
Google Summer of Code 2022
Make Backend Code Typed

Sahil jhangar

Section 1: About You

What project are you applying for?
Make backend code typed

Why are you interested in working with Oppia, and on your chosen project?
I’m really fascinated by the spirit of oppia organization, which brings different contributors from
different countries to build a platform that provides quality education to all the students
irrespective of their status and language. I think every student has the right to get basic
education and oppia is really heading towards this goal at an exponential rate.

Also, I had a great experience of learning and contributing to oppia. While I was in the lace
quality team (LaCE quality) I learned a lot from the mentors and fellow contributors, which is not
possible to learn without the help of this community.

I chose this project because I wanted to make the developer's experience even more smoother
and make code even more self-documented for new contributors. Also after completion of this
project, developers have a good idea of the flow of code which helps developers to make even
more error-prone contributions. After working with the LaCE quality team for 6-7 months, I think I
have a pretty good understating of oppia codebase which helps me during this project when I’m
debugging the code for typing.

Prior experience
● I have been contributing to oppia for 6+ months as a member of the LaCE quality team

and LaCE android team, and I also have a decent knowledge of oppia’s codebase.
● I’m also continuously participating in release testing from November 2021.
● I have currently 26 merged PRs and I also did one debugging doc. Which you can find

here.
● I have been working with python for 1.5+ years. I also did a backend project.

○ CRICKET-API-PROJECT - technologies used for this project includes Django,
Django-rest-framework, beautiful soup, and python’s typing module. Every
functionality in this project is tested with TDD (test-driven development).

https://docs.google.com/document/d/1xtd74lY1XdiKbEjt_F_JJtebxDQNLMVsUcca2UnT9Ek/edit#heading=h.jl2gn54iqprw
https://github.com/sahiljoster32/CRICKET-API-PROJECT

I strongly believe that this project along with my experience with Oppia for the past six months
should help me continue my GSoC journey smoothly.

Links to PRs:
● Added Mypy type annotations to user_domain.py (#15057)
● Added Mypy type annotations to activity_services.py (#14986)
● Removing all annotated files from core/jobs. (#15228)
● Added Mypy type annotations to collection_domain.py (#14958)
● Fixes topic editor tab when wrong URL fragment is entered in Topic URL Fragment

(#14903)

Link to all my contributions to oppia is HERE

I have also raised some issues:
● #15224
● #14404
● #14787

Project size
Large (~350 hours).

Project timeframe
From 13th June 2022 to 3rd October 2022.

I want to increase the project’s timeframe because this project includes a huge number of files
(467 files). So, to accommodate all these files in reasonable sized PR I want extra 3 weeks.
However, this timeframe can be decreased if some files are already annotated before the 13th
of June (starting of coding period).

Contact info and timezone(s)
● Contact

○ Email: souravjangar91@gmail.com
○ Phone No: (+91) 9958791453
○ Github: @sahiljoster32

● Preferred mode of Communication: Hangout(google chat), Discord, Email, and
WhatsApp.

● TimeZone: Indian Standard Time (GMT+5:30)

https://github.com/oppia/oppia/pull/15057
https://github.com/oppia/oppia/pull/14986
https://github.com/oppia/oppia/pull/15228
https://github.com/oppia/oppia/pull/14958
https://github.com/oppia/oppia/pull/14903
https://github.com/oppia/oppia/pulls?q=is%3Apr++is%3Aclosed+author%3Asahiljoster32
https://github.com/oppia/oppia/issues/15224
https://github.com/oppia/oppia/issues/14404
https://github.com/oppia/oppia/issues/14787
mailto:souravjangar91@gmail.com

Time commitment
● I’m sure about my vacation period, which is from 5th June to 25h July. So, I can put in

some extra hours in this vacation period.

● I’m decreasing the number of hours for the 10th week, because of my mid-term exams.

S. No Dates Days(Total) Time Commitment

1. 13th June - 19th June Mon - Sat (6) 4-5hr/day - 28h/week

2. 20th June - 26th June Mon - Sat (6) 4-5hr/day - 28h/week

3. 27th June - 3rd July Mon - Sun (7) 4-5hr/day - 28h/week

4. 4th July - 10th July Mon - Sat (6) 4-5hr/day - 28h/week

5. 11th July - 17th July Mon - Sat (6) 4-5hr/day - 28h/week

6. 18th July - 24th July Mon - Sat (6) 3-4hr/day - 20h/week

7. 25th July - 31st July Tue - Sat (5) 2-3hr/day - 15h/week *

8. 1st Aug - 7th Aug Mon - Sat (5) 3-4hr/day - 20h/week

9. 8th Aug - 14th Aug Mon - Sat (5) 4-5hr/day - 20h/week

10. 15th Aug - 21st Aug Mon - Sat (6) 2-3hr/day - 15h/week *

11. 22nd Aug - 28th Aug Mon - Sat (6) 3-4hr/day - 20h/week

12. 29th Aug - 3rd Sept Mon - Fri (5) 3-4hr/day - 20h/week

13. 4th Sept - 12th Sept Mon - Sat (6) 3-4hr/day - 20h/week

14. 13th Sept - 19th Sept Mon - Fri (5) 3-4hr/day - 20h/week

15. 20th Sept - 26th Sept Mon - Sat (6) 3-4hr/day - 20h/week

16. 27th Sept - 3rd Oct Mon - Sat (6) 3-4hr/day - 20h/week

Estimated Total Time Commitment: 350 hours (This can be subject to change according to
progress and need).

(The above-mentioned information regarding the time commitment is best in my knowledge, at
the time of writing this proposal.)

Essential Prerequisites
● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine.

● I am able to run one suite of e2e tests on my machine.

Other summer obligations
The Schedule of my end-semester exams is currently tentative, but probably exams are going to
be held in late May month. So, I do not have any summer obligations. If there is a change in
schedule I will mention it in advance.

Communication channels
I am planning to update my mentors twice a week by google meets, also I’m always available
through google chat (hangouts). I am also comfortable with any other channel that the mentors
prefers.

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one) Make backend code typed

Target Audience The targeted audience of this feature is mainly developers of oppia organization.

Core User Need The developers of oppia codebase currently follows the Docstring’s type annotations for
python files. The docstring type annotations are not sufficient for checking the type errors.
Changing the type of parameters/functions/methods in docstring without correcting them in
other places can lead to untrackable errors and also put other developers in ambiguity.

So, as a contributor to oppia, I want a seamless workflow without caring about type errors.
Also, it would be better if errors could be caught earlier in the development before pushing it
to the main repository, in that way we have more robust code against type errors. To achieve
these tasks we need to fully type the backend codebase.

What goals do
we want the
solution to
achieve?

● Introduce backend typing in all python files in oppia codebase.
● Remove all the docstring typeinfo from python files.
● Update docstring lint checks to support the new docstring style.
● Updating the wiki page for common errors that occurred in the codebase.

https://github.com/oppia/oppia/wiki/Google-Summer-of-Code-2022#41-make-backend-code-typed

Section 2.1: WHAT

Key User Stories and Tasks

Title User Story
Description (role,
goal, motivation)

Priority List of tasks needed to
achieve the goal (this is the
“User Journey”)

Links to mocks/prototypes,
and/or PRD sections that
spec out additional
requirements.

1 developer
workflow

As a contributor I
want to be sure
about the types of
parameters and
return value of a
function that I’m
going to use. So
that, proper
workflow is
maintained and
types of incoming
values from other
functions is
predicted easily.

Must
have

Introduce type annotations to
all python files.

N/A. Because most of the
changes is to be done in
the existing codebase.

Document all exceptional
cases while introducing MyPy
type annotations to python
files.

Enable schema validation for
all the handler classes in
“core/controllers” folder.

2 Duplicate
parameter
typeinfo.

As a contributor, I
don’t want to see
duplicate typeinfo
in docstring. There
might be cases
where docstring
and function
signature have
different typeinfos.

Must
have

Remove the typeinfos from
existing docstring.

Current docstring style with
type info

Mock docstring style
without typeinfo.

Update the python docstring
lint checks, to check the
existence of typeinfo in
docstring.

3 Wiki about
common
errors.

As a new
contributor, I
would prefer to
read docs for
solutions to some
frequent errors
rather than
searching for
similar cases in
the codebase or
asking a mentor.

Should
have

Add information about
common errors on the
existing wiki page.

N/A. Because the existing
wiki page is going to be
updated.

https://drive.google.com/file/d/1OFc7PC6hE0EuSy6bC07KNEdMxGemB-u7/view?usp=sharing
https://drive.google.com/file/d/1OFc7PC6hE0EuSy6bC07KNEdMxGemB-u7/view?usp=sharing
https://drive.google.com/file/d/1yBHAC4sbPrleByIX9dwIXOq8at0JpwWC/view?usp=sharing
https://drive.google.com/file/d/1yBHAC4sbPrleByIX9dwIXOq8at0JpwWC/view?usp=sharing
https://github.com/oppia/oppia/wiki/Backend-Type-Annotations#adding-type-annotations
https://github.com/oppia/oppia/wiki/Backend-Type-Annotations#adding-type-annotations

Technical Requirements

No additional requirements are needed for this project.

Folders that are going to be covered under backend typing:
● core/domain

● core/jobs

● core/controllers

● extensions/

● scripts/

● Other selected files which are mentioned in NOT_FULLY_COVERED_FILES deny list of MyPy.

Other accomplishments that are covered under this project:
● Covering schema validation for all files that come under the `core/controllers` folder.
● Updating docstring lint checkers for python files.

○ Files that are going to be updated.
└── scripts/

├── docstrings_checker.py
├── docstrings_checker_test.py
└── linters/

├── pylint_extensions.py
└── pylint_extensions_test.py

● Updating the existing Wiki for common MyPy errors encountered in the codebase.

Section 2.2: HOW

Existing Status Quo
Python is a dynamically typed language and oppia uses it in mostly the backend part of the
codebase. Previous year oppia introduced backend typing in the codebase to convert
dynamically typed code to static typed code and this task is supported by the MyPy type
checker (a static type checker in python). In the previous year, core/storage, core/platform, and
root folder files were annotated. But currently more than half of the codebase is still pending
with the static type annotations.

There are a total of 467 files that are still pending with static type annotations.

https://github.com/oppia/oppia/wiki/Backend-Type-Annotations

All these files are mentioned in the NOT_FULLY_COVERED_FILES list (also known as the mypy
deny list) and this list is defined in `scripts/run_mypy_checks.py`.

Apart from the backend type annotations, There are 67 handler classes present in the files of
‘core/controllers’ that are still pending from schema validation being enabled.

Also, the oppia codebase currently using an additional custom pylint checker to check the
python file’s docstring. The name of the checker is DocstringParameterChecker and it is
defined as a class in pylint_extensions.py. The DocstringParameterChecker usually checks
docstrings for styling, missing sections, missing definitions, and their respective typeinfos. So,
this class contains the visit_functiondef() method which is mainly responsible for checking the
docstring of functions/methods by calling other appropriate methods of the class mentioned
above.

Following methods are called by visit_functiondef():-
● check_functiondef_params()
● check_functiondef_returns()*
● check_functiondef_yields()*
● check_docstring_style()*
● check_docstring_section_indentation()
● check_typeinfo()

(methods marked with * are not responsible for checking typeinfo in the docstrings, so we are not going to alter these checks.)

This custom pylint checker (DocstringParameterChecker) uses scripts/docstrings_checker.py
as a utility module because, this module defines a class like GoogleDocstring (class for
checking whether docstrings follow the custom Google Python Style Guide or not.) and
functions like which help in fetching arguments name from functions, converting docstrings into
list of strings and etc.

Currently following are the formats used by oppia to document the parameters definitions in the
docstrings:

● For the “Args” section -
‘variable_name: typeinfo. Description.’ format is used to document parameters in
docstrings.

● For the “Returns/Yields” section -
‘Typeinfo. Description.’ format is used to define return/yield documentation in docstrings.

● For the “Raises” section -
‘Exception_name. Description.’ format is used to document raised exceptions in
docstrings.

Problem with current docstrings -
Once all the python files are annotated, this typeinfo in the docstrings are considered duplicate
information. So to avoid this we have to remove all the typeinfos from existing docstrings.

Also, oppia’s current DocstringParameterChecker does not check docstrings for the missing
“Args:” section. Whereas, missing “Returns:” and missing “Raises:” sections are checked by
visit_return() and visit_raise() methods respectively.

Solution Overview
I have divided the project’s solution into two phases:

1. Updating the existing python docstring lint checker.
1.1. How existing docstring lint checks are updated?

2. Introducing MyPy static type annotations to all Python files.
2.1. How are static type annotations introduced to the chosen files?
2.2. Order in which folders are going to be annotated.

Task 1: Updating the existing python docstring lint checker.

1.1 How existing docstring lint checks are updated?
This solution is proposed for the following docstring pattern:

def create_profile_user_auth_details(

user_id: str, parent_user_id: str

) -> auth_domain.UserAuthDetails:

"""Returns a domain object for a new profile user.

Args:

user_id: A user ID produced by Oppia for the new profile user.

parent_user_id: The user ID of the full user account which will own

the new profile account.

Returns:

Auth details for the new user.

Raises:

ValueError. The new user's parent is itself.

"""

if user_id == parent_user_id:

raise ValueError('user cannot be its own parent')

return auth_domain.UserAuthDetails(user_id, None, None, parent_user_id)

The above docstring follows the following format to document parameter definitions in docstring:

● For the “Args” section -
‘variable_name: Description.’ format is used to document parameters in docstrings.

● For the “Returns/Yields” section -
‘Description.’ format is used to define return/yield documentation in docstrings.

● For the “Raises” section -
‘Exception_name. Description.’ format is used to document raised exceptions in
docstrings.

To achieve the new docstring pattern. We need to perform the following tasks:
● Update the existing methods/functions of the lint checker to follow the new

docstring style.
● Add a check for the missing “Args:” section.
● Add a lint check to forbid `# type pragmas` if a proper comment is not present.
● Add a lint check to forbid exceptional types(Any, cast and object) in the backend

codebase if a proper comment is not present.

Update the existing methods/functions of the lint checker to follow the new docstring
style:

check_typeinfo():
This method checks whether all parameters in a function definition are documented in the
proper format or not. It splits docstring into different sections like Args, Returns, Raises, and
Yields. Then it checks for appropriate formatting of parameters by matching against a Reg-ex
expression.

Args: section -
Currently, we are following the ‘variable_name: typeinfo. Description.’ formatting to
document a parameter in the “Args:” section. To remove the typeinfo from the existing
format we have to replace “: typeinfo.” with a new delimiter.

The delimiter that I’m going to use is ‘:’ (colon). So, the new format to define
parameters is ‘variable_name: Description.’

To achieve this format, I’m replacing the current reg-ex pattern in check_typeinfo() with:

re_param_line = re.compile

r"""

\s* *{0,2}(\w+) # identifier potentially with asterisks

\s* ([:]) # separator for identifier and description

\s* [A-Z0-9](.*)[.\]}\)]+$ # beginning of optional description

""", flags=re.X | re.S | re.M)

Returns: and Yields: section -
Currently, we are following the ‘typeinfo. Description.’ format to define return/yield
docstring. To remove typeinfo, the format is going to be replaced with only ‘Description.’

To achieve this format, I'm replacing the current reg-ex pattern in check_typeinfo() with:

re_returns_line = re.compile(

r"""

\s* [A-Z0-9](.*)[.\]}\)]+$ # beginning of description

""", flags=re.X | re.S | re.M)

(Note: return and yield both uses same reg-ex pattern.)

Raises: section -
The raises section is fine with its current state and we are not changing it in this project
because:

● MyPy only checks typing information but it does not include the type of
exceptions raised by a function. Example of typed function raising valid
exceptions.

def validate(self) -> None:

"""Checks that the user_id, email, pin and display_alias

fields of this UserSettings domain object are valid.

Raises:

ValidationError. The user_id is not str.

ValidationError. The email is not str.

ValidationError. The pin is not str.

ValidationError. The display alias is not str.

"""

if not isinstance(self.user_id, str):

raise utils.ValidationError(

● If we remove exception_name from here we have no other place in the function
definition to cover this exception_name.

https://github.com/oppia/oppia/blob/3de503cf341dd83f627a96deeb69c64cd01392f0/core/domain/user_domain.py#L205

check_functiondef_params():
This method checks whether all parameters in a function definition are documented or not. So,
this task is achieved by calling the check_arguments_in_docstring() method. The
check_functiondef_params() also makes sure that __init__ or class docstrings can have no
parameters documented as long as the other documents them and this task is accomplished by
check_single_constructor_params() helper function.

As stated above, this method uses 2 helper functions:

check_single_constructor_params() -
This method only checks the existence of “Args:” section in __init__ or class docstring.
But this method has nothing to do with typeinfo so it doesn’t require any alterations.

check_arguments_in_docstring() -
In this method, a set of parameters name defined in function definition
(expected_argument_names) is compared with the set of parameters name
documented in Args: section (params_with_doc).

Here, expected_argument_names is fetched from argument_node of a
function/method.

expected_argument_names = set(

arg.name for arg in arguments_node.args)

expected_argument_names.update(

arg.name for arg in arguments_node.kwonlyargs)

Whereas params_with_doc is fetched using the inbuilt function (match_param_docs()
) but as we are not following the current format that we have already defined in the the
class GoogleDocstring under the file docstrings_checker.py. This inbuilt function is
going to return an empty set and due to an empty set, this whole check is going to be
skipped.

To avoid the above scenario we have to define a new method
(match_new_param_docs()), which returns a set of parameters name documented in
“Args:” section according to the new docstring style.

This method is going to be defined under the class GoogleDocstring, present in
scripts/docstrings_checker.py.

Code implementation of above the method is as follows:

re_new_param_line = re.compile(

r"""

\s* *{0,2}(\w+) # identifier potentially with asterisks

\s* ([:]) # delimiter for definition

\s* ([A-Z0-9](.*)[.\]}\)]+$) # beginning of optional description

""", flags=re.X | re.S | re.M)

def match_new_param_docs(self):

"""Returns the set parameter names which are properly documented

Returns:

set(str). A set of parameter names which are properly defined

in docstring.

"""

params_with_doc = set()

entries = self._parse_section(self.re_param_section)

entries.extend(self._parse_section(self.re_keyword_param_section))

for entry in entries:

match = self.re_new_param_line.match(entry)

if not match:

continue

param_name = match.group(1)

param_desc = match.group(3)

if param_desc:

params_with_doc.add(param_name)

return params_with_doc

In updated docstring lint checks, this match_new_param_docs() is going to be called
in place of the match_param_docs() method (old docstring style function).

★ Also, the functionality of checking parameters which are documented but typeinfo is not
mentioned will also be removed.

check_docstring_section_indentation():
This method checks whether the function argument definitions ("Args": section, "Returns":
section, "Yield": section, "Raises: section) are indented properly. Also, Parameters/Return
documentation should be indented by 4 relative to the heading and any wrap-around
descriptions should be indented by 8. If the description line ends with a colon, then we can
assume the rest of the section is free form. Example of free_form_section, in the free form
section we’re ignoring all indentation.

https://github.com/oppia/oppia/blob/a0793a730ec6968ec9d2a11545da2f4243007947/core/domain/classifier_domain.py#L77

Returns: and Yields: section -
This method checks indentation section-wise. For getting into the section it checks for
the heading like “Returns:”, “Args:” and etc.

elif stripped_line.startswith('Returns:'):

After getting into one of the sections, it checks for the head of the parameter definition.
The head of the parameter definition is used to identify the start of new parameter/return
documentation and all other indentations (description indentation and
free_form_indetation) are checked relative to this head.

In the current scenario, the head of the parameter definition is ‘typeinfo.’ which is a
subpart of ‘typeinfo. Description.’

Once head of the parameter definition is matched, then this method checks for
description indentation until no new head of the parameter definition is encountered or
there is no colon(:) at the end of the line.

So reg-ex which oppia is using for head of the parameter definition in Returns/Yields
section is:

if (re.search(r'^[a-zA-Z_() -:,*]+\.',

stripped_line) and not in_description):

To follow the new docstring style, head of the parameter definition should be changed to
‘Description’. This means the first letter is always a capital letter or a number followed
by any character.

if (re.search(r'^[A-Z0-9](.*)',

stripped_line) and not in_description):

Args: -
In the args section, the head of the parameter definition is ‘variable_name:’ which is a
subpart of ‘variable_name: typeinfo. Description.’. But after changing the formatting
style to ‘variable_name: Description.’, the head of the parameter definition still remains
the same. Because ‘variable_name:’ is independent of type info.

So, in this project “Args:” section’s head of the parameter definition is not going to be
altered.

Add a check for the missing “Args:” section.

The aim of this check is to throw an error, whenever we define a function with parameters (not
including self & cls) but its corresponding “Args:” section is not documented in docstring. For
example:

def __init__(self, linter=None):

super(RestrictedImportChecker, self).__init__(linter=linter)

self._module_to_forbidden_imports = []

So, I'm going to build this check under the name check_functiondef_args(). This check is
going to be called by visit_functiondef().

Why visit_functiondef() is used to call check_functiondef_args()?
Because visit_functiondef() is called for every function/method internally and it invokes all the
functions listed in its function body.

The implementation of check_functiondef_args() is:

def check_functiondef_args(self, node, node_doc):

"""Checks whether a function having arguments "except self and cls"

also documents Args: section in its docstring.

Args:

node: astroid.scoped_nodes.Function. Node for a function or

method definition in the AST.

node_doc: Docstring. Pylint Docstring class instance representing

a node's docstring.

"""

args_in_function_node = set(

arg.name for arg in node.args.args)

expected_argument_names = (

args_in_function_node - self.not_needed_param_in_docstring)

if (not node_doc.has_params()) and (expected_argument_names):

self.add_message(

'missing-arg-doc', node=node)

Firstly, all the parameters from the function node (args_in_function_node) are fetched. After
that self and cls (defined in self.not_needed_param_in_docstring) are removed.

By adding errors to the self.add_message() an error message is displayed in the console if
docstring does not contain Args: section (node_doc.has_params()) but it has parameters in its
function definition apart from self and cls.

Add a lint check to forbid `# type pragmas` if a proper comment is not present:
The aim of this check is throw an error whenever a `type pragma` is used without an
explanatory comment.

class TypeIgnoreCommentChecker(checkers.BaseChecker):

"""Custom pylint checker which checks if MyPy's type ignores are

properly documented or not.

"""

__implements__ = interfaces.ITokenChecker

name = 'type_ignore_documentation'

priority = -1

msgs = {

'C0045': (

'MyPy type ignore is used. Add a proper comment if

\'type: ignore\' is needed.',

'mypy-ignore-used',

'MyPy ignores should be used with proper comments. Except’

‘for no-untyped-call MyPy ignore.'

)

}

def process_tokens(self, tokens):

"""Custom pylint checker which allows only those MyPy type ignores

that are properly documented.

Args:

tokens: Token. Object to access all tokens of a module.

"""

type_ignore_comment_regex = r'^# Here we used MyPy ignore because'

type_ignore_comment_present = False

for (token_type, _, (line_num, _), _, line) in tokens:

if token_type == tokenize.COMMENT:

line = line.lstrip()

if re.search(type_ignore_comment_regex, line):

type_ignore_comment_present = True

if re.search(r'(#\s*type:)', line):

if '# type: ignore[no-untyped-call]' in line:

continue

if type_ignore_comment_present:

type_ignore_comment_present = False

else:

self.add_message(

'mypy-ignore-used', line=line_num)

Here, firstly we are checking that a comment starting with `Here we used MyPy ignore because`
is present or not. After that we are checking for the following cases:

1. If `# type:` is present after the comment then its an ok case and we can continue with our
check.

2. If `# type:` is present but it’s corresponding comment is not present then this check will
throw an error MyPy type ignore is used. Add a proper comment if 'type: ignore' is
needed.

Add a lint check to forbid exceptional types(Any, cast and object) in the backend
codebase if a proper comment is not present:

class ExceptionalTypesCommentChecker(checkers.BaseChecker):

"""Custom pylint checker which checks that there is always a comment

for exceptional types in backend type annotations.

"""

__implements__ = interfaces.ITokenChecker

name = 'comment-for-exceptional-types'

priority = -1

msgs = {

'C0047': (

'Any type is used. Please add a proper comment if'

' Any type is needed',

'any-type-used',

'Annotations with Any type should be done with'

' a proper comments.'

),

'C0048': (

'cast function is used. Please add a proper comment if'

' cast is needed',

'cast-func-used',

'Casting of any value should be done with a proper comment.'

),

'C0049': (

'object class is used. Please add a proper comment if'

' object is needed',

'object-class-used',

'Annotating any value with object should be done with a proper'

' comment.'

)

}

def process_tokens(self, tokens):

"""Custom pylint checker which makes sure that every exceptional type

should be documented properly.

Args:

tokens: Token. Object to access all tokens of a module.

"""

any_type_regex = r'^# Here we used type Any because'

cast_type_regex = r'^# Here we used cast because'

object_type_regex = r'# Here we used object because'

Variables to keep count of exceptional types in the same line.

any_already_encountered_line_num = 0

object_already_encountered_line_num = 0

Variables to keep track of comments for exceptional types.

any_type_comment_present = False

cast_comment_present = False

object_comment_present = False

for (token_type, token, (line_num, _), _, line) in tokens:

line = line.strip()

Checking if comment for exceptional type is encountered or not.

if token_type == tokenize.COMMENT:

if re.search(any_type_regex, line):

any_type_comment_present = True

if re.search(cast_type_regex, line):

cast_comment_present = True

if re.search(object_type_regex, line):

object_comment_present = True

if token_type == tokenize.NAME:

if token == 'import':

import_token_line_num = line_num

if token == 'Any':

Excluding the case when Any is present in an import.

Eg: from typing import Any.

if re.search(r'typing', line):

continue

Excluding the case when Any is present with too many

other types in an import.

Eg: from typing import (

Any, Callable, Dict, FrozenSet, Iterator, List,

Set, Tuple, Type, cast)

if line_num in (

import_token_line_num + 1,

import_token_line_num + 2

):

continue

Excluding the case when two or more Any types are present

in a single line.

Eg: Dict[Any, Any]

if any_already_encountered_line_num == line_num:

continue

any_already_encountered_line_num = line_num

Throwing an error when Any is encountered but there is no

corresponding comments exist.

if any_type_comment_present:

any_type_comment_present = False

else:

self.add_message(

'any-type-used', line=line_num)

if token == 'cast':

Excluding the case when cast is present in an import.

Eg: from typing import cast.

if re.search(r'typing', line):

continue

Excluding the case when cast is present with too many

other types in an import.

Eg: from typing import (

Any, Callable, Dict, FrozenSet, Iterator, List, Set,

Tuple, Type, cast)

if line_num in (

import_token_line_num + 1,

import_token_line_num + 2

):

continue

Throwing an error when cast is encountered but there is no

corresponding comment exist.

if cast_comment_present:

cast_comment_present = False

else:

self.add_message(

'cast-func-used', line=line_num)

if token == 'object':

if object_already_encountered_line_num == line_num:

continue

object_already_encountered_line_num = line_num

Excluding the case when object is called:

Eg: var = object()

if 'object()' in line:

continue

if object_comment_present:

object_comment_present = False

else:

self.add_message(

'object-class-used', line=line_num)

This linter checks for the following behaviors:
1. If a comment starting with Here we used type Any because is present before Any type

then It's an ok case and if the comment is not present then the linter throws an error.

Here we used type Any because function int can take any type of value

and convert it to the integer value.

def int(value: Any) -> int: ...

2. If a comment starting with Here we used cast because is present before cast method
then It's an ok case and if the comment is not present then the linter throws an error.

Here we used cast because the return value of getattr() method is

dynamic and mypy will assume it to be Any otherwise.

return cast(Callable[..., str], getattr(cls, normalizer_id))

3. Linter check the similar behavior for object, If a comment starting with Here we used
object because is present before object class then It's an ok case and if the comment is
not present then the linter throws an error.

(Mock implementation of new python docstring lint checks can be found here.)

Task 2: Introducing MyPy static type annotations to all Python files.

2.1 How are static type annotations introduced to the chosen files?
When converting the current oppia’s codebase files from dynamic typing to static typing, I
encountered some of the following recurring cases along with their solutions. I also
documented few codebase-specific cases.

Case 1:
Sometimes functions have different types of return values based on different types of input
arguments.

def test_func(x: Union[str, int]) -> Union[str, int]:

if isinstance(x, str):

return 'hi'

if isinstance(x, int):

return 1

Looking at the function signature in this case we can see that the function returns Union of
string and int on every string and int argument x. To make this definition even more clear we can
add overload decorator as follows:

@overload

def test_func(x: str) -> str: ...

@overload

def test_func(x: int) -> int: ...

def test_func(x: Union[str, int]) -> Union[str, int]:

if x is isinstance(x, str):

https://github.com/sahiljoster32/oppia/pull/3

Case 2:
When we inherit a class and change it’s one of the method’s signature in child class.

class test1:

def mock_func(x: str) -> str:

return x

class test2(test1):

def mock_func(y: int) -> int:

return y

Taking the above implementation, MyPy throws an error with the statement “error: Signature of
"mock_func" incompatible with supertype "test1" [override]”. To avoid this we should refactor
the code, if possible. Otherwise we have to add an ignore statement “# type: ignore[override]”
with an explanatory comment.

Case 3:
When we are assigning values of different types to the variables of different types. MyPy throws
an assignment error with the statement “error: Incompatible types in assignment (expression
has type "{{expression’s type}}", variable has type "{{variable’s type}}") [assignment]”.

string_var: str = other_type_var

In this case we have 2 scenarios:
● If other_type_var is of Optional[str] type (means it can contain both str value and None)

and we are sure that at this assignment other_type_var is containing a string value.
Then we can use “assert other_type_var is not None” with an explanatory code
comment to rule out the possibility of None for the MyPy type checker.

Ruling out the possibility of None for mypy type checking.

assert other_type_var is not None

string_var: str = other_type_var

● If other_type_var is of Union[str, int] type (means it can contain both str type and int
type values). And at this point of the assignment, we know other_type_var is containing
a str type value. Then we can use “assert isinstance(other_type_var, str)” with an
explanatory code comment to rule out the possibility of int of other_type_var for the
MyPy type checker.

Ruling out the possibility of int of other_type_var for mypy type

checking.

assert isinstance(other_type_var, str)

string_var: str = other_type_var

Case 4:
When an untyped decorator is applied to a particular typed function. Then that typed function is
also considered as an untyped function by the MyPy type checker.

Please take a look at the following code snippet taken from the codebase:

Using type ignore[misc] here because untyped decorator makes function

"get" also untyped.

@acl_decorators.open_access # type: ignore[misc]

def get(self, username: str) -> None:

"""Validates access to profile page."""

user_settings = user_services.get_user_settings_from_username(#

type: ignore[no-untyped-call]

username)

if not user_settings:

raise self.PageNotFoundException

(Note: decorator given in this example is not annotated)

The ideal way to tackle this error is that we have to annotate the decorator first then only we
should annotate the function. If the decorator belongs to any third-party library, then we have to
add its typing in stubs.

Case 5:

When we import modules and services indirectly in a python file and MyPy is not able to
recognize those modules and services. In that case, MyPy throws an error if we try to access
that module or service, with the error statement “error: Module has no attribute
"ActivityReferencesModel" [attr-defined]”.

(activity_models,) = models.Registry.import_models([models.NAMES.activity])

To handle this error during MyPy type checking we have to add modules/services as follows:

https://github.com/oppia/oppia/blob/2037608dc1534e41748e7ac62bedfca61213eec5/core/controllers/access_validators.py#L112

MYPY = False

if MYPY: # pragma: no cover

from mypy_imports import activity_models

(activity_models,) = models.Registry.import_models([models.NAMES.activity])

(Above example is taken from the codebase.)

By doing this we are allowing MyPy to import module directly, but this module is imported only
for type checking. At runtime this import is ignored.

Case 6:
Use cases of cast keyword.

There are some cases in the codebase where we know the return type of function but mypy is
not able to fetch that return type. Because of some situations like function is not annotated yet
or function belongs to some third-party library whose stubs are not available in the typeshed yet.
Then In that case, mypy assumes the return value to be Any type.

To narrow down the return type from Any of a function that belongs to any third-party library and
not type annotated yet we have to add stubs for it in the stubs folder, so that MyPy can refer to
that stub’s function signature while checking the type annotations. While if a function is present
in the codebase and not type annotated yet then there we can cast the value to suppress the
error until the function is annotated, an example of casting the value is mentioned below :

Please take a look at the code snippet taken from codebase:
SERIALIZATION_FUNCTIONS: SerializationFunctionsDict = {

CACHE_NAMESPACE_COLLECTION: lambda x: x.serialize(),

CACHE_NAMESPACE_EXPLORATION: lambda x: cast(str, x.serialize()), # type:

ignore[no-untyped-call]

CACHE_NAMESPACE_SKILL: lambda x: cast(str, x.serialize()), # type:

ignore[no-untyped-call]

CACHE_NAMESPACE_STORY: lambda x: cast(str, x.serialize()), # type:

ignore[no-untyped-call]

CACHE_NAMESPACE_TOPIC: lambda x: x.serialize(),

CACHE_NAMESPACE_PLATFORM_PARAMETER: lambda x: cast(str, x.serialize()), # type:

ignore[no-untyped-call]

CACHE_NAMESPACE_CONFIG: json.dumps,

CACHE_NAMESPACE_DEFAULT: json.dumps

}

Taking the above implementation, CACHE_NAMESPACE_SKILL’s function is not type
annotated yet so mypy assumes Its return value to be Any type. But we know the return type so

https://github.com/oppia/oppia/blob/2037608dc1534e41748e7ac62bedfca61213eec5/core/domain/activity_services.py#L30
https://github.com/oppia/oppia/blob/2037608dc1534e41748e7ac62bedfca61213eec5/core/domain/caching_services.py#L149

we casted it to str type. Whereas, other functions are annotated so we don’t need cast for
them.

Other cases where cast can be used:
● When the return value of a function is too dynamic, then MyPy assumes its return value

to be Any type. But we can use cast if we are sure about the function's return value
based on its usage.
Please take a look at the code snippet taken from the codebase:

Using a cast here because the return value of getattr() method is

dynamic and mypy will assume it to be Any otherwise.

return cast(Callable[..., str], getattr(cls, normalizer_id))

Case 7:
When we are returning a dictionary that has different types of values from a function, then in that
case we can use Dict[str, Any] type.

def dict_mock() -> Dict[str, Any]:

return {

'name': 'XYZ',

'ID_number': 1,

'IDs': ['1','2', '3'],

'created_on': datetime.utcnow()

}

But the above annotations are not precise if we look carefully. So, to fully annotate this we have
to define a TypedDict class and assign it as a return annotation.

class MockDict(TypedDict):

name: str

ID_number: int

IDs: List[str]

created_on: datetime.datetime

def dict_mock() -> MockDict:

…

https://github.com/oppia/oppia/blob/develop/core/schema_utils.py#L334

Case 8:
Mypy also performs numerous other, less commonly failing checks that don’t have specific error
codes. These checks use the [misc] error code. Some of the commonly encountered [misc]
errors in the oppia codebase are:

● “error: Class cannot subclass 'PTransform' (has type 'Any') [misc]”. The suspected
cause for this error is that the typing of 'PTransform' class is still not available for the
MyPy type checker.
Solution:
we need to write stubs only for the part of the library we are using, and place those stubs
inside the stubs/ folder.

● Common errors related to the keys of dictionary:
○ “error: Key 'id' of TypedDict "CollectionDict" cannot be deleted [misc]”. This

error mostly occurs when we try to delete a key from a well defined TypedDict
type.

○ “error: TypedDict "CollectionDict" has no key 'next_skill_id' [misc]”. The reason
for this error is that we try to access the key which is not defined in the TypedDict
class of the dictionary.

Solution:
we should try to refactor some code so that we can minimize the use of accessing
undefined keys and deletion of keys.

However, in some cases it is not feasible to refactor the code. So there we can use “#
type: ignore statements wth an explanatory comment.

● “error: 'classmethod' used with a non-method [misc]”. This error mostly occurs when
we try to define a classmethod inside a method of the class.

Please take a look at the code snippet taken from codebase:

class RegistryTests(test_utils.TestBase):

def test_get_all_jobs_returns_value_from_job_metaclass(self) -> None:

unique_obj = object()

@classmethod # type: ignore[misc]

def get_all_jobs_mock(

unused_cls: Type[base_jobs.JobMetaclass]

) -> object:

"""Returns the unique_obj."""

return unique_obj

https://github.com/oppia/oppia/blob/2037608dc1534e41748e7ac62bedfca61213eec5/core/jobs/registry_test.py#L28

Solution:
This case mostly occurs in test files, so there we can use # type pragmas to silent the
error but the preferred solution is to refactor the code and an example of this can be
found HERE.

Case 9:
When we define a TypedDict class to provide annotations for a dictionary, and we are accessing
the dictionary’s key using a constant that has a different name than that defined in TypedDict
class. But the value of the constant is correct according to the TypedDict class.

Please see the code snippet taken from the codebase:

CACHE_NAMESPACE_STORY: Final = 'story'

CACHE_NAMESPACE_TOPIC: Final = 'topic'

class DeserializationFunctionsDict(TypedDict):

"""Type for the DESERIALIZATION_FUNCTIONS."""

story: Callable[[str], story_domain.Story]

topic: Callable[[str], topic_domain.Topic]

DESERIALIZATION_FUNCTIONS: DeserializationFunctionsDict = {

CACHE_NAMESPACE_STORY: story_domain.Story.deserialize,

CACHE_NAMESPACE_TOPIC: topic_domain.Topic.deserialize,

}

Then in that case MyPy throws “error: TypedDict "DeserializationFunctionsDict" has no key
CACHE_NAMESPACE_STORY [misc]”. The suspected cause for this error is that MyPy is not
able to recognize useful constants unless their type is declared explicitly.

So, the solution for this error is that we have to annotate the constants also. But we can do that
in 2 ways:

● By using Literal keyword from typing.
● By using Final keyword from typing. (as shown in the above example)

I prefer to use the latter one because by using Final we don’t have to mention the value of
constant. Whereas in Literal we have to mention the constant’s values.

CACHE_NAMESPACE_TOPIC: Literal['topic'] = 'topic'

https://github.com/sahiljoster32/oppia/pull/4
https://github.com/oppia/oppia/blob/2037608dc1534e41748e7ac62bedfca61213eec5/core/domain/caching_services.py#L131

Case 10:
For external libraries, MyPy obtains the type information from the type stubs defined in the
typeshed package. But currently, there are some libraries that are not supported by the
typeshed yet. So, to overcome this issue we need to define the stubs ourselves only for the part
of the library we are using, and place those stubs inside the “stubs/” folder.

There might be a situation where we don’t have enough information to write stubs, Then in that
case we can create a TODO issue to add stubs later when information is available and add that
TODO issue in the codebase wherever is applicable.

Practices that I’m going to follow during introducing type annotations:
● Annotations will be introduced in the codebase, by keeping in mind that strict types will

be on high priority and try to use Any type as minimum as possible.
● For any kind # ignore: other than [no-untyped-call], an explanatory comment will be

added with proper reasoning.
● Some # ignore: can be fixed when the whole codebase is annotated. So, for them, I’ll

create a TODO issue and mention it in the file wherever applicable.
● While adding annotations I will follow oppia’s coding style by following the

coding_style_doc wiki page.

What if a new case is encountered in the codebase?
Due to huge community support for python typing, there are high chances that error is already
caught by the community and documented with reasoning and its solution.

However, to tackle the new cases I’m going to follow some documentation and wikis for this
project but are not limited to:

● PEP 484 type hints.
● Error_code_lists of the MyPy type checker.
● Wiki of oppia for backend type annotations.
● Type_hint cheat sheet of python3.

If the error is not resolved by following any of the above resources then I’ll let my mentors know
about the error and try to find a generalized solution for this new error.

What if a proper typeinfo is not available for function, method, or class?
Oppia’s codebase has 100% test coverage. This will help us a lot in adding type
annotations. If for some reason tests are not sufficient, then I’ll try to infer the type from the
usage of function/method/class in the whole oppia’s codebase.

https://github.com/python/typeshed
https://github.com/oppia/oppia/wiki/Coding-style-guide
https://peps.python.org/pep-0484/
https://mypy.readthedocs.io/en/latest/error_code_list.html#error-codes-enabled-by-default
https://github.com/oppia/oppia/wiki/Backend-Type-Annotations
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html#

However, in some cases we can use reveal_type() function (does not exist on runtime) to fetch
the return type of function and the types of arguments of function.

As mentioned earlier, mentors would be the last option if typeinfo is not available in any way.

2.2 Order in which folders are going to be annotated.
To introduce the backend type annotations in the whole codebase, I will annotate all the
files/folders which are mentioned in the NOT_FULLY_COVERED_FILES list.

This list is defined in `scripts/run_mypy_checks.py`.

The list of folders that I’m going to cover:

Folders No. of Files

core/controllers
core/domain
core/platform (some new files)
core/storage (some new files)
core/jobs
extensions/
scripts/
core/tests
core’s root folder files.

108
136
02
05
74
43
88
07
04

Total files (test files are included) 467

Dependency order:
After inspecting all the folders where untyped files are present, I think that it would be efficient to
annotate those folders first where most of the dependencies are present. So that we can
minimize the use of # ignore: statements while introducing the backend type annotations and
annotate the folders according to the flow of code.

The following flow diagram clearly shows the order of folders in which they are going to be
annotated.

The reasoning and current status of each folder are as follows:

core/platform + some selected files:
These files are frequently used in the domain, controllers, and other folders too. So to follow the

dependency order I propose to annotate these files first than any other folder.

Order of covering files:
These files will be annotated in the following manner as mentioned in the table.

No. File Dependencies yet to be annotated.

1. core/platform/storage/cloud_storage_emulator.py N/A

2. core/python_utils.py N/A

3. storage/blog/gae_models.py N/A

4. storage/beam_job/gae_models.py N/A

core/domain folder:
The dependency of the domain folder is very less on the files outside of the domain folder and
the few files which are imported from outside of the domain folder are somewhat already
annotated. The only file which is most frequently imported in the domain’s test files and not
annotated yet is `test_utils.py`.

Also, folders like core/test and core/controllers import too many modules from core/domain. So
to maintain the dependency order I chose core/domain over core/controllers and core/test to
annotate first.

Order of covering files within the core/domain folder is:
Files that have fewer dependencies which are yet to be annotated are going to be covered first.
For example:

● Files like auth_services.py and change_domain.py are going to be covered before
blog_services.py and user_services.py. (please refer to the following table)

On further inspection of the files in domain folder together with the issue tracking the files of this
folder. I found the current state of the files during writing of this proposal is as follows:

Status of core/domain folder:

No. File Dependencies yet to be annotated.

1. auth_services.py N/A

2. change_domain.py (No test file) N/A

3. classroom_services.py N/A

4. cron_services.py (No test file) N/A

5. customization_args_util.py N/A

6. expression_parser.py N/A

7, fs_domain.py N/A

8. improvements_services.py N/A

9. interaction_registry.py N/A

10. learner_goals_services.py N/A

11. playthrough_issue_registry.py N/A

12. recommendations_services.py N/A

13. role_services.py N/A

14. subscription_services.py N/A

https://github.com/oppia/oppia/issues/14033

15. taskqueue_services.py N/A

16. fs_services.py core.domain.fs_domain

17. html_cleaner.py core.domain.rte_component_registry

18. image_validation_services.py core.domain.html_validation_service

19. learner_playlist_services.py core.domain.subscription_services

20. moderator_services.py core.domain.taskqueue_services

21. param_domain.py core.domain.object_registry

22. platform_parameter_domain.py core.domain.change_domain

23. platform_parameter_registry.py core.domain.platform_parameter_domain

24. rte_component_registry.py core.python_utils

25. rules_registry.py core.python_utils

26. search_services.py core.domain.rights_manager

27. skill_fetchers.py core.domain.skill_domain

28. story_fetchers.py core.domain.story_domain

29. subtopic_page_services.py core.domain.subtopic_page_domain

30. takeout_service.py core.domain.user_services

31. user_query_services.py core.domain.email_manager

32. visualization_registry.py extensions.visualizations.models

33. blog_services.py core.domain.html_cleaner
core.domain.role_services

34. classifier_services.py core.domain.exp_fetchers
core.domain.fs_services

35. exp_fetchers.py core.domain.exp_domain
core.domain.subscription_services

36. object_registry.py core.python_utils
extensions.objects.models.objects

37. platform_parameter_list.py core.domain.platform_parameter_domain
core.domain.platform_parameter_registry

38. question_fetchers.py core.domain.question_domain
core.domain.state_domain

39. subtopic_page_domain.py core.domain.change_domain

core.domain.state_domain

40. topic_fetchers.py core.domain.classroom_services
core.domain.story_fetchers

41. user_services.py core.domain.auth_services
core.domain.role_services

42. email_manager.py core.domain.html_cleaner
core.domain.subscription_services
core.domain.user_services

43. platform_feature_services.py core.platform_feature_list
core.domain.platform_parameter_domain
core.domain.platform_parameter_registry

44. rating_services.py core.domain.event_services
core.domain.exp_fetchers
core.domain.exp_services

45. stats_Service.py core.domain.exp_fetchers
core.domain.question_services
core.domain.stats_domain

46. draft_upgrade_services.py core.domain.exp_domain
core.domain.html_validation_services
core.domain.rules_registry
core.domain.state_domain

47. rights_manager.py core.domain.role_services
core.domain.subscription_services
core.domain.taskqueue_services
core.domain.user_services

48. skill_domain.py core.domain.change_domain
core.domain.state_domain
core.domain.html_cleaner
core.domain.html_validation_service

49. stats_domain.py core.domain.customization_args_util
core.domain.exp_domain
core.domain.interaction_registry
core.domain.playthrough_issue_registry

50. exp_domain.py core.domain.change_domain
core.domain.param_domain
core.domain.state_domain
core.domain.html_cleaner
core.domain.html_validation_service

51. feedback_services.py core.domain.email_manager
core.domain.rights_manager
core.domain.subscription_services
core.domain.taskqueue_services
core.domain.user_services

52. html_validation_service.py core.domain.fs_domain
core.domain.fs_services
core.domain.rte_component_registry
extensions.objects.models.objects
extensions.rich_text_components.components

53. opportunity_services.py core.domain.exp_fetchers
core.domain.question_fetchers
core.domain.story_fetchers
core.domain.suggestion_services
core.domain.topic_fetchers

54. question_services.py core.domain.opportunity_services
core.domain.question_domain
core.domain.question_fetchers
core.domain.skill_fetchers
core.domain.state_domain

55. story_domain.py core.domain.change_domain
core.domain.fs_domain
core.domain.fs_services
core.domain.html_cleaner
core.domain.html_validation_service

56. collection_services.py core.domain.exp_fetchers
core.domain.exp_services
core.domain.rights_manager
core.domain.search_services
core.domain.subscription_services
core.domain.user_services

57. event_services.py core.domain.exp_domain
core.domain.exp_fetchers
core.domain.feedback_services
core.domain.stats_domain
core.domain.stats_services
core.domain.taskqueue_services

58. state_domain.py core.domain.customization_args_util
core.domain.param_domain
extensions.objects.models.objects
core.domain.html_cleaner
core.domain.interaction_registry
core.domain.rules_registry

59. voiceover_services.py core.domain.email_manager
core.domain.exp_fetchers
core.domain.opportunity_services
core.domain.rights_manager
core.domain.suggestion_registry
core.domain.user_services

60. story_services.py core.domain.exp_fetchers
core.domain.exp_services
core.domain.opportunity_services

core.domain.rights_manager
core.domain.story_domain
core.domain.story_fetchers
core.domain.suggestion_services
core.domain.topic_fetchers

61. suggestion_services.py core.domain.email_manager
core.domain.exp_fetchers
core.domain.feedback_services
core.domain.html_cleaner
core.domain.html_validation_service
core.domain.question_domain
core.domain.suggestion_registry
core.domain.user_services

62. summary_services.py core.domain.collection_services
core.domain.exp_domain
core.domain.exp_fetchers
core.domain.exp_services
core.domain.rights_manager
core.domain.search_services
core.domain.stats_services
core.domain.user_services

63. question_domain.py core.domain.html_cleaner
core.domain.html_validation_service
core.domain.interaction_registry
core.domain.change_domain
core.domain.customization_args_util
core.domain.exp_domain
core.domain.expression_parser
core.domain.state_domain
extensions.domain

64. wipeout_service.py core.domain.auth_services
core.domain.collection_services
core.domain.email_manager
core.domain.exp_fetchers
core.domain.exp_services
core.domain.rights_manager
core.domain.taskqueue_services
core.domain.topic_services
core.domain.user_services

65. learner_progress_services.py core.domain.classroom_services
core.domain.collection_services
core.domain.exp_fetchers
core.domain.learner_goals_services
core.domain.learner_playlist_services
core.domain.skill_services
core.domain.story_fetchers
core.domain.story_services
core.domain.subscription_services
core.domain.topic_fetchers
core.domain.topic_services

66. skill_services.py core.domain.html_cleaner
core.domain.opportunity_services
core.domain.role_services
core.domain.skill_domain
core.domain.skill_fetchers
core.domain.state_domain
core.domain.suggestion_services
core.domain.taskqueue_services
core.domain.topic_fetchers
core.domain.topic_services
core.domain.user_services

67. suggestion_registry.py core.domain.exp_domain
core.domain.exp_fetchers
core.domain.exp_services
core.domain.fs_services
core.domain.html_cleaner
core.domain.question_domain
core.domain.question_services
core.domain.skill_domain
core.domain.skill_fetchers
core.domain.state_domain
core.domain.user_services

68. topic_services.py core.domain.feedback_services
core.domain.opportunity_services
core.domain.role_services
core.domain.state_domain
core.domain.story_fetchers
core.domain.story_services
core.domain.subtopic_page_domain
core.domain.subtopic_page_services
core.domain.suggestion_services
core.domain.topic_fetchers
core.domain.user_services

69. exp_services.py core.domain.classifier_services
core.domain.draft_upgrade_services
core.domain.email_manager
core.domain.exp_domain
core.domain.exp_fetchers
core.domain.feedback_services
core.domain.fs_domain
core.domain.html_cleaner
core.domain.html_validation_service
core.domain.opportunity_services
core.domain.param_domain
core.domain.recommendations_services
core.domain.rights_manager
core.domain.search_services
core.domain.state_domain
core.domain.stats_services
core.domain.taskqueue_services
core.domain.user_services

(This table contains files and their dependencies that are yet to be annotated.)

core/tests folder:
Out of all the files in the core/tests folder, test_utils.py is the most important one. Because this
file is imported in almost every backend test of oppia’s codebase and this file is annotated after
the domain folder because it imports 23 domain modules.

Once test_utils.py is annotated, then we can get rid of # type: ignore[no-untyped-call]
statements from all the backend tests of oppia codebase.

Order of covering files within this folder is:
● test_utils.py is going to be annotated first.
● All other files are annotated in dependency order.

Status of core/tests folder:

No. File Dependencies yet to be annotated.

1. test_utils.py core.controllers.base
20+ domain files

2. gae_suite.py N/A

3. load_tests/feedback_thread_summaries_test.py* core.domain.feedback_services
core.tests.test_utils

4. build_sources/extensions/base.py core.python_utils
core.domain.object_registry
core.domain.visualization_registry
extensions.domain
extensions.objects.models.objects

(Files marked with * does not have test file.)

core/jobs folder:
Order of covering sub-folders within this folder is:

● Order of covering folders are shown in the following table.
○ Folder jobs/types is going to be covered before folder jobs/decorators.

● Files in jobs/batch_jobs and jobs/transforms/validation are going to be covered in
alphabetical order. Because files in these folders are mostly independent of each other.

Status of core/jobs folder:

No. Files/Folder Total untyped files.

1. jobs/types 16

2. jobs/decorators 02

3. jobs/transforms/* (root-level files in transforms folder) 02

4. jobs/transforms/validation 30

5. jobs/batch_jobs 24

core/controllers folder:
The files of core/controllers are highly dependent on the files of core/domain folder and some
files are dependent on the files of core/jobs folder. So that’s why i propose to cover this folder
after core/domain and core/jobs.

Also, There are 67 handler classes present in the files of core/controllers that are still pending
from schema validation being enabled. So I propose to enable schema validation for these
handler classes in this project as well. To enable schema validation, I'm going to follow the
instructions as mentioned in the issue (Write schemas for handler class arguments).

Order of covering files in core/controllers folder is:
● acl_decorators.py, base.py and domain_objects_validator.py are going to be

annotated first because these 3 files are imported into every other file of controllers.
● All other files will be annotated in alphabetical order because, at this point all

dependencies from core/controllers/* (core/domain and core/jobs) will already be
annotated.

Status of core/controllers folder:

No. File Dependencies yet to be annotated.

1. acl_decorators.py core.controllers.base
10+ domain files.

2. base.py core.controllers.payload_validator
core.domain.auth_services
core.domain.user_services

3. domain_objects_validator.py core.controllers.base
core.domain.exp_domain
core.domain.image_validation_services
core.domain.question_domain
core.domain.state_domain

4. android_e2e_config.py core.controllers.acl_decorators
core.controllers.base
15+ domain files.

5. admin.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator

https://github.com/oppia/oppia/issues/13162

20+ domain files.

6. blog_admin.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator
core.domain.blog_services
core.domain.role_services
core.domain.user_services

7. blog_dashboard.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator
core.domain.blog_services
core.domain.fs_services
core.domain.image_validation_services
core.domain.user_services

8. blog_homepage.py core.controllers.acl_decorators
core.controllers.base
core.domain.blog_services
core.domain.user_services

9. classifier.py core.controllers.acl_decorators
core.controllers.base
core.domain.classifier_services
core.domain.email_manager
core.domain.exp_fetchers

10. classroom.py core.controllers.acl_decorators
core.controllers.base
core.domain.classroom_services
core.domain.topic_fetchers

11. collection_editor.py core.controllers.acl_decorators
core.controllers.base
core.domain.collection_services
core.domain.rights_manager
core.domain.search_services
core.domain.summary_services

12. collection_viewer.py core.controllers.acl_decorators
core.controllers.base
core.domain.rights_manager
core.domain.summary_services

13. concept_card_viewer.py core.controllers.acl_decorators
core.controllers.base
core.domain.skill_fetchers

14. contributor_dashboard_admin.py core.controllers.acl_decorators
core.controllers.base
core.domain.email_manager
core.domain.suggestion_services
core.domain.topic_fetchers
core.domain.user_services

15. contributor_dashboard.py core.controllers.acl_decorators
core.controllers.base
6 domain files

16. creator_dashboard.py core.controllers.acl_decorators
core.controllers.base
10+ domain files.

17. cron.py core.controllers.acl_decorators
core.controllers.base
5 domain files
4 jobs files

18. custom_landing_pages.py core.controllers.acl_decorators
core.controllers.base

19. editor.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator
14+ domain files

20. email_dashboard.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator
core.domain.email_manager
core.domain.user_query_services
core.domain.user_services

21. features.py core.controllers.acl_decorators
core.controllers.base

22. feedback.py core.controllers.acl_decorators
core.controllers.base
core.domain.feedback_services
core.domain.suggestion_services
core.domain.user_services

23. improvements.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator
core.domain.exp_fetchers
core.domain.improvements_services

24. incoming_app_feedback_report.py core.controllers.acl_decorators
core.controllers.base

25. learner_dashboard.py core.controllers.acl_decorators
core.controllers.base
7 domain files

26. learner_goals.py core.controllers.acl_decorators
core.controllers.base
core.domain.learner_goals_services
core.domain.learner_progress_services

27. learner_playlist.py core.controllers.acl_decorators
core.controllers.base
core.domain.learner_playlist_services
core.domain.learner_progress_services

28. library.py core.controllers.acl_decorators
core.controllers.base
core.domain.collection_services
core.domain.exp_services
core.domain.summary_services
core.domain.user_services

29. moderator.py core.controllers.acl_decorators
core.controllers.base
core.domain.email_manager
core.domain.summary_services

30. oppia_root.py core.controllers.acl_decorators
core.controllers.base

31. pages.py core.controllers.acl_decorators
core.controllers.base

32. payload_validator.py N/A

33. platform_feature.py core.controllers.acl_decorators
core.controllers.base
core.domain.platform_feature_services

34. practice_sessions.py core.controllers.acl_decorators
core.controllers.base
core.domain.skill_fetchers
core.domain.topic_fetchers

35. profile.py core.controllers.acl_decorators
core.controllers.base
7 domain files

36. question_editor.py core.controllers.acl_decorators
core.controllers.base
7 domain files.

37. questions_list.py core.controllers.acl_decorators
core.controllers.base
core.domain.question_services
core.domain.skill_domain
core.domain.skill_fetchers

38. reader.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator
core.controllers.editor
15+ domain files.

39. recent_commits.py core.controllers.acl_decorators

core.controllers.base
core.domain.exp_services
core.domain.user_services

40. release_coordinator.py core.controllers.acl_decorators
core.controllers.base

41. resources.py core.controllers.acl_decorators
core.controllers.base
core.domain.fs_domain

42. review_tests.py core.controllers.acl_decorators
core.controllers.base
core.domain.skill_fetchers
core.domain.story_fetchers

43. skill_editor.py core.controllers.acl_decorators
core.controllers.base
6 domain files

44. skill_mastery.py core.controllers.acl_decorators
core.controllers.base
core.domain.skill_domain
core.domain.skill_fetchers
core.domain.skill_services
core.domain.topic_fetchers

45. story_editor.py core.controllers.acl_decorators
core.controllers.base
7 domain files.

46. story_viewer.py core.controllers.acl_decorators
core.controllers.base
8 domain files.

47. subscriptions.py core.controllers.acl_decorators
core.controllers.base
core.domain.subscription_services
core.domain.user_services

48. subtopic_viewer.py core.controllers.acl_decorators
core.controllers.base
core.domain.subtopic_page_services
core.domain.topic_fetchers

49. suggestion.py core.controllers.acl_decorators
core.controllers.base
core.controllers.domain_objects_validator
9 domain files.

50. tasks.py core.controllers.acl_decorators
core.controllers.base
10 domain files.

51. topic_editor.py core.controllers.acl_decorators

core.controllers.base
15 domain files.

52. topic_viewer.py core.controllers.acl_decorators
core.controllers.base
core.domain.email_manager
core.domain.skill_services
core.domain.story_fetchers
core.domain.topic_fetchers

53. topics_and_skills_dashboard.py core.controllers.acl_decorators
core.controllers.base
10 domain files.

54. voice_artist.py core.controllers.acl_decorators
core.controllers.base
5 domain files

(This table contains files and their dependencies that are yet to be annotated.)

extensions + core/storage + pending core’s root level files:
Order of covering files in these folders are:

● For extensions folder, files and sub-folders are going to be covered in directory-wise
order.

○ Root-level files are annotated first.
○ Then all folders are annotated in alphabetical order. Because these folders are

mostly independent of each other.

● For core/storage files and core’s root files, order will be in alphabetical order.

Status of extensions folder

No. Files/Folder Dependencies yet to be annotated.

1. domain.py N/A

2. actions/* (5) extensions.domain

3. answer_summarizers/models.py core.domain.exp_domain
core.domain.stats_domain

4. interactions/* (22) extensions.interactions.base (majorly)

5. issues/* (5) extensions.domain (only for base.py)
extensions.interactions.base

6. objects/* (2) N/A

7. rich_text_components/* (2) core.python_utils

8. value_generators/* (2) core.domain.value_generators_domain

9. extensions/visualizations/models.py core.domain.calculation_registry
(No of files in a folder specified as folder_name/* (no of files))

Status of core/storage + core’s root level files.

No. File Dependencies yet to be annotated.

1. core/platform_feature_list.py core.domain.platform_parameter_list

2. storage/storage_models_test.py core.domain.takeout_service
core.tests.test_utils

scripts/ folder:
Status of the current scripts/ folder can be found in the issue tracking the files of this folder.

Order of covering files in scripts/ folder are:
● common.py and servers.py are the scripts/ folder’s root level files, so these are going

to be annotated first. Because these 2 are imported in almost every file of scripts/ folder.

● All other files/folders are annotated in alphabetical order.

● Files in sub-folder scripts/linters and scripts/release_scripts will also be annotated in
alphabetical order.

(The order in which static type annotations will be introduced to all the python files is
listed down in Milestones.)

Impact on Other Oppia Teams
After updating all the python files with the new docstring style, we need to inform all the
contributors about the new docstring styles. So that whenever they push a new python file they
don’t get lint errors and are already aware of the new style.

To inform we can take the help of oppia-dev group, by sending an email a week before
completing all the python files.

Developer workflow team:

There might be a possibility that we face a clash between our PRs, Consider a case where I’m
working on an ABC.py file to introduce MyPy type annotations and someone also working on an
ABC.py file to cover backend test coverage.

Then, in that case, we have to mutually agree on a solution. So that everything goes as planned.

https://github.com/oppia/oppia/issues/13341

Risks and mitigations
● While introducing backend type annotations, there might be chances that the backend

test fails and impact the coverage. In that case, I’m going to cover that backend test and
coverage as well.

● The intention of this project is to cover the whole codebase. So files that are assigned to
other contributors are going to be covered as well, Iff there is no PR already opened for
the assigned files.

Implementation Approach

Documentation changes

➔ Backend Type Annotations documentation:
All the common cases which are encountered in the oppia codebase plus all the new
cases which I’m going to encounter are going to be well-documented on the wiki page.
A draft of the wiki page can be found here.

➔ Coding_style documentation:
Once all the python files are updated with new docstring style, then the docstrings
section of this documentation will also be updated.

Testing Plan
In this project, we are introducing new python docstrings lint checks and there will be tests for
this lint checks also.

class DocstringParameterCheckerTests(unittest.TestCase):

def setUp(self):

super(DocstringParameterCheckerTests, self).setUp()

self.checker_test_object = testutils.CheckerTestCase()

self.checker_test_object.CHECKER_CLASS = (

pylint_extensions.DocstringParameterChecker)

self.checker_test_object.setup_method()

def test_well_formated_returns_section_old_docstring_style(self):

node_with_no_error_message = astroid.extract_node(

u"""def func(): #@

\"\"\"Does nothing.

Returns:

int. Argument escription.

https://github.com/oppia/oppia/wiki/Backend-Type-Annotations
https://github.com/sahiljoster32/oppia/wiki
https://github.com/oppia/oppia/wiki/Coding-style-guide#python

\"\"\"

return args

""")

with self.checker_test_object.assertAddsMessages():

self.checker_test_object.checker.visit_functiondef(

node_with_no_error_message)

def test_correct_args_formatting_in_new_docstring_style(self):

incorrect_args_format_in_new_style = astroid.extract_node(

"""

def func(test_var_one, test_var_two): #@

\"\"\"Function to test docstring parameters.

Args:

test_var_one: int. First test variable.

test_var_two: str. Second test variable.

\"\"\"

result = test_var_one + test_var_two

""")

malformed_args_section = testutils.Message(

msg_id='malformed-args-section',

node=incorrect_args_format_in_new_style)

with self.checker_test_object.assertAddsMessages(

malformed_args_section,

malformed_args_section

):

self.checker_test_object.checker.visit_functiondef(

incorrect_args_format_in_new_style)

correct_args_format_in_new_style = astroid.extract_node(

"""

def func(test_var_one, test_var_two): #@

\"\"\"Function to test docstring parameters.

Args:

test_var_one: First test variable.

test_var_two: Second test variable.

\"\"\"

result = test_var_one + test_var_two

""")

with self.checker_test_object.assertNoMessages():

self.checker_test_object.checker.visit_functiondef(

correct_args_format_in_new_style)

def test_correct_returns_formatting_in_new_docstring_style(self):

invalid_return_documentation = astroid.extract_node(

"""

def func(test_var_one, test_var_two): #@

\"\"\"Function to test docstring parameters.

Args:

test_var_one: First test variable.

test_var_two: Second test variable.

Returns:

int. The test result.

\"\"\"

result = test_var_one + test_var_two

return result

""")

malformed_returns_section = testutils.Message(

msg_id='malformed-returns-section',

node=invalid_return_documentation)

with self.checker_test_object.assertAddsMessages(

malformed_returns_section

):

self.checker_test_object.checker.visit_functiondef(

invalid_return_documentation)

valid_return_documentation = astroid.extract_node(

"""

def func(test_var_one, test_var_two): #@

\"\"\"Function to test docstring parameters.

Args:

test_var_one: First test variable.

test_var_two: Second test variable.

Returns:

The test result.

\"\"\"

result = test_var_one + test_var_two

return result

""")

with self.checker_test_object.assertNoMessages():

self.checker_test_object.checker.visit_functiondef(

valid_return_documentation)

(Note: these tests are just to elaborate the approach, this is not the full test suite.)

MyPy static type annotations checks:
Every python file mentioned in this project is tested with the MyPy type checker and I’ll make
sure that every python file passes all MyPy checks.

Backend test and backend coverage test:
Oppia already has 100 percent backend test coverage. However, in case while introducing
backend type annotations any test fails then I'll also fix those test cases and I’ll make sure that
every test passes without any failing coverage checks.

Feature testing
Does this feature include non-trivial user-facing changes? NO

Implementation Plan:

Milestone 1:

Key Objective:
Fully type core/domain, core/tests, and core/jobs. Put measures in place to ensure that the files
in these folders have full backend typing in perpetuity, to Oppia’s standards (i.e. not using “Any”,
casts, and objects, and only using a narrow, fully-documented subset of type-ignore pragmas).

PR
No.

Description of PR / action Prereq
PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

1.1 Adding MyPy static type annotations to
● core/platform/storage/cloud_storage_emulator.py
● core/python_utils.py
● storage/blog/gae_models.py
● storage/beam_job/gae_models.py

13th June 17th June

1.2 Adding MyPy static type annotations to
1. auth_services.py
2. change_domain.py (No test file)
3. classroom_services.py
4. Cron_services.py (No test file)
5. customization_args_util.py
6. expression_parser.py
7. fs_domain.py

16th June 22nd June

8. improvements_services.py
9. interaction_registry.py
10. learner_goals_services.py
11. playthrough_issue_registry.py
12. recommendations_services.py
13. role_services.py
14. subscription_services.py
15. taskqueue_services.py

1.3 Adding MyPy static type annotations to
1. fs_services.py
2. html_cleaner.py
3. image_validation_services.py
4. learner_playlist_services.py
5. moderator_services.py
6. param_domain.py
7. platform_parameter_domain.py
8. platform_parameter_registry.py
9. rte_component_registry.py
10. rules_registry.py

1.1 19th June 25th June

1.4 Adding MyPy static type annotations to
1. search_services.py
2. skill_fetchers.py
3. story_fetchers.py
4. subtopic_page_services.py
5. takeout_service.py
6. user_query_services.py
7. visualization_registry.py
8. blog_services.py

22nd June 28th June

1.5 Adding MyPy static type annotations to
● classifier_services.py
● exp_fetchers.py
● object_registry.py
● platform_parameter_list.py
● question_fetchers.py
● subtopic_page_domain.py

1.1 25th June 1st July

1.6 Adding MyPy static type annotations to
● topic_fetchers.py
● user_services.py
● email_manager.py
● platform_feature_services.py
● rating_services.py
● stats_Service.py

28th June 4th July

1.7 Adding MyPy static type annotations to
● draft_upgrade_services.py
● rights_manager.py
● skill_domain.py
● stats_domain.py
● exp_domain.py

1st July 7th July

● feedback_services.py

1.8 Adding MyPy static type annotations to
● html_validation_service.py
● opportunity_services.py
● question_services.py
● story_domain.py
● collection_services.py
● event_services.py

4th July 10th July

1.9 Adding MyPy static type annotations to
● state_domain.py
● voiceover_services.py
● story_services.py
● suggestion_services.py
● summary_services.py
● question_domain.py

7th July 13th July

1.10 Adding MyPy static type annotations to
● wipeout_service.py
● learner_progress_services.py
● skill_services.py
● suggestion_registry.py
● topic_services.py
● exp_services.py

10th July 16th July

1.11 Adding MyPy static type annotations to
● test_utils.py
● gae_suite.py
● tests/load_tests/feedback_thread_summaries_tes

t.py
● tests/build_sources/extensions/base.py

1.1,
1.6,
1.7,
1.8,
1.9,
1.10

11th July 15th July

1.12 Adding MyPy static type annotations to
● jobs/types
● jobs/decorators
● jobs/transforms/* (root-level files)

1.11 14th July 18th July

1.13 Adding MyPy static type annotations to
● jobs/transforms/validation

1.12 17th July 21st July

1.14 Adding MyPy static type annotations to
● jobs/batch_jobs

1.12,
1.13

20th July 24th July

1.15 Adding lint checks that forbids ‘# type: ignore’ and
exceptional types(Any, cast and object) if no proper
comment is present for them.

23rd July 27th July

Milestone 2:

Key Objective:
Fully type the entire backend codebase, including schema validation for all handlers. Drop
typeinfo from all docstrings and add new docstring lint checks to ensure that docstrings adhere
to the new format in perpetuity. Also, ensure that measures are in place to prevent backend
typing coverage from regressing in the codebase.

No. Description of PR / action Prereq
PR
numbers

Target date for
PR creation

Target date for
PR to be
merged

2.1 Adding MyPy static type annotations to
● acl_decorators.py
● base.py
● domain_objects_validator.py
● android_e2e_config.py
● admin.py
● blog_admin.py
● blog_dashboard.py
● blog_homepage.py

1.11 30th July 3rd August

2.2 Adding MyPy static type annotations to
● classifier.py
● classroom.py
● collection_editor.py
● collection_viewer.py
● concept_card_viewer.py
● contributor_dashboard_admin.py
● contributor_dashboard.py
● creator_dashboard.py

1.11,
2.1

1st August 7th August

2.3 Adding MyPy static type annotations to
● cron.py
● custom_landing_pages.py
● editor.py
● email_dashboard.py
● features.py
● feedback.py
● improvements.py
● incoming_app_feedback_report.py

1.11,
2.1

5th August 11th August

2.4 Adding MyPy static type annotations to
● learner_dashboard.py
● learner_goals.py
● learner_playlist.py
● library.py
● moderator.py
● oppia_root.py
● pages.py
● payload_validator.py

1.11,
2.1

8th August 14th August

2.5 Adding MyPy static type annotations to
● platform_feature.py

1.11,
2.1

11th August 17th August

● practice_sessions.py
● profile.py
● question_editor.py
● questions_list.py
● reader.py
● recent_commits.py
● release_coordinator.py

2.6 Adding MyPy static type annotations to
● resources.py
● review_tests.py
● skill_editor.py
● skill_mastery.py
● story_editor.py
● story_viewer.py
● subscriptions.py
● subtopic_viewer.py

1.11,
2.1

14th August 20th August

2.7 Adding MyPy static type annotations to
● suggestion.py
● tasks.py
● topic_editor.py
● topic_viewer.py
● topics_and_skills_dashboard.py
● voice_artist.py

1.11,
2.1

17th August 23rd August

2.8 Adding MyPy static type annotations to
● extensions/domain.py
● extensions/actions/*
● extensions/answer_summarizers/models.py

1.7 20th August 26th August

2.9 Adding MyPy static type annotations to
● extensions/interactions/*
● extensions/issues/*
● extensions/objects/*

2.8 23rd August 29th August

2.10 Adding MyPy static type annotations to
● extensions/rich_text_components/*
● extensions/value_generators/*

1.1 28th August 3rd September

2.11 Adding MyPy static type annotations to
● extensions/visualizations/models.py
● core/platform_feature_list.py
● storage/storage_models_test.py

1.4,
1.5,
1.11

31st August 6th September

2.12 Adding MyPy static type annotations to
● scripts/common.py
● scripts/servers.py
● scripts/build.py
● scripts/check_e2e_tests_are_captured_in_ci.py
● scripts/check_frontend_test_coverage.py
● scripts/check_if_pr_is_low_risk.py

1.11 3rd September 9th September

2.13 Adding MyPy static type annotations to
● scripts/concurrent_task_utils.py
● scripts/docstrings_checker.py
● scripts/extend_index_yaml.py

2.12,
1.11

6th September 12th September

● scripts/flake_checker.py
● scripts/install_backend_python_libs.py
● scripts/install_third_party_libs.py
● scripts/install_third_party.py

2.14 Adding MyPy static type annotations to
● scripts/pre_commit_hook.py
● scripts/pre_push_hook.py
● scripts/regenerate_requirements.py
● scripts/rtl_css.py
● scripts/run_backend_tests.py
● scripts/run_custom_eslint_tests.py
● scripts/run_e2e_tests.py

2.12,
1.11

9th September 15th September

2.15 Adding MyPy static type annotations to
● scripts/run_frontend_tests.py
● scripts/run_lighthouse_tests.py
● scripts/run_mypy_checks.py
● scripts/run_portserver.py
● scripts/run_presubmit_checks.py
● scripts/setup.py
● scripts/typescript_checks.py

2.12,
1.11

12th September 18th September

2.16 Adding MyPy static type annotations to
● scripts/linters
● scripts/release_scripts

2.12,
1.11

15th September 21st September

2.17 Updating existing python docstring lint checkers:
● Updating custom docstring pylint checker.
● Removing type Infos from all docstrings of

the codebase.

20th September 25th September

2.18 ● Updating existing oppia’s backend type
annotations Doc.

● Updating documentation of oppia’s
coding_style doc.

2.17 22nd September 24th September

Future Work:
After completion of this project, we can introduce some more strict rules from mypy and remove
‘follow_imports’ flag (introduced previous year) to make the codebase even more strictly typed.
Also, I will regularly maintain the stubs of third party libraries.

Once we changed all the docstrings, we can introduce some more lint checks to make the
codebase even more robust against loose Code styling.

Apart from the project I will continue my contributions with the LaCE quality team and LaCE
android team.

Note: I have taken references from Eesha Arif's proposal, Mridul Setia's proposal, Hardik
Katehara's proposal and oppia’s backend_type_annotations doc while making this proposal.

Best of luck bro!!!!!!

https://github.com/oppia/oppia/wiki/pdfs/GSoC2021EeshaArif.pdf
https://github.com/oppia/oppia/wiki/pdfs/GSoC2021MridulSetia.pdf
https://github.com/oppia/oppia/wiki/pdfs/GSoC2021HardikKatehara.pdf
https://github.com/oppia/oppia/wiki/pdfs/GSoC2021HardikKatehara.pdf
https://github.com/oppia/oppia/wiki/Backend-Type-Annotations

