
TDD: Learner Diagnostic Tests
Author: Nikhil Agarwal
Date: 01/04/2022 (created)

Section 1: About You

What project are you applying for?
Title: Learner Diagnostic Tests.

Why are you interested in working with Oppia, and on your chosen project?
Working with Oppia is one of the most exciting tasks because its mission to provide and create lessons in a fun and exciting way
fascinates me very much. After working with various projects regarding APIs, JSON handling, schemas, and request responses, this
project seems interesting and committable.

https://github.com/oppia/oppia/wiki/Google-Summer-of-Code-2022#11-learner-diagnostic-tests

Prior experience
Currently I am part of the Backend Data stability team in Oppia and have been actively contributing to the codebase by fixing some of
the small, average, and large-sized issues.

No. Title Link

1 Allow exploration owners to remove users from their
exploration.

Link: here

2 Schema-Validation-System(SVS) architecture Link: here

3 Adds Base structure for the new translation architecture Link: here

4 Registers translatable fields in Exploration, Question &
State based on new translation architecture.

Link: here

5 Adds schema for handlers admin, classifier, & classroom
modules

Link: here

Project size
Large (~350 hours) within the standard coding period (12 June to 4 Sept).

The project timeframe
GSoC coding period: June 13 - November 13 (Based on the GSoC extended project timeline)

Contact info and timezone(s)
Contact Gmail: nikhil.agarwal.2019@gmail.com
Google Chat: nikhil.agarwal.2019@gmail.com
Optional Gmail: nikagarwal093@gmail.com

https://github.com/oppia/oppia/pull/12143
https://github.com/oppia/oppia/pull/13065
https://github.com/oppia/oppia/pull/14515
https://github.com/oppia/oppia/pull/14534
https://github.com/oppia/oppia/pull/13223
mailto:nikhil.agarwal.2019@gmail.com
mailto:nikhil.agarwal.2019@gmail.com
mailto:nikagarwal093@gmail.com

Timezone: Indian Standard Time(IST) or GMT + 5:30

Time commitment
I plan to work approx 30 hours a week.

Essential Prerequisites
Answer the following questions (for Oppia web GSoC students):

● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a successful test.)

● I am able to run one suite of e2e tests on my machine. (Show a screenshot of a successful test.)

Other summer obligations
None

Communication channels
Weekly meetings with the mentor for discussing the project progress and doubts.

Overview
This TDD explains the implementation of the Learner Diagnostic Tests that will allow the learner to test their knowledge and get the
topics recommendations.

Problem Statement
Each learner that comes onto Oppia’s platform has a different level of experience and comprehension within a given subject and
some of them have trouble identifying which topic they should start within the Oppia Classroom as a result, Learner Diagnostic Tests
will allow the learner to test their knowledge and get a set of recommendations from where they should begin learning.

Link to PRD Learner Diagnostic test PRD

Target Audience Learners, generally between 7 and 14 years old. (So the target audience contains a
wide set of learners with different levels of experience and comprehension, some
may contain previous knowledge and some may not.)

Core User Need As a learner, I need a way to know which topic (or topics) I should start with on the
Oppia platform based on what I already know and understand about the various
topics available in a classroom.

What goals do we want
the solution to
achieve?

1. Increased learner engagement - especially for first-time visitors of Oppia.
2. Increased lesson completion rates (i.e. lessons completed / lesson

attempts).
3. Increased learner satisfaction - especially for first-time visitors of Oppia.

https://docs.google.com/document/d/1GrVORe_oMrFOt6SN_JyfIr06f_TlwfwvOVMYfqT4gZY/edit#heading=h.2mt2dvlse4d5

Section: What

Key user stories

Title User Story Description
(role, goal, motivation)
“As a …, I need …, so that
….”

Priority1 List of tasks needed to achieve the goal (this is the
“User Journey”)

Links to
mocks/prototypes,
and/or PRD
sections that spec
out additional
requirements.

1 Learner
Diagnostic
Tests

As a learner, I need
guidance on which
lessons in Math
Classroom to start with
so that I can begin
learning on Oppia with
something that’s at the
right level for me.

Must
have

The Learner sees a button to take the diagnostic test
for the Oppia Math Classroom.

Mocks related to
learners.

The learner plays through the diagnostic test and
answers the questions without hints, solutions, or
feedback.
Also, the first answer provided by the learner is marked
for evaluation.

On completing the test, the learner receives 0 (i.e.
learner understands everything taught in the topics
contained within the Classroom), 1, or 2
recommendations for which topic(s) to start with
based on the accuracy of their answers.

1 Use the MoSCow system (“Must have”, “Should have”, “Could have”). You can read more here.

https://en.wikipedia.org/wiki/MoSCoW_method

2 Diagnostic
test
discoverabili
ty

As a learner, I need to see
that there is a “learner
diagnostic test” feature
so that I can be aware
that it’s available and
take the test if it’s useful
for me.

Should
have

The first time a user views the classroom page with
this new functionality, a small popover/modal will
present, letting them know that they can use the new
feature to get recommendations for which lesson to
get started with.

Learners should be able to dismiss this popover/modal
manually. If they don’t, it should disappear
automatically after 2 minutes.

3 Topic editor
restrictions
for
diagnostic
test
programmin
g.

As a topic editor, I need
to set up the skills in my
topic so that I can ensure
that the diagnostic tests
adequately verify topic
mastery

Should
have.

The topic editor, view a new card with the name
“Diagnostic test” on the topic editor page.
The card will display all the skill descriptions (only skills
which are associated with subtopics i.e., uncategorized
skills are not included) for the skills which are present
in the corresponding topic.

Mocks related to
the topic editor.

The topic editor can select upto 3 skills for the
diagnostic test.

4 Curriculum
admin task
for
diagnostic
test
programmin
g.

As a curriculum admin, I
need to specify the
dependency between the
topics, so that I can
ensure that learners test
their skills gradually.

Must
have

The curriculum admins must have a new classroom
admin page from which they can manage the task
related to a classroom.

Mocks related to
curriculum admins.

The curriculum admins can edit the configuration
related to a classroom and also provide dependencies
between the topics for creating the diagnostic test.

Technical requirements

Additions/Changes to Web Server Endpoint Contracts

Endpoint URL Request
type

New /
Existing

Description of the request/response contract

1 /diagnostic_test/<cla
ssroom_url_fragment
>/

GET New The Main HTML page for the diagnostic test is requested using this URL.

2 /diagnostic_test_resu
lt

GET New The HTML page for the diagnostic test result page.

3 /topic_editor_handler
/data

PUT Existing A new field, ‘diagnostic_test_skill_ids’ should be passed through
‘topic_and_subtopic_page_change_dicts’ while saving ‘the topic.

4 /daignostic_test_topi
cs_handler/<classroo
m_url_fragment>/

GET New Fetches the diagnostic test data (a dict with topic_name as key and parent topic
name as value) for a particular classroom.

PUT New Curriculum admins should be able to create the dependency tree between the
topics and save the DAG.

5 /classroom-admin GET New The curriculum admin should be able to get the main HTML page of classroom
admin, from where he can manage all the tasks related to the classroom.

6 classroom_config_pr
operty_handler/<clas
sroom_url_fragment>

PUT New The curriculum admin should be able to manage config properties related to a
classroom.

GET

https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/feconf.py#L1025
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/feconf.py#L1025

Call to webserver endpoints

User Endpoint URL Request
type

Description

1. Learner /diagnostic_test GET The Main HTML page for the diagnostic test is requested using this URL.

/diagnostic_test_res
ult

GET The HTML page for the diagnostic test result page.

/diagnostic_test_dat
a/<classroom_url_fr
agment>/<topic_url_
fragment>

GET Some set of questions is presented to the learners, in the diagnostic test page, using
this URL.

/question_player_ha
ndler

GET Used to fetch the questions based on skill_ids, for the diagnostic test.

/learn/<classroom_
url_fragment>/<topi
c_url_fragment>

GET Learners click the recommended topic (after giving the diagnostic test) and
navigated to the topic player page.

2. Topic
editor /topic_editor_handle

r/data
PUT A new field, diagnostic_test_skill_ids should be passed through

‘topic_and_subtopic_page_change_dicts’ while saving the topic.

(The change dict will reflect changes on Topic class, hence one more field
diagnostic_test_skill_ids, should be added in the domain and model layer. I will cover
this in more detail in the “How” section of the design doc.)

https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/templates/domain/question/question-domain.constants.ts#L30
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/templates/domain/question/question-domain.constants.ts#L30
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/feconf.py#L1022
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/feconf.py#L1022
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/feconf.py#L1022
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/feconf.py#L1025
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/feconf.py#L1025

/rightshandler/chan
ge_topic_status/<to
pic_id>

PUT The topic editor publishes the topic, using this API request.

3 Curriculu
m admin

/classroom-admin GET The curriculum admin should be able to get the main HTML page of classroom
admin, from where they can manage all the tasks related to the classroom.

/daignostic_test_top
ics_handler/<classr
oom_url_fragment>/

GET Fetches the diagnostic test data (a dict with topic_name as key and parent topic
name as value) for a particular classroom.

PUT Curriculum admins should be able to create the dependency tree between the topics
and saves the tree.

/classroom_config_
property_handler/<c
lassroom_url_fragm
ent

PUT &
GET

The curriculum admin should be able to manage config properties related to the
classroom.

UI screen components

Mock related to the Curriculum admin

Mock Transition

https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/templates/domain/topic/topic-rights-backend-api.service.ts#L70
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/templates/domain/topic/topic-rights-backend-api.service.ts#L70
https://github.com/oppia/oppia/blob/b7aab28bee12f81bbebeebb6d54031994ad55fab/core/templates/domain/topic/topic-rights-backend-api.service.ts#L70

1 The classroom admin page contains a card that
contains the tiles for all the different
classrooms in Oppia.

Curriculum admins can create another
classroom by clicking the button “Add new
classroom”.
(The case to add a new classroom will be
handled in the later section (mock 3))

They can also remove the existing classroom
configurations by clicking the “X” icon on the
right of each tile.

Clicking the “X” button, a modal will be popped
up asking for the confirmation i.e., whether they
intended to delete the tile or they pressed the
“X” button unintentionally. (The confirmation
modal will be consistent with the other pages
of Oppia.)

Clicking any of the tiles will open more views of
a classroom. (The mocks after clicking the
Math tile are given below.)

2 After clicking a tile a more detailed view of a
classroom opens. The view primarily contains
two sections:

a. The first section contains basic
classroom details like name,
url_fragment, course_details, etc.

b. The second section contains a list of
topics and their prerequisites that were
present in a classroom.

Note: One point to ignore is that the first section
contains 1 topic id (aeX8932nd), while in the
second section, I have presented the 3 topics
(Addition and Subtraction, Expression and
Equation, Multiplication).
In the second section, I only mean to represent
several topics in a classroom, while ignoring
some of the detailing.

3 After clicking the pencil icon for the first
section, this view will be presented.

The name section is two-way data binding, i.e.,
the name written on the form will
simultaneously be presented in the top
classroom tile (sky blue color section).

This will be important when the user creates
the new classroom, all the sections will be
empty and as they fill up the name the header
tile name will be updated in real-time.

4 The second section contains two columns one
for the topics in the classroom and the other for
the prerequisites of the corresponding topics.

Hovering on any row on the right column, will
change the shade of the zone which contains
the prerequisites of the topics.

Clicking on the pencil icon or anywhere in the
shaded zone will enable editing for the
corresponding topic/row.

The save button is disabled initially, because
there is nothing to save.

5 Steps:
1. On clicking the shaded zone for any

topic, an inline view to select
prerequisites will be opened.

2. From this, the curriculum admins can
select or deselects prerequisites.

3. After selection, they can click the ‘X’
icon to exit from the editing mode.

Notes:
1. While the curriculum admins are editing

a topic they will not be able to see the
graph because until they don’t finish
editing for a row the changes, the
change will not be reflected on the
graph.

2. Only one row is editable at a time, ie., if
any of the inline selector for the
prerequisites is opened, then other
topics will not be edited.

3. In case they selected prerequisites in
such a way that the prerequisites are
interdependent on each other, in that
case, an error message will be
presented.

a. Example: “There is a cycle in the
prerequisites: Topic 1 depends on
Topic 2 which depends on Topic
1.”

4. Also Present an error message for
reducing the edges of the graph, for the
case when "A depends on B, B depends
on C, therefore A depends on C".

a. Example: Remove redundant
connections between Topic 1

and Topic 3. Since Topic 3 is
dependent on Topic 2 and Topic
2 is dependent on Topic 1, so no
need to connect Topic 3 and
Topic 1.

6 After adding the prerequisites for the
“Multiplication”, the save button will be enabled.
This allows the curriculum admins to save the
changes.

7 The figure contains a sample graph.

After providing the prerequisites for topics, the
curriculum admins can view the graph, by
clicking the button “View Graph”.

Clicking the button “View graph”, will result in
opening a new modal in the same tab. (Similar
to exploration states-graph)

After viewing the graph the curriculum admins
can close the modal by clicking the close
button.

Mock related to the Topic editor

Mock Transition

1 1. The topic editors see a new card with
the name “Diagnostic test” on the topic
editor page. They can select the skills
for the diagnostic test using this card.

2. The diagnostic test card contains a
description: "Add up to 3 key skills (the
order doesn't matter) that a learner who
has completed this topic should have
mastered. These skills will be used to
generate the diagnostic test that
determines whether to recommend this
topic to new learners."

3. A note will be presented to the learner
which guides them to add at least one
skill for the diagnostic test. A note
stating: “Please add at least 1 skill.”

4. Disable the publish button and a
warning message will be added when
no skills are added for the diagnostic
test. Presenting the warning, will be
similar to the current implementation
i.e., adding a message in the issue and
presenting the issue count in a small
yellow triangle below the pencil icon on
the topic editor navbar, and on hovering
the yellow icon the issue list will be
presented.

2 1. Clicking the “Add diagnostic test skill”,
button, presents a dropdown to select
skills for the diagnostic test.

3 1. After selecting a skill, a tile containing
the skill description will be presented,
and the topic editors can also remove
the tile by clicking the cross icon (X) in
the tile.

2. Note: After selecting three questions,
the option to add a skill for the
diagnostic test will disappear.

Mock related to the Learners

Mocks Notes

1 On the math classroom page two new clickable
items were added.

a. New to maths?
○ “Start from the basic from our

first topic, Place Value.”
b. Already know some topics?

○ “Check your level, by giving a
test. The test is about 5 mins to
complete.”

These two sections consider two different sets
of learners: The one who is very new to these
topics, and the one who has some skills but
they are not sure where to start with.

Note: The learners who have some skills and
also know which topic they want to learn are
not addressed because they are expected to
jump directly to the topic and start learning.

Clicking the first item “New to maths?” will start
the place value topic because they are expected
to start with the first topic if they are very new.

Clicking the second item “Already know some
topics?” will take a test to check their
understanding of the existing topics and based
on the performance 1 or 2 topics were
recommended.

2 A popover will be presented to the learner if
they are coming to the math classroom page
for the first time.

The popover will automatically disappear after
two mins.

3 Question presentation view.
Available Options:

a. The learner clicks the “Submit” button to
answer the current question and
continue the test.

b. The learner clicks the “I don’t know”
option to skip the current question.

c. Leaving the test will present a modal for
confirmation because the progress will
not be saved.

○ The modal will be similar to
other pages in Oppia.

4 In the case of the MCQ questions, the submit
button will not be provided to the learner.

5 This result page is presented after completion
of the diagnostic test, this page contains 1
topic as a recommendation.

6 This result page is presented after completion
of the diagnostic test, this page contains 2
topics as a recommendation.

7 This result page is presented after completion
of the diagnostic test, and this page contains 0
topics as a recommendation.
This implies that the learner knows everything
related to the topics of a classroom.

The text on the card contains: “Great job! It
seems you already have a good understanding
of all of the topics in the Basic Math lessons.
Feel free to play through any of the lessons to
review or improve upon what you know.”

Table

ID Description of new UI component i18n required? Mock/spec
links

A11y requirements

1. Learner
diagnosti
c test

Diagnostic page presented to the
learners

Yes Mocks related to
learners.

Yes

2. Topic
editor
page

Topic editor selects the skills for
the diagnostic test from the topic
editor page.

No Mocks related to
topic editors

No

3 Classroo
m admin
page

Curriculum admin should be able
to create the diagnostic test from
the classroom admin page.

No Mocks related
to curriculum
admins

No

Data Handling privacy
Data related to users is not stored as a part of this project.

Type of data Description Why do we need to
store this data?

Anony
mized?

Can the
user
opt-out?

Wipeout
policy

Takeout policy

1 Classroom_url_fragment,
topic_adjacency_list

Classroom_url_f
ragment:
StringProperty

Topic_adjacency
_list:
JsonProperty
with topic_id as
key and list of
prerequisites as
a value.

This model stores
hierarchical
information on topics
in the corresponding
classroom.

(This model will be
used to present
questions in the
diagnostic test.)

N/A - Since none of the user-linked data is stored in
the model.

Existing Status Quo
Currently, the learner can go to the Math Classroom page and see the range of topics that are available to them, and then click on
each topic to view the lessons within that topic. However, there’s no way to know exactly which skills are taught in each topic, so a
learner must click into each lesson and play through one or more lesson cards to best determine whether the lesson is a good fit for
them.

Pros: Learners can determine for themselves which lessons to start with and get a sense of the range of lessons that are available to
them.
Cons: Takes a lot of time and persistence on the part of the learner.

Solution Overview
A feature by which learners can give the diagnostic test to get zero or one or two topic recommendations, from which they can start
their learning journey with Oppia.
The skills from each topic are selected by the topic editor and the dependency between the topics for a classroom is provided by the
curriculum admins. Hence the diagnostic test functionality, primarily involves topic editors, curriculum admins & learners.

Third-Party Libraries
No third-party libraries are used in this project, a majority of the methods and services (frontend and backend) already exist in the
codebase.

“Service” Dependencies
No external services are used in this project.

Impact on Other Oppia Teams
The learner feedback team will benefit from this feature since students will be able to figure out their recommended topic in a
self-service way.

Key High-level and Architectural decisions

Architecture to store the diagnostic test data
: Creation of a new model.
: Modification in the existing model.

DiagnosticTestModel (Model 1)

Fields Description Intention Priority

Classroom_url_fragment,
topics_adjacency_list

Classroom_url_fragment: StringProperty

Topic_adjacency_list: JsonProperty with
topic_id as key and list of prerequisites as a
value.

This model stores the topics
DAG for a classroom.

Must have

Note: Below two models are alternatives to each other, so their pros and cons b/w them are discussed after these two tables.

TopicModel (Model 2)

Fields Description Intention Priority

skill_ids_for_diagn
ostic_test

Skill_ids_for_diagnostic_test:
JsonProperty (A list of skill_ids for
the diagnostic test.)

These skills are used for creating
diagnostic test questions for the
corresponding topic.

Should have.

TopicSkillsLinkForDiagnosticTestModel (Model 3)

Fields Description Intention Priority

id, Id: topid_id, A model for linking topic_id with the list of Should have.

skill_ids_for_diagn
ostic_test

Skill_ids_for_diagnostic_t
est: JsonProperty (A list
of skill_ids for the
diagnostic test.)

skill_ids, which are used by the diagnostic
test.

Pros and Cons b/w model 2 and 3

User Need Steps performed in Model 2 approach Steps performed in Model 3 approach

Topic editor Should be able to view all
the skill descriptions
present in the subtopics.

(Skills that are present in
the topic.subtopics)

Collection of all the skill_ids from the
corresponding topic.

● No backend call (since the list
of skills will be stored in the
topic itself.)

Collects the list of skill_ids from
“TopicSkillsLinkForDiagnosticTestModel”
using get_by_id() call.

● 1 GET call, to receive the list of
skill_ids for the corresponding
topic.

Fetch skill description from the list of skills, collected from the above step.
● 1 get_multi() call to SkillSummaryModel.

The topic editor selects some of the
skills (max 3) after reading the
description for each skill and
publishes the topic.

● 1 put() call for saving the topic
in the datastore.

The topic editor selects some of the skills
(max 3) after reading the description for
each skill and publishes the topic. While
publishing the selected skills are saved to
“TopicSkillsLinkForDiagnosticTestModel”.

● 1 put for saving topic skill link.

Conclusion 1 get_mulit, 1 put 1 get, 1 get_multi, 1 put

Curriculum
admins

Curriculum admins will not use TopicModel or TopicSkillsLinkForDiagnosticTestModel for their task, they will
use DiagnosticTestModel solely.

Learners Learners will use TopicModels to get
the list of skills for the diagnostic test
and based on the skill_ids, the
questions will be fetched.

Learners will use
TopicSkillLinkForDiagnosticTestModel to
get the list of skills for the diagnostic test
and based on the skill_ids, the questions
will be fetched.

Conclusion .In both the model structures the number of GET calls will be equal for the learners.

Result: Comparing the datastore and backend API calls with respect to different users, the model 2 approach i.e., storing the
diagnostic_test_skill_ids field into the topic model is a better approach because of the following reasons:

1. Lesser # backend API calls.
2. Lesser # get and get_multi calls to the datastore.
3. Currently, the topic models are versioned, so the model 3 approach will also require an extra field “version” for maintaining

data consistency. Thus maintaining a version in a single model (TopicModel) is easier than maintaining versions in two
different models (TopicModel and TopicSkillsLinkForDiagnosticTestModel).

Reason for selecting 3 questions from a topic
1. For current scope: The maximum number of topics in a classroom is 15

a. This number indicates that for testing a wider range of topics the number of questions from each topic should be less.
2. Based on the PRD, each topic contains a maximum of 3 skills for the diagnostic test. Thus testing at least 1 question from

each skill is the marker to guess whether the learner is holding the knowledge of that skill or not.
a. In some cases, 1 question for testing a skill may not be a good fit to decide whether the learner holds the knowledge

for the skill or not. But considering the maximum number of questions (~ 15) and future plans (i.e., creating a
diagnostic test on a topic for recommending a story), 1 question is sufficient for getting the initial recommendations for
the new learners.

3. Also, for a topic, even if the learner attempts any question wrongly they get an equal opportunity to prove their knowledge in
the other two questions. Based on the performance, a decision is made whether the topic should be recommended or not.

Question selection strategy

Frontend-Backend Communication for questions fetching

1. [Frontend]: Initialization of the player page leads to fetching of the question from the question-backend-api.service
a. The fetchQuestion method takes 3 params

■ Skill_ids: List of skill_ids that will be used to present questions in the diagnostic test.
■ Question_count: The number of questions that will be presented from these skills i.e., # questions to test a

topic.
■ Fetch_by_difficulty: The difficulty level of the questions. The True value indicates that the questions will be of

medium level.
2. [Backend]: QuestionPlayerHandler in the backend will accept the frontend call and provide the questions as per skill_ids.

a. Service: get_questions_by_skill_ids()
b. Model: get_question_skill_links_based_on_difficulty_equidistributed_by_skill().

Note: For diagnostic-test-player, the fetch_by_difficulty field should be true for fetching medium-level questions and the
get_question_skill_links_based_on_difficulty_equidistributed_by_skill() method will be used for equi distributing the questions to the
number of skills.

Question selection criteria

Terminology:
1. Intrinsic option – The option which is not available for the user but they are present and triggered automatically based on

some conditions.

Special consideration:
1. If a learner fails in a question, then another question from the same skill will be presented to the learner. This intrinsic option is

like a “lifeline” because each diagnostic test skill from a topic should be passed in order to pass a topic.
2. If a learner failed in a question and they already utilized their lifeline earlier in a topic, then another chance will not be given to

the learner, and that skill will be treated as failed, which ultimately leads to failure of the topic.

https://github.com/oppia/oppia/blob/8d4efdb2b1521eb6432ddc12e7bed55c8e90db06/core/templates/domain/question/question-backend-api.service.ts#L59
https://github.com/oppia/oppia/blob/8d4efdb2b1521eb6432ddc12e7bed55c8e90db06/core/controllers/reader.py#L1374
https://github.com/oppia/oppia/blob/8d4efdb2b1521eb6432ddc12e7bed55c8e90db06/core/domain/question_services.py#L228
https://github.com/oppia/oppia/blob/8d4efdb2b1521eb6432ddc12e7bed55c8e90db06/core/storage/question/gae_models.py#L419

3. There will be 1 lifeline/topic.

Trade-Offs between “Retry option” and “Lifeline option”

If a learner failed in a question, I am planning to not give the retry option because of the following reasons:
a. In the diagnostic test, we are aiming to judge the existing knowledge of a student not to enhance their learning. This is the

reason we are omitting hints and solutions too.
b. Example: In the case of MCQ, If a learner is confused between two options because of a missing skill and they eventually

selected the right answer after multiple wrong answers. So using the retry option they can reach to the right answer but
actually, they lack the corresponding skill, hence we will mark the first answer for evaluation and not provide the retry option.

In contrast, to make the test a little less strict, I am planning to introduce a lifeline option. This option saves learners from failing a
topic after attempting a wrong answer.

Conclusion: Hence, the lifeline option is better in comparison to the retry option.

For the topic containing 1 diagnostic test skill
1. Present 1 question successively.
2. If failed in any question, present another question from the same skill, but verify that the learner has not consumed their

lifeline.
3. Else, proceed with the test.

For the topic containing 2 diagnostic test skills
1. Present 2 questions successively.
2. If failed in any question, present another question from the same skill, but verify that the learner has not consumed their

lifeline for that topic.
3. Else, proceed with the test.

For the topic containing 3 diagnostic test skills
1. Present 3 questions successively.

2. If failed in any question, present another question from the same skill, but verify that the learner has not consumed their
lifeline for that topic.

3. Else, proceed with the test.

Length of skill_ids affecting the question count

Each skill in the diagnostic test should be passed individually in order to pass on a topic.

len(skill_id
s)

questions
fetched

questions
presented (max)

Comments

1 2 2 One question will be presented and if by
any chance they consume their lifeline
then the second question will be
presented.

The lifeline can be consumed for a skill,
hence 2 questions are fetched from each
skill.

2 4 3 Two questions will be presented and if by
any chance they consume their lifeline
then the third question will be presented.

The lifeline can be consumed for any of
the skills, hence 2 questions are fetched
from each skill.

3 6 4 Three questions will be presented and if
they consume their lifeline, then another
question will be presented from the same
skill.

The lifeline can be consumed for any of
the skills, hence 2 questions are fetched

from each skill.

Providing a “lifeline” and an “I don’t know” option

As per discussion: The learner needs an option to skip a question by the “I don’t know” option when they don’t understand the
meaning of a question. Internally the “I don’t know” option will work similarly to the lifeline option i.e., present another question from
the same skill, and skipping twice in a topic leads to marking that topic as failed.

Diagnostic test algorithm
The algorithm provides the strategy to proceed with the next topic in the test after failing or passing any topic.

Problem statement

In an Oppia classroom, there are multiple topics, and the learners should get a recommendation for getting started with a topic. For
recommending a topic, a test should be taken (diagnostic test) which presents questions from multiple topics, and based on the
performance 0 or 1 or 2 topics are recommended.

Design an algorithm for selecting topics from the topics DAG for the diagnostic test, and present it to the learners, and based on the
performance on the earlier topics and current topic either the next topic is selected for the test or the current topic is recommended.

Input:

● topicsDag: dict[str, List[str]]
○ Description: The input will be of type dict with topic id as key and a list of the immediate children(successors) topicIds

as value.

Output:
Based on the performance in the diagnostic test, a list of topicIds will be returned (0 <= length of the returned list <= 2).

The list only contains the ids for those topics which are failed by the learner and for those topics, there should be no prerequisites
that are untested or failed.

Constraints:

● The maximum number of nodes in the topics_dag <= 15.

Solution
Sample DAG
Example 1

Example 2

From the adjacency list representation of a dag other data structures can be created like topicIdToAncestorTopicIds and
topicIdToSuccessorTopicId.

● topicIdToAncestorTopicIds
○ A dict containing topic id as a key and listOfAncestorTopicIds as value.
○ Example 1 (Following image 1)

topicIdToAncestorTopicIds = {

'A': [],

'B': ['A'],

'C': ['A', 'B'],

'D': ['A', 'B', 'C'],

'E': ['A', 'B', 'C', 'D'],

'F': ['A', 'B', 'C', 'D', 'E'],

'G': ['A', 'B', 'C', 'D', 'E', 'F'],

}

● Example 2 (Following image 2)

topicIdToAncestorTopicIds = {

'A': [],

'B': ['A'],

'C': ['A', 'B'],

'D': ['A', 'B', 'C'],

'E': ['A', 'B', 'C', 'D'],

'F': [],

'G': ['A', 'B', 'C', 'F'],

'H': ['A', 'B', 'C', 'F', 'G'],

'I': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']

}

● topicIdToSuccessorTopicIds
○ A dict containing topic id as key and listOfSuccessorTopicIds as value.
○ Example 1 (Following image 1)

topicIdToSuccessorTopicIds = {

'A': ['B', 'C', 'D', 'E', 'F', 'G'],

'B': ['C', 'D', 'E', 'F', 'G'],

'C': ['D', 'E'],

'D': ['E'],

'E': [],

'F': ['G'],

'G': []

}

○ Example 2 (Following image 2)

topicIdToSuccessorTopicIds = {

'A': ['B', 'C', 'D', 'E', 'G', 'H', 'I'],

'B': ['C', 'D', 'E', 'G', 'H', 'I'],

'C': ['D', 'E', 'G', 'H', 'I'],

'D': ['E', 'I'],

'E': ['I'],

'F': ['G', 'H', 'I'],

'G': ['H', 'I'],

'H': ['I'],

'I': []

}

Terminologies

● eligibleTopicIds: Those topicIds that are eligible to be picked on the next iteration.
● skippedTopicIds: Those topicIds that are skipped once a topic is passed or failed, they include ancestors or successors of a

topic.
○ These are the topics that we have never tested & we don’t want to test them because we have reached a conclusion

based on earlier performance.
● passedTopicIds: Those topicIds that are passed by the learners.
● failedTopicIds: Those topicIds that are passed by the learners.

Methods

a. Helper Functions
b. Diagnostic Test Algorithm

External helper functions

1. presentTopicForTest()
○ Description: The method is used to present the questions from a list of diagnosticTestSkillIds associated with a topic.

This function uses other services and modules in order to present the topics, but the scope of this doc is to only
present the algorithmic part, hence the implementation of this method is abstracted.

○ Input: diagnosticTestSkillIds: A list of skill ids for the diagnostic test.

https://docs.google.com/document/d/1xUdFffygukYmeneJ5hMw18HQjTzBmJh4ImL5B9OMMdM/edit#bookmark=kix.s9r4fcknim40
https://docs.google.com/document/d/1xUdFffygukYmeneJ5hMw18HQjTzBmJh4ImL5B9OMMdM/edit#bookmark=kix.du618du5hb8o

○ Output: testResult and numberOfAttemptedQuestions.

Internal helper functions

1. getTopicIdToAncestorTopicIdsDict()
○ Description: Input the topics DAG as adjacency list and modify it into topicIdToAncestorTopicIds dict

2. getTopicIdToSuccessorTopicIdsDict()
○ Description: Input the topics DAG as adjacency list and returns the topicIdToSuccessorTopicIds dict.

Diagnostic Test Algorithm

diagnosticTestAlgo()
1. Initial conditions

a. totalNumberOfAttemptedQuestions = 0
b. eligibleTopicIds: List[str] = allTopicIds
c. skippedTopicIds: List[str] = []
d. passedTopicIds: List[str] = []
e. failedTopicIds: List[str] = []

2. Call getTopicIdToAncestorTopicIdsDict() and getTopicIdToSuccessorTopicIdsDict() method to create additional
data structures from the adjacency list of the topics dag.

3. currentTopicId = find next topicId to test from eligibleTopicIds
a. Iterate on eligibleTopicIds and select a topic for testing based on the max(min(len(ancestors, successors).
b. Follow this bookmark for complete reference.

4. diagnosticTestSkillIds = fetch diagnostic test skill ids from the currentTopicId.
a. result, numberOfAttemptedQuestions = presentTopicForTest(diagnosticTestSkillIds)
b. The result of the current topic is either pass or fail i.e, either the learner passed in the current topic or failed in

the current topic.
c. numberOfAttemptedQuestions tracks the number of questions consumed to conclude whether the learner

passed or failed in the current topic.
d. totalNumberOfAttemptedQuestions += numberOfAttemptedQuestions

5. If passed in the current topic (result === true)
a. (Description: Passing a topic signifies the learner has the skills for the current topic as well as for all the

ancestor topics.)

https://docs.google.com/document/d/1xUdFffygukYmeneJ5hMw18HQjTzBmJh4ImL5B9OMMdM/edit#bookmark=kix.71maegfcmus4
https://docs.google.com/document/d/1xUdFffygukYmeneJ5hMw18HQjTzBmJh4ImL5B9OMMdM/edit#bookmark=kix.cnqqd7810dn0
https://docs.google.com/document/d/1xUdFffygukYmeneJ5hMw18HQjTzBmJh4ImL5B9OMMdM/edit#bookmark=kix.8a6n8zyx0bn

b. ancestorTopicIds = Get all the ancestor topic ids.
c. passedTopicIds += currentTopicId
d. eligibleTopicIds = eligibleTopicIds - (currentTopicId + ancestorTopicIds)
e. skippedTopicIds += ancestorTopicIds

Else If failed in the current topic (result === false)
f. successorTopicIds = Get all the successor topic ids.
g. failedTopicsIds += currentTopicId
h. eligibleTopicIds = eligibleTopicIds- (currentTopicId + successorTopicIds)
i. skippedTopicIds += successorTopicIds

6. If termination condition reached, end the test. The conditions which checks whether the test has reached its ending
point are as follows:

a. len(failedTopicIds) == 0 and len(totalAttemptedQuestions) >= 15:
b. len(eligibleTopicIds) == 0 and len(failedTopicIds) > 0:
c. len(eligibleTopicIds) == 0 and len(skippedTopicIds) == 0

Else If len(eligibleTopicIds) == 0 and len(skippedTopicIds) > 0 and len(totalAttemptedQuestions) < 15 and
len(failedTopicIds) == 0:

d. eligibleTopicIds = skippedTopicIds
e. skippedTopicIds = []

7. If the test ended:
a. Create recommendedTopicIds list and add 1 or 2 topics for recommendation or the list will remain empty if the

learner answers everything correctly.
b. The recommendation will be done based on the following table:

topics
recommended

len(failedTopicIds) Description

0 0 Learner answered every question
correctly.

1 or 2 > 0 Sort the failedTopicIds list in
topological order. Then, recommend
the first two root nodes (or the single

https://docs.google.com/document/d/1xUdFffygukYmeneJ5hMw18HQjTzBmJh4ImL5B9OMMdM/edit#bookmark=kix.qyc3ge1ofkci

root node, if there is only one).

Edge Cases

1. Let's assume the total number of attempted questions is 13 or 14. Now if the next topic is presented to the learner then there
may be a chance to exceed the number of questions (15). In this case, we should complete the topic checking even, if 1 or 2
questions in the diagnostic test are extra.

Selecting the next topicId from a list of eligibleTopicIds

Steps
1. For every topic to be selected from the eligibleTopicIds list, there are some topics that should be removed based on the result

of the selected topic:
a. Some set of ancestors to be removed (If learner passed in the selected topic)
b. Some set of successors to be removed (If learner failed in the selected topic)

2. Judging criteria
[Practical consideration]: Result of any topic i.e., Pass/Fail leads to removal of at least min(a, b) topicsIds from the
eligible set.
[Optimistic condition]: Result of any topic i.e., Pass/Fail leads to removal of the maximum number (max(a, b)) of
topicIds from the eligible set.

Example:

Imaging two topics, M and N both are removing X number of topicIds from the eligible set based on different criteria:
● M removes the topicIds, based on min(a, b) and N removes the topicIds, based on max(a, b).
● The optimal strategy to judge a topic is min(a, b) because it ensures that in any case (pass/fail), X number of topicIds will

always be removed from the eligible set.

3. Now for every topic to be selected, let's say K be a list containing min(a, b) value for every topic id.
4. In order to reach the result in the shortest amount of time the topic which ensures the removal of the maximum number of

topicIds after an iteration should be selected.
5. Thus for minimizing the length of eligibleTopicIds, the largest value should be selected from K i.e., max(k).
6. Thus the algorithm to pick a node looks like a max(min(a, b))

Terminating conditions for the diagnostic test.

Convention
: Non-related
: Break the loop.
: Continue iteration

Decision Table

Length of
eligibleTopic

Ids

Length of
skippedTopicId

s

Length of
passedTopicId

s

Length of
failedTopicI

ds

Total attempted
question

Conclusion

1 > 0 - - - < 15 Continue

Description: Since the eligible set contains some topics ids, so continue the iteration for testing the
topics.

2 > 0 - - 0 >= 15 Break

Description: Eligible set contains some topicIds, but the learner has attempted >= 15 questions,
without any failure so it is flagged to end the test.

3 0 > 0 - 0 < 15 Continue

Description: Eligible set is null and the learner has not attempted any wrong answer till now, so it is
worth continuing the test and checking the knowledge from other topics which are skipped earlier
(this is like the “second round” of the test).
Thus making skippedTopicIds as eligibleTopicIds set.

4 > 0 > 0 > 0 Continue

Description: Eligible set is not null and the learner failed in at least one topic, in this case, the total
number of questions attempted will be unrelated to the test because the test should reach the exact
node for which the learner does not have the skills.

5 0 > 0 - > 0 Break

Description: Eligible set is null and the learner has attempted a few wrong answers, so it is a good
point for an early recommendation from the failedTopicIds set. (Note: we pick a failedTopicId to
recommend that has no failed prerequisites.)

It is impossible to have failed > 0 and eligible > 0 with the existing termination conditions. Hence the
recommendedFailedTopicId will not have any prerequisites in the eligible set.

6 0 0 - - - Break

Description: Eligible set & skippedTopicIds set are null, so the test should end and recommendation
is done from the failedTopicIds set (0 if the failedTopicIds set is empty).

Customizations required in existing question player to accommodate diagnostic test

Components hierarchy

Color convention:
: The component does not need any modification.
: The component needs modification by accommodating some new customization arguments.

● Oppia-conversation-skin
○ Oppia-tutor-card

■ Oppia-audio-bar
■ Oppia-content-language-selector
■ Oppia-rte-output-display
■ Oppia-input-response-pair

○ Oppia-supplemental-card
■ Oppia-continue-button

○ Oppia-learner-answer-info-card
○ Oppia-progress-nav

■ Oppia-continue-button
○ Oppia-correctness-footer
○ Oppia-ratings-and-recommendations

■ Oppia-feedback-popup
■ Oppia-ratings-display
■ Oppia-exploration-summary-tile

● Oppia-learner-dashboard-icons
From the above hierarchy, it is shown that only 5 components need to accommodate new customization arguments.

Customization options for the components.

Component Non-required functionality Newly introduced arguments Exploratio
n player

Question
player

Diagnostic test
player

Oppia-input-
pair-respons
e

(This
component is
used only to
show the
input
response
pair.)

1. Feedback from the
oppia should not be
presented back to
the learner.

1. enableFeedback: This
argument will enable or
disable the feedback for the
answers i.e., the response
part will not be shown if this
argument is true.

enableFee
dback =
True

enableFeed
back = True

enableFeedbac
k = False

Oppia-tutor-
card

1. The answer field
should be removed
after submitting the
first answer.

1. allowOnlySingleAttemptF
orAnswering: This
argument will be used to
allow only a single attempt
for each question i.e.

allowOnly
SingleAtte
mptForAns
wering =
False

allowOnlySi
ngleAttempt
ForAnsweri
ng = False

allowOnlySingl
eAttemptForAn
swering = True

2. Multiple
Input-responses
should not be shown.

○ The case
when the
learner wants
to see all of
its previous
attempts for a
question,
should not be
shown
because in
the diagnostic
test they only
get one
opportunity to
attempt any
question.

remove the answer form
field after the first attempt.

2. showOnlyLastInputPairR
esponse: This argument
will be used to disable the
feature that shows, multiple
input response pairs for the
previous attempts.

3. enableFeedback: This
argument will be required
by the
oppia-input-pair-response
component.

showOnlyL
astInputPa
irRespons
e = False

enableFee
dback =
True

showOnlyL
astInputPair
Response =
False

enableFeed
back = True

showOnlyLastI
nputPairRespo
nse = True

enableFeedbac
k = False

Oppia-suppl
emental-car
d

(This
component is
used to
present the
HTML data
for those
interactions
which are not
inline like

1. Oppia Feedback for
wrong / right answers
should be disabled.

1. enableFeedback: This
boolean flag will be used for
disabling the feedback for
both the cases i.e., for the
wrong attempt or for the
right attempt of any
question.

enableFee
dback =
True

enableFeed
back = True

enableFeedbac
k = False

“Drag And
Drop”.
This
component
also shows
the feedback
for
wrong/right
answers.)

Oppia-progr
ess-navigati
on

1. Card migration:
Forward and
backward movement
of previous questions
and current
questions should not
be disabled.

1. enableNavigationThrough
CardHistory: This
argument will enable or
disable the forward and
backward movement
between the cards.

enableNav
igationThr
oughCard
History =
True

enableNavi
gationThrou
ghCardHist
ory = True

enableNavigati
onThroughCard
History = False

Conversatio
n skin
component

Based on the customization
arguments of the above
components, this root level
component can be structured in
two ways:

a. All of the above
customization arguments
can be passed directly to
this component and from
here they were passed into
descendant components.

b. A single field can be
passed, like
“isDiagnosticTestPlayer”.
And from here all the
necessary customizations
will be passed into the

respective components.

Conclusion: As per discussion the
conversation skin component
should take all the arguments as
inputs that were required by the
descendant components.

The list of new arguments are
1. enableFeedback
2. allowSingleAttemptOfAnsw

ering
3. showOnlyLastInputPairRes

ponse
4. enableNavigationThroughC

ardHistory

Implementation Approach
Convention:
[A]: Adds new method.
[U]: Updates any existing method.

Topic Editors
Topic editors can potentially be able to select and reorder skills inside the topic editor page.

[Backend Changes]

1. Model Layer
a. [U]: Add a new field, diagnostic_test_skill_ids to the topic model class.

2. Domain Layer
a. [U]: Add the diagnostic_test_skill_ids field among all the topic-related classes in the domain layer. Example: Topic

class, _create_topic() method, etc.
b. Add command in topic domain

■ Add a command to update the diagnostic test skill ids in the datastore. This command reflects the changes
made by the topic editors.

■ Name: CMD_UPDATE_DIAGNOSTIC_TEST_SKILL_IDS
● Required fields: diagnostic_test_skill_ids

c. [A]: update_diagnostic_test_skills()
■ Method to handle the model layer changes based on the command

CMD_UPDATE_DIAGNOSTIC_TEST_SKILL_IDS.
3. Controller Layer

Note: As per the current requirement no need to write any new handlers. The cases which will be covered are as
follows:

● Gets skill description from the list of skill ids: These skill descriptions will be fetched by using the short skill
summary class in the frontend.

[Frontend Changes]

1. Domain
○ Create command CMD_UPDATE_DIAGNOSTIC_TEST_SKILL_IDS (similar to the backend).
○ [U]: Topic domain object

■ Add a new field diagnostic_test_skill_ids, in the TopicBackendDict.
2. Component / Services / Backend API

○ [A]: fetchListOfSkillDescription
■ Iterate over all the subtopics and extract skill descriptions from the short skill summary (Add file location).

1. getSkillSummary in subtopic.model.ts
○ [A]: updateDiagnosticTestSkills (topic-update-services.ts)

■ Update and save the topic object with the new field diagnosticTestSkillIds.

3. HTML
○ Add a card (md-card) in topic-editor-tab.directive.html.

■ This card will contain the list of skills present inside the topics (topic.subtopics)

[Special Cases]
1. Disable publish button and save button and present an error if none of the skills were added for the diagnostic test.
2. Remove the “Add diagnostic test skills” if the topic editor already added 3 skills for the diagnostic test.
3. If any skill gets deleted from the topic and skill dashboard or any skill is removed from a topic, then the

diagnostic_tes_skill_ids should be updated appropriately.

Curriculum admins
The curriculum admins can potentially be able to input the dependency tree between the topics from the classroom admin page. The
dependency tree is in the form of a dict with topic name as key and parent topic name as value.

Classroom Config section

Backend

● Model
○ A new ClassroomConfigModel should be created for storing and fetching the classroom-related data like

url_fragment, topic_ids, etc. Currently, the classroom config data is stored in config_model which is handled by
AdminHandler, but in order to restructure the data flow, this model should be used.

○ Fields: The schemas of these fields are given here.
■ Classroom name (indexed)
■ Classroom_url_fragment
■ Course_details
■ Topic_list_intro
■ topic_ids

● Domain
○ [U]: Classroom_domain: The file is already present in the domain layer which should be modified to contain the

analogous domain class for the ClassroomConfigModel.

https://github.com/oppia/oppia/blob/cb3dff60e88a796577d7ef75a1ec35d33c6128c0/core/domain/config_domain.py#L76

○ [U]: Classroom_service: The file is already present in the domain layer which should be modified to contain all the
helper functions related to classroom config models.

● Controllers
○ [A]: ClassroomConfigHandler: A handler class for communicating with the frontend.

■ Methods:
● def get()

○ Decorator: can_access_admin_page
○ Returns the classroom_config_properties for populating them in the frontend, so that curriculum

admins can edit them.
● def put()

○ Decorator: can_access_admin_page
○ Updates the changes which were done by the curriculum admin.
○ Payload: classroom_config_dict.

[Frontend]

● Classroom-config component: This component presents the classroom-config card from which the curriculum admins can edit
the properties.

○ Methods:
■ [A]: getClassroomConfigProp()
■ [A]: updateClassroomConfigProp()

Diagnostic Test section

[Backend]
● Model

○ The properties of the DiagnosticTestModel class are described above.
● Domain

○ Diagnostic test domain: A file should be created in the domain layer, which should contain the domain class for the
diagnostic test model.

○ Diagnostic test service: A file should be created in the domain layer, which should contain the helper functions related
to the diagnostic test models.

● Controllers
○ [A]: DiagnosticTestTopicHandler

■ def get()
● Decorator: open_access
● URL query param: classroom_url_fragment.
● Fetches the topics_DAG from the diagnostic test model.
● Returns the topics_adjacency_list to the frontend.

■ def post()
● Decorator: can_access_admin_page
● URL query param: classroom_url_fragment.
● Payload

○ Updated topics_adjacency_list dict.

[Frontend]
● Diagnostic-test-admin component: This component present the diagnostic test card in the classroom admin page. This

component provides the opportunity to either edit or create the topics DAG.
○ Methods:

■ getTopicsDag()
■ updateTopicsDag()

[Common Backend Changes]

Controllers Layer

● [A]: ClassroomAdminPage
○ def get()

■ Decorator: can_access_admin_page
■ [A]: Render template classroom-admin-page.mainpage.html

[Special Cases]
1. Delete the topic name from the diagnostic test model, in the case when a topic gets deleted from the topic and skill

dashboard.
a. Remove the topic node from the diagnostic test model if a topic gets deleted.

b. Example approach:
i. M, N, O, and P are four arbitrary topics present in a classroom.
ii. M is the parent of N.
iii. N is the parent of O & P.
iv. If N gets deleted, from the topic & skill dashboard:

1. Link O & P to M as its immediate children. Now M is the parent of O & P.

Learners

Backend

● Model
○ A DiagnostictestModel should be created for the retrieval of the topics DAG by the diagnostic test interface so that

questions presented in the diagnostic test are related to these topics.
○ The description of the DiagnostictestModel is given above.

● Domain
○ Implemented in Curriculum admin part.

● Controllers
○ [A]: DiagnosticTestPageHandler

■ def get()
● [A]: Renders the main HTML page for the diagnostic test.

○ [A]: DiagnosticTestDataHandler
■ def get()

● URL query param: classroom-url-fragment.
● Decorator: Open access. Currently, we allow everyone to play the topics on the classroom page. Thus if

a learner is allowed to play the topics with or without sign-in, they should be able to give the diagnostic
test with or without sign-in.

● Returns the diagnostic test topics DAG from the model by classroom-url-fragment.

Frontend

● Diagnostic-test-backend-api-service
○ Interacts with the backend and makes HTTP calls.

○ Methods
■ getTopicsDagAsync()
■ updateTopicsDagAsync()

● Diagnostic-test-algorithm-services
○ Fields

■ recommendedTopicIds
■ topicIdToAncestorTopicIds
■ topicIdToSuccessorTopicIds
■ passedTopicIds
■ failedTopicIds
■ skippedTopicIds
■ eligibleTopicIds

○ Methods
■ initialize(topicsDag)

● Initializes all the fields.
■ getNextSkillIdsForDiagnosticTest()

● Pick the next topic from the eligible set.
● Get skillIds for the current topicId
● Return the skillIds
● (Step 3 and 4 from the algorithm)

■ recordTopicPassed() / recordTopicFailed()
● These methods are called when the diagnostic test skills from the currentTopicId are tested.
● Updates the diagnostic test state data i.e., passedTopicIds, failedTopicIds, etc, and other parameters

based on the result of the current topic test.
● (Step 5 to 7 from the algorithm)

■ getRecommendedTopicIds()
● This method is called when the diagnostic test will be ended.
● Return the recommendedTopicIds that were created in the algorithm.

[Backend Changes]

1. Controller Layer
○ [A]: DiagnosticTestPageHandler

■ def get()
● [A]: Renders the main HTML page for the diagnostic test.

○ [A]: DiagnosticTestDataHandler
■ def get()

● Returns the diagnostic test topic dependency tree.

[Frontend Changes]

1. [A]: questionPresentationAlgo()
■ (Discussed above)

[Special Cases]
1. First-time learners should get a popover for the diagnostic test feature.

a. The first-time interaction can be traced by using local-storage.service inside the classroom-page component.
■ A method should be written in the local-storage.service and that corresponding method will be used inside the

ngOnInit method of the classroom-page.component.ts
2. The popover should disappear automatically after 2 mins.

a. Auto disappear can be provided by using a javascript function setTimeOut(function, time)
b. The time should be 120000 ms (or 2 mins).

3. Provide a “I don’t know” option to the learner for the questions in which they don’t have any idea on how to attempt a
particular question.

Testing Plan

E2e testing plan

Test name Initial
setup
step

Step Expectation

1 Learner Login /
without
login

Visit the math classroom
page

The page should load.

A popover was presented
to the learner, featuring the
diagnostic test.

The popover should be presented.

Click the diagnostic test
button and navigate to the
diagnostic test page.

The page should load.

Give answers to the
questions and complete
the test.

Should be able to get the topic
recommendation.

Feature testing
Does this feature include non-trivial user-facing changes? YES

Implementation Plan

Milestone Table

No. Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

Milestone 1
Curriculum admins should be able to use a “classroom administration” page to configure
details of each classroom, enter the dependencies between topics in that classroom, and
enter details for the diagnostic test. A comprehensive suite of backend integration test cases
that convincingly should demonstrate that the recommendation system entered by the
curriculum admin works correctly.

1 Update topic model and its related domain
methods for accommodating diagnostic
test skills.

None 6-July 16-July

2 Provide functionality to add diagnostic
test skills to a topic from the topic editor
page

1 12-July 22-July

3 Add a diagnostic test model class. None 16 July 26-July

4 Add domain layer functionalities for the
diagnostic test model.

3 21 July 31-July

5 Add handlers and backend APIs for the
diagnostic test

4 26-July 05-August

6 Add classroom config models and update
existing related domain methods

None 31-July 11-August

7 Add controllers and backend apis for the
classroom config.

6 05-August 15-August

8 Create classroom admin page and add
classroom config card.

7, 5 12-August 22-August

9 Add topics dependency input feature on
the classroom admin page

8 22 August 2-Sept

Buffer time to fix any reported bugs

Milestone 2
Learners should be able to visit the Math Classroom page and take an adaptive diagnostic
test that surfaces 0, 1 or 2 topic recommendations for them to pursue.

10 Add controller layer handlers in the
backend to visit the diagnostic test player
page.

None 15-Sept 22-Sept

11 Add enableFeedback,
allowOnlySingleAttemptForAnswering,
and showOnlyLastInputPairResponse
customization arguments for the tutor
card component and enableFeedback
argument for the input-pair response
component.

None 21-Sept 28-Sept

12 Add enableFeedback customization
argument for the supplemental card
component and
enableNavigationThroughCardHistory
argument for the progress nav component.

None 27-Sept 5-Oct

13 Add enableFeedback,
allowOnlySingleAttemptForAnswering,
showOnlyLastInputPairResponse, and
enableNavigationThroughCardHistory
customization arguments for the
conversation skin component.

None 4-Oct 15-Oct

14 Add diagnostic test player page
component and service.

11, 12, 13 12-Oct 22-Oct

15 Add diagnostic test result page
component.

14 16-Oct 21-Oct

16 Add functionality to end diagnostic test
and present result page.

15 20-Oct 25-Oct

17 Add the “diagnostic test” button on the
classroom page and a popup introducing
the diagnostic test functionality to the new
learners.

16 27-Oct 3-Nov

18 Add E2E for the diagnostic test
functionality.

17 5-Nov 12-Nov

Buffer time to fix reported bugs

Future Work
The diagnostic test feature should be used for story recommendations inside a topic.

