
Google Summer of Code 2022

Migrate Away From Protractor
Shivam Jha

About You
My name is Shivam Jha. I am a second-year undergraduate student at the Indian
Institute of Information Technology, Design and Manufacturing Jabalpur pursuing
Computer Science Engineering as my major.

What project are you applying for?

Migrate Away From Protractor.

Why are you interested in working with Oppia, and on your chosen project?
I started contributing to Oppia in September 2021. The reason why I started was to explore the

open-source community and interact with amazing people around the globe. Contributing to

Oppia helped me in learning Angular, AngularJS introduced me to the unit and end-to-end

testing. All the amazing mentors present here were readily available for help whenever I needed

it. The noble motto of Oppia always inspires and motivates me to push my limits.

While working with the migration team over the past months, I was able to learn a lot about

Angular and Frontend unit testing, End to End Testing and have become very much comfortable

with the codebase now. It would be a great learning experience to complete this project.

Prior Experience
I have been contributing to Oppia for the last 5-6 months as a part of the migration team. I have

been doing web development for the past 2 years and made some projects listed below:

1. Food Ordering Website using handlebars, sass as Frontend and node, express as

backend, MySql as database.

2. Shopping List Website using Angular 12+ as frontend and firebase as a backend.

3. Contributed to Public Lab, fixes a couple of frontend bugs, PRs link.

https://github.com/ShivamJhaa/FoodOrderingWebsite
https://github.com/ShivamJhaa/ShoppingList
https://github.com/publiclab/plots2/pulls?q=is%3Apr+is%3Aclosed+author%3AShivamJhaa

4. As a member of the Migration team in Oppia, I have been regularly contributing to

migration projects since November 2021.

5. At present I have 30 PRs merged.

6. I am also a member of the web welfare team where we help and welcome new

contributors.

Links to previous PRs.
● Migrates Select Skill Difficulty Modal and other few components (#14565)

● Migrates Question misconception editor (#14672)

● Migrates Concept Card Editor and Skill Preview Modal (#14939)

● Migrates Add or Update Solution Modal (#14771)

● Scroll to the top while navigating to the static pages (#15010)

Complete list of my PRs can be found here.

I did volunteer work in writing frontend tests and resolving the E2E Test in Schema-based-editor
PR, my PRs can be found hereSrijan Reddy Vasa
I have also opened 8 issues regarding frontend bugs, which can be found here

Project Size
I am applying for a large project (~350 hours).

Project Timeframe
13 June 2022 to 12 September 2022

Contact info and timezone(s)

Primary Email and Hangout: 20bcs206@iiitdmj.ac.in
Secondary Email: sssvjha@gmail.com
Contact Number: +91 7011082573
GitHub: @ShivamJhaa
Time Zone: Kolkata, India (GMT+5:30)
Preferred mode of Communication: Hangout, Discord, Email.

mailto:srijan@srijanreddy.com
https://github.com/oppia/oppia/pull/14565
https://github.com/oppia/oppia/pull/14672
https://github.com/oppia/oppia/pull/14939
https://github.com/oppia/oppia/pull/14771
https://github.com/oppia/oppia/pull/15010
https://github.com/oppia/oppia/pulls/ShivamJhaa
https://github.com/oppia/oppia/pull/14776
https://github.com/srijanreddy98/oppia/pulls?q=is%3Apr+author%3AShivamJhaa+is%3Aclosed
https://github.com/oppia/oppia/issues/created_by/ShivamJhaa
mailto:20bcs206@iiitdmj.ac.in
mailto:sssvjha@gmail.com

Time Commitment

● I would be working on the GSoC project for 15 weeks, from 13th June to 8th October

2022.

● I am having my summer vacation from 5th May to 17th July so I would be able to devote

~30 hr/week during this time and after that, I would be able to devote ~20 hr/week
which may increase if the need arises.

S. No Dates Days (Total) Time Commitment

1. 13th June - 19th June Mon-Sat (6) 5 hr/day (Mon-Sat)

2. 20th June - 26th June Mon-Sat (6) 5 hr/day (Mon-Sat)

3. 27th June - 3rd July Mon-Sat (6) 5 hr/day (Mon-Sat)

4. 4th July - 10th July Mon-Sat (6) 5 hr/day (Mon-Sat)

5. 11th July - 17th July Mon-Sat (6) 5 hr/day (Mon-Sat)

6. 18th July - 24th July Mon-Sat (6) 3 hr/day (Mon-Sat)

7. 25th July - 31st July Mon-Sat (6) 3 hr/day (Mon-Sat))

8. 1st Aug - 7th Aug Mon-Sat (6) 3 hr/day (Mon-Sat)

9. 8th Aug - 14th Aug Mon-Sat (6) 3 hr/day (Mon-Sat)

10. 15th Aug - 21st Aug Mon-Sat (6) 3 hr/day (Mon-Sat)

11. 22nd Aug - 28th Aug Mon-Sat (6) 3 hr/day (Mon-Sat)

12. 29th Aug - 3rd Sept Mon-Sat (6) 4 hr/day (Mon-Sat)

13. 4th Sept - 12th Sept Mon-Sat (6) 4 hr/day (Mon-Sat)

14. 13th Sept - 19th Sept Mon-Sat (6) 4 hr/day (Mon-Sat)

15. 20th Sept - 26th Sept Mon-Sat (6) 4 hr/day (Mon-Sat)

16. 27th Sept - 3rd Oct Mon-Sat (6) 4 hr/day (Mon-Sat)

Estimated Total Working Days: 90

Estimated Hours: ~350 hours (This may change as per requirements)

Essential Prerequisites
● I am able to run a single backend test target on my machine.

● I am able to run all the frontend tests at once on my machine.

● I am able to run one suite of e2e tests on my machine.

Other Summer Obligations
Currently I do not have any summer obligations.

Communication Channels
I plan on communicating with my mentor weekly for progress reports and as-needed during the

project.

Channels:

● Google Meet

● Zoom

● MS Teams

● Hangout

or any other platform according to the mentor's preference.

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one)

N/A

Target Audience Developers of the Oppia Team

Core User Need The project aims to completely migrate all the end-to-end testing files from
protractor to WebdriverIo and set up a new script file to run the new version
of the tests both on Cl as well as locally. This will help in maintaining the
tests for the long run as the Angular team is depreciating the protractor that
we are currently using for end-to-end testing.

What goals do
we want the
solution to
achieve?

All the test suites and their dependencies must be migrated to WebdriverIo.
The migrated tests should not hamper the flakiness, and memory usage and
also support Oppia’s functionality. They should be running smoothly on both
Cl as well as locally. Additionally, document the new tool we are going to
use.

Section 2.1: WHAT

Key User Stories and Tasks

Title User Story Description
(role, goal, motivation)
“As a …, I need …, so
that ….”

Priority List of tasks needed to achieve the goal
(this is the “User Journey”)

Links to
mocks/prototype
s, and/or PRD
sections that
spec out
additional
requirements.

1 Change
config file

As an Oppia developer,
I might need to enable
auto-capture
screenshots for failed
tests or change my
browser for running
e2e tests, and enable
recording videos of
tests while running
them locally so that I
can run and debug
tests efficiently.

Must-
Have

We will create a new config file related to
the testing framework (i.e wdio.conf.js for
WebdriverIo)

N/A

2 Setup a
new script
for running
tests.

As an Oppia developer,
I need a script file for
the smooth running of
tests both locally as
well as on Cl so that
the code can be tested
properly and
regressions can be
avoided easily.

Must-
Have

We will write a new script to run the
migrated test suites both locally and on Cl.

N/A

3 Migrates
e2e tests.

As an Oppia developer,
I want the e2e tests to
be fully functional and
up to date so that it
allows developers to
push code without
worrying about
breaking things. It
enables releases with
extra confidence and it
catches errors that are
missed during manual
regression testing.

Must
Have

Migrates all the test suites/utils and their
dependencies to the WebdriverIo.

Folders that contain protractor test suites:
● protractor
● protractor_desktop
● protractor_utils
● protractor_mobile
● objects/protractor.js
● interactions/protractor.js
● TextInput/protractor.js
● RatioExpressionInput/protractor.js
● NumericInput/protractor.js
● NumericExpressionInput/protract

or.js
● NumberWithUnits/protractor.js
● MultipleChoiceInput/protractor.js
● MathEquationInput/protractor.js

N/A

https://gist.github.com/ShivamJhaa/569715bfa83557bfee266ee4c2f8d8d4
https://github.com/oppia/oppia/tree/develop/core/tests/protractor
https://github.com/oppia/oppia/tree/develop/core/tests/protractor_desktop
https://github.com/oppia/oppia/tree/develop/core/tests/protractor_utils
https://github.com/oppia/oppia/tree/develop/core/tests/protractor_mobile
https://github.com/oppia/oppia/blob/develop/extensions/objects/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/TextInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/RatioExpressionInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/NumericInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/NumericExpressionInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/NumericExpressionInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/NumberWithUnits/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/MultipleChoiceInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/MathEquationInput/protractor.js

● ItemSelectionInput/protractor.js
● GraphInput/protractor.js
● FractionInput/protractor.js
● EndExploration/protractor.js
● Continue/protractor.js
● CodeRepl/protractor.js
● AlgebraicExpressionInput/protract

or.js

4 Document
the new
tool.

As an Oppia developer,
I want to quickly fix any
issues that arise in my
e2e tests, so that I can
get my PR submitted
and not be blocked on
those.

Must-
Have

Update the wiki page for the new tool we
are going to use.

N/A

Technical Requirements

Additions/Changes to Web Server Endpoint Contracts
We are not adding/changing any endpoint contracts to Web Server.

Calls to Web Server Endpoints
We are not making any new calls to Web Server Endpoints.

UI Screens/Components
To reduce developers' efforts in debugging we are using a combination of reporters for
generating test reports.

1. Spec reporter (Mostly the same as we have for Protractor)

https://github.com/oppia/oppia/blob/develop/extensions/interactions/ItemSelectionInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/GraphInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/FractionInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/EndExploration/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/Continue/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/CodeRepl/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/AlgebraicExpressionInput/protractor.js
https://github.com/oppia/oppia/blob/develop/extensions/interactions/AlgebraicExpressionInput/protractor.js
https://webdriver.io/docs/spec-reporter

2. HTML Reporter
Features

● Loud Summary of the Test Results.

● Test Results filtering. Great for focusing on failed tests

● Error stack trace attached to test.

Cons:
● Screenshots cannot be attached to the report.

● Sometimes style file for the report is not generated.

Test Passed:

Tests Failed:

https://webdriver.io/docs/wdio-html-nice-reporter

3. Timeline Reporter
Features

● Loud Summary of the Test Results.

● Detail of each test run including all screenshots captured during test execution.

● Test Results filtering. Great for focusing on failed tests

● Error stack trace attached to test.

● Ability to add additional information to test at runtime.

Cons:
● Screenshots attached don't necessarily are of the failed test case.

● Videos cannot be attached to the report.

● Error in frontend tests while using this reporter. link

https://webdriver.io/docs/wdio-timeline-reporter/
https://github.com/oppia/oppia/runs/6638434059?check_suite_focus=true#step:8:8348

3. Allure Reporter

Features:
● This is a very detailed report where we can see every request and response for each

action in the test is captured

● Videos, and screenshots are attached with every test if set to true.

● There is also a section called Graphs – where we can find more details such as the

Status of the entire suite, severity, duration, duration trend, and many more details as we

explore.

● The TREND graph is handy to monitor the stability of the tests/suites.

Cons:
● The reports can only be viewed using an IDE(using a live server). Directly opening the

html file with the browser will not show stats.

https://webdriver.io/docs/allure-reporter

All other reporters are XML and JSON based which is very confusing and not beneficial.

So after comparing all these I am going to use allure-reporter + spec reporter for

webdriverIO as allure-reporter provides all the features needed for Oppia.

I have used this reporter in my sample PR and uploaded the reports as Artifacts.

1. Report with a screenshot of failing test: Link

2. Report with videos and screenshots of failing test: Link

Data Handling and Privacy
No new data is stored.

Other Requirements
Recording Videos:

● In webdriverIO we have a third party package named wdio-video-reporter which handles

recording videos of failed test suites.

To configure this we just need to add the following lines in the wdio.conf.js

https://github.com/oppia/oppia/actions/runs/2449628118
https://github.com/oppia/oppia/actions/runs/2449967453
https://webdriver.io/docs/wdio-video-reporter/

reporters: [

[video, {

saveAllVideos: false,// If true, also saves videos for successful test cases

videoSlowdownMultiplier: 3, // Higher to get slower videos, lower for faster

videos [Value 1-100]

}],],

● The command browser.saveRecordingScreen(filepath) can be used to start video

recording of any test case while running it locally.

Note: To avoid the flakiness of tests due to memory issues that arise while recording the
videos we will only record the videos of failing tests only when we will set the
environment variable VIDEO_RECORDING_IS_ENABLED to 1 (it will be 0 by default) in
Github Actions like this. This is configurable per suite as we are already having for the
protractor and developers can use this to record videos on the Cl in order to debug e2e
tests.

Taking Screenshots:
● The command browser.saveScreenshot(filepath) can be used to save a screenshot of

any particular instance on running the tests locally.

For saving a screenshot on any failed test case we need to add the afterTest hook in the

wdio.conf.js file.

First create a folder in which screenshots will be saved.

var dirPath = path.resolve('__dirname', '..', '..',

'webdriverio-screenshots/');

try {

fs.mkdirSync(dirPath, { recursive: true });

var screenshotPath = '../webdriverio-screenshots';

} catch (err) {}

Then save the screenshots of failed tests in that particular folder

afterTest: async function (test, context, { error, result, duration, passed,

retries }) {

if (error) {

https://webdriver.io/docs/api/browser/saveRecordingScreen/
https://github.com/oppia/oppia/blob/develop/.github/workflows/e2e_other_tests.yml#L60
https://github.com/oppia/oppia/pull/15426/files#diff-f12c93469c6c7a079a5126a706d379d2630989f52b09cc8041fc56ffa64aa12eR47

var testName = encodeURIComponent(test.fullName.replace(/\s+/g, '-'));

var fileName = testName + '.png';

var filePath = path.join(screenshotPath, fileName);

// save screenshot

await browser.saveScreenshot(filePath);

}

Handling Offline Mode:

WebdriverIO provides a network command that allows modifying the network throughput of the

browser allowing to test under different network conditions, e.g. Regular 3G or even Offline

mode:

// throttle to Regular 3G

browser.throttle('Regular 3G')

// disable network completely

browser.throttle('Offline')

// set custom network throughput

browser.throttle({

'offline': false,

'downloadThroughput': 200 * 1024 / 8,

'uploadThroughput': 200 * 1024 / 8,

'latency': 20

})

Running tests on Mobile Devices:

We will use Appium for running tests on mobile devices with WebdriverIO. Appium is basically

a tool (like chromedriver) that connects a testing process with a device. It installs an application

in the device, called Webdriveragent, and then communicates with the device using HTTP calls.

So Appium is the service that allows communication in the first place.

WebdriverIO is the framework itself that we use to write tests for the different platforms. We

write code for WebdriverIO and then Appium executes those tests in the devices specified in the

configuration. It is free of cost.

Section 2.2: HOW

Existing Status Quo
At Oppia, we have end-to-end (E2E) tests to test our features from the user's perspective.

These tests interact with pages just like a user would, for example by clicking buttons and typing

into text boxes, and they check that pages respond appropriately from the user's perspective,

for example by checking that the correct text appears in response to the user's actions.

Oppia currently uses protractor for end-to-end testing but as the Angular team plans to end the

development of Protractor at the end of 2022 we need to migrate all these tests to some other

framework that supports most of the Oppia’s functionality. Apart from this, the framework should also

have the following features:

1. Supports taking screenshots and videos. This doesn’t have to be supported natively

(e.g. with protractor we use ffmpeg for screen recordings), but it should be possible to

do.

2. Supports simulating mobile devices, slow connections, and offline mode.

3. Is easy to write tests.

4. Is easy for us to migrate to.

5. Is fast and has low memory usage.

There are many excellent alternatives available to the open-source community, such as

1. Cypress

2. PlayWright

3. Puppeteer

4. Selenium-webdriver

5. TestCafe

6. WebdriverIO

Note: As Cypress has limited support for iframes and no support for new tab creation
and Puppeteer does not have a proper migration guide we are eliminating this for use.

So as per the need requirements, there are only four which we can consider:

1. Playwright

2. Selenium-webdriver

3. TestCafe

4. WebdriverIO

Now we will look at the pros and cons of each of the selected frameworks one by one.

Playwright:
Playwright is a web test automation library that tests against the underlying engine for the most

popular browsers. Playwright leverages the DevTools protocol to write powerful, stable

automated tests.

Advantages:
● Test across all modern browsers with a single API to automate Chromium, Firefox, and

WebKit.

● The API can be used in JavaScript & TypeScript, Python, C#, and Java.

● It's simple to set up.

● Stable features.

● Bidirectional (events) – automating things like console logs is easy.

● Auto-wait for elements to be ready before executing actions (like click, fill).

● Intercept network activity for stubbing and mocking network requests.

● Seamless integration with Jest.

Disadvantages:

● It is very new so the APIs are evolving.

https://www.cypress.io/
https://playwright.dev/
https://pptr.dev/
https://www.selenium.dev/
https://devexpress.github.io/testcafe/
https://webdriver.io/

● Has no support for IE11 or non-browser platforms.

● Documentations and community are not as good as the other framework yet.

Credits: browserstack.com

WebdriverIO:
WebdriverIO is a test automation framework that allows you to run tests based on the WebDriver

protocol and Appium automation technology.

WebdriverIO is written in JavaScript and uses Selenium under the hood. It also comes with its

own inbuilt test runner and supports other testing frameworks like Jasmine, Cucumber, and

Mocha.

Advantages:

● Easy to Set up: WebdriverIO follows a simple setup process. Just install node packages

using npm and start testing

● Customization: WebdriverIO is highly extendable so users can customize the

framework as they need

● Cross Browser Testing: WebdriverIO supports multiple browsers such as Chrome,

Edge, Firefox, Internet Explorer, and Safari.

● Native Mobile Application Testing: WebdriverIO framework can be extended to test

native mobile applications.

● Cross-Origin Support: WebdriverIO doesn’t restrict origins. Origin doesn’t matter much

as testers can automate them unconditionally.

● Multiple Tab/Window Support: WebdriverIO Supports switching to and from multiple

windows and tabs.

● iFrame Support: WebdriverIO doesn’t restrict in terms of iFrame. Testers can automate

iframe-based scenarios using simple web driver commands.

● Reporters: WebdriverIO supports more than dozens of reporters.

● Testing Framework/Assertions: WebdriverIO supports Mocha, Jasmine, and

Cucumber test frameworks.

● Parallel Testing: Testers can configure WebdriverIO to launch multiple instances and

execute tests parallelly.

● Screenshots: WebdriverIO can be configured to take screenshots of tests.

● Video: Though WebdriverIO doesn’t support video recording out of the box it can be

configured to do so.

https://www.browserstack.com/guide/playwright-vs-selenium
https://www.browserstack.com/guide/learn-about-cucumber-testing-tool

● Pipeline Integration: WebdriverIO tests can be integrated into CI Systems like Jenkins,

Azure, etc.

● Selectors: It supports various types of selectors including CSS and Xpath.

● Page Object Pattern: WebdriverIO Framework can be easily configured to Page Object

Model.

● File Upload and Download: WebdriverIO supports File Upload and Download features.

Disadvantages:
● Much slower compared to frameworks like Playwright and Puppeteer.

Credits: browserstack.com

Note: In order to verify that speed is not an issue for webdriverIO, I have made a comparison

between protractor and webdriverIO based on running the same tests (navigaion.js) in both of

them and the result was as follows:

There were some major time gaps in each test execution on my local system (maybe due to
RAM availability difference during each test), I tried to make a comparison on Github Action
instead.

Protractor:

S.No Link Time

1 Link 1 90 seconds

2 Link 2 68 seconds

3 Link 3 75 seconds

Avg time = 77 seconds

WebdriverIO:

S.No Link Time

1 Link 1 65 seconds

2 Link 2 53 seconds

3 Link 3 73 seconds

Avg time = 64 seconds

https://www.browserstack.com/guide/page-object-model-in-selenium
https://www.browserstack.com/guide/page-object-model-in-selenium
https://www.browserstack.com/guide/file-upload-in-selenium
https://www.browserstack.com/guide/cypress-vs-webdriverio
https://github.com/ShivamJhaa/oppia/blob/d840206e66bb39eed772acbff9205cb25ff65da3/core/tests/webdriverio/navigation.js
https://github.com/oppia/oppia/runs/6655636181?check_suite_focus=true#step:13:141
https://github.com/oppia/oppia/runs/6658545464?check_suite_focus=true#step:13:145
https://github.com/oppia/oppia/runs/6659207790?check_suite_focus=true#step:13:143
https://github.com/oppia/oppia/runs/6640918224?check_suite_focus=true#step:13:587
https://github.com/oppia/oppia/runs/6638434029?check_suite_focus=true#step:13:575
https://github.com/oppia/oppia/runs/6638414657?check_suite_focus=true#step:13:570

Conclusion: Though webdriverIO is slower as compared to playwright and cypress the average
time taken by webdriverIO is less the time is taken by protractor to run the same suite. So speed
is not an issue for webdriverIO.

TestCafe:
It is a pure node.js end-to-end solution for testing web apps.

Advantages:

● Super Easy setup: TestCafe is easy and quick to set up. Anyone who knows the basics

can do it on their own.

● No third-party dependency: TestCafe doesn’t depend on any third-party libraries like

webdriver, external jars, etc.

● Easy Test Scriptwriting: TestCafe command chaining techniques make teams more

productive. 20 lines of code in other frameworks can be just written in 10 to 12 lines

using TestCafe syntax.

● Fast and Stable: Because a test is executed inside a browser, the tests are faster

compared to other frameworks. Tests are also more stable as events are simulated

internally using JavaScript.

● Mock Requests: TestCafe helps to emulate HTTP responses to feed sample data to an

app, troubleshoot connectivity errors, and cheat downtime.

● Multiple Tab Support: Unlike Cypress, Testcafe provides functionalities like switching

between windows and multiple tab support.

● iframe Support: Testcafe supports iframes and one can switch to and from iframes in

their tests.

● Parallel Testing: With concurrency mode enabled, TestCafe tests can be run in parallel.

● Automated Waiting: TestCafe waits automatically for elements to appear. There’s no

need to insert External Waits.

● Cross Browser Testing: Testcafe supports all major browsers like old and new Edge,

Firefox, IE, and all Chrome family browsers.

● Debuggability: Testcafe provides Live Mode which helps to visualize individual actions

on the browser for easier debugging.

● Screenshots: TestCafe supports taking screenshots for tests using built-in screenshot

commands.

Disadvantages:

● Assertion Libraries: TestCafe supports built-in assertion libraries only.

● Selector Support: By default, TestCafe supports only CSS selectors.

● Execution of Tests: Browsers are not aware that they are running in test mode. So, in

some edge cases, automation control can be disrupted. It’s also quite hard to debug

possible issues.

Credits: dzone.com

Selenium-Webdriver:

Selenium comes in mostly two variations: Selenium WebDriver and Selenium IDE. The

WebDriver version is a robust framework you can interact with programmatically using a variety

of programming languages.

Advantages:

● Parallel Test Execution: Selenium supports the parallel execution of tests on multiple

machines. Through the use of Selenium Grid, users can perform tests across a variety of

browsers and platforms, managing different browsers and their configurations in a

centralized way.

● Third-Party Integrations: Here’s another area where Selenium shines: integrations. Since

third-party plugins can extend Selenium’s functionality, you can use that to your

advantage. You can use one of the many supported or unsupported plugins that already

exist or create your own.

● Community Support: Selenium is an open-source tool that’s been around for quite a
while. It has great community support you can count on, not only with regular updates
and upgrades but also with comprehensive documentation and many other learning
resources.

Disadvantages:

● High Test Maintenance: One of the main disadvantages of working with Selenium is that

it often leads to fragile tests. Selenium tests will rely on a single, rigid element identifier.

Changes to the application, especially those in elements’ identifiers will break Selenium

tests. This stops releases in their tracks as teams try to diagnose failures, fix tests, and

rerun them.

https://www.browserstack.com/guide/css-selectors-in-selenium
https://dzone.com/articles/testcafe-typescript-javascript-automation-testing-from-scratch
https://www.testim.io/blog/what-is-grid-testing-intro-to-selenium-grid-and-alternatives/
https://www.testim.io/blog/selenium-tests-fragile/

● No built-in image comparison: Selenium does not have a built-in image comparison it is

important to validate that images that should be displayed in the application are there,

and are correctly shown

Credits: testim.io

The following table sum up the comparisons for each of them:

Key Factors Playwright WebdriverIO TestCafe Selenium-
Webdriver

Performance ● Fast
● Stable
● Reliable

● Slower
● Stable
● Reliable

● Fast
● Stable
● Reliable

● Fast
● Stable
● Reliable

Developer
Experience

● Simple Setup
● Javascript-based

● No additional
browser driver

● Javascript-based

● No browser
control

● Only CSS
selectors by
default

● High Test
Maintenance

● Supports
multiple
languages

Documentation ● Great
Documentation

● Migration Guide
Present

● Good
Documentation

● Migration Guide
Present

● Good
Documentation

● Migration
Guide Present

● Good
Documentatio
n

● No migration
Guide

Community ● Smaller
Community

● Few Maintainers

● Larger
Community

● Many
maintainers

● Less
community
support than
WebdriverIo

● Huge
community
support

So after analyzing the pros and cons of each of the above-mentioned frameworks, I am
able to conclude that WebdriverIO is best suited for Oppia.

Solution Overview
After the selection of the framework, I need to achieve the following tasks to successfully

complete this project:

1. Setup WebdriverIO for running e2e tests.

2. Migrating the test suites from protractor to WebdriverIO

3. Documenting the use of WebdriverIO for other developers.

https://blog.testproject.io/2019/08/15/open-source-image-comparison-test-automation/
https://www.testim.io/blog/selenium-pros-and-cons/

Task 1: Setup WebdriverIO for running E2E tests.
The setup can be done by following the given steps:

Step 1: Installation of WebdriverIO.
The installation can be done by simply adding the following lines in the devDependencies

section of the package.json file.

"@wdio/cli": "^7.16.0",

"@wdio/jasmine-framework": "^7.16.0",

"@wdio/local-runner": "^7.16.0",

"wdio-chromedriver-service": "^7.2.8",

"webdriverio": "^7.19.7",

Then we need to run the following command to install all these packages:

../oppia_tools/yarn-<yarn version>/bin/yarn install

Note: Developers do not need to type this command, this step is just for me to install the

webdriverIO on my local system for the first time, once the setup PR will be merged, then the

developer will just have to pull the changes and they can directly run the command to run the

tests (this is being handled by Oppia's existing dependency installation code, not by new code

that we need to write) in webdriverIO

Now we are done with the installation process, we need to create a config file for running the

tests in webdriverIO. We will make this file in the same directory where we have our protractor

config file i.e in the core/tests directory.

The basic structure of this config file will look something like this. (wdio.config.js)

Step 2: Configuring the script run_e2e_tests.py and migrating the
protractor.conf.js
To run the e2e tests on the local environment we need to run the following script. The command

structure to run the e2e tests is as follows:

python -m scripts.run_e2e_tests --suite="suiteName"

https://github.com/oppia/oppia/blob/develop/package.json
https://gist.github.com/ShivamJhaa/569715bfa83557bfee266ee4c2f8d8d4
https://github.com/oppia/oppia/blob/develop/scripts/run_e2e_tests.py

Here ‘suiteName’ specifies which suite we want to run or if we want to run all the tests then we

need to provide ‘full’ as an argument for suiteName.When this command is executed the

following lines in the run_e2e_tests.py run the tests for the protractor after starting the server.

proc = stack.enter_context(servers.managed_protractor_server(

suite_name=args.suite,

dev_mode=dev_mode,

debug_mode=args.debug_mode,

sharding_instances=args.sharding_instances,

stdout=subprocess.PIPE))

Now, there will be two stages for which we need to modify these script files. The stages will be:

● Hybrid State: In this stage, we will have some tests written in protractor while some of

them are migrated to WebdriverIO.

● Migration completed state: This stage will come after we have completed the migration

of all test suites.

Hybrid State
As we will be having test suites written in both protractor as well as WebdriverIO we need to first

check whether the suite requested by the user is migrated or not. If the tests suite is migrated in

WebdriverIO then we will run the tests using the wdio.conf.js file else we will run the tests using

the protractor.conf.js file. To do this, we will create a list in this file where we will have the name

of all the test suites migrated to WebdriverIO like this and a list where we will list all the test

suites still in Protractor.

SUITES_MIGRATED_TO_WEBDRIVERIO = [

'abc.js'

]

SUITES_STILL_IN_PROTRACTOR = [

…
]

Now the check to whether run the webdriverIO or protractor server will be like this.

if args.suite in SUITES_MIGRATED_TO_WEBDRIVERIO:

proc = stack.enter_context(servers.managed_webdriverIO_server(

suite_name=args.suite,

stdout=subprocess.PIPE))

https://github.com/oppia/oppia/blob/7c7f59ded4342f6b093444587054f4baa7fc1275/scripts/run_e2e_tests.py#L267

else:

stack.enter_context(servers.managed_webdriver_server(

chrome_version=args.chrome_driver_version))

proc = stack.enter_context(servers.managed_protractor_server(

suite_name=args.suite,

dev_mode=dev_mode,

debug_mode=args.debug_mode,

sharding_instances=args.sharding_instances,

stdout=subprocess.PIPE))

Note: After a test suite is migrated from protractor to webdriverIO we will delete the
following suite name from the protractor.conf.js, SUITES_STILL_IN_PROTRACTOR and
add them in the wdio.conf.js and SUITES_MIGRATED_TO_WEBDRIVERIO lists.
Now when the user wants to run all the test suites then we will simply run both webdriverIO and

protractor tests one by one with the suiteName value being passed as the list of files in that

particular framework.

if args.suite == 'full':

proc = stack.enter_context(servers.managed_protractor_server(

suite_name=args.suite,

dev_mode=dev_mode,

debug_mode=args.debug_mode,

sharding_instances=args.sharding_instances,

stdout=subprocess.PIPE))

proc = stack.enter_context(servers.managed_webdriverIO_server(

suite_name=args.suite,

debug_mode=args.debug_mode,

chrome_version=args.chrome_driver_version,

stdout=subprocess.PIPE))

elif args.suite in SUITES_MIGRATED_TO_WEBDRIVERIO:

proc = stack.enter_context(servers.managed_webdriverIO_server(

suite_name=args.suite,

debug_mode=args.debug_mode,

chrome_version=args.chrome_driver_version,

stdout=subprocess.PIPE))

print(

'Servers have come up.\n'

'Note: You can find a detailed report of running tests '

'in ../webdriverIO-tests-report/')

https://github.com/oppia/oppia/blob/7c7f59ded4342f6b093444587054f4baa7fc1275/core/tests/protractor.conf.js#L12
https://gist.github.com/ShivamJhaa/569715bfa83557bfee266ee4c2f8d8d4#file-wdio-conf-js-L1

elif args.suite in SUITES_STILL_IN_PROTRACTOR:

proc = stack.enter_context(servers.managed_protractor_server(

suite_name=args.suite,

dev_mode=dev_mode,

debug_mode=args.debug_mode,

sharding_instances=args.sharding_instances,

stdout=subprocess.PIPE))

print(

'Servers have come up.\n'

'Note: If ADD_SCREENSHOT_REPORTER is set to true in '

'core/tests/protractor.conf.js, you can view screenshots of the '

'failed tests in ../protractor-screenshots/')

else:

print(

'The suite requested to run does not exists'

'Please provide a valid suite name')

sys.exit(1)

Here, managed_webdriverIO_server function looks like this:

@contextlib.contextmanager

def managed_webdriverIO_server(

suite_name='full', debug_mode=False, sharding_instances=1,

chrome_version=None, **kwargs):

"""Returns context manager to start/stop the WebdriverIO server gracefully.

Args:

suite_name: str. The suite name whose tests should be run. If the value

is `full`, all tests will run.

dev_mode: bool. Whether the test is running on dev_mode.

**kwargs: dict(str: *). Keyword arguments passed to psutil.Popen.

Yields:

psutil.Process. The webdriverio process.

Raises:

ValueError. Number of sharding instances are less than 0.

"""

if sharding_instances <= 0:

raise ValueError('Sharding instance should be larger than 0')

if chrome_version is None:

chrome_version = get_chrome_verison()

webdriverIO_args = [

common.NODE_BIN_PATH2,

common.NODEMODULES_BIN_PATH, common.WEBDRIVERIO_CONFIG_FILE_PATH,

'--suite', suite_name, chrome_version,

]

if debug_mode:

NOTE: This is a flag for Node.js, not Protractor, so we insert it

immediately after NODE_BIN_PATH.

webdriverIO_args.insert(0, 'DEBUG=true')

OK to use shell=True here because we are passing string literals and

constants, so there is no risk of a shell-injection attack.

managed_webdribverIO_proc = managed_process(

webdriverIO_args, human_readable_name='WebdriverIO Server', shell=True,

**kwargs)

with managed_webdribverIO_proc as proc:

yield proc

Note: We will need a lint check in python_linter.py file in order to ensure the union of both

SUITES_* constants is the full list. The check will look like this:

def check_all_e2e_suites(self):

"""This function is used to check that whether all

the e2e suites are present in run_e2e_tests.py file.

Returns:

TaskResult. A TaskResult object representing the result of the lint

check.

"""

name = 'All E2E Suites'

error_messages = []

failed = False

ALL_SUITES_PRESENT = (

SUITES_MIGRATED_TO_WEBDRIVERIO + SUITES_STILL_IN_PROTRACTOR)

if set(ALL_SUITES_PRESENT) != set(TOTAL_E2E_SUITES):

failed = True;

if failed:

error_message = 'E2E suites missing from list in run_e2e_tests.py'

error_messages.append(error_message)

return concurrent_task_utils.TaskResult(

name, failed, error_messages, error_messages)

Migration completed state
After the complete migration of all the test suites we will delete the managed_protractor_server

function and also the protractor.conf.js file from the codebase.

Also, we will not need any checks mentioned in the above section while running the test suites,

so we will undo those changes as well. We will only have a single config file(wdio.conf.js) as

well.

Note: To run the tests in debug mode currently I am using the following command which

will be configured in the same way (order) as it's written below in the script file at the start

of the migration:

python -m scripts.run_e2e_tests –debug_mode --suite="suiteName"

All the flags will follow the same configuration as it was earlier for protractor.

wdio.conf.js
The configuration file contains all the necessary information to run your test suite. It’s just a

NodeJS module that exports a JSON. The basic structure of this file will be something like this:

var suites = {

...

};

exports.config = {

…
}:

Here suites object will be providing the path of test suites that we will be running for a particular

suite and the config will contain all the information about the running of tests like the timeout for

which the tests will be running, sharding instances, etc. The config file after migration will look

something like this.

https://github.com/oppia/oppia/blob/develop/scripts/run_e2e_tests.py#L51
https://webdriver.io/docs/configurationfile/
https://github.com/oppia/oppia/blob/56401d4da8bf854da7614730fd488c837f6f2b31/core/tests/wdio.conf.js

Task 2: Migrating the test suites from protractor to WebDriverIO.
Hybrid Mode
When I will start migrating the E2E suites till the time it gets completed we will be in hybrid mode

i.e the tests will be present in both webdriverIO and protractor. There are a few important points

about the hybrid mode-

● We will have two tools to run the E2E tests i.e protractor and webdriverIO

● Each test suite will be either present in webdriverIO or protractor.

● Same utils files can be present in both webdriverIO and protractor.

● No file will contain the code of both webdriverIO and protractor.

● Protractor suite can only work on protractor utils and vice versa for webdriverIO.

After having a lot of discussions with mentors, we have decided to have a tracker sheet that I

will update on a regular basis which will have all the information like suites migrated to
webdriverIO, suites still in protractor and when I am going to migrate them,
dependencies migrated to webdriverIO, dependencies still in protractor and common
dependencies which are present in both protractor and webdriverIO. The developers can

take references before making any changes to e2e files in order to know which files are present

in which version, what files I am going to migrate in future so that they can avoid any

unnecessary clashes. I will share the link to this tracker with all Oppia developers (

oppia-dev@googlegroups.com) and also update it on the wiki page before I will start migrating

the e2e files.

Now there are some potential issues that need to be addressed:

1. How exactly are common files migrated, and how will the interdependencies
work?

Res: Let's understand this situation with a simple test case. I have two test files

AdditonalPlayer (having dependencies ExplorationEditorPage, ExplorationPlayerPage,
LibraryPage), and AdditonalEditorFeaturesModals (having dependencies

ExplorationEditorPage). We can see that the ExplorationEditorPage is common in both the

test suites. So now I need to migrate the AdditionalPlayer then I will also have to migrate its

dependencies, there will be no issue with ExplorationPlayerPage, LibraryPage as they do not

have any suites dependent on them, we will just migrate them and delete their protractor

version. But for ExplorationEditorPage we still have one dependent suite i.e

AdditonalEditorFeatures so we will migrate it to successfully migrate out the AdditionalPlayer

suite but we will not delete the protractor version of it (as a protractor suite cannot work on

webdriveriO util files). So now the ExplorationEditorPage file will be a common file that

presents in both webdriverIO as well as protractor version. To reduce code duplicacy to some

extent I will migrate only that portion of ExplorationEditorPage that will be used in the

AdditonalPlayer suite, rest can be migrated when we will migrate

AdditonalEditorFeaturesModals.

2. What if some user made some changes in the common files (like
ExplorationEditorPage here) during hybrid mode?

Res: The tests might break if the changes are only applied in one version of the common file.

So we need to make sure to keep the two versions of the common file (ExplorationEditorPage

here) in sync. We will not merge the PR of the developer if it's not synced. I will be helping in case

the developer is having any difficulty in making changes for other versions.

Note: I have to depend upon the QA-reviewers for letting me know about any such case, or else I

can be one of the code owners of utility files of both versions (as common files will be present here

only) so that I will be aware of any such change is being made.

3. How to handle a situation where a protractor suite is accessing a WebdriverIO
dependency?

Res: We have already seen that the protractor suite will not access any WebdriverIO

dependency, if any dependency is common to them then it will be present in both webdriverio

and protractor util folder.

4. How to distinguish the files so that developers aren’t confused about which e2e
file to modify?

Res: There are two major scenarios for them.

1. If they want to add a new suite:

● Add the new e2e test suite in webdriverio.

2. Add the tests in the already present suite:

● If the suite is migrated to webdriverIO add the tests in webdriverIO

● If the suite is still in protractor add the tests in protractor.

Edge Case: If I already have a migration PR open for a particular suite and at the same time

someone also made a PR adding the tests in the same suite, in this case, if my PR will

be merged first then the contributor needs to write the tests in webdriverIO (I will coordinate

and help him) otherwise I will update my PR with the changes.

So now we can move on to the migration part:

The basic flow of migration will be something like this:

To make a priority list we need to first look at the dependencies of each of the following
suites.

Note: The priority list is made in order to minimize the number of common dependencies at

any point of time (dependency present in both WebdriverIO and Protractor). There are 5

dependencies that are present in more than 10 suites, 3 dependencies that are present in 5-10

suites, and the rest all are present in less than 5 suites. So what I did is, I tried to make a

combination of suites that shares common dependencies in order to finish the complete

migration of dependencies in the minimum number of time.

S.No Suite Name Dependencies

1. Accessibility LibraryPage

2. AdditonalEditorFeatures ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage

3. AdditonalEditorFeaturesModals ExplorationEditorPage

4. AdditionalPlayerFeatures ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage

5. AdminPage AdminPage

6. BlogDashBoard BlogDashboardPage

7. ClassroomPage ClassroomPage, LibraryPage

8. ClassroomPageFileUploadFeatures TopicEditorPage,
TopicsAndSkillsDashboardPage,
LibraryPage, ClassroomPage,
AdminPage

9. Collections CreatorDashboardPage,
CollectionEditorPage, LibraryPage

10. ContributorDashboard ContributorDashboardPage,
ContributorDashboardAdminPage,
ExplorationEditorPage, SkillEditorPage,
TopicsAndSkillsDashboardPage

11. CoreEditorAndPlayerFeatures CreatorDashboardPage,
ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage

12. CreatorDashboard CreatorDashboardPage,
ExplorationPlayerPage,
SubscriptionDashboardPage

13. Embedding ExplorationEditorPage,
ExplorationPlayerPage

14. ExplorationFeedbackTab CreatorDashboardPage,
ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage

15. ExplorationHistoryTab ExplorationEditorPage,
ExplorationPlayerPage

16. ExplorationImprovementsTab AdminPage, ExplorationEditorPage

17. ExplorationStaticticsTab CreatorDashboardPage,

ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage

18. ExplorationTranslationTab CreatorDashboardPage,
ExplorationEditorPage

19. Extensions ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage,
Interactions

20. FeatureGating AdminPage

21. FileUploadFeatures ExplorationEditorPage,
CreatorDashboardPage

22. FileUploadExtensions ExplorationEditorPage,
ExplorationPlayerPage

23. Library AdminPage, ExplorationEditorPage,
LibraryPage

24. LearnerDashboard TopicsAndSkillsDashboardPage,
ExplorationPlayerPage,
LearnerDashboardPage, AdminPage,
TopicEditorPage, StoryEditorPage,
LibraryPage,
SubscriptionDashboardPage,
TopicAndStoryViewerPage,
ExplorationEditorPage, SkillEditorPage

25. Learner AdminPage, CreatorDashboardPage,
CollectionEditorPage,
ExplorationEditorPage,
ExplorationPlayerPage,
LearnerDashboardPage, LibraryPage

26. Navigation GetStartedPage

27. PlayVoiceover ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage

28. Preferences PreferencesPage

29. ProfileFeatures CreatorDashboardPage,
ExplorationPlayerPage, LibraryPage,
PreferencesPage, ProfilePage

30. ProfileMenu LearnerDashboardPage

31. Publication AdminPage, ExplorationEditorPage,
ExplorationPlayerPage, LibraryPage

32. SkillEditor ExplorationEditorPage,
TopicsAndSkillsDashboardPage,
SkillEditorPage

33. Subscription CreatorDashboard, PreferencesPage,
SubscriptionDashboardPage

34. TopicAndStoryEditor TopicsAndSkillsDashboardPage,
TopicEditorPage, StoryEditorPage,
SkillEditorPage, ExplorationEditorPage,
ExplorationPlayerPage

35. TopicAndStoryEditorFileUploadFea
tures

TopicsAndSkillsDashboardPage,
TopicEditorPage, StoryEditorPage,
SkillEditorPage, ExplorationEditorPage

36. TopicAndStoryViewer AdminPage,
TopicsAndSkillsDashboardPage,
TopicAndStoryViewerPage,
TopicViewerPage, TopicEditorPage,
StoryEditorPage, SubTopicViewerPage,
ExplorationEditorPage,
ExplorationPlayerPage, SkillEditorPage

37. TopicAndSkillDashboard ExplorationEditorPage,
TopicsAndSkillsDashboardPage,
SkillEditorPage, TopicEditorPage

38. Users CollectionEditorPage,
CreatorDashboardPage,
ExplorationEditorPage, LibraryPage,
ModeratorPage, PreferencesPage

39. Wipeout DeleteAccountPage,
ExplorationEditorPage

Note: While migrating a suite with its dependencies, then it might happen that there can be

more than one test suite with the same dependency. So, in that case, we will be having two

dependencies, one for protractor and the other for webdriverio. We can only delete the

protractor version if all the suites with that dependency are migrated to webdriverIO.

After carefully analyzing the above that I am able to create the following order in which we are

going to select the tests suite for migration:

● Collections

● Learner

● User

● ProfileFeatures

● Subscription

● Preferences

● CreatorDashboard

● LearnerDashboard

● ProfileMenu

● TopicAndStoryViewer

● TopicAndStoryEditor

● TopicAndStoryEditorFileUploadFeatures

● BlogDashBoard

● ContributorDashboard

● ClassroomPage

● ClassroomPageFileUploadFeatures

● TopicAndSkillDashboard

● SkillEditor

● Wipeout

● Navigation

● AdditonalEditorFeatures

● AdditonalEditorFeaturesModals

● AdditionalPlayerFeatures

● Accessibility

● AdminPage

● CoreEditorAndPlayerFeatures

● ExplorationFeedbackTab

● ExplorationHistoryTab

● ExplorationImprovementsTab

● ExplorationStaticticsTab

● ExplorationTranslationTab

● Embedding

● Extensions

● FeatureGating

● FileUploadFeatures

● FileUploadExtensions

● Library

● PlayVoiceover

● Publication

Now after we select a file to migrate we need to do the actual migration part. So, we will see

how I am going to migrate the file:

Selectors:
The $ command is a short way to call the findElement command in order to fetch a single

element on the page

The WebDriver Protocol provides several selector strategies to query an element. WebdriverIO

simplifies them to keep selecting elements simple.

Please note that even though the command to query elements in webdriverIo is called $ and $$,

they have nothing to do with jQuery.

Name Protractor WebdriverIO

By class name element(by.css('.className')) $('.className')

Element containing certain
string

element(by.cssContainingText(tag, text)) $('tag=text')

By ID element(by.css('#idName')) $('.#idName')

Multiple Elements element.all(by.css('.className')) $$('.className')

Chain Selectors element(by.css('some-css')).element(by.cs
s('tag-within-css'))

$('some-css').$('tag-within-css’')

Selecting element one by
one in loop

element.get(i)
Here i refers to the index of element to be
selected

$(selector).$$(selector)[i]

We are going to use mostly these selectors only while doing migration, so I am not mentioning

other query selectors.

Note:
1. There is no proper substitute available for the command element.getWebElement()

in webdriverIO but we can use browser.findElement() as a substitute for this.

https://webdriver.io/docs/api/webdriver/#findelement
https://w3c.github.io/webdriver/
https://webdriver.io/docs/selectors/#element-with-certain-text
https://webdriver.io/docs/selectors/#chain-selectors
https://webdriver.io/docs/api/element/$$/
https://webdriver.io/docs/api/webdriver/#findelement

2. For selecting elements one by one in a loop we can use $$ operator and find the

element with a given index, like $(selector).$$(selector)[i].

After selecting any element we can do a lot of operations on them. Now we will see some

important operations that we need.

Actions WebdriverIO Protractor

Click on the element $(selector).click() element.click()

Get the text content from a DOM-element $(selector).getText() element.getText()

Get the source code of the specified DOM element by
the selector.

$(selector).getHTML() element.getInnerHtml()
element.getOuterHtml()

Navigate to the given destination browser.url(url) browser.get(url)

Get the url of the currently opened website. browser.getUrl(); browser.getCurrentUrl()

Get an attribute from a DOM-element based on the
attribute name.

$(selector).getAttribute(
attributeName)

element.getAttribute(attribut
eName)

Wait until a given condition is fulfilled browser.waitUntil(condit
ion, { timeout,
timeoutMsg, interval })

browser.wait(condition,
time, optional_msg)

Send a sequence of keystrokes to the active element browser.keys(value) element.sendKeys(keys)

Uploads a file to the browser driver (e.g.
Chromedriver)

browser.uploadFile(loca
lPath)

N/A

Drag an item to a destination element or position. $(selector).dragAndDrop
(target, { duration })

N/A

Selected DOM-Element is clickable, visible, and exists. $(selector).isClickable() until.elementToBeClickable(
element)

Get the value of a <textarea>, <select> or text <input>
found by given selector

$(selector).getValue() element.getText()

Clear a <textarea> or text <input> element’s value $(selector).clearValue() element.clear()

Timeouts:

https://webdriver.io/docs/api/element/$$/
https://webdriver.io/docs/api/element/click
https://webdriver.io/docs/api/element/getText
https://webdriver.io/docs/api/element/getHTML
https://webdriver.io/docs/api/browser/url/
http://v4.webdriver.io/api/property/getUrl.html
https://webdriver.io/docs/api/element/getAttribute/
https://webdriver.io/docs/api/element/getAttribute/
https://webdriver.io/docs/api/browser/waitUntil/
https://webdriver.io/docs/api/browser/waitUntil/
https://webdriver.io/docs/api/browser/waitUntil/
https://webdriver.io/docs/api/browser/keys/
https://webdriver.io/docs/api/browser/uploadFile
https://webdriver.io/docs/api/browser/uploadFile
https://webdriver.io/docs/api/element/dragAndDrop/
https://webdriver.io/docs/api/element/dragAndDrop/
https://webdriver.io/docs/api/element/isClickable
https://webdriver.io/docs/api/element/getValue
https://webdriver.io/docs/api/element/clearValue/

Each command in WebdriverIO is an asynchronous operation.Therefore, time is a crucial

component in the whole testing process. When a certain action depends on the state of different

action, you need to make sure that they get executed in the right order. Timeouts play an

important role when dealing with these issues.

● WaitFor* timeout​

WebdriverIO provides multiple commands to wait on elements to reach a certain state (e.g.

enabled, visible, existing). These commands take a selector argument and a timeout number,

which determines how long the instance should wait for that element to reach the state. The

waitforTimeout option allows you to set the global timeout for all waitFor* commands, so you

don't need to set the same timeout over and over again.

// wdio.conf.js

exports.config = {

// ...

waitforTimeout: 5000,

// ...

}

Expected Conditions:
It's a library of canned expected conditions that are very much useful while writing e2e tests. We

are using a lot of expected conditions in the test suites I am going to migrate. So, we need a

proper replacement for protractor Expected Conditions.

In webdriverIO we have a third-party library called wdio-wait-for which is already installed with

wdio-test-runner which takes care of this. Now, we will see the proper replacement of each of

these commands in webdriverIO.

Action Protractor WebdriverIO

A condition for checking an
element contains a specific text

until.textToBePresentInElement((
selector, text), time);.

browser.waitUntil(textToBePresentInE
lement('selector',expectedText));

A condition for checking an
element is visible and clickable

until.elementToBeClickable(elem
ent)

elementToBeClickable(selector)

A condition for checking the
element to be invisible

until.invisibilityOf(element) invisibilityOf(selector)

A condition for checking that an
element is present on the DOM

until.presenceOf(element) presenceOf('.header')

https://webdriver.io/docs/wdio-wait-for/
https://github.com/webdriverio/wdio-wait-for/blob/main/docs/modules/element_texttobepresentinelement.md
https://github.com/webdriverio/wdio-wait-for/blob/main/docs/modules/element_texttobepresentinelement.md
https://github.com/webdriverio/wdio-wait-for/blob/main/docs/modules/element_elementtobeclickable.md
https://github.com/webdriverio/wdio-wait-for/blob/main/docs/modules/element_invisibilityof.md
https://github.com/webdriverio/wdio-wait-for/blob/main/docs/modules/element_presenceof.md

of a page

A condition for checking the
element to be visible

until.visibilityOf(element) visibilityOf('.header')

A condition for checking an alert
on the page

until.alertIsPresent() alertIsPresent()

* until = protractor.ExpectedConditions

Debugging:
In many cases, we can use browser.debug() to pause your test and inspect the browser.

Our command-line interface will also switch into REPL mode. This mode allows you to fiddle

around with commands and elements on the page. In REPL mode, you can access the browser

object—or $ and $$ functions—just like you can in your tests.

When using browser.debug(), you will likely need to increase the timeout of the test runner to

prevent the test runner from failing the test for taking too long. For example:

In wdio.conf.js:

jasmineOpts: {

defaultTimeoutInterval: (24 * 60 * 60 * 1000)

}

Auto-Waiting
One of the most common reasons for flaky tests is interactions with elements that don't exist in

your application at the time you want to interact with it. Modern web applications are very

dynamic, elements show up and disappear. As a human, we are waiting unconsciously for

elements but in an automated script we don't consider this as an action. There are two ways to

wait on an element to show up.

Implicit vs. Explicit​
The WebDriver protocol offers implicit timeouts that allow specifying how long the driver is

supposed to wait for an element to show up. By default, this timeout is set to 0 and therefore

makes the driver return with a no such element error immediately if an element could not be

found on the page. Increasing this timeout using the setTimeout would make the driver wait and

increases the chances that the element shows up eventually.

https://github.com/webdriverio/wdio-wait-for/blob/main/docs/modules/element_visibilityof.md
https://github.com/webdriverio/wdio-wait-for/blob/main/docs/modules/browser_alertispresent.md
https://webdriver.io/docs/api/browser/debug/

A different approach is to use explicit waiting which is built into the WebdriverIO framework in

commands such as waitForExist. With this technique, the framework polls for the element by

calling multiple findElements commands until the timeout is reached.

Built-in Waiting​
Both waiting mechanisms are incompatible with each other and can cause longer wait times. As

implicit waits are a global setting it is applied to all elements which is sometimes not the desired

behavior. Therefore WebdriverIO provides a built-in wait mechanism that automatically explicitly

waits on the element before interacting with it.

Credits: WebdriverIO Official Documentation.

In the protractor, we are using ExpectedCondition i.e we specify for how much time the driver

will wait for the element to show up. In webdriverIO we will use wdio-wait-for which is the

replacement for ExpectedCondition.

Task 3: Document the usage of WebdriverIO.
We need to completely change the following sections of Oppia’s wiki page after the migration is

completed in order to document the usage of the new testing framework i.e WebdriverIO.

● End to End Tests

● Debug end to end tests

Third-Party Libraries

No. Third-party
library
name and
version

Link to
third-party
library

Why it is needed License1 (if
third-party
library)

[Android only]
Min / target / max
SDK version that
the library supports

1 webdriverio webdriverIO To run the e2e tests in
webdriverio

MIT

2 @wdio/jasmin
e-framework

@wdio/jasmi
ne-framework

To use jasmine for writing
the test suites of webdriverio

MIT

3 @wdio/cli @wdio/cli To run the webdriverio tests
using wdio.conf.js file

MIT

4 wdio-chromed
river-service

wdio-chrome
driver-service

To run chromedriver
seamlessly while running

MIT

1

https://webdriver.io/
https://github.com/oppia/oppia/wiki/End-to-End-Tests
https://github.com/oppia/oppia/wiki/Debug-end-to-end-tests
https://www.npmjs.com/package/webdriverio
https://www.npmjs.com/package/@wdio/jasmine-framework
https://www.npmjs.com/package/@wdio/jasmine-framework
https://www.npmjs.com/package/@wdio/cli
https://www.npmjs.com/package/wdio-chromedriver-service
https://www.npmjs.com/package/wdio-chromedriver-service

tests using wdio-testrunner

5 @wdio/local-r
unner

@wdio/local-
runne

To run the tests locally MIT

6 wdio-video-rep
orter

wdio-video-re
porter

To record videos of tests
cases

MIT

7 wdio-html-nice
-reporter

wdio-html-nic
e-reporter

To make a proper html report
of tests results.

MIT

Impact on Other Oppia Teams

Conflicts with other project’s e2e tests:

I talked with all the fellow GSoC students in order to know who all have to add new e2e tests in

their GSoC projects.

Now there are two major scenarios for them.

1. If they want to add a new suite:

● Add the new e2e test suite in webdriverio.

Note: As the first new suite will be added in late August, we will have most of the files

already migrated to WebdriverIO like action.js, forms.js, user.js, general.js waitFor.js

which are mostly needed for writing a new test.

2. Add the tests in the already present suite:

● If the suite is migrated to webdriverIO add the tests in webdriverIO

● If the suite is still in protractor add the tests in protractor

After comparing their PR expected date with my expected date of migration of that suite I have
mentioned the framework in which they have to add the tests.

Project (Student) New Suite/Changes in
Existing suite

PR Expected
Date

Need to write test in

Adding a contributor
dashboard stats page
(Ayush Jain)

New Suite 1st Sept WebdriverIO

Learner Group MVP
(Pankaj Prajapati)

New Suite 20th Aug WebdriverIO

https://www.npmjs.com/package/@wdio/local-runner
https://www.npmjs.com/package/@wdio/local-runner
https://www.npmjs.com/package/wdio-video-reporter
https://www.npmjs.com/package/wdio-video-reporter
https://www.npmjs.com/package/wdio-html-nice-reporter
https://www.npmjs.com/package/wdio-html-nice-reporter

Helping Learners when
they are stuck (Manan
Rathi)

Changes in the existing
suite
(eplorationStatisticsTab.js)

10 July WebdriverIO

Improving the lesson
creation experience
(Soumyajyoti Dey)

Changes in the existing
suite
(coreEditorAndPlayer.js)

13 July and 25
Aug

Protractor -13 July
WebdriverIO- 25 Aug

Making the Contributor
Dashboard UI
Responsive
(Harshvardhan Singh)

New test (Mobile test) Not yet
decided

WebdriverIO

Celebrating learners'
accomplishments
(Vishnu)

Changes in the existing
suite
(topicAndStoryViewer.js)

30th Aug WebdriverIO

Blog Integration (Rijuta
Singh)

Changes in the existing
suite
(blogDashboard.js)

End Aug WebdriverIO

Risks and mitigations

Potential Risk Mitigation

Introduction of e2e flakes due to migration
of test suites

After the migration of each test suite I will
provide the video recording for the protractor
version of test suites as well as the
webdriverIO version of test suites.
Also due to the features like auto-waiting that
we get in webdriverIO, the introduction of
flakes will be having a minimal chance.
If by any means there is some introduction of
flakes in the codebase, I will refactor the tests
in a way to remove the flake from the
codebase.

There may be some PRs that might contain
changes in the e2e files written in the
protractor and at the same time, it might
happen, that I also have an open PR for the
migration of that particular suite. This may
result in failing tests on the develop branch.

In this particular case, I need to add the label
Post-merge sync to my PR so that the
contributor needs to change the tests to
webdriver instead of the protractor.

Implementation Approach

Storage Model Layer Changes
The storage model layer will not be changed.

Domain Objects
The domain objects will not be changed.

User Flows (Controllers and Services)
The user flow will not be changed.

Web frontend changes
There will be no change in the web frontend.

Documentation changes
We need to change the following sections of Oppia’s wiki page in order to document the usage

of WebdriverIO.

End to End Tests :

The basic structure for this section will be like this:

End to End Tests
● WebdriverIO
● Protractor

○ This will be same as we currently have for protractor.

● Migration
○ Hybrid State
○ Guide to Migrate E2E tests/utils

The protractor and hybrid page will be removed after the migration will be completed.

WebdriverIO Section
1. Introduction

https://github.com/oppia/oppia/wiki/End-to-End-Tests

Same as now

2. Flaky tests
Explain what to do if flakes occur.

● If the end-to-end tests are failing on your PR
Same content as we have here

3. Layout of E2E tests file.
The layout will be the same as we have for protractor suites.

Suite Files:
● core/tests/webdriverio_desktop

This directory will contain all test suites that are exclusive to desktop interfaces.

● core/tests/webdriverio_mobile
This directory will contain all test suites which are exclusive to mobile interfaces.

Utilities:
● core/tests/webdriverio_utils

This directory will contain utilities for performing actions using elements from the

core components of Oppia.

● extensions/**/webdriverio.js
The extensions include a webdriverio.js file that provides functions for

customizing an interaction and checking that the created interaction matches the

expected criteria.

Note: For the migration period we will be having folders for both webdriverIO and

protractor.

4. Run E2E tests
I tried to keep the same commands for running the e2e tests in webdriverio as well. So it

will mostly same as we have for the protractor.

Need to update all sections after this for webdriverIO.

Migration:
● Hybrid State

1. Overview
Explain about the hybrid mode.

2. E2E Migration Tracker

https://github.com/oppia/oppia/wiki/End-to-End-Tests#if-the-end-to-end-tests-are-failing-on-your-pr

Link to the e2e tracker will be present here. This tracker contains information like

suites migrated to webdriverIO, suites still in protractor and when I am
going to migrate them, dependencies migrated to webdriverIO,
dependencies still in protractor, and common dependencies which are
present in both protractor and webdriverIO. Contributors can use this to get

the idea about when I am going to migrate a particular suite and hence plan their

PR accordingly in order to avoid clashes such as if I opened a PR to migrate a

particular suite and the contributor also opens a PR making changes in the same

suite at the same time.

3. Add/Modify E2E tests
If any contributor wants to add/modify e2e tests then they will have the following

option:

● If they want to add a new suite add it in webdriverIO

● If they want to modify any existing suite then do it according to the version

of test suite which is present.

The table prepared for GSoC students will also be present here. Also, this

section will explain what the user needs to do if they are modifying any of the

common files which are present in both versions i.e they need to sync up the
files in both versions
They can take help from the migration guide, or else they can contact me as well.

My approach to migrating dependencies files is that I will only migrate a portion

of the file that is needed for the suite in order to minimize the duplicity.

4. Contact
My contact info shared for any queries that developers might have.

● Guide to Migrate E2E tests/utils
This page will cover how we can write/ migrate tests to webdriverIO. This is needed

because if the user plan to make any changes to the common files then they need to

write the tests in both protractor and webdriverIO. Also I am believing they will be aware

of how to write tests in protractor, so they can use this guide even if they plan to add new

suite in WebdriverIO (majorly GSoC students).

Debug end to end tests

The basic structure for this section will be like this:

Debug End to End tests:
● WebdriverIO
● Protractor

○ Same content that we currently have in Debug end-to-end tests.

WebdriverIO
1. Introduction

Same as now

2. Using the debugger
In webdriverio for using a debugger we need to add the line brower.debug(), also need

to update the wiki page regarding how to change the timeout interval in wdio.conf.js to

prevent timeout errors for running tests in debugging mode.

3. Downloading screenshots
As webdriverio provides a feature to take a screenshot at an instance using the

command browser.saveScreenshot(filepath). This will help contributors to take the

screenshots locally instead of downloading the screenshots from the Github Cl.

Also will update this section on how they can also run the tests on Cl and takes

screenshots as well.

4. Downloading screen recordings
WebdriverIO also provides the feature to record the screen while running the tests locally

using the following command browser.saveRecordingScreen(filepath). Also, I will

update the wiki on how to use wdio-video-reporter to get the recording of failed tests

cases locally as well as on Github Cl.

Testing Plan
E2E Testing Plan

Local Testing
To check whether the migrated tests are working the same as it was working before, I will add a

screen recording of tests running on both protractor and webdriverIO test suites. I will be

running the tests on webdriverIO a minimum of 5 times and will provide the recording of each

time. We can compare in the video itself whether the tests are working the same way or not.

https://github.com/oppia/oppia/wiki/Debug-end-to-end-tests
https://webdriver.io/docs/debugging/#the-debug-command
https://webdriver.io/docs/api/browser/saveScreenshot/
https://webdriver.io/docs/api/browser/saveRecordingScreen/
https://webdriver.io/docs/wdio-video-reporter/

Cl Testing
To check whether the tests are also passing on Cl, I will run the tests on Cl for a minimum of 5

successful times and will provide the successful runs links with each test.

Lint Checks
The lint checks in e2e-action.js can be used with webdriverIO as well with a small change in it

(adding ‘keys’ in this array because in webdriverIO we use browser.keys() instead of

browser.sendKeys).

The lint checks in the protractor-practices.js, and check-element-selector-at-top.js will not work

with the webdriverIO test suites, so we need to have new lint checks for webdriverIO. I will

create new eslint checks files with the following rules:

Rules for webdriverio-practices.js

● Expect calls must be prefixed with an await (in webdriverio-practices.js)

● Do not allow browser.debug() statements (in webdriverio-practices.js)

● Do not allow browser.pause() statements (in webdriverio-practices.js)

● Constant name in all caps (in webdriverio-practices.js)

● Do not use forEach (in webdriverio-practices.js)

● Class name should start with “webdriverio-test-*’ (in webdriverio-practices.js)

● All element selector at the top (in check-element-selector-at-top-wdio.js)

I am planning to add these checks at the start of migration, with the PR that will configure

webdriverIO for the codebase.

Feature testing
Does this feature include non-trivial user-facing changes? NO

Implementation Plan

Milestone Table (include both PRs and other actions that need to be taken
prior to launch)

https://github.com/oppia/oppia/blob/develop/scripts/linters/custom_eslint_checks/rules/e2e-action.js
https://github.com/oppia/oppia/blob/develop/scripts/linters/custom_eslint_checks/rules/e2e-action.js#L22
https://github.com/oppia/oppia/blob/develop/scripts/linters/custom_eslint_checks/rules/protractor-practices.js
https://github.com/oppia/oppia/blob/develop/scripts/linters/custom_eslint_checks/rules/check-element-selector-at-top.js

Milestone 1: Set up WebdriverIO with Github Actions. Document how we use it,
including adding a step-by-step guide to the developer wiki on “how to debug e2e
tests” (which should be kept up-to-date and address any issues that devs face).
Add eslint rules to ensure the code quality. Add a lint check to ensure that the
union of suites present in both versions of the e2e tests is the complete list of
e2e suites. Fully migrate 20 test suites to WebdriverIO.

No. Description of PR / action Prereq
PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

1.1 Update the documentation for End-To-End tests
and Debug End-To-End wiki page.

N/A 13 June
2022

18 June
2022

1.2 Setup webdriverIO for running e2e tests, write eslint
rules for webdriverIO suites to make sure the code
quality is maintained, write a lint check to ensure
union of suites present in both version is complete
list of e2e suites, and migrate the following tests:
Suites Covered:

● Collections
● Learner
● User
● ProfileFeatures

Utils Covered:
● CreatorDashboardPage (Partial)
● CollectionEditorPage (Complete)
● LibraryPage (Partial)
● AdminPage (Partial)
● ExplorationEditorPage (Partial)
● ExplorationPlayerPage (Partial)
● LearnerDashboardPage (Partial)
● ModeratorPage (Complete)
● PreferencesPage (Partial)
● ProfilePage (Complete)

After this PR is merged there will be 7 common dependencies

1.1 22 June
2022

2 July 2022

1.3 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● Subscription
● Preferences
● CreatorDashboard
● LearnerDashboard

Utils Covered:

1.1,1.2 28 June
2022

10 July
2022

● CreatorDashboard (Partial)
● PreferencesPage (Complete)
● SubscriptionDashboardPage (Complete)
● ExplorationEditorPage (Partial)
● ExplorationPlayerPage (Partial)
● LearnerDashboardPage (Partial)
● AdminPage (Partial)
● TopicEditorPage (Partial)
● StoryEditorPage (Partial)
● SkillEditorPage (Partial)
● LibraryPage (Partial)
● TopicAndStoryViewerPage (Partial)
● TopicsAndSkillsDashboardPage (Partial)

After this PR is merged there will be 11 common dependencies

1.4 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● ProfileMenu
● TopicAndStoryViewer
● TopicAndStoryEditor

Utils Covered:
● LearnerDashboardPage (Complete)
● AdminPage (Partial)
● TopicsAndSkillsDashboardPage (Partial)
● TopicAndStoryViewerPage (Complete)
● TopicViewerPage (Complete)
● TopicEditorPage (Partial)
● StoryEditorPage (Partial)
● SubTopicViewerPage (Complete)
● ExplorationEditorPage (Partial)
● ExplorationPlayerPage (Partial)
● SkillEditorPage (Partial)

After this PR is merged there will be 9 common dependencies

1.1,1.2.
1.3

8 July 2022 20 July
2022

1.5 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● TopicAndStoryEditorFileUploadFeatures
● BlogDashBoard
● ContributorDashboard

Utils Covered:
● TopicsAndSkillsDashboardPage (Partial)
● TopicEditorPage (Partial)
● StoryEditorPage (Complete)
● SkillEditorPage (Partial)
● BlogDashboardPage (Complete)
● ExplorationEditorPage (Partial)

1.1,1.2,
1.3, 1.4

16 July
2022

26 July
2022

● ContributorDashboardPage (Complete)
● ContributorDashboardAdminPage

(Complete)
● ExplorationEditorPage (Partial)

After this PR is merged there will be 8 common dependencies

1.6 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● ClassroomPage
● ClassroomPageFileUploadFeatures
● TopicAndSkillDashboard

Utils Covered:
● ClassroomPage (Complete)
● LibraryPage (Partial)
● TopicEditorPage (Complete)
● TopicsAndSkillsDashboardPage (Partial)
● AdminPage (Partial)
● ExplorationEditorPage (Partial)
● SkillEditorPage (Partial)

After this PR is merged there will be 7 common dependencies

1.1,1.2,
1.3,1.4,
1.5

22 July
2022

30 July
2022

1.7 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● SkillEditor
● Wipeout
● Navigation

Utils Covered:
● ExplorationEditorPage (Partial)
● TopicsAndSkillsDashboardPage (Complete)
● SkillEditorPage (Complete)
● DeleteAccountPage (Complete)
● GetStartedPage (Complete)

After this PR is merged there will be 5 common dependencies

1.1,1.2,
1.3,1.4,
1.5,1.6

28 July
2022

8 Aug 2022

Total Suites Migrated: 20

Milestone 2: Fully migrate all remaining e2e test suites to WebdriverIO, and
remove all references to Protractor from the codebase and the developer wiki.

No. Description of PR / action Prereq
PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

2.1 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● AdditonalEditorFeatures
● AdditonalEditorFeaturesModals
● AdditionalPlayerFeatures

Utils Covered:
● ExplorationEditorPage (Partial)
● ExplorationPlayerPage (Partial)
● LibraryPage (Partial)

After this PR is merged there will be 5 common dependencies

M-1 All
PRs,

12 Aug
2022

20 Aug
2022

2.2 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● Accessibility
● AdminPage
● CoreEditorAndPlayerFeatures

Utils Covered:
● LibraryPage (Partial)
● AdminPage (Partial)
● CreatorDashboardPage (Partial)
● ExplorationEditorPage (Partial)
● ExplorationPlayerPage (Partial)

After this PR is merged there will be 5 common dependencies

M-1 All
PRs

20 Aug
2022

28 Aug
2022

2.3 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● ExplorationFeedbackTab
● ExplorationHistoryTab
● ExplorationImprovementsTab

Utils Covered:
● CreatorDashboardPage (Partial)
● ExplorationEditorPage (Partial)
● ExplorationPlayerPage (Partial)
● LibraryPage (Partial)
● AdminPage (Partial)

After this PR is merged there will be 5 common dependencies

M-1 All
PRs

28 Aug
2022

6 Sep 2022

2.4 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● ExplorationStaticticsTab
● ExplorationTranslationTab
● Embedding

M-1 All
PRs

8 Sep 2022 16 Sep 2022

● Extensions
Utils Covered:

● CreatorDashboardPage (Partial)
● ExplorationEditorPage (Partial)
● ExplorationPlayerPage (Partial)
● LibraryPage (Partial)
● Interactions (Complete)

After this PR is merged there will be 5 common dependencies

2.5 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● FeatureGating
● FileUploadFeatures
● FileUploadExtensions

Utils Covered:
● AdminPage (Partial)
● ExplorationEditorPage (Partial)
● CreatorDashboardPage (Complete)
● ExplorationPlayerPage (Partial)

After this PR is merged there will be 4 common dependencies

M-1 All
PRs

18 Sep
2022

25 Sep 2022

2.6 Migrate the following test suite from protractor to
webdriverIO.
Suites Covered:

● Library
● PlayVoiceover
● Publication

Utils Covered:
● AdminPage (Complete)
● ExplorationEditorPage (Complete)
● LibraryPage (Complete)
● ExplorationPlayerPage (Complete)

M-1 All
PRs

25 Sep
2022

1 Oct 2022

2.7 Remove all references to Protractor from the
codebase and the developer wiki.

M-1 M-2
All Prs

1 Oct 2022 3 Oct 2022

Total Suites Migrated: 19

Future Work
● As webdriverIO provides regular updates for better performance and improved

functionality recently there was an update from version 6 to version 7. So, we need to

keep our tests updated with these updates.

● We can use impressive services that webdriverIO provides like ‘Docker Service’, as we

are planning to shift to docker in the future.

https://webdriver.io/docs/wdio-docker-service

