prerequisites

● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine.

● I am able to run one suite of e2e tests on my machine.

Other summer obligations
I’ll only be applying for this project with Oppia. I’ll be away for around 28 days in
July-August. While I would still be working, my pace would be slower.

Communication channels
I am up to meet up with mentors on platforms such as:

● Discord
● Zoom
● MS Teams
● Google Meet

Alternatively, the mentors might suggest to me any other platform of their choice. I will
try to notify the mentors about my progress on a daily basis (or as often as necessary)
and will regularly be available on the platforms like Gmail, Hangouts, WhatsApp etc. I
usually respond to Oppia-related notifications within 1-2 hours.

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one)

No Learners Get Stuck PRD [GSOC 2022]

Target Audience Learners and Creators

Core User Need As a learner, I need proactive and real-time help so that I can get unstuck even
when external assistance might not be available.

As a creator, I need a way to direct the learner to the linked concept card for
refreshing their understanding, or provide them with adaptive feedback, or a
different branch of states to offer more problem-focussed aid. The real-time
assistance needs to be provided in a way that improves the learners’
metacognitive skills on how to deal with “being stuck”.

What goals do
we want the
solution to
achieve?

● Allow creators to provide a destination state for the case where a learner
is really stuck (which may or may not be a part of a short revision
pathway).

● Detect when a learner is stuck and provide appropriate real-time
assistance based on redirection to concept cards, the alternative
destination state, or proactive hinting.

● Detect small misspellings and provide the learner with helpful feedback.
● Prohibit lesson creators from sending the learner more than 2-3 cards

back in the lesson.

Section 2.1: WHAT

Key User Stories and Tasks

Title User Story Description
(role, goal, motivation)
“As a …, I need …, so that

Priority1 List of tasks needed to
achieve the goal (this is
the “User Journey”)

Links to mocks /
prototypes, and/or
PRD sections that

1 Use the MoSCow system (“Must have”, “Should have”, “Could have”). You can read more here.

https://docs.google.com/document/d/1TErYOB7aTg1cpalRhruH5L_TZCrvhUjbqlwHB5hReyA/edit#heading=h.liiqbmwmz8j8
https://en.wikipedia.org/wiki/MoSCoW_method

….” spec out additional
requirements.

1 Detect when a
learner is
stuck and
provide
appropriate
real-time
assistance.

As a learner who is stuck,
I need more meaningful
assistance than hints or
just asking me to retry.

Must
have

The learner opens a
question.

Learner is unable to
solve the question
within 60s. Gets first
hint(if available) or a
concept card(if
available).

Learner goes through
the first hint.

Learner does nothing for
next 30s. Gets second
hint.

Learner goes through
second hint. Does
nothing for 30s.

Learner clicks on the
concept card icon and
goes through the
content.
(If hints not available
and concept card is
linked)

Learner does nothing for
60s.

Learner sees an Oppia
Response that prompts
him to refresh his/her
concept. Learner clicks
on the continue button
(if a dest_if_really_stuck
state exists.)

Learner now sees
another card. Learner
revises the concepts.

Learner clicks on
Continue.

Learner is directed back
to the question.

Learner reattempts the
question anew.

Learner sees the
solution button after
making at least 3
incorrect submissions
(after all available
assistance is used).

The learner reads the
solution, answers the
question, and moves
ahead.

2 Allow creators
to specify a
destination
state for the
case when a
learner is
really stuck.

As a creator, I need a way
to provide a destination
state if a card needs a
dest_if_really_stuck

Must
have

Creator chooses an
interaction.

Mock

Creator should be able
to fill in a destination
state for the stuck
learner. (May or may not
be the part of a revision
pathway)

3 Prohibiting
lesson
creators from
creating long
“send-back
paths”

As a learner, it is often
discouraging to see loss
of progress in a lesson.

As a creator, I need to
understand that I should
not send learners too far
back within the same
lesson as a feedback
mechanism since it can
be really demotivating.

Must
have

Creator sends the
learner more than 2-3
cards back in the
lesson. (In the
exploration editor)

The creator tries to save
the exploration.

A validation error is
thrown, that has to be
resolved before the
exploration is saved.

The validation error
prompts the creator to
display the concept card
or the new “if_stuck”
state as an alternative to
the long send-back path.

4 Detect
misspellings
and provide
helpful
feedback.
(For TextInput
interactions)

As a learner, I am
encouraged to retry a
problem when I am
prompted that my
answer is close to the
correct one, rather than
just being told that my
response is incorrect.

Must
have

Learner types in an
answer that has an
edit-distance of 1-2 from
the correct answer, and
is not an exact match
with the creator-defined
wrong answer.

https://www.figma.com/file/P0zpnpO62NFiodvoZ3seyX/Untitled?node-id=0%3A1

Learner is replied with
something like "you're
very close, you
understand the concept,
just check the spelling
of the word XXX"

Also, for practice
sessions and skill
mastery, this response
should be noted as a
typo, and not as an error
while recording stats in
the backend.

5 Ability to turn
off the “catch
misspellings”
functionality
on card-level

As a creator, I should be
able to turn off the catch
misspellings when some
language-learning
explorations may
explicitly want to
test/teach spelling.

Must
have

A checkbox should be
present to toggle the
“catch misspellings”
functionality.

Final Proposed Implementation: (After incorporating suggestions
from discussions & feedback)

Link to Doc showing the proposed learner flow: Proposed learner flow

https://docs.google.com/document/d/1mjESoazEFkK0SBJlnCS0_Yq0bdfjd32SvI0ge5lnu6g/edit?usp=sharing

NOTE:
● Constants such as the number of incorrect responses and time limit that trigger

the detection of stuck-ness will be easily parameterizable so that they can be
easily tweaked if and when the need arises.

● This is merely the implementation idea that seemed most logical based on the
feedback. It is by no means rigid. Obviously, this implementation is open to
improvement if the need arises. For example, we can show the concept card
before the hints if it turns out to be a more fruitful arrangement for the learners. At
short notice, we could leverage a poll for the same.

● When a learner is stuck, it is extremely important that Oppia’s response be
carefully drafted. A few things that I would ensure while framing these responses
are:

○ Normalizing the idea of getting stuck – Use positive and encouraging
language while helping the learner get unstuck.

○ Ensure that they don’t feel like being pushed around from one aid to
another – We should let them know the why behind the specific aid.

○ Ensure that we do not overdo the assistance – A little struggle is essential
for cultivating metacognitive and problem-solving skills.

JUSTIFICATION:

● From the perspective of a “stuck” learner, it seems sensible to firstly receive
problem-focussed assistance (Hints).

● If the hints are not available, we would direct the learner towards the linked
concept card for refreshing his/her understanding. The concept overview
offered by the card would help the learner if he/she had misunderstood or
skipped some point in the related concepts.

● It doesn’t really make sense to show both the hints and the concept card from the
learner perspective because:

○ The material in hints and concept card is often similar.
○ Also, quite often the hints or responses direct the learner to the concept

card themselves.

● If the learner is still stuck we can direct the learner to the “dest_if_really_stuck”
state (which may or may not be the part of a short, dedicated revision pathway).
This state could walk the learner through the concepts involved in the question.

● As the last resort, to make sure that there is an end to the learner’s confusion, we
would show the solution (correct answer along with suitable explanation) to the
learner.

Technical Requirements

Additions/Changes to Web Server Endpoint Contracts

Endpoint URL Request
type (GET,
POST, etc.)

New /
Existing

Description of the request/response contract (and, if
applicable, how it’s different from the previous one)

1. explorehandl
er/init/<explo
ration_id>

GET Existing This request is made by
ReadOnlyExplorationBackendApiService to fetch
exploration data from the backend using the
exploration_id as the URL parameter.

The response dict of this request will be modified to
include two extra properties: dest_if_really_stuck (string)
and catch_misspellings (boolean)

2. createhandle
r/init/<explor
ation_id>

GET Existing This request is made by
EditableExplorationBackendApiService to fetch the
initial exploration data when the exploration editor page
is opened using the exploration_id as the URL
parameter.

The response dict of this request will be modified to
include two extra properties: dest_if_really_stuck (string)
and catch_misspellings (boolean) which are to be
initialized in the exploration-editor-page.

Calls to Web Server Endpoints
No new calls are needed to web server endpoints.

Endpoint URL Request
type
(GET,
POST,
etc.)

Description of why the new call is needed, or why the
changes to an existing call is needed

1. explorehandle GET This call will fetch the exploration data on the learner’s end. This

r/init/<explorati
on_id>

data is needed to access the following:
1. dest_if_really_stuck (Exploration => State => Interaction

=> AnswerGroups => Outcome => dest_if_really_stuck)

2. catch_misspellings (Exploration => State =>
catch_misspellings)

3. linkedSkillId (Exploration => State => linkedSkillId)

4. Hints[] (Exploration => State => Interaction => hints)

2. createhandler
/init/<explorati
on_id>

GET This call fetches the exploration object, so that the following new
properties can be initialized:

1. dest_if_really_stuck (Exploration => State => Interaction
=> AnswerGroups => Outcome => dest_if_really_stuck)

2. catch_misspellings (Exploration => State =>
catch_misspellings)

UI Screens/Components

ID Description of new UI component I18N
required?

Mock/spec
links

A11y
requirements

1. A UI component to fill in destination
state if stuck (if needed)

Yes Mock No

2. A checkbox to turn on/off “catch
misspellings” functionality in the
exploration editor.

No Mock No

Data Handling and Privacy
No separate data needs to be collected.

Other Requirements
★ I18N for the new feedback in response to a stuck user (Notes on I18N)
★ All the new user-facing changes should be accessible and responsive.

https://www.figma.com/file/P0zpnpO62NFiodvoZ3seyX/Untitled?node-id=0%3A1
https://www.figma.com/file/goyH05tsfSmiAHMH67mIJs/Catch_misspellings_component?node-id=0%3A1

Section 2.2: HOW

Existing Status Quo
Learners are currently provided assistance in the following ways:

● Hints (if they exist) are surfaced in the footer. The first one appears after 60s, and
the subsequent ones after 30s.

● The lesson creator can direct the learner to a previous portion of the same lesson
when they give incorrect answers.

● The lesson creator can help the learner brush his/her concepts by pointing them
to a concept card for a “concept overview”.

There are some cons to the existing approach, which have been enumerated below:

● Even if the learner is really stuck, he/she is just prompted to try again, and not
enough meaningful feedback is available apart from hints (if they exist).

● The offered feedback might often feel stale and robotic.

● Sending a stuck/confused learner quite back in the exploration can be really
demotivating since they might feel discouraged by the loss in progress.

● Even if a learner merely misspells the answer (for TextInput interactions),
he/she is just prompted to retry or potentially sent back to a previous part of the
same lesson instead of being offered meaningful and encouraging feedback. So,
a typo is just treated as a generic incorrect answer.

Solution Overview:

1. Allow creators to specify a destination state for the case
when a learner is “really stuck”.

➔How will the dest_if_really_stuck field be created and
populated?

● The “dest_if_really_stuck” state is supposed to be a state that:

1. Can point to the start of a separate pathway that walks the learner through
the question.

2. Or, can point to the start of a revision pathway that refreshes the learner’s
understanding using a similar, simpler question or maybe offer him/her
some hints.

● The field “dest_if_really_stuck” is added to the frontend and backend instances of
the “Outcome” structure of “AnswerGroups”. For eg:

class Outcome {

dest: string;

dest_if_really_stuck: string | null;

-------------Other fields---------------

}

● Since the “dest_if_really_stuck” is an optional field, it should take in string or
null. So, the field remains “null” unless it’s populated from a UI component in the
exploration editor page.

● For older explorations, the dest_if_really_stuck field will be set to null.

● We will create a UI component that comes up after the creator has chosen an
interaction. This component would appear in two places since the answer group
can be modified in: (Mocks for reference)

○ add-answer-group-modal

https://www.figma.com/file/P0zpnpO62NFiodvoZ3seyX/Untitled?node-id=0%3A1

○ outcome-editor component

● Since there is a low probability of a learner getting stuck on questions that offer
choices due to the limited number of options, the UI component is not active for
such interactions (Eg: Multiple choice interaction).

● This new component (outcome-destination-if-stuck-editor) would be
placed below the existing outcome destination editor component. It will have a
form to create a “dest_if_really_stuck” state, a “Save Destination” button, and a
“Cancel” button:

● An info tooltip would be used to convey to the creators what the purpose of this
field is. The message could be – “You can now specify a new card in which you
can walk the learners through the concepts used in the question, if they get really
stuck!”

● We could use [(ngModel)]="outcome.dest_if_really_stuck" to populate
the “dest_if_really_stuck” field. Clicking on “Save Destination” would save this
choice.

➔How will a revision pathway be created?

● Once the creator creates a dest_if_really_stuck state, he/she can create a
dedicated revision pathway by using the dest field of the State class, while
providing hints and feedbacks along the way.

● At the end of the revision pathway, the creator can easily direct the learner back

to the source state by choosing the right dest.

● In my opinion, the number of cards should ideally be 2-3, since from the
perspective of a really stuck learner, a long revision path doesn’t really seem
appealing.

➔How will the dest_if_really_stuck state look in the
exploration overview?

● In the exploration overview, the dest_if_really_stuck state will appear as a
general node.

● We would use a dashed arrow to connect the state where the learner gets stuck
and the “dest_if_really_stuck” state, as soon as the destination is saved (using
the Save Destination button).

We will use the stroke-dasharray attribute to specify the filled area and the
unfilled area for creating dashed arrows.

2. Detect misspellings and provide helpful feedback (For
TextInput interactions) & Ability to turn off the “catch
misspellings” functionality on card-level.

● Target: When the learner has an edit distance of 1-2 characters, he/she should
be prompted to check the spelling of the word.

● Clearly, minimum_string_length_to_detect_misspellings could be 3 given that an
edit-distance of 1-2 is permissible. This limit will be made easily parameterizable
if the need arises to set a different minimum length. The constant for edit
distance would be clearly mentioned in the feconf.py or constants.ts file so that it
can be changed globally if needed.

● For toggling the “catch misspellings” functionality on card-level:
We will add a “catchMisspellings” field as a customization arg in the TextInput
interaction.

The default value for new and older explorations would be false because even in
TextInput interactions, the creator might not always need this functionality since
some language-learning explorations may explicitly want to test/teach spelling.

This value could be toggled via a “checkbox” .It would look something like:

● We could check for misspellings in the following way:

● As soon as the learner submits the answer to a state, we check the
answerIsCorrect field in the conversation-skin component. If the answer is
incorrect, this means that this answer was not amongst the ones marked correct
by the creator.

● We will further check if it matches with an input marked as incorrect by the
creator. This can be done by iterating over the answer_groups and testing if the
corresponding outcome.labelledAsCorrect is false.

● Now, if length of the answer > minimum_string_length_to_detect_misspellings
(This is the minimum number of characters needed to catch misspellings i.e., 3)
and if the catch misspellings field is true. The value of the latter can be easily
found out from the associated state dict.

● Next, we will now check if the learner’s answer was considered incorrect due to
a spelling error.

● This can be done using a function testEditDistance(). This function will take
in the learner’s answer (TextInputAnswer) and inputs marked as correct by the
lesson creator (TextInputRuleInputs).

A sample testEditDistance() function: Link to PseudoCode

● If we get an edit distance of 2 with any of the creator’s inputs, we add a new
response to render predefined feedback.

● It’s important that we don’t offer the same, mundane feedback every time the
learner makes a typo. So, I propose creating an array of three I18N keys
corresponding to three feedback statements (strings).

● A new function getResponseToMisspellings() could provide one of the three
I18N keys randomly using the Math.random() function.

● These feedback responses would encourage the learner saying something like
“You're headed in the right direction, but you need to recheck your spelling.”

3. Prohibiting lesson creators from creating long
“send-back paths”.

➔What will happen when a creator tries to send a learner back
by 3 cards?

● After the creator has chosen a dest state in the outcome-destination-editor
component, and he/she clicks on the “Save Destination” button, a BFS traversal
over the states would be triggered.

● Let’s call this function: bfsOverStates(). This function will take in four
arguments:

1. initStateName: string (The first state name of the exploration)

2. states: States (All the states in the exploration)

3. currentStateName: string (The state for which the destination is being
set)

4. destStateName: string (The destination state to which the creator wants
to direct the learner)

● After getting the destStateName and the currentStateName, the bfsOverStates()
function will begin traversal from the destination state to the current state.

● While there exists a BFS traversal function _computeBfsTraversalOfStates() in
the compute-graph.service.ts file, we cannot use it because we need to create
a distance array to count the number of cards between dest state and current
state.

➔Why perform BFS over the states?

There are a few reasons to implement bfsOverStates() :

1. By performing BFS from the destState to the currentState, we ensure that
a path exists from the dest state to the latter. This further implies that the
dest state is indeed before the current state. (This is crucial since we
don’t have to restrict the creator from sending the learner ahead in the
exploration by 2-3 cards)

2. Since a BFS traversal gives the shortest path between two nodes, we can
calculate the minimum number of cards between the current state and
destination state using a variable countOfCards (say).

● If the countOfCards exceeds 3, we’ll raise a validation error in the exploration
overview showing: “Such a long send-back path can be discouraging for the
learner. Could you rather link a concept card or make a small revision pathway to
help the learner get “unstuck” ?”

● This critical type warning must be resolved before the exploration is saved. We’ll
add the error message in the “app.constants.ts” file, and render it via the
exploration-warnings.service.ts file.

4. Detect when a learner is stuck and provide appropriate,
real-time assistance.

● Oppia already has an existing infrastructure to release hints that open up in a
modal. The first hint is released after 60s, and the subsequent ones after 30s.

The proposed implementation for providing feedback integrates well with the
existing infrastructure.

● We’ll be using the existing modals for displaying the hints and the concept card.

● We could add a text just below the Hints section title for the creators to see when
they try to add a new hint. The edge over adding the text below the Hints title
would be that it wouldn’t disappear when the creater starts typing.

● The creator would be advised to break the concepts involved in the question or
maybe show how to solve a sub-problem in that question in a hint.

● The creator could be advised – "Provide a helpful hint to the learner. For
example, you could show how to break down the question into smaller
sub-problems, show how to solve a sub-problem, or relate this question to a
previous one.”

➔How will we track the hints, incorrect responses and bind
the responses with time?

● We fetch the number of hints by getting the length of the hints array. Also, we can
keep a track of the number of hints consumed using the numHintsConsumed
variable declared in hints-and-solution-manager.service.ts

● To get the number of incorrect answers submitted, we can simply use a variable
numberOfWrongSubmissions in conversation-skin.component.ts that is set
to 0 whenever a new card is initialized. Its value will be incremented whenever a
wrong answer is submitted.

● Clearly, we need a way to release different aids at different time durations. For
binding the numerous functions with time, we can use a fixTimeout() function.
For example, this sample function replaces any queued timeouts, and sets the
timeout for a new call.

➔How will we nudge the learner towards the concept card?

● After the threshold for maximum incorrect answers or the maximum allotted time
has been crossed, an icon appears in the footer. A tooltip appears to attract the
learner’s attention towards the card icon. This icon would stay even after the
learner has viewed the concept card in case the learner wishes to view it again. It
will disappear once the learner moves on to the next question.

● To check if the learner has already consumed the concept card, we can use a
boolean ConceptCardIsConsumed. This boolean will be initialized with false.
Once the openConceptCard() function is called, we’ll set it to true. In this way,
we will ensure that the concept card is provided only if it’s not already consumed.

● The learner can open the concept card by clicking on the concept card icon in the
footer, and can then dismiss the card using cancel, escape key press or a
backdrop click after he/she has revised the concepts.

● We can get the linkedSkillId of a state from the “State” structure.

● Then, we can add a (click) attribute to the concept card icon that triggers a new
openConceptCard() function inside conversation-skin.component.ts. Like:

● It will be made mandatory for the creator to specify a solution for the state. In the
end when all available assistance is exhausted, the solution is shown to the
learner. This would be best since the learner would, in the end, get to know the
right answer and the associated explanation. It will be shown to the learners only
if they have made atleast 3 incorrect submissions.

It can also be the case that the text fails in someway to convey the correct
question. Having the solution option in this case could clarify the confusion and
give the learners a way to move forward in the exploration.

● Regarding the other alternatives:

○ Regarding allowing creators to pick and hope they do the right thing
– This would be the existing case. This could be a problem when the
learner has exhausted all the assistance, and is still clueless about what’s
the correct answer. It is essential that, finally, the learner atleast gets the
right answer with an explanation.

○ Regarding allowing creators to pick and give them guidance on when
and how to provide solutions – In my opinion, this method would solve
some of the issues like skipping providing solutions for easier questions
and the test questions. However, the problem of when the learner gets
really stuck and has exhausted all hints, could still persist in few cases.

○ Regarding forcing the creator to classify the question into
concept/test type – Clearly, this method would solve the issue of keeping

solutions for concept ones and not the test questions but it would require a
new field implementation. Also, this would increase the pressure on the
creators to classify the question into one of concept/test. Alternatively,we
could consider classifying explorations into concept-teaching and
concept-testing ones instead.

○ Regarding keeping a separate exploration for the purpose of testing
– It would be a clean way to separate out the learning concepts part from
the testing part into shorter, dedicated explorations. Since explorations are
often long, this would prepone the satisfaction of learning a new concept
for the learners.

But clearly if the learners try to postpone the testing part, they'll definitely
face issues in their concepts after a short while. We could perhaps provide
a button that takes them to the testing exploration at the end of the
concept exploration. The text associated with the button should persuade
the learners that the testing part is short and important for enforcing their
concepts.

● In the case that no if_really_stuck state exists and the learner has exhausted all
the previous assistance, we would show the solution to the learner if the learner
has made atleast 3 incorrect attempts (Implemented as a check so that the
solution is not shown if they merely wait around for the hints).

● Also, if the if_really_stuck state exists and the learner is directed back to the
state where he/she got stuck, we treat it as a fresh attempt and don’t remember
the number of hints the learner had used earlier. This is because we would need
to remember what assistances the learner had used earlier on the state, which
would stop making the experience memoryless.

Third-Party Libraries
No new third-party libraries are required.

“Service” Dependencies
These features add no new service dependencies.

Impact on Other Oppia Teams
The additional feedback being generated when a learner makes a typo will need to be
translated. Other than that, there is no impact on any other Oppia teams.

Key High-Level and Architectural Decisions

Decision 1: Calculating the edit distance between the input and answer.
We have considered the following alternatives:

1. Recursive solution:
The main idea is to process all the characters one by one starting from either the
left or right sides of both strings. Let’s consider a traversal from the right side.
There are two possibilities for every pair of characters being traversed. Let’s say
m is the length of the first string and n is the length of the second string.

● If the last characters of the two strings are the same, we count for the
remaining string lengths. Thus, we recur for lengths m-1 and n-1.

● Else, we consider the three mentioned operations on the last character of
‘str1’ and recursively compute the minimum cost of all three operations,
and take the minimum value.
➔ Insert: Recur for m and n-1
➔ Remove: Recur for m-1 and n
➔ Replace: Recur for m-1 and n-1

2. Dynamic Programming Approach;

In this approach, we still compute the minimum cost of the above three
operations. Only this time, we avoid recomputing the same subproblems by
constructing a temporary matrix that stores the results of the subproblems.

The above approaches are contrasted in detail in the following table. Clearly, 2 is the
more efficient approach to calculating the edit distance.

Alternative 1 Alternative 2

Time complexity The time complexity of the
1st approach is exponential.
We may end up doing O(3m)
operations when no
character of the two strings
is common.

The time complexity of the 2nd

approach is O(m x n).

Risks and mitigations
No potential risks are involved.

Implementation Approach

[Web only] Storage Model Layer Changes
None.

Domain Objects
● A new property is added to the “Outcome” structure:

○ dest_if_really_stuck: string

● A new property is added to the “State” structure:
○ catch_misspellings: boolean

User Flows (Controllers and Services)

User stories / tasks

● Creator opens the exploration editor page for an exploration:

➢ A GET request is made to /createhandler/init/<exploration_id>
➢ The response is an exploration object fetched from the backend.

➢ We use the fetched exploration data to get the following fields:
1. dest_if_really_stuck: string
2. catch_misspellings: boolean

➢ The fetched fields are initialized from the UI components.

● Learner opens the exploration player page for an exploration:

➢ A GET request is made to /explorehandler/init/<exploration_id>
➢ The response is the saved exploration data fetched from the backend.
➢ We use the fetched exploration data to make use of the following fields:

1. dest_if_really_stuck: string
2. catch_misspellings: boolean
3. linked_skill_id: string
4. hints: []

[Web only] Web frontend changes

Subproject 1: Allow creators to specify a destination state for the case
when a learner is “really stuck”

➢ Create a UI component for the creator to specify the dest_if_really_stuck state:

○ A new outcome-destination-if-stuck-editor.component.ts file and
outcome-destination-if-stuck-editor.component.html file is created
inside core/templates/components/state-directives/outcome-editor.

○ The new outcome-destination-if-stuck-editor component inherits the
“outcome” object as an Input.

○ The selector for the new component is placed inside the two template files
from where the answer group can be modified –

■ outcome-editor.component.html
■ add-answer-group-modal.template.html.

○ We will check that the interaction is not MultipleChoice type by using the
getInteraction() function declared in state-editor.service.ts. This would
decide whether the outcome-destination-if-stuck-editor component will be
displayed.

○ The output for the new component would be a new getChanges event
emitter that is triggered via an updateChanges($event) function in the
outcome-destination-if-stuck-editor component file.

○ The purpose of outcome-destination-if-stuck-editor.html would be to:
■ Populate the dest_if_really_stuck state using the [(ngModel)]

attribute. (Link to similar existing code).
■ Fire the updateChanges($event) function using the

[(ngModelChange)] attribute.

➢ Represent the dest_if_really_stuck state in the exploration overview graph:

○ In state-graph-visualization.directive.ts, we declare a new variable
augmentedStuckLinks (say) that links states and dest_if_really_stuck
states. It would store the source (current state) and the target (dest state).

○ In state-graph-visualization.directive.html, we will iterate over the
augmentedStuckLinks and use the stroke-dasharray attribute to create
dashed arrow svgs. (Reference)

Subproject 2: Detect misspellings and provide helpful feedback (For
TextInput interactions) & Ability to turn off the “catch misspellings”
functionality on card-level.

➢ Create a checkbox to fill the catch_misspellings field:

https://github.com/oppia/oppia/blob/c981e99c19b69d4870006bbd386db99cc7ff6104/core/templates/components/state-editor/state-editor-properties-services/state-editor.service.ts#L208
https://github.com/oppia/oppia/blob/0d86fb2e2cbf85e2f095345b7b4998731fc546ac/core/templates/components/state-directives/outcome-editor/outcome-destination-editor.component.html#L15
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Fills_and_Strokes#:~:text=Finally%2C%20you%20can,as%20its%20argument.

○ In state-responses.component.html, add a checkbox that initializes the
value of the catch_misspellings field (A new field added to the State
structure).

○ Toggling the checkbox would call onChangeCatchMisspellings() in
state-responses.component.ts using the ng-change directive.

○ We could use a new data service – state-catch-misspellings.service.ts
to store the displayed boolean value.

➢ Display a more meaningful response when the learner makes a typo:

○ As soon as the learner submits an answer, submitAnswer() is triggered in
the conversation-skin.component.ts. We use an already defined
answerIsCorrect variable in the same file to judge if the learner’s answer
is correct.

○ If the answer is incorrect but does not match with the creator-defined
wrong inputs, we will call a new testEditDistance() function in
conversation-skin.component.ts file.

○ This function will take in the learner’s answer (TextInputAnswer) and
inputs predefined by the lesson creator (TextInputRuleInputs).

○ Pseudocode for testEditDistance():
➔ Normalize learner’s answer and creator specified correct inputs
➔ Iterate over creator specified correct inputs, pass answer and input to

hasEditDistanceOneOrTwo()

○ Approach for hasEditDistanceOneOrTwo():
➔ hasEditDIstanceOneOrTwo() returns the boolean true if the editDistance is

1 OR 2, and vice-versa.
➔ We will use this DP approach to create a 2D matrix editDistance[

answer.length + 1][input.length + 1] (Reference)
➔ The value of editDistance[answer.length][input.length] gives the

minimum edit distance.

https://github.com/oppia/oppia/blob/e1a5cd164d057973fdc743ee9f8892010ed134ce/core/templates/pages/exploration-player-page/learner-experience/conversation-skin.component.ts#L815
https://www.geeksforgeeks.org/edit-distance-dp-5/

○ A meaningful response will be rendered using the addNewResponse()
function declared in player-transcript.service.ts.

○ To ensure that these responses don’t feel robotic, one response would be
chosen randomly at runtime from the following i18N keys:

■ "You're headed in the right direction, but you need to recheck your
spelling."

■ “You’re close to the right answer. Could you please correct your
spelling?”

■ “Please recheck your spelling.”

Subproject 3: Prohibiting lesson creators from creating long “send-back
paths”

➢ Creator clicks on the “Save Destination” button after choosing a “dest”:

○ The button triggers a new function bfsOverStates() in
outcome-destination-editor.ts. A variable countOfCards is declared to
get the distance between the current state and the dest state.

○ The function sets the value of countOfCards to the number of cards
between the current state and the dest state (If a path exists).

○ Parameters passed to bfsOverStates():
■ initStateName – The name of the initial state.
■ states – The states’ data present in the exploration structure.
■ currentStateName – The name of the active state in the

exploration editor (The state for which the destination state is being
set).

■ destStateName – The name of the state to which the creator
wishes to direct the learner from the current state.

○ We can get initStateName and states in the following way:

https://github.com/oppia/oppia/blob/e1a5cd164d057973fdc743ee9f8892010ed134ce/core/templates/pages/exploration-player-page/services/player-transcript.service.ts#L107

let initStateName = this.explorationInitStateNameService.savedMemento;

let states = this.explorationStatesService.getStates();

○ Pseudo algorithm of bfsOverStates():
■ Get stateGraph using _computeGraphData() function declared in

compute-graph.service.ts. The function _computeGraphData()
takes in the initStateName and states.

■ Declare a new array distance[] that calculates the distance from
the destState to all the other states. All elements in distance[] are
initialized with 0.

■ Begin a generic BFS from dest state.
■ While iterating over all child nodes of the parent node:

distance[child] = distance[parent] + 1
■ At the end of the traversal, set:

countOfCards = distance[currentStateName]

★ Here, currentState is the name of the active state passed to the
bfsOverStates function.

○ We will declare a new boolean “hasLongSendBackPath” that will take
true if the countOfCards > 3 and vice-versa.

○ If hasLongSendBackPath is true, we push a critical type warning in the
_warningList variable in the exploration-warnings.service.ts file with an
appropriate message.

Subproject 4: Detect when a learner is stuck and provide appropriate,
real-time assistance.

➢ Detect if the learner is stuck:

○ The constants related to the threshold time limits and wrong answer limits
would be declared in the exploration-player-page.constants.ajs.ts file.
These constants can be:

■ MAXIMUM_INCORRECT_ANSWERS_BEFORE_CARD
■ MAXIMUM_INCORRECT_ANSWERS_AFTER_CARD
■ WAIT_BEFORE_CONCEPT_CARD
■ WAIT_AFTER_SECOND_HINT
■ WAIT_AFTER_CONCEPT_CARD

○ We get the current state using the getState() function in the
exploration-engine-service. From the fetched state, we can get the hints
from the interaction. Then, depending on the number of hints, we trigger
different sequences.

○ We will use a new variable numberOfWrongSubmissions in the
submitAnswer() function in the conversation-skin component. This variable
will be incremented whenever the existing variable answerIsCorrect is
false. This can be used to track the number of wrong responses submitted
by the learner.

○ We can bind the functions with time using the fixTimeout() function
mentioned above.

➢ Make solutions mandatory for each state-card:
○ Currently, the state-solution-editor modal appears when the learner has

specified atleast one hint.
■ This can be changed by removing the condition

*ngIf="displayedHintsLength() > 0"

○ The solution would be made mandatory in two phases:
■ Phase 1 – (3 months): A info-warning would be displayed when the

solution field would be empty.
■ Phase 2 – Add a critical type validation error would be thrown

when the solution for the interactions has not been specified.

○ The appearance of the solution icon has no major dependence on whether
the hints have been consumed on the exploration-player side.

https://github.com/oppia/oppia/blob/e1a5cd164d057973fdc743ee9f8892010ed134ce/core/templates/pages/exploration-player-page/services/exploration-engine.service.ts#L384
https://github.com/oppia/oppia/blob/e1a5cd164d057973fdc743ee9f8892010ed134ce/core/templates/pages/exploration-player-page/learner-experience/conversation-skin.component.ts#L815

○ The solution will only be shown to the learner 15 seconds after atleast 3
incorrect submissions were made and all the existing “helps” were
consumed. A tooltip saying – “Stuck? You can take a look at the solution!”
would appear at the same time.

■ This will be tracked using a variable totalWrongAnswersSubmitted
that will be incremented whenever a wrong answer is submitted.

➢ Render the link for concept card as a response when the learner is stuck:

○ We can get the linkedSkillId from the linkedSkillId field present in the
state object.

○ We can use the addNewResponse() function declared in
player-transcript.service.ts to render a message nudging the learner
towards the linked concept card.

○ A new function openConceptCard() (Link to code) is declared in
conversation-skin.component.ts for opening the concept card. This
function takes in the linkedSkillId that is passed to
OppiaNoninteractiveSkillReviewConceptCardModalComponent (The modal
component that opens up to show the concept card).

○ The concept card would be linked in the rendered message as an anchor
tag that triggers openConceptCard() using the (click) attribute.

➢ Direct the learner to the dest_if_really_stuck state:

○ Fetch the dest_if_really_stuck value (if it exists) from the outcome
structure of the incorrect answer group.

○ Check if all the other aids have been consumed using a boolean.

○ Render a new response randomly from a list at runtime, using the
addNewResponse() function declared in player-transcript.service.ts.

https://github.com/oppia/oppia/blob/e1a5cd164d057973fdc743ee9f8892010ed134ce/core/templates/pages/exploration-player-page/services/player-transcript.service.ts#L107
https://github.com/oppia/oppia/blob/e1a5cd164d057973fdc743ee9f8892010ed134ce/core/templates/pages/exploration-player-page/services/player-transcript.service.ts#L107

○ The list of responses to render at runtime directing the learner towards the
dest_if_really_stuck state –

■ “No, that’s not the correct answer. Let’s go through the concepts
once again.”

■ Let’s take a quick revision of the concepts in this question.
■ You seem stuck. Let’s quickly go through the concepts once again!

○ A continue button would appear.

○ After the learner clicks on the continue button, direct him/her to the
dest_if_really_stuck state.

■ Fetch the dest_if_really_stuck card using getStateCardFromName()
declared in exploration-engine-service.ts

■ Use _addNewCard() declared in conversation-skin.component.ts
and pass in the fetched card.

■ Once the conditions (All aids are exhausted & the learner hasn’t
already visited the dest_if_really_stuck state) are met, show the
newly added card.

Notes on I18N:

Currently Oppia carries out internationalization using distinct I18N keys for different
strings. These keys are added to the assets/I18N/qqq.json file, and their translations are
added to the respective language files. We carry out the translations dynamically using
the translate pipe (in HTML) normally.

Which strings need I18N for this project?
● The 3 feedback responses offered to the learner when he/she makes a typo.
● The tooltip nudging the learner towards the concept card.
● The 3 feedback messages for directing the learner to the dest_if_really_stuck

state-card.

How will the translations be carried out?
● I18N keys will be added for all of the above strings in the qqq.json file and the

en.json file.

https://github.com/oppia/oppia/blob/0d86fb2e2cbf85e2f095345b7b4998731fc546ac/core/templates/pages/exploration-player-page/learner-experience/conversation-skin.component.ts#L629

● In the template file, the translation will be done by adding the string “| translate”
after the I18N key.

● For the translate service, after the service is injected into the component, the key
needs to be passed into the instant() method of the service. This will return the
translated string (if it exists).

Documentation changes
No documentation changes are necessary.

Testing Plan

E2e testing plan
We already have e2e test for :

● Testing the visibility of the hint icon and opening of the hints modal when the hint icon is
clicked. (Link) (Requires no tweaks)

● Testing the visibility of the solution icon and opening of the solution modal when the
solution icon is clicked. (Link)

○ Requires tweak – Adding in the condition that atleast three incorrect
submissions are made

Test name Initial setup
step

Step Expectation

1. Creators
can
successfully
specify a
destination
state for the
case when
a learner is
really
stuck.

Login and
open the
exploration
editor page

The creator clicks on an
answer group after
choosing the interaction.

A new outcome-dest-if-stuck-editor UI
component is shown.

The creator fills in a
dest_if_really_stuck state,
and clicks on Save
Destination.

A new node appears in the exploration
overview.

2. Learner can
see the

Open exp
player page

Learner is stuck for 60s and
no hints exist but a linked

The concept card icon appears in the
footer.

https://github.com/oppia/oppia/blob/74c757c772d12c8d53012b3cc6d5df5085881712/core/tests/protractor_utils/ExplorationPlayerPage.js#L145
https://github.com/oppia/oppia/blob/74c757c772d12c8d53012b3cc6d5df5085881712/core/tests/protractor_utils/ExplorationPlayerPage.js#L156

concept
card icon
icon in the
exploration
player page
when no
hints are
available.

concept card exists.

Learner clicks on the
concept card button

The concept card modal opens up.

Cases to be tested:
● No hints or concept card or dest_if_really_stuck state – Just the solution

appears.
● Only Hints exist – All the hints are shown, and the solution in the end.
● Only hints and a linked concept card exists – All the hints are shown, and

the solution in the end.
● Only a linked concept card exists – Concept card is shown, and solution in

the end.
● Only a dest_if_really_stuck state exists – The new state card is shown.
● Only hints and dest_if_really_stuck state exists – Hints are shown, and

new state card is shown.
● Only concept card and dest_if_really_stuck state exists – Concept card

and new state card are shown.
● All three exist – Hints and new state card are shown.

Karma tests:
All the changes to the component.ts and services.ts files will be accompanied by the
associated tests in the respective .spec files. I will ensure 100% coverage of the
changes done in the project.

Feature testing
Does this feature include non-trivial user-facing changes? YES

Implementation Plan

Milestone Table – Milestone 1 (include both PRs and other actions that
need to be taken prior to launch)
Milestone 1 – Allow creators to provide a destination state for the case where a learner
is really stuck. Prohibit lesson creators from sending the learner more than 2-3 cards
back in the lesson.

No
.

Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

1 Write state migration for dest_if_really_stuck
field. NA 1 July 9 July

2 ● Create a UI component file and
template file for populating the
dest_if_really_stuck field.

● Add an info tooltip for the
dest_if_really_stuck field

1 10 July 17 July

3 ● Make changes to
state-graph-visualization.directive.ts
and html file to create a new
dashed-arrow link between
dest_if_really_stuck state and the
active state

● Add frontend tests.

1,2 17 July 28 July

4 Create the bfsOverStates() function, and get
the countOfCards between current and dest
state.

NA 9 August 12 August

5 ● Display a critical type warning with the
appropriate message in the
exploration-editor page

● Add frontend tests.

4 16 August 20 August

– Keeping one week free to address any arising
project-related bugs

– – –

Milestone Table – Milestone 2 (include both PRs and other actions that
need to be taken prior to launch)

Milestone 2 – Detect when a learner is stuck and provide appropriate real-time
assistance based on (a) proactively showing concept cards or hints, (b) redirection to
the alternative destination state, and (c) providing the solution as the last resort (the
solution will be made mandatory for each state). Detect small misspellings and provide
the learner with appropriate help.

No. Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

6 The catch misspellings checkbox appears
on the editor page after state migration.

NA 26 August 31 August

7 On the learner side, the system is able
to get the edit distance between the
learner's answer and the correct
answer.

6 29 August 5 Sept

8 Learner sees a meaningful message
rendered when a typo is made

6,7 3 Sept 10 Sept

9 In the editor page:
● Solutions would be made

mandatory, an info warning would
appear when the creator doesn’t
specify the solution.

● Guidance to specify hints would
appear as a text just below the hint
section title.

NA 10 Sept 17 Sept

10 The learner will be shown the hints or
concept card icon based on availability
and time (with tooltips as needed).
A tooltip will be added for the solution
button.

9 25 Sept 4 October

11 Support to direct the learner to the
if_stuck state is completed.

9,10,11 3 October 10 October

– Remaining tests and bug fixes. — 14 October 17 October

Future Work

1. Probably, the most critical aspect of detecting whether a learner is stuck and
offering him/her real-time assistance is to get the timing right. After this feature is
thoroughly tested, we could tweak the threshold constants to give the learners a
more suitable amount of time and chances based on user studies.

2. To dis-incentivize the use of the solution option – Keep track of the cards where
the learners used the solution option, and in the end provide them with
actionables on how to reinforce those specific concepts.

3. Consider a “report” button – We could have a report button (linked to each
state). This could help in reporting issues like "The question is unclear". And so,
the question can be edited directly by the creator accordingly.

4. The tooltip associated with the concept card could be a new field that gives the
learner an idea of what the concept card is actually about. So that, the learner is
not disappointed when he/she clicks to find something that did not require
revision in the first place.

5. We would add a critical type warning to cards (which would prevent the creaters
from saving the exp if the solutions have not been provided), making solutions
mandatory.

6. We could changes the icon for the solution button, since it’s quite similar to the
hint buttons.

Appendix: Summary of proposed solutions

Problem that the
user faces

Solution ideas Ideal solution (and why) What we’ll actually
implement (and
why)

Some questions
don’t have hints

1. Mandate hints
for every
question

2. Keep hints
optional, but
provide
guidance to
creators so they
know how to
write them.

Solution (2), i.e. provide
guidance to the creator as
follows: ”Provide a helpful hint
to the learner. For example,
you could show how to break
down the question into smaller
sub-problems, show how to
solve a sub-problem, or relate
this question to a previous
one.”

Solution 1 is less ideal
because it would mean
providing more assistance
than is required (for questions
that shouldn’t need hints) and
could lead to learners relying
more heavily on hints for every
question.

Same as the ideal
solution (solution (2)).

Some questions
don’t have solutions

1. Mandate
solutions for all
questions.

2. Allow creators
to pick and
hope they do
the right thing.

3. Allow creators
to pick and give
them guidance
on when and
how to provide
solutions.

Solution 1 is ideal. Once the
learner feels really stuck even
after using all the available
assistance, there should be an
end to that stucked-ness.
Also, in the case, when the
learner fails to understand the
question, there should be a
way for him/her to move
forward. Providing the solution
(correct answer with the
necessary explanation) is the
way we can ensure both. We

Same as ideal
solution (Solution 1)

● Make
solutions
mandatory for
all cards.

● Show the
solution only if
the learner
has made
atleast 3
incorrect
submissions

4. Force creators
to classify each
question into
one of two
types
(concept/test)
and mandate
solutions for
concept
questions.

5. Placing an
upper bound on
the number of
times the
solution can be
viewed.

would also show the solution
only when the learner has
made atleast 3 incorrect
submissions.

Solution 2 is essentially the
existing case. This would be a
problem when the learner has
exhausted the available
assistance and is still clueless
about the correct answer.

Solution 3 would solve some
of the issues like skipping
providing solutions for easier
questions and the test
questions. However, the
problem of when the learner
gets really stuck and has
exhausted all hints, could still
persist in few cases.

Solution 4 would allow the
learners to keep solutions for
the concept-teaching cards
and maybe not the testing
cards. But this would require
an additional effort from the
creators to classify each
question.

Solution 5 would clearly be a
problem once the learner has
already exhausted the number
of turns to view the solution,
and gets genuinely stuck on a
question later.

and used all
the available
“helps”.

● Allow the
creator to
specify the
solution
without
specifying the
hints.

The learner fails to
understand the
question, or the
question is unclear.

1. Showing the
learner the
solution (at the
end as the last
assistance
since the

Solution 2 is ideal because
this would allow the creator to
directly review the question
and make any changes if
needed.

Currently, we would
be implementing the
Solution 1 since it
would help the
learners get unstuck
from such questions.

solutions were
made
mandatory for
each
question)as a
way to get
ahead in the
exploration.

2. Add a “report
question” button
in the footer.
So, that the
learner can
report the
question, and
the creator can
directly review
it.

Solution 1 would help the
learner get past the question,
and move forward (as
proposed by making the
solution mandatory for each
question.)

Solution 2 is beyond
the scope of the
project.

The learner relies
on the solution to
get past the
question.

1. Place a
restriction that
the learner can
view the
solution only if
atleast 3
incorrect
submissions
have been
made.

2. Keep track of
the cards where
the learners
used the
solution option,
and in the end
provide them
with actionables
on how to
reinforce those
specific
concepts.

Solution 1 and Solution 2
together the ideal solution
because it would ensure that
the learner has made some
attempts as well as best guide
the learners on how to
address the loopholes in their
concepts.

Solution 1 because it
would work as a
temporary check in
ensuring that the
learner is shown the
solution only if he/she
has made some
attempts to solve the
question.

Also, if several
learners are using the
solution button on a
state, the creator
could accordingly
modify the text or the
hints.

Solution 2 is out of
the scope of the
project.

