
Google Summer Of Code
2022 Proposal

Blog Integration
by Rijuta Singh

Section 1 : About Me 2

Section 2: Proposal Details 5

Problem Statement 5

Section 2.1: WHAT 6
Technical Requirements 7

Section 2.2: HOW 11
Existing Status Quo 11
Solution Overview 12
Implementation Approach 15

Storage Model Layer Changes 16
Domain Layer 27
User Flows (Controllers and Services) 35
Web frontend changes 40
Documentation changes 49

Testing Plan 49
Migration Of Blog Posts From Medium to Oppia 50

Implementation Plan 51
Milestone 1 Table 51
Milestone 2 Table 52
Launch Plan 53
Future Work 54

ABOUT ME:

What project are you applying for?
I am applying for - Blog integration.

Why are you interested in working with Oppia, and on your chosen project?
The very philosophy of open source fascinates me and contributing to it is now becoming my passion,
primarily because it feels nice to be surrounded by a bunch of like-minded people! I've always felt strongly
about giving back to society and that it is one of my responsibilities to do my personal best to assist others
who have been less fortunate. I had vowed from a young age to do something for the impoverished children in
my community so that they may at least study and receive an education. I feel I am being educated in order to
help and empower those kids.

Oppia is a community of learners and teachers dedicated to assisting everyone in learning whatever they
choose in a fun and productive manner. Oppia's mission is to make the world a better place. It provides a
barrier-free environment for gaining and sharing knowledge. As a result, it became my home. To find an
organization like Oppia in Google Summer Of Code was something I had been waiting for.
Contributing to Oppia has increased my technical skills while also teaching me the value of working as part of
a team and assisting other contributors. For the reasons it serves and the atmosphere it provides to its
contributors and users, I would like to continue contributing to Oppia even after the GSoC time ends.

This project appeals to me because it is a full-stack project aimed at integrating blogging features into the
Oppia web platform apart from the fact that the first chunk of the project was implemented by me in GSoC’
2021. I thought I would be able to implement the second chunk of it as soon as I finished with GSoC’2021.
However, conditions and time limitations did not allow it. I found an opportunity to finish what I have started
with GSoC’2022 driving. This project will not only improve the website's content, but it will also make it easier
for all of its contributors, learners, and volunteers to share their experiences with the rest of the world directly
from the Oppia website. This project requires me to write code for both the frontend and backend, and it also
allows me to participate in the design process and finally owning code for a complete feature!

Prior experience
Oppia was my first open-source organization, I started contributing to and is the only one till now.
I started around November 2020 and was soon selected as a member of the LaCE team and completed GSoC
2021 project - Integrating the Oppia blog with Oppia.org.

I have more than 50 successfully merged PRs. These PRs are concerned with work in Python, Typescript,
Angular, AngularJs, HTML/CSS, E2E tests and beam jobs. Now I feel I have a good command over Oppia’s
codebase though there are still many parts of it left for me to discover. I have become familiar with the
approaches that the organization follows for tackling issues and various kinds of bugs.

https://medium.com/p/43e7a90c907b

I've been contributing to Oppia as the LaCE quality team lead since I completed GSoC'2021,. I've tried to review
PRs from new contributors related to the team. I've also participated in release testing, which has given me a
lot of experience with the website from the user's perspective.

S.No PR number PR Description

1. #14523 This PR focussed on fixing the voiceover drop-down so that languages
names appear in their respective language and also had other bug fixes.
- Frontend.

2. #14685 I18N keys were added for the preference page - Internationalization.

3. #13683 This PR focussed on adding e2e tests for the complete Blog Dashboard
functionality. - End to End testing.

4. #13278 This PR added a controller layer for the Blog Homepage - Backend.

5. #13232 This PR added blog model validations according to apache beam
structure. - Apache Beam Jobs - Backend.

6. #11467 and #12038 The new teach page which was a part of the integration of Oppia.org
with the Oppia Foundation Website was implemented in #11467
whereas responsiveness bugs of the page were fixed in #12038 -
Frontend

Project size
The project is medium sized (about 175 hours).

Project timeframe
I will be utilising an extended coding period for my project. I will be working from July 20, 2022
to Oct 20, 2022. I have my summer internship starting from mid-May and ending in mid-July. Thus to avoid
clashing of project coding period and internship, I wish to utilize the extended coding period completely.

Contact info and timezone(s)
Timezone: I will stay in India throughout the period of my project. The time zone will be Indian Standard Time
(GMT+5:30).

Contact:
Mail: rijuta_s@me.iitr.ac.in
Mobile no. : +91- 8699815957 (Whatsapp)
Github Profile: Rijuta-s

Time commitment
I will be able to give around 6 hours per day starting from July 25, 2022 to August 31, 2022. After August 31,
2022 I will be able to give roughly around 4 hours per day till the end of my project that is Oct 20, 2022 due to

https://github.com/oppia/oppia/pull/14523
https://github.com/oppia/oppia/pull/14685
https://github.com/oppia/oppia/pull/13683
https://github.com/oppia/oppia/pull/13278
https://github.com/oppia/oppia/pull/13232
https://github.com/oppia/oppia/pull/11467
https://github.com/oppia/oppia/pull/12038

college semester engagements. However, taking into consideration the size of project that is roughly around
175 hours, I should be able to complete the project well within time.

Essential Prerequisites

● I am able to run a single backend test target on my machine. (Show a screenshot of a successful test.)

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a successful test.)

● I am able to run one suite of e2e tests on my machine. (Show a screenshot of a successful test.)

Other summer obligations
I have my summer internship starting from mid of May to mid of July. Hence I prefer to work in extended
coding period that is from July 20, 2022. From 10th August, my college will resume however the work load in
college will be light in August and will demand only 3-4 hours per day, 5 days a week. Hence I will be able to
work easily on my project till August 31, 2022. In September, I will have my mid term examinations which will
go on for about a week. So I might get a bit slow for 15 days, but will pick up pace in the following mid term
holidays working around 7-8 hours per day. In October , college will remain light allowing me to work on my
project easily.

Communication channels
Meeting with mentor: 2 times per week (flexible) [Google-Meet or any other platform]
I will try to provide daily updates as much as possible to ensure smooth working through out the project..
[I check my email regularly and can be contacted on any of the above-mentioned platforms.]

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one)

N/A

Target Audience Everyone !
Blog posts will be used to spread information about oppia and its volunteers' efforts across all
social media platforms, specially on the website itself. Thus, Oppia users, developers, and
volunteers will not be the only ones reading blog entries on the Blog Homepage but the entire
world!

Core User Need Oppia.org's blogs are currently hosted on Medium, a distinct website. Having all of the blog
posts on Oppia's website will allow team members and users to share their tales with the rest of
the world from our website itself. This will help readers to view our website without much
difficulty or confusion. It will, in short, assist our marketing and advertising team in driving traffic
to our website, as well as saving our readers time if they desire to traverse the website after
viewing it.

Currently, Blog Dashboard functionality exists in our codebase allowing authors to write blog
posts, however they are not accessible to other people. Also, authors can by no means see the
number of views of their blog posts as no such functionality of tracking views is inculcated in the
codebase making it difficult for the writers to know the impact and likeability of their content.

What goals do
we want the
solution to
achieve?

One of our key objectives is to increase traffic to our website and to give a hassle-free experience
for our blog post readers! It will be a simple approach for new users who come to read blog
posts to find their way to our website, eliminating friction.
Our developers, volunteers, and other users will be able to share their thoughts and experiences
directly from our website.

A statistics tab to allow blog post authors to have an insight about how many people read and
viewed their blog posts.

Section 2.1: WHAT

Key User Stories and Tasks

Title User Story
Description (role,
goal, motivation)
“As a …, I need …, so
that ….”

Priority1 List of tasks needed to achieve
the goal (this is the “User
Journey”)

Links to mocks / prototypes,
and/or PRD sections that
spec out additional
requirements.

1. Reading a blog
post

As a blog post
reader, I should be
able to navigate to
Blog Home Page
via navbar and
footer, and should
be able to read the
blog post of my
choice selecting
from the available
list of blog posts.

Must
Have

Selecting the ‘Blog’ navbar item
from ‘About’ drop down to land
on the ‘Blog Home Page’ .

Users should be able to scroll
freely and use pagination , filter
blog posts by tags and perform
searches for them on the Blog
Home Page.

Link to Blog Home page

Link to Blog Search
Results/Filter By Page

Clicking on the desired blog
post card on the Blog
HomePage / Search Results
page should take you to the
respective blog post page.

Link to Blog Post Page

- Navbar will remain
the same as it is on
the other parts of the
site.

2. Visiting Author
Profile Page

As a blog post
reader, I should be
able to visit the
author profile page,
read the author's
bio and see all the
blog posts written
by the author.

Should
Have

Navigate to any blog post page. Link to Blog Post Page

Click on Author’s Profile Picture
or Name to land onto Author’s
profile page.

Link to Author Page

Use pagination to see all the
blog posts written by the author
in chronological order and
clicking on any blog post card

1

https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/f39ed583-c4d9-4c59-95b0-d31c2f465aac/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/d1753965-9ddd-468c-80c3-784d54b24aee/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/d1753965-9ddd-468c-80c3-784d54b24aee/
https://xd.adobe.com/view/9bb82409-cdca-432a-b11c-88324643e2c0-ceeb/screen/24bd9402-b858-434f-9b5c-1fac4c21f9c7/
https://xd.adobe.com/view/9bb82409-cdca-432a-b11c-88324643e2c0-ceeb/screen/24bd9402-b858-434f-9b5c-1fac4c21f9c7/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/6ef4fc04-b8e1-4d93-8433-388f92499b6a/

should navigate to the blog
post page.

3. Viewing Stats As a blog post
editor/ admin, I
should be able to
visit the statistics
tab of the blog
dashboard. I
should be able to
see the total
number of views,
reads and reading
time on each blog
post along with
the total number
of views, reads
and reading time
on all the blog
posts by me.

Must
Have

Login as Blog Post Editor / Blog
Admin

From Profile dropdown,
navigate to blog dashboard.

Link to Statistic tab

Select the Statistics tab to see
stats of each blog post.

● Number of views on
each blog post as well
as on all the blog posts
written by me

● Number of reads on
each blog post as well
as on all the blog posts
written by me

● Number of users vs
Reading time of blog
posts on each blog
post as well as on all
the blog posts

- Views: Link
- Reads: Link

(Formatting will be
same as views chart:
Position of Views,
Reads and Reading
time buttons)

- Users vs Reading
time: Link

Technical Requirements
DESCRIPTIONS OF VARIABLE NAMES / CONSTANTS USED :

1. author_publicly_viewable_name : publicly_viewable_name of the author that he/she can input from the
blog dashboard. It will be the same as the username of the author that they enter when they sign up
until edited by the user on the blog dashboard. It can be changed from the user preferences page by the
author.

2. author_username: username of the author entered while they log in /sign up in Oppia.
3. blog_post_url : blog post url is generated using blog post title and its unique id which is a 12 character

randomly generated hash.

https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/0b507065-dc4f-405d-9237-2a64e7850bfb/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/2c198cbf-c5a5-441b-a0cf-d3213c504a99/

For example if the title of the blog post is ‘Global Education and Oppia’ and its blog post id is
‘12DE45FGuthE’ then the url fragment will be : ‘/global-education-and-oppia-12de45fguthe’

ALREADY PRESENT CONSTANTS IN CODEBASE:
These constants are already present in feconf.py :

1. BLOG_HOMEPAGE_URL : ‘/blog’
2. BLOG_HOMEPAGE_DATA_URL : ‘/blogdatahandler/data’
3. AUTHOR_SPECIFIC_BLOG_POST_PAGE_URL_PREFIX : ‘/blog/author’

Additions/Changes to Web Server Endpoint Contracts

Endpoint URL Request
type
(GET,
POST,
etc.)

New / Existing Description of the request/response contract (and, if
applicable, how it’s different from the previous one)

1. /blog GET New This get request will render the template of the blog
homepage if the blog homepage is accessible.

2. /blog/author/<author_usernam
e>

GET New This get request will render the template of the author
profile page if the blog homepage is accessible.

3. /blog/<blog_post_url> GET New This get request will render the template of the blog
post page.

1. /blogdatahandler/data GET Existing This get request will populate data on the Blog
HomePage. It will fetch all the published blog post
summaries which will be used to populate blog post
cards on the blog homepage in chronological order.

It currently misses the total number of published blog
posts.

Final response dict contains the following data fields -

1. list_of_default_tags : the list of default tags to
be used in the tags filter on the blog
homepage.

2. blog_post_summary_dict : a list of published
blog post summary dicts in order of
date published which will be used to
populate blog post cards.

3. total_published_blog_posts : number to be
displayed on the top the blog post page

4. /blogpostdatahandler/<blog_p
ost_url>

PUT New This request will update the number of views, number
of reads and reading time summary models and raw
event log models based on the type of payload.

5. /blog/searchhandler/data

Webpage URL will be :

GET New This get request will be used inorder to filter blog posts
by tags or to search for them using keywords in title.

Arguments:

/blog/search/find?q=<search_
query>&tags=<tags>

q: string (search query string)
tags: list of strings
offset: int (search offset)

6. /blogdashboardhandler/data/s
tatistics

GET New This get request will fetch data for the statistics tab on
the blog dashboard page from summary models using
blog_post_id and type of chart required(views, reads,
reading time)

Calls to Web Server Endpoints

Endpoint URL Request
type (GET,
POST,
etc.)

Description of why the new call is needed, or why the changes to an
existing call is needed

1. /blogpostdatahandler/<blog_
post_url>

GET It will fetch blog post data to be visible on the blog post page.

Response dict contains the following fields -

1. profile_picture_data_url : Profile picture of the author of the
blog post.

2. blog_post_dict : A dict containing data fields that will be used to
display the blog post's content.

3. summary_dicts : A list of summary dicts that will be used to
blog post cards in the ‘Suggested for You’
section.

2. /blog/authordatahandler/<aut
hor_username>

GET This get request will fetch data to populate author profile page.

Response dict contains the following data fields -
1. author_name : Username of the author to be displayed.
2. profile_picture_data_url : url to fetch profile picture of the author.
3. author_bio : Bio of the author entered by them on the user

profile page.
4. summary_dicts : a list of published blog post summary dicts of

the blog posts written by author in order of
date published which will be used to populate
blog post cards on the author profile page.

5. total_blog_posts_count : Total number of blog posts by the
author.

6. offset: search offset to get the next group of blog posts.

3. /blogdashboardhandler/data GET This get request will be modified to get ‘publicly_viewable_name’ in the
response dict instead of username of the author.

4 /blogdashboardhandler/data PUT The put request will be added to the handler to update
‘publicly_viewable_name’ in the ‘UserSettingsModel’

UI Screens/Components
Note : The blog post card have already been implemented in the first part of the Blog Integration Project. Minor
changes have to be done to include blog post tags in the blog card. After blog post tags are added to the blog
cards, It will look like this: link

Mobile view mocks : link
Blog Dashboard (V1) mocks: link
Blog Dashboard (V2) mocks: link

ID Description of new UI component i18n required? Mock/spec
links

A11y requirements

1. Blog Home
Page

The main landing page of the blog. It will
be visible to everyone. It will showcase all
the blog post cards in chronological order.

- A maximum of 10 blog post cards
will be visible on each page.

- A search field to allow user to
perform search queries on the
blog posts will be present.

- A filter to allow user to see blog
posts category wise (tags).

Yes

All headings such as -
‘Latest Post’;
‘Welcome to Oppia’
etc, subheadings,
button texts (month
names, tags) and
other text.

Blog Home
page

Yes

Page should be
keyboard navigable.
All the text should be
read by the screen
reader.

The same page will also showcase all the
related blog posts in case search is
performed or filters are selected (month
published or tags).

Yes

All the heading,
subheading , button
texts visible on the
page.

Blog Search
Results/Filte
r By Page

Yes

Page should be
keyboard navigable.
All the text should be
read by the screen
reader.

2. Blog Post Page The blog post page which will showcase
the blog post content, its author and also a
‘Suggested for You’ section containing
cards of other blog posts.

- Clicking on the share icon will
open a popup showing icons to
share the link on different
platforms such as twitter and
facebook and an option to copy
the url of the blog post which can
then be shared anywhere.

- Additionally, based on the author
and tags selected by the user, up
to two blog recommendations will
be displayed at the bottom
(‘Suggested For You’ section).

- Two latest blog posts

Yes

Heading - ‘Suggested
For You’.

Blog Post
Page

Yes

Share icon should
have ‘alt text’ added,
so that everything on
the page is read by
the screen reader.

Page should be
keyboard navigable.
(eg. Selecting blog
post cards in
‘Suggested for You’
section.)

https://drive.google.com/file/d/1FXxO19ua6Ax9kwcbS7VjTFjwmg4A4Fs2/view?usp=sharing
https://drive.google.com/file/d/1rYYy7PZUNKAys6DrYbQNEJNuehVINyZc/view?usp=sharing
https://www.figma.com/file/k960aiD0UXm3vajxm4M0kr/Blog-Integration?node-id=224%3A0
https://xd.adobe.com/view/9bb82409-cdca-432a-b11c-88324643e2c0-ceeb/screen/9d24dfcf-0b9c-49c8-b54a-d4f1d0a0a989/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/f39ed583-c4d9-4c59-95b0-d31c2f465aac/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/f39ed583-c4d9-4c59-95b0-d31c2f465aac/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/d1753965-9ddd-468c-80c3-784d54b24aee/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/d1753965-9ddd-468c-80c3-784d54b24aee/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/d1753965-9ddd-468c-80c3-784d54b24aee/
https://xd.adobe.com/view/9bb82409-cdca-432a-b11c-88324643e2c0-ceeb/screen/24bd9402-b858-434f-9b5c-1fac4c21f9c7/
https://xd.adobe.com/view/9bb82409-cdca-432a-b11c-88324643e2c0-ceeb/screen/24bd9402-b858-434f-9b5c-1fac4c21f9c7/

with 1 or more same
tags will be shown first.
In case no similarity of
tags is found then blog
posts published by the
same author will be
shown. Still if 2 blog
posts are not present
then 2 latest blog posts
will be shown.

- Clicking on the back button in
navbar will take the user to the
previous page from which they
navigated to the page (that is it
can be blog home page, author’s
profile page or incase if the user
comes directly through link, it will
take to blog home page)

3. Author Profile
Page

The author profile page that contains bio of
the author and the blog posts written by
him/her in chronological order.

- Clicking on the blog post card
should take the user to blog post
page.

Yes

Word - ‘Posts’ below
author name

Author Page Yes

Page should be
keyboard navigable.
All the text should be
read by the screen
reader.

(eg. Profile image
should have alt text.)

4. Blog
Dashboard
Statistics Tab

Tab in the blog dashboard page that will
for each blog post show the number of
views, reads and reading time.

Yes

Headings

Statistic tab Yes

Data Handling and Privacy
No user sensitive data field is being introduced in the codebase.

Section 2.2: HOW

Existing Status Quo
● Users can currently write blog posts using Blog Dashboard. They can classify their blog posts by

choosing tags from a list of options. They can access all of their blog posts, both published and drafts.
Blog editors have the ability to modify and delete their blog posts as well.

○ These blog postings, however, are not visible to other people as there is no interface to display
them.

https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/screen/6ef4fc04-b8e1-4d93-8433-388f92499b6a/
https://xd.adobe.com/view/5d0ab45a-29da-4e8d-b994-ae8351a02b67-0859/

○ Blog editors cannot see the number of views on their blog posts by any medium way.

○ Most of the controllers for blog home page and related pages already exist in the codebase
except for search handlers.

● A form to update the published date and author name of the blog posts is present in the Blog Admin
Page which will be used to migrate blog posts from ‘Medium’ manually. [Implemented in GSoC’ 2021
project - [Milestone 2.4 B : PR link]]

● Before we start using the blog homepage and blog dashboard functionality, issue number - #13397
should be addressed to avoid draft blog posts to be reported in validation checks.

Solution Overview
Overall blog interface will have the following structure:

To achieve this -
● An interface to showcase blog posts which is accessible to everyone and allows users to search for

blog posts easily and go through them has to be implemented.

○ New handler to perform search for blog posts and filter blog posts will be added in
blog_homepage.py.

○ ‘main.py’ will be added with new routes.

○ In core/domain, ‘blog_post_search_services.py’ will be added and its corresponding test file to
allow for searching of blog posts.

https://github.com/oppia/oppia/pull/13590
https://github.com/oppia/oppia/issues/13397

○ In jobs/batch_jobs, ‘blog_post_search_indexing_jobs.py’ will be added along with its test file to
index blog posts in elastic search.

○ Frontend files for blog home page, blog post page and author profile page will be added.

○ A comment will be added in the ‘blog-card’ component mentioning that it is also being used in
‘blog homepage’ module. Minor changes will be done in order to include tags on the ‘blog-card’

○ Inside ‘templates/domain/blog’, new files will be added :
1. blog-home-page-backend-api.service.ts
2. blog-home-page-backend-api.service.spec.ts

○ In components/top-navigation-bar/top-navigation-bar.component.html:
Currently the ‘about’ dropdown contains a ‘blog’ nav item which
help our users to directly navigate to all the blog posts related
to Oppia on Medium and has an icon to let users know that it
takes to an external website.

‘top-navigation-bar.component.html’ will be edited to link ‘blog’
nav item to the blog-homepage and the icon beside it will be
removed.

● A statistics tab in the blog dashboard to allow authors to know the number of views on their blog posts
with time. Following changes will have to be done :

○ 3 new storage models will be added in user/gae.py to store total number of views, number of
reads and number of user vs reading time on all blog posts written by the user.

○ Raw event log storage models will be added in blog-statistcs/gae.py to store event logs for
number of views, number of reads and number of users vs reading time on each blog post.

○ 3 new storage models will be added in blog/gae.py to store summary of number of views,
number of reads and number of users vs reading time for each blog post.

○ Related domain objects and services will be accordingly changed.

○ New handler (controller layer) will be added in blog_dashboard.py to populate data on the
statistics tab.

○ Regeneration jobs will be added to regenerate the related summary statistics models in case of
data corruption from raw event log models.

○ Frontend files for statistics tab will be added in template/pages/blog-dashboard

● For issue #13397 :
As writing custom jobs for validating each and every field of the model will be a complicated
task, we can use the ‘published_on’ data field of the models to know if the blog posts are
private/drafts. We will need to update the ‘published_on’ data field to ‘none’ every time the blog
post is ‘unpublished’. Currently, once a blog post is ‘unpublished’, we do not use ‘published_on’
data field in any way. Thus updating it’s value to ‘None’ will not break away any functionality.
Therefore, if the value of ‘published_on’ is None in ‘BlogPostModel’ and
‘BlogPostSummaryModel’, the blog post is private i.e it is a draft and non strict validation will be
performed.

Third-Party Libraries
N.A

“Service” Dependencies
N.A

Impact on Other Oppia Teams
It's a new interface and will not be affecting any existing team. The functionality of this interface will be mostly
handled by the LaCE Team.

https://github.com/oppia/oppia/issues/13397

Implementation Approach

For Statistics Tab Frontend Queries Requirement:

*We will be storing all the date-time data in storage models in UTC Date-Time. We will convert Locale Time into
UTC before storing data into models and convert UTC date time into Locale Time in frontend before generating
graphs.

Frontend Queries requirements for generating graphs:
24 Hours: Number of views hour wise for the past 24 hours (inclusive of the views in the ongoing hour).
❖ Check for current local time
❖ Convert it to UTC date time
❖ Fetch hour wise views for past 24 hours (includes the views in the ongoing hours)

1 week: Number of views date wise for the past 6 days and the ongoing day.
❖ Check for current local date
❖ Convert it to UTC date
❖ Fetch views_by_date for past 6 days and the ongoing day

1 month: Number of views date wise for the past days for the ongoing month (inclusive of the ongoing
date)
❖ Check for current local date
❖ Convert it to UTC date
❖ Fetch views_by_date for all the past days of the month (including the views of the ongoing day)

1 year: Number of views month wise for the ongoing year
❖ Check for current local date
❖ Convert it to UTC date
❖ Fetch views_by_month for the ongoing year (inclusive of the views of the ongoing day)

All: Number of views month wise for all the past year as well as ongoing year
❖ Check for current local date

❖ Convert it to UTC date
❖ Fetch views_by_month for all the years

* Will be similar for number of reads and users vs reading time

We will be storing raw event logs for number of views, number of reads and number of users vs reading time
for each blog post which will help us to regenerate summary models in case frontend requirements change or
incase of data corruption in summary models due to race conditions.

Storage Model Layer Changes
We will be having 2 types of models for storing statistics for the blog dashboard’s statistics tab.

1) Event Raw log model:
○ Will be used to generate summary models in case of data corruption in summary model
○ Will be keyed to UTC date time
○ There will be 3 types of raw log models based on event

i) BlogPostViewedEventLogEntryModel
ii) BlogPostReadEventLogEntryModel

iii) BlogPostReadingTimeModel

2) Summary models: Auto incrementing models that will be used to provide data for generating graphs in
the frontend.

Axes of Comparison ALTERNATIVE 1
Having separate summary models
according to the type of events i.e
having separate models for number
views, number of reads, average reading
time

ALTERNATIVE 2
Having all summary data in one
model i.e having all the fields of
number of reads, number of views
and average reading time in one
model

Number of GET requests Will need multiple GET request to load
data

A single GET request will be sufficient
to get all the data at once.

Lazy Loading Will allow lazy loading on the statistics
tab, i.e only the number of views data
will be loaded initially and number of
reads and reading time data will be
loaded only if the user clicks on those
tabs.

Also, we will not be making a new fetch
every time when users will be switching
between views, read and reading time
charts for the same blog post. Once the
data for them is loaded, it will not have
to be loaded again until the user
switches to a chart for different blog
post.

Will not allow lazy loading of data

Faster Processing and As the amount of data to be fetched in a Due to large amount of data to be

Loading time single request will be small, processing
time to get data in the required format
will be less and data will get loaded
quickly in the frontend.

fetched in a single request,
processing time to get data in the
desired format will be more and the
request will be slower which may
also result in time out.

PUT request collisions PUT request collisions for updating the
same model will be less as the summary
data for each event is in different model
reducing the chances of data corruption

PUT request collisions for updating
the same model will be more as the
summary data for all the events is in
same model increasing the chances
of data corruption

Therefore Alternate 1 is more preferable!
- There will be 6 summary models

i. AuthorBlogPostViewsStatsModel
ii. AuthorBlogPostReadsStatsModel

iii. AuthorBlogPostReadingTimeModel
iv. BlogPostViewsAggregatedStatsModel
v. BlogPostReadsAggregatedStatsModel

vi. BlogPostReadingTimeModel

1. In blog-statistics/gae.py :
● Class BlogPostViewedEventLogEntryModel : It will register raw logs whenever a user will

view a blog post. (It will be keyed to [timestamp]: [blog_post_id]: [random_hash]; where
timestamp is the UTC time in milliseconds of the occurrence of the event.)

Field Name Property Type To store When event is fired

blog_post_id String blog_post_id As soon as the user visits
the blog post

author_id string user_id of the author

This model will then be used to regenerate the number of views weekly, monthly, yearly and all
views in the summary model - ‘BlogPostViewsAggregatedStatsModel’ and
‘AuthorBlogPostViewsAggregatedStatsModel’ using regeneration jobs written in
blog_post_statistics_computation_job.py file if required.

For this data model following policies will be applied:

For export :
‘get_export_policy‘ class method will be defined. Model does not contain user data and will not
be exported.

For deletion :
‘get_deletion_policy’ class method will be defined. Model contains data to pseudonymize
corresponding to a user: author_id field.

For model association to user :
‘get_model_association_to_user()’ class method will be defined under which model will not be
exported. (`NOT_CORRESPONDING_TO_USER`)

To generate a unique id to key the model the following classmethod will be defined:

● Class “BlogPostReadEventLogEntryModel” : A new storage model will be introduced which
will register raw logs whenever a user reads that blog post.(It will be keyed to [timestamp]:
[blog_post_id]: [random_hash]; where timestamp is the UTC time in milliseconds of the
occurrence of the event.)

Field Name Property
Type

To store When event is fired

blog_post_id String
Property

blog_post_id If the user stays on the blog post
longer than 50% of the time
calculated using the number of
words in the blog post (200 words
per minute is a decent speed), the
blog post will be marked as read
and this event will be fired .

author_id string user_id of the author
of the blog post

This model will then be used to regenerate ‘BlogPostReadsAggregatedStatsModel’ and
‘AuthorBlogPostReadsStatsModel’ using regeneration jobs written in
blog_post_statistics_computation_job.py file when required.

For this data model following policies will be applied:
For export :
‘get_export_policy‘ class method will be defined. Model does not contain user data and will not
be exported

For deletion :
‘get_deletion_policy’ class method will be defined. Model contains data to pseudonymize
corresponding to a user: author_id field.

For model association to user :
‘get_model_association_to_user()’ class method will be defined under which model will not be
exported. (`NOT_CORRESPONDING_TO_USER`)

A classmethod get_new_event_entity_id(cls, blog_post_id) will be defined to generate a unique
id to key the model.

● Class “BlogPostExitedLogEntryModel”: New storage model will be introduced which will
register raw logs for the amount of time the user stayed on the blog post. (It will be keyed to
[timestamp]: [blog_post_id]: [random_hash]; where timestamp is the UTC time in milliseconds of
the occurrence of the event.)

Field Name Property Type To store When event is fired

time_user_stayed_on_b
log_post

Float Property Time users stayed
on the blog post (in
seconds).

As soon as the user
leaves the blog post
completely. (i.e either
closes the tab or
switches the page on the
same tab.)

The event will also be
fired if the user spends
more than 45 minutes on
the blog post or
5*estimated_reading_tim
e (calculated using
number of words on the
blog post) whichever is
greater.

blog_post_id String Property Id of the blog post

author_id String Property user_id of the blog
post

It will then be used to regenerate “BlogPostReadingTimeModel” if required using a
regeneration job written in blog_post_statistics_computation_job.py file.

For this data model following policies will be applied:
For export :
‘get_export_policy‘ class method will be defined. Model does not contain user data and will not
be exported

For deletion :
‘get_deletion_policy’ class method will be defined. Model contains data to pseudonymize
corresponding to a user: author_id field.

For model association to user :
‘get_model_association_to_user()’ class method will be defined under which model will not be
exported. (`NOT_CORRESPONDING_TO_USER`)

A classmethod get_new_event_entity_id(cls, blog_post_id) will be defined to generate a unique
id to key the model.

2. In blog/gae.py:
● Class BlogPostViewsAggregatedStatsModel:

Summary model to store number of views on a published blog post.
[Each instance of this model is keyed to the unique blog_post_id of the blog post.]

Field Name Property
Type

To Store Required/
Indexed/Repeate
d

Repacking of field

views_by_hour Json
Property

A Dict.
It will consist of a dict of
dictionaries where key is the
date (YYYY-MM-DD) in the
UTC format) and value is dict
with keys as hours (in the
UTC format) and number of
views as values.

Dict Format :
{(date_1): {
“00”: num_of_views,
“01”: num_of_views,
….
“23”: num_of_views

}}

E.g.

Date is in YYYY-MM-DD
Hour: HH

Required = True
Indexed = False
Repeated = False

At max there will be
hourly views keyed
to 3 dates.

We don’t need
views by hour for
more than the past
24 hours (
including the
current ongoing
hour). To be on
safer side, we will
maintain hourly
views for past 3
days (including the
ongoing day) and
delete the rest
whenever a PUT
request is
performed on the
storage model

views_by_date Json
Property

A dict
It will consist of key-value
pairs where key is the
month(YYYY-MM) and value
is dict with keys as UTC date
and values as number of
views on the blog posts on
that date.
Dict format:
(month_1): {
date_1: num_of_views
date_2 : num_of_views
}

E.g.

Month format: YYYY-MM
Date format- DD

Required = True
Indexed = False
Repeated = False

At max there will be
views by date
keyed to 3 months.
(Ongoing month
and the past 2
months(all the
days of the
month)))

We want past 30
days data
(including the
ongoing day) from
the present date to
generate monthly
views in the chart.

views_by_month Json
Property

A Dict

It will consist of a dict of
dictionaries where key is the
year (in the UTC format) and
value is dict with keys as
month number (in the UTC
format) and number of views
in that month as value.

Dict Format :

year: {
month: num_of_views
}

Required = True
Indexed = False
Repeated = False

Monthly views for
all the years have
to be stored to be
displayed in ‘All’
option of the chart.
Repacking of data
is not required.

E.g.

Repacking of data fields: Whenever a user views the blog post, a PUT request will be performed on the
model to update the number of views in the model. A classmethod
‘RepackBlogPostViewsAggregatedStats()’ will be called which will remove all the data in the
‘views_by_hour’ data field except that of the past 2 days (along with the ongoing day data) and in
‘views_by_date’ data field except that of the past 1 month (along with the ongoing month). We only
need to show views by hours for the past 24 hours (including the ongoing hour). Therefore maintaining
hour wise views for all the dates is not required and will just increase the size of the data model. To be
on a safer side, we maintain past 2 days data along with the ongoing date data. For views_by_date, for
generating ‘monthly views’ in chart, we will need past 30 days data (including the ongoing month),
therefore we will maintain the ongoing month data and the past 1 month data to ensure having 30 days
data at all times.

For export :
‘get_export_policy‘ class method will be defined. The model does not contain data corresponding to a
user and it will not be exported.

For deletion :
It will be NOT_APPLICABLE: The model is not related to user data at all

For model association to user :
Model does not have any association to user, thus, inside ‘get_model_association_to_user()’ - model
will have value - ‘NOT_CORRESPONDING_TO_USER’.

● Class BlogPostReadsAggregatedStatsModel:
Summary model to store number of reads on a published blog post.
[Each instance of this model is keyed to the unique blog_post_id of the blog post.]

It will be formatted similar to the views model but will just store the number of reads!

● Class BlogPostReadingTimeModel:
New storage model which will store the total number of users staying for a particular time on the
blog post. It will be updated as soon as the user leaves the blog post completely (eg. Closes
the tab, goes back to other pages)
[Each instance of this model is keyed to the unique blog_post_id of the blog post.]

Field Name Property Type To store When event is fired

zero_to_one_min Integer Property Number of user taking
less than a minute to
read the blog post

As soon as the user
leaves the blog post
completely. (i.e either
closes the tab or
switches the page on the
same tab.)

The event will also be
fired if the user spends
more than 45 minutes on
the blog post or
5*estimated_reading_tim
e (calculated using
number of words on the
blog post) which ever is
greater.

one_to_two_min Integer Property Number of users taking
one to two minutes to
read the blog post.

two_to_three_min Integer Property Number of users taking
two to three minutes to
read the blog post.

three_to_four_min Integer Property ……

………. …… …..

more_than_ten_mi
n

Integer Property Number of users taking
more than ten minutes to
read the blog post.

For export :
‘get_export_policy‘ class method will be defined. The model does not contain data
corresponding to a user and it will not be exported.

For deletion :
It will be NOT_APPLICABLE: The model is not related to user data at all

For model association to user :
Model does not have any association to user, thus, inside
‘get_model_association_to_user()’ - model will have value -
‘NOT_CORRESPONDING_TO_USER’.

● In Class BlogPostRightsModel -
Class method - get_published_blog_posts_count() will be added. It will query based on
the ‘blog_post_is_published’ data field and then return the count.

3. In user/gae.py:
● Class AuthorBlogPostViewsStatsModel:

Summary model to store number of views on all published blog posts by the user.
[Each instance of this model is keyed to the user_id].

It will be formatted similar to BlogPostViewsAggregatedStatsModel.

This model will hence record total views on all the published blog posts by the user.

For export :
‘get_export_policy‘ class method will be defined. The model contains data
corresponding to a user and it will be exported.

For deletion :
‘get_deletion_policy’ class method will be defined. The model contains data
corresponding to a user - and it will be deleted.

For model association to user :
‘get_model_association_to_user()’ class method will be defined under which model will
be exported as one instance per user.

● Class AuthorBlogPostReadsStatsModel:
Summary model to store number of reads on all published blog posts by the user.
[Each instance of this model is keyed to the user_id].

It will be formatted similar to BlogPostReadsAggregatedStatsModel.

This model will hence record total reads on all the published blog posts by the user.

For export :
‘get_export_policy‘ class method will be defined. The model contains data
corresponding to a user and it will be exported.

For deletion :
‘get_deletion_policy’ class method will be defined. The model contains data
corresponding to a user - and it will be deleted.

For model association to user :
‘get_model_association_to_user()’ class method will be defined under which model will
be exported as one instance per user.

● Class AuthorBlogPostReadingTimeModel:
Summary model to store the total number of users staying for a particular time on all
the blog posts written by the user.

[Each instance of this model is keyed to the user_id].

It will be formatted similar to BlogPostReadingTimeModel.

For export :
‘get_export_policy‘ class method will be defined. The model contains data
corresponding to a user and it will be exported.

For deletion :
‘get_deletion_policy’ class method will be defined. The model contains data
corresponding to a user - and it will be deleted.

For model association to user :
‘get_model_association_to_user()’ class method will be defined under which model will
be exported as one instance per user.

● In Class UserSettingsModel following field will be added:

Field Name Property Type To Store Required/Indexed/
Repeated

publicly_viewable_n
ame

String Type A string.
A name which will be shown
as author name on blog posts
and on blog author page.

Required and
Indexed

Domain Layer:

1. In blog_domain.py:
● class BlogPostViewsAggregatedStats : It would be added to handle all functions

directly related to the BlogPostViewsAggregatedStatsModel.
Some functions (class methods) inside it will be :

i. __init__() : Initializes a BlogPostViewsAggregatedStats
model domain object.

ii. to_frontend_dict(): It will return a ‘dict’ representation of the
stats object to be used in frontend.

iii. create_new_blog_post_views_stats() : function would just
call the constructor to initialize.

● class BlogPostReadsAggregatedStats : It would be added to handle all functions
directly related to the BlogPostReadsAggregatedStatsModel.

Some functions (class methods) inside it will be :
i. __init__() : Initializes a BlogPostReadsAggregatedStats

model domain object.
ii. to_frontend_dict(): It will return a ‘dict’ representation of the

stats object to be used in frontend.
iii. create_new_blog_post_reads_stats() : function would just

call the constructor to initialize.

● class BlogPostReadingTime: It would be added to handle all functions directly
related to the BlogPostReadingTimeModel.

Some functions (class methods) inside it will be :
i. __init__() : Initializes a BlogPostReadingTime model domain

object.
ii. to_frontend_dict(): It will return a ‘dict’ representation of the

stats object.
iii. create_new_blog_post_reading_time() : function would just

call the constructor to initialize.

2. In blog_statistics_domain.py:
● class BlogPostViewedEventLogEntry : It would be added to handle all

functions directly related to the BlogPostViewedEventLogEntryModel .
Some functions (class methods) inside it will be :

1. __init__() : Initializes a BlogPostViewedEventLogEntry model domain
object.

2. create_new_blog_post_view_entry() : function would just call the
constructor to initialize.

● class BlogPostReadEventLogEntry : It would be added to handle all functions
directly related to the BlogPostReadEventLogEntryModel .

Some functions (class methods) inside it will be :
1. __init__() : Initializes a BlogPostReadEventLogEntry domain object.

2. create_new_blog_post_read_entry() : function would just call the
constructor to initialize.

● class BlogPostExitedLogEntry : It would be added to handle all functions
directly related to the BlogPostExitedLogEntryModel .

Some functions (class methods) inside it will be :
1. __init__() : Initializes a BlogPostExitedLogEntry model domain object.
2. create_new_blog_post_exited_entry() : function would just call the

constructor to initialize.

3. In user_domain.py:
● class AuthorBlogPostViewsStats : It would be added to handle all functions

directly related to the AuthorBlogPostViewsStatsModel.
Some functions (class methods) inside it will be :

i. __init__() : Initializes a AuthorBlogPostViewsStats model
domain object.

ii. to_frontend_dict(): It will return a ‘dict’ representation of the
stats object to be used in frontend.

iii. create_new_views_stats() : function would just call the
constructor to initialize.

● class AuthorBlogPostReadsStats : It would be added to handle all functions
directly related to the AuthorBlogPostReadsStatsModel.

Some functions (class methods) inside it will be :
i. __init__() : Initializes a AuthorBlogPostReadsStats model

domain object.
ii. to_frontend_dict(): It will return a ‘dict’ representation of the

stats object to be used in frontend.
iii. create_new_reads_stats() : function would just call the

constructor to initialize.

● class AuthorBlogPostReadingTime: It would be added to handle all functions
directly related to the AuthorBlogPostReadingTimeModel.

Some functions (class methods) inside it will be :
i. __init__() : Initializes a AuthorBlogPostReadingTime model

domain object.
ii. to_frontend_dict(): It will return a ‘dict’ representation of the

stats object.
iii. create_new_reading_time_stats() : function would just call

the constructor to initialize.

4. In jobs/transforms/validation/blog_validation.py:
● To address issue #13397 ,

Instead of calling ‘blogPostRightsModel’ to know the status of the blog posts
(published/drafts), we will check if the model’s time of being published is not
None as writing custom jobs for validating each and every field will be
complicated.

● Validation to verify relationship of various Blog Post Statistics Models with
BlogPostModel, BlogPostSummaryModel, BlogPostRightsModel will be added.

5. In blog_post_search_services.py:
Blog_post_search_services file will be added to allow users to search through numerous blog posts,

and the following functionalities will be added in it:

● index_blog_post_summaries(): To add blog posts to search index.

https://github.com/oppia/oppia/issues/13397

● _should_blog_post_be_indexed(): Checks whether the blog post should be indexed so as to
apply search queries on it. It will check to see if the blog post has been published. It will take
blog_post_id as an argument.

● _to_search_dict(): Converts blog post summary domain objects into a format so that search
can be performed on them.

● search_blog_posts():

● clear_blog_post_search_index() : To clear blog post search index.

6. In blog_post_search_services_test.py:
It will have test functions for blog_post_search_services.py file. Test function will be :

1. test_search_blog_posts(): This function will contain a function - mock_search() which
will mimic the behavior of gae_search_engine. A query will be provided to see that
search_blog_post function works properly.

2. test_clear_blog_post_search_index(): It will check that all the blog post summaries
indexed get cleared on calling clear_blog_post_search_index().

3. test_blog_post_summaries_are_added_to_search_index() : To check indexing of blog
posts is done properly.

6. In blog_post_search_indexing_jobs.py:

Jobs which will index blog posts to Elastic Search will be added.
- Class IndexBlogPostsInSearchJob will add all the published blog posts to elastic

search.

- Class IndexBlogPostSummaries - DoFn to index blog post summaries.

7. In blog_post_search_indexing_jobs_test.py:

Functions to ensure that indexing of blog post summary models is done properly are added in
this file.

● test_indexes_not_deleted_blog_post_models: To check that blog post summary models
which are not deleted are indexed.

● test_reports_failed_when_indexing_fails: To check that the reports return failure status if
indexing of blog post summary models fail.

● test_skips_deleted_blog_post_model : To check that while indexing models, it does not
add deleted model to the list.

● test_skip_draft_blog_post_model : To ensure that the indexing jobs do not add draft
blog post models to the elastic search.

8. In blog_services.py :

● For issue #13397: We do not use ‘published_on’ date once any blog post is unpublished.
Therefore we can make its value ‘none’ when a blog post is unpublished.

https://github.com/oppia/oppia/issues/13397

- Function ‘unpublish_blog_post(blog_post_id)’ will be modified to update
BlogPostModel’s and BlogPostSummaryModel’s - ‘published_on’ field to
None

● get_blog_post_views_aggregated_stats(blog_post_id): This function will retrieve the
blogPostViewsAggregatedStats object. It will fetch the model from the storage layer, will
call the ‘repack_data_fields()’ function and generate domain object from the storage
model.

● get_blog_post_reads_aggregated_stats(blog_post_id): This function will retrieve the
blogPostReadsAggregatedStats object. It will fetch the model from the storage layer,
will call the ‘repack_data_fields()’ function and generate domain object from the storage
model.

● register_blog_post_view(blog_post_id) : This function will increment the number of
views on a blog post by increasing the count of views in repacked
blog_post_views_aggregated_stats. It will call the function
‘get_blog_post_views_aggregated_stats(blog_post_id)’ to get a repacked
blog_post_views_aggreated_stats domain object and will increment the number of
views according to the data fields. We will use UTC datetime to store/ increment values.

● register_blog_post_read(blog_post_id) : This function will increment the number of
reads on a blog post by increasing the count of reads in repacked
blog_post_reads_aggregated_stats. It will call the function
‘get_blog_post_reads_aggregated_stats(blog_post_id)’ to get a repacked
blog_post_reads_aggreated_stats domain object and will increment the number of
reads according to the data fields. We will use UTC datetime to store/ increment values.

● register_blog_post_exited(blog_post_id) : This function will increment the number of
users in the respective time bucket according to the time spent on the blog post in
BlogPostReadingTime model.

● get_blog_post_stats(blog_post_id, chart_type) : This function will return blog post stats
domain object to be used in the blog dashboard statistics tab. It will take in
blog_post_id and chart_type (views, reads, reading time) as an argument.

● get_total_number_of_published_blog_post(): This function will return the total count of
published blog posts. It will call the
blog_model.BlogPostRights.published_blog_post_count() class method.

● delete_blog_post(blog_post_id: str): This function will be modified to delete raw event
log models as well as summary statistic models corresponding to the blog_post_id.

● get_blog_post_ids_matching_query(): A list of blog post ids matching given query or list
of tags is returned by the function. This function will be called by the search handler in
blog_homepage.py.

9. In user_services.py :
● get_author_blog_post_views_stats(user_id): This function will retrieve the

authorBlogPostViewsStats object. It will fetch the model from the storage layer, will call
the ‘repack_data_fields()’ function and generate domain object from the storage model.

● get_author_blog_post_reads_stats(user_id): This function will retrieve the
authorBlogPostReadsStats object. It will fetch the model from the storage layer, will call
the ‘repack_data_fields()’ function and generate domain object from the storage model.

● register_blog_post_view (user_id) : This function will increment the number of views by
increasing the count of views in repacked author_blog_post_views_stats. It will call the
function ‘get_author_blog_post_views_stats(user_id)’ to get a repacked
auhtor_blog_post_views_stats domain object and will increment the number of views
according to the data fields. We will use UTC datetime to store/ increment values.

● register_blog_post_read(user_id) : This function will increment the number of reads by
increasing the count of reads in author_blog_post_reads_stats. It will call the function
‘get_author_blog_post_reads_stats(user_id)’ to get a repacked
author_blog_post_reads_stats domain object and will increment the number of reads
according to the data fields. We will use UTC datetime to store/ increment values.

● register_blog_post_exited(user_id) : This function will increment the number of users in
the respective time bucket according to the time spent on the blog post in
AuthorBlogPostReadingTime model.

● get_author_blog_posts_stats(author_id, chart_type): This function will return user blog
posts stats domain object to be used in the blog dashboard statistics tab to display
statistics of all blog posts by an author according to the chart type(views, reads,
reading_time). It will take in author_id and chart_type as an argument.

User Flows (Controllers and Services)

1. Inside blog_homepage.py :
● In class BlogPostStatisticsDataHandler: ‘put’ type request handler function will be

added. It will update both summary models and raw event log model according to the
type of event and blog_post_id. It will take ‘blog_post_id’ and ‘event_type’ as an
argument.

● In class BlogHomepageDataHandler : ‘get’ type request will be edited to include
‘total_number_of_published_blog_posts’.

● class BlogPostSearchHandler: This handler will have a get() function that returns a list
of blog post summary dicts that satisfy the user's query. It will call
get_matching_blog_post_dicts(). It will format the query string into a form that can be
used for searching, removing all punctuation and replacing it with spaces. Any other
required formatting will also take place here .It will supply all the parameters provided in
proper order to get_matching_blog_post_dicts() function. Snap of part of handler :

● Function get_matching_blog_post_dicts(): Given the details of a query i.e query string
and tags, and a search offset, it will return a list of blog post summary dicts that satisfy
the query.

2. Inside blog_homepage_test.py :

New test functions to test ‘BlogPostSearchHandler’ will be introduced.

● test_search_blog_post_from_query(): Multiple query strings will be created and
checked for returning correct blog posts from a bunch of created blog posts. In
all cases no value for ‘tags’ will be provided.

● test_filter_blog_post_from_tags(): Multiple tags will be used to call the handler
and check if blog post associated to the tags are only returned. No query string
will be provided in this case.

● test_search_and_tag_filter(): Both query string and tags will be used to hit the
handler and check if the correct results are returned.

● test_blog_post_stats_data_update(): It will check that statistics in raw event log
models and summary models get incremented correctly.

3. Inside blog_dashboard.py :

● class BlogDashboardStatisticsHandler: This handler will be responsible for loading data
on statistics tab of the blog dashboard. It will respond to ‘GET’ type requests. It will
return data from summary model based on chart_type and blog_post_id / author_id.

4. Inside blog_dashboard_test.py:
Test functions to test ‘BlogDashBoardStatisticsHandler’ will be added. We will check if correct
data is provided according to chart type and author_username/ blog_post_id.

For Regenerating Statistics:

1. In jobs/batch_jobs/blog_post_statistics_computation_job.py file -
● regenerateViewsStatistics(): This function will take in BlogPostViewedEventLogEntry

Models to regenerate BlogPostViewsAggregatedStatsModel and
AuthorBlogPostViewsStatsModel.

● regenerateReadsStatistics(): This function will take in BlogPostReadEventLogEntry Models
to regenerate BlogPostReadAggregatedStatsModel and AuthorBlogPostReadStatsModel.

● regenerateReadingTimeStatistics(): This function will take in
BlogPostExitedEventLogEntry Models to regenerate BlogPostReadingTimeStatsModel and
AuthorBlogPostReadingTimeStatsModel.

● Class RegenerateBlogPostViewsStats : DoFn to regenerate all blog post views stats. It
will call regenerateViewsStatistics() function.

● Class RegenerateBlogPostReadStats : DoFn to regenerate all blog post reads stats. It
will call regenerateReadStatistics() function.

● Class RegenerateBlogPostReadingTimeStats : DoFn to regenerate blog post reading
time stats. It will call regenerateReadingTimeStatistics() function.

Web frontend changes

1. FOR BLOG CARD:
a. The ‘blog-card’ component will be moved from ‘templates/pages/blog-dashboard’ to

‘templates/components’ and will be added to ‘shared-component.module.ts’ .

b. Inside blog-card-component.html -
‘*ngFor’ will be used to display - tag buttons in the bottom of the blog card.
Clicking on any of the tag buttons will call ‘filterBy(tag)’ function in
blog-card.component.ts which will lead to search/filter by page where blog posts
associated with tag will be shown.

c. Inside blog-card-component.ts -
Function - ‘filterBy(tag)’ will be added. It will call the ‘executeSearchQuery(query,
tags)’ function in blog-post-search-service.ts. URL of the page will be updated
with query accordingly.

d. Inside blog-card-component.spec.ts -
Frontend test for the function filterBy(tag) will be added. Different tags will be
supplied to the function to check that the URL of the webpage gets updated and
executeSearchQuery(query, tags) get called in blog-post-search-service.ts .

https://xd.adobe.com/view/9bb82409-cdca-432a-b11c-88324643e2c0-ceeb/screen/6a785d46-cd27-4cf2-a74a-b1b37c7874a5/

Inside templates/pages 3 new folder will be created:
● blog-home-page
● blog-authors-page
● blog-post-page

2. FOR BLOG HOME PAGE:

Inside blog-home-page -

In blog-home-page.component.html :

1. We will use ‘ng-if’ to display search page heading. If is_showing_search_result() is true,
‘I18N_BLOG_HOMEPAGE_SEARCH_RESULTS_HEADING’ will be shown.

2. Each page will show only 10 published blog posts at max. [Feconf constant -
‘MAX_NUM_CARDS_TO_DISPLAY_ON_BLOG_HOMEPAGE’ is already added in data base].
‘*ngFor’ will be used to display blog-cards using the list of blogPostSummaries loaded.
Clicking on any of the blog card will call loadBlogPostPage() function.

3. At a single time blog post summaries for 10 blog post will only be loaded from backend. When
user user pagination to go to next page, only then next 10 blog posts summaries will be
loaded.

4. To allow blog-home-page to be accessible in all languages following I18N Keys will be
introduced and will be used in the HTML template:

I18N KEY VALUE

I18N_BLOG_HOMEPAGE_LATEST_POST_HEADING Latest post

I18N_BLOG_HOMEPAGE_WELCOME_TEXT Welcome to the oppia blog!

I18N_BLOG_HOMEPAGE_OPPIA_MOTTO Building a community to provide quality
education for those who lack access to it.

I18N_BLOG_HOMEPAGE_FILTERBY_HEADING Filter by

I18N_BLOG_HOMEPAGE_TAGS_HEADING Tags

I18N_BLOG_HOMEPAGE_SEARCH_FIELD_TEXT Search

I18N_BLOG_HOMEPAGE_TOTAL_BLOG_POST_HEADING Displaying

I18N_BLOG_HOMEPAGE_CLEAR_BUTTON_TEXT Clear

I18N_BLOG_HOMEPAGE_SEARCH_RESULTS_HEADING Search results for

In blog-home-page.component.ts :
publishedBlogPosts : It will be a list containing blog post summary dictionaries as its items. The
values will be provided by the blog-homepage.service.ts

totalBlogPostCount : Total number of published blog posts.

loadBlogPostPage(): It will load the blog post page for the blog with the given blog post id. It
will take blogPostId as a parameter

Inside blog-homepage-backend-api.service.ts:
It will have a class that will contain functions which will provide data to the frontend from
backend.These functions will place http requests to controllers. Both put and get requests will
be placed in order to retrieve data from the datastore and update stats in the datastore.

The class name will be “BlogHomePageBackendApiService”.

It will import existing class ‘BlogPostSummary’ from
‘templates/domain/blog/blog-post-summary.model.ts’ , class ‘BlogPostData’ from
‘core/templates/domain/blog/blog-post.model.ts’ The domain objects related to these classes
have the following structure :

BlogPostData It will contain data from BlogPostBackendDict. It will have the following fields:

id Id of the blog post string

authorName User name of the author string

title Title of the blog post string

content Content of the blog post string

tags List of tags associated with
the blog post

string[]

publishedOn Date-Time on which blog post
was published

string

thumbnailFilename The name of the thumbnail string

lastUpdated The date-time on which the
blog post was last updated.

string

urlFragment The url fragment associated
with the blog post

string

BlogPostSummary It will contain data from BlogPostSummaryBackendDict. It will have the
following fields:

id Id of the blog post string

authorName User name of the author string

title Title of the blog post string

tags List of tags associated with
the blog post

string[]

publishedOn Date-Time on which blog
post was published

string

thumbnailFilename The name of the thumbnail string

lastUpdated The date-time on which the
blog post was last updated.

string

urlFragment The url fragment associated
with the blog post

string

It will have the following functions:

● _fetchBlogHomepageDataAsync() : It will return a promise containing data to be displayed on
the homepage. When the blog homepage is loaded by the user it will place a request on
‘/blogdatahandler/data’ handler.

● registerBlogPostViewAsync() : Taking blogPostId as parameter it will place a put request to
the “BlogPostDataHandler” in the controller layer. It will increment the number of views on the
blog post.

● registerBlogPostReadAsync() : Taking blogPostId as parameter it will place a put request to
the “BlogPostDataHandler” in the controller layer. It will increment the number of reads on the
blog post.

● registerBlogPostExitedAsync() : Taking blogPostId as parameter it will place a put request to
the “BlogPostDataHandler” in the controller layer. It will increment the number of user for the
respective time bucket depending on the amount of time user stayed on the blog post.

● _fetchBlogPostPageDataAsync() : It will take blogPostId as parameter and will place a get
request to “BlogPostDataHandler”. It will load all the data on the blog post page.

● fetchBlogPostSearchResultAsync(): It will take searchQuery as parameter and will place a call
to BlogPostSearchHandler and will load results on blog post search/filter By page.

● isSearchInProgress(): Will return true if the search query is being executed.

Inside search-tag-filter.component.ts -
● isSearchInProgress() : Will return true if the search query is being executed.

● updateSearchandFilterByFieldsBasedOnUrlQuery() : This function will update the search input
field and the value in tag filter dropdown based on query parameters in the url.

● tagFilterDropDown() :It will be responsible for loading values in the tag filter dropdown menu.

● onSearchQueryChangeExec(): It will update the url of the webpage according to the search/
filter applied.

● searchToBeExec(): Function will register input event and will result in execution of the search.

● onMenuKeyPress() : Function to allow tag filter drop down to be keyboard navigable.

Inside search-tag-filter.component.html -

● Text input type search field in which input is not changed will call searchToBeExec()
function. It will bind input to searchQuery variable using ng form module.

● Tag Filter Dropdown in which all the options will be the available tags for categorization
of blog posts. We will use ngbDropDownToggle.

‘*ngFor’ will be used on tagsList and will be tracked by index. Clicking on any of the tag
options will call ‘searchToBeExec($event)’.

3. For Blog Post Page -

Inside blog-post-page.component.html -

● It will have a share icon clicking on which a pop up with different methods to share the
blog post will open. We will use the already existing ‘sharing-link.component’ in this pop
up. We will use ‘*ngIf’ to remove the option to share on ‘google-classroom’ and option to
‘embed code’ which is not required in case of blog posts. We will provide an option to
copy the webpage url which can then be shared across any platform.

● At the bottom of the blog posts, Tag buttons associated with the blog post will be
shown. Clicking on any of them will lead to ‘search/ filterBy’ page where all the blog
posts associated with these tags will be shown. Clicking on the tag button will call
filterBlogPosts(tag) in the component.ts file.

● At the bottom of the page - In ‘suggested for you’, blog-card component will be used to
display the 2 blog cards. Clicking on them will load the blog post page for the respective
blog card.

● To allow blog-post-page to be accessible in all languages following I18N Keys will be
introduced and will be used in the HTML template:

I18N KEY VALUE

I18N_BLOG_POST_PAGE_SUGGESTED_FOR_YOU_HEADING Suggested For You

I18N_BLOG_POST_PAGE_COPY_LINK Copy

I18N_BLOG_POST_PAGE_TAGS_HEADING Tags

Inside blog-post-page.component.ts -
● suggestedBlogPostSummaries: list of blog post summaries suggested based on the

current blog post.

● filterBlogPost(tag): Function will call execSearchQuery() function in
blog-home-page.services.ts leading to execution of a search for the given tag filter.

● To record reading time on a blog post:
Inside ngOnInIt() we will be getting the date and time as soon as the user comes to the
blog post page using function - ‘new Date()’. We will then get the date and time when the
visibilityState of the page changes (We will be utilising ngx-page-visiblity library - link).
Subtracting the 2 will give us the reading time of the b￼log post which will then be
stored in a variable - ‘readingTime’. When the user returns to the web￼page we will
again record the reading time until he leaves the webpage again and add it to the
variable. Finally when user navigates to other webpage from the blog post or closes the
tab we will update the reading time in the backend by using ngOnDestroy hook to
register blog post exited event and increase number of users in reading time stats
accordingly. We will also register blog post exited event in case the reading time
exceeds 45 minutes or 5*estimated_reading_time which ever is greater.

● To have number of reads on a blog post:
Inside the function ‘isBlogPostRead()’ we will check if the reading time has exceeded
50% of the time calculated using number of words in the blog post and as soon as the
function value returns true we will update the number of reads in the backend.

Inside blog-post-page-root.component -
● Tags associated with the blog posts will be used as metaTags to optimize search

engines. page-head.service.ts will be used to provide blog post tags as a list of strings
to MetaTagData content for the webpage.

4. For Blog Dashboard Statistics Tab -
1. Inside blog-dashboards.component.html:

● New ‘mat-tab’ will be added in ‘mat-tab-group’ - ‘Statistics’.
Clicking on statistics will load the stats tab with the views on all the blog posts by
the author displayed all together on a histogram.

https://github.com/insanehong/ngx-page-visibility/blob/master/src/app/module/ngx-page-visibility/page-visibility.service.ts

2. Inside statistics-tab.component.html:
● To generate histograms from the stats data we will use - D3 library. A rough

histogram generated using the library. It will be further refined to match our case -

● On the left side of the histogram list of published blog post by the author will be
displayed. Clicking on the title of the blog post will load the blog post stats in the
histogram. Clicking on the title will call loadBlogPostStats() in the component.ts
file.

3. Inside statistics-tab.component.ts -
● loadBlogPostStats(blog_post_id, chart_type): Will load data for blog post

statistics histogram. It will call loadBlogPostStatsAsync(blog_post_id,
chart_type) function in blog-dashboard-backend-api.service.ts which will hit the
BlogPostStatsHandler to get the required data.

● loadAllBlogPostsStats(author_username, chart_type) : Will load data for blog
post statistics histogram. It will call
loadAllBlogPostsStatsAsync(author_username) function in
blog-dashboard.service.ts which will call
fetchBlogDashboardStatisticsDataAsync() in
blog-dashboard-backend-api.service.ts.

4. Inside templates/domain/blog/blog-dashboard-backend-api.service.ts -

● fetchBlogDashboardStatisticsDataAsync() - It will load data for the statistics tab
in the blog dashboard. It will hit ‘BlogPostStatsHandler’ with GET request.

● It will import class ‘BlogPostViewsStats’ from
‘core/templates/domain/blog/blog-post-stats.model.ts’ which will be created.
Domain Object created from the backend dictionary will have the following
structure:

BlogPostViewsStats It will contain data from BlogPostStatBackendDict. It will have the following
fields:

id Id of the blog
post

String | Null

Null incase stats are for all
the blog posts all together.

hourlyViewsList Dict of key value
pairs where key is
the hour and
value is the
number of views
in that hours

Stats{}

weeklyViewsList Dict of key value
pairs where key is
the date and
value is the
number of views
in that day for
past 7 days
(including the
ongoing day)

Stats{}

monthlyViewsList Dict of key value
pairs where key is
the date and
value is the
number of views
in that day for the
past 30 days (
including the
ongoing date)

Stats{}

yearlyViewsList Dict of key value
pairs where key is
the month and
value is the
number of views
in that month for

Stats{}

all th a psast
months of the
ongoing year
(including the
ongoing month)

allViewsList Dict of key value
pairs where key is
the year and
value is dict with
key as month and
value as number
of views in that
month for all the
past years and
the ongoing year

Stats{}

Similary BlogPostReadStats and BlogPostReadingTimeStats will be formatted.

Documentation changes
In Oppia Github Wiki, ‘Editor Pages’ will be edited to add guidelines for adding new blog post. Steps to assign
blog post admin role and then blog post editor role will be included.

Testing Plan

E2e testing plan

Test name Initial setup
step

Step Expectation

1. Search and
read blog
posts

It should
increment
blog post
stats

Populate
blog
homepage
by dummy
blog posts

Create and publish dummy blog
posts associated with different
tags using the blog dashboard.

Blog Homepage should have published
blog cards

Navigate to blog homepage at
/blog

Input search query in search
bar.

Url of the webpage should get updated
with the search query. Blog Homepage
should get loaded with correct search
results

Click on any blog card Blog post page with the correct blog post
should get loaded. It should have
appropriate blog cards shown in

https://github.com/oppia/oppia/wiki/Editor-pages

‘suggested for you’ section

Click on any of the tag button Blog Home page with filtered blog post for
the given tag should get loaded. Url of the
webpage should have the appropriate
query string.

Click on any blog card Blog post page with the correct blog post
should get loaded.

Click on any blog card in
‘suggested for you’ section

Blog post page with the correct blog post
should get loaded.

Navigate to /blog-dashboard
statistics tab

It should show correct statistics of the
current hour.

Karma tests:
All the component.ts and services.ts files will be accompanied by their respective spec files. This will
ensure all the frontend files are tested.

Backend tests:
All the backend files will be accompanied by their test files.

Lighthouse tests:
All the new pages url will be added to the lighthouserc.js, and lighthouserc-accessibility.js to perform
accessibility tests on the webpage.

Feature testing
Does this feature include non-trivial user-facing changes? YES

Migration Of Blog Posts From Medium to Oppia
I'll make a manual transfer because, while Medium allows you to export your blog post, it just
presents the material as an html file. As a result, a manual transfer will be significantly easier,
whereas attempting an automated method will necessitate additional codebase features. The fact
that some free plugins exist that allow rendering of medium blog posts in wordpress editor format
after being provided the html files in zip format (which is downloaded from medium itself) will contain
a few unnecessary fields such as claps and feedback threads that aren't handled by the oppia's blog
dashboard interface. Furthermore, the formatting that is obtained will not be the same as that which
was planned. Because we don't support the features of the medium's blog editor in the same manner,
our editor may not support the html tags as intended. Automated transmission may appear to be
simple to implement and will undoubtedly save time, but it can have significant unintended

consequences. Furthermore, manual transmission ensures that all blog posts are transferred without
formatting issues, which is difficult to guarantee with an automated transmission.

The Blog Admin Page has a form to edit the published date and author name of blog entries, which
will be used to manually migrate blog posts from 'Medium.'
[Implemented in GSoC’ 2021 project - reference docs - Exporting Blog Posts From Medium, Form
Implementation In Blog Admin Page] [Milestone 2.4 B : PR link]

STEPS TO BE FOLLOWED TO MIGRATE BLOG POSTS:
Users should be logged in as Blog Post Admin.

Step 1 : Copy Paste all the blog post content in the blog post editor. Add the title of the
blog post in the title field. Select appropriate blog post tags and publish the blog post. From the url of
the webpage note down the blog post id of the blog post. (It is a 12 character string at the end of the
url)

Step 2 : Go to admin-page - misc tab

Step 3 : In form to update blog post data - Enter blog post id, author username of the
original author and the original published on date. Click on Update.

On medium Oppia’s Blog Exist from year-2014. In total from 2014 to 2022 there are 44 blog posts.
Migrating about 15 blog posts each day will ensure that all the blog posts get migrated within a span
of 3 days.

Implementation Plan
The implementation plan consists of two milestones.
I will be working from July 20 on my GSoC project.

All the frontend views i.e mobile, tablet and laptop views will be done together.

Milestone 1 Table

No. Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

https://docs.google.com/document/d/1NUBDl-D-GuIzlfGu-lrX3CsxYHVCjf-d99n0EcPydfo/edit#
https://docs.google.com/document/d/1vsVYeTAMUw60KrdwZZqAdUzbYzMmqLWtyXImaYgTsXo/edit#heading=h.qmsjcjnerdzk
https://docs.google.com/document/d/1vsVYeTAMUw60KrdwZZqAdUzbYzMmqLWtyXImaYgTsXo/edit#heading=h.qmsjcjnerdzk
https://github.com/oppia/oppia/pull/13590

1.1 Issue number #13397 will be addressed.
- Edits in blog_servies.py file will be

made.
- In

jobs/transforms/validation/blog_v
alidation.py edits will be made
accordingly.

– July 24 July 28

1.2 Modifications in Storage, Domain and
Controller layer will be done to create
blog post search and filter functionality.

- blog_post_search_services.py file
will be added

- Blog_post_search_indexing_jobs
file will be added.

- Related edits in blog_services.py
file and blog_homepage.py will be
done

- 4th August 10th August

1.3 Blog Home Page Frontend will be done.
- blog-home-page.component will

be done.
- blog-card.component will be

accordingly edited.

Ensure that blog posts are properly
pseudonymized when the blog post
author deletes his/her account. Attach
video proof in the PR link.

1.2 14th August 20th August

1.4 Blog Post Page Frontend will be done.
-blog-post-page.component will be done

1.3 23rd August 30th August

Milestone 2 Table

No. Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

2.1 Migration of Blog Posts from Medium To
Oppia.
(Functionality to migrate blog posts is
already deployed onto the main site.)

1.1 – To be
completed
by 5th Sept

2.2 Changes in Storage, Domain and - 8th Sept 14th Sept

https://github.com/oppia/oppia/issues/13397

Controller layer for Statistics functionality
will be done.

2.3 Blog Author Page Frontend will be done. 1.2, 1.3 14th Sept 18th Sept

2.4 The front end of the Statistics tab will be
done.

2.3 23rd Sept 30th Sept

2.5 E2E tests for blog homepage functionality
will be done

Milestone 1,
2.3, 2.4

October 5th October
10th

2.6 A week to fix reported bugs and issues October
17th

Final deadline for GSoC students with extended work period is : .Nov 21, 2022

Launch Plan:
○ As soon as 1st Milestone PRs are deployed on the server, Blog Editor Team can be allowed to

explore the functionality of blog dashboard and blog home page.This will make them
comfortable with the functionality before we completely make a switch from medium to our site.
In the meantime they can also queue up posts which need to be published once everything is in
place! Therefore, I believe by the end of September we can have a blog team make use of the
existing functionality for writing blog posts and have them on the blog homepage.

○ Feature review for both blog homepage and blog dashboard functionality will also have to be
done to ensure no major bug remains in the features and fixes for the issues found will have to
be done before switching from Medium. This will be completed in November after all the PRs for
fixing bugs are deployed on the server.

○ Therefore, the Ads team can work after the November release cut is made and all the PRs
made in the month of October are deployed.

Things To Be Done Prerequisite Expected Dates

Feature Review of Blog
Dashboard (by Diana and
Blog Editors Team)

- Aug 15, 2022

Addressing all the issues
found during blog dashboard
feature review

Blog Dashboard Feature
review is done

Late August

Migrating Blog Posts from
Medium to Blog Home Page

M1 is complete, issues found
in blog dashboard feature
review are fixed

Mid September

Blog Dashboard is available
for blog Editors Team to
explore and queuing up posts
to publish

M1 is complete and Migration
of Blog Post from Medium to
Oppia is done and issues
found during migration are
fixed (if any).

Late September

Feature Review of Blog
Homepage (by Diana and
Blog Editors Team)

M1 is complete Late September

Addressing Issues from
feature review of Blog
Homepage

Feature review for Blog
Homepage is done

Early October

Blog Homepage and Blog
Dashboard are available for
Blog Editor Team for use and
complete transition from
Medium to Oppia

All the PRs addressing issues
from feature review are
merged and released on the
website

Late November

Future Work
● In future, we can have a functionality for blog post viewers to ‘clap’ for the blog post as similar

to that in medium.

● We can also allow users to comment their views on the blog post.

● We can add a functionality to sort and search for blog posts in statistics tab as well

