
GSoc’22 Proposal
Improving the lesson creation experience

[part(a) + part(b)]
- Soumyajyoti Dey

Section 1: About You

What project are you applying for?
Improving the lesson creation experience [part(a) + part(b)].

Why are you interested in working with Oppia, and on your chosen project?
When I started with web development and spent some months on it, I wanted to gain some real world
experience along with the normal hobby projects that I was into. So, I contacted some seniors in my
college for some advice and they suggested that I should start contributing to open source. While
searching for some good and systematic organizations to contribute, I came across oppia and started
contributing right away. One of the best things I admire about oppia is that there are plenty of beginner
friendly issues which are well organized so that anyone with any amount of experience can easily get
started and learn new things along the way. I also admire the vision of oppia which is to provide quality
education to children who don't have access to it. The mentors at oppia are also very helpful whenever
someone gets stuck at something. All these things inspire me to work harder and keep contributing at
oppia.

The reason for me choosing this project is because I wanted to work on a new feature and I think this
project suits me the best. Sometimes, when there are many collaborators creating a lesson (exploration)
in oppia, it becomes very difficult to keep track of who made the previous changes and the exact changes
made by them. This project would enable this feature and help the creator and collaborators to take the
necessary actions if something does not behave as expected. Also, currently, there are no means for a
lesson creator to know about the changes made in exploration metadata (title, goals, tags etc.). Keeping
track of metadata changes is important because sometimes, creators might accidentally make some
unwanted changes on the exploration metadata and knowing these changes will make it easier for them
to fix them if needed.

Prior experience
I have been involved in web development since November 2020 and got exposure to technologies such as
React, Django, Angular, Unit testing, Firebase etc.. I am also a part of the development group of our
college where I have contributed to many open source projects such as Hackalog, Institute App (Backend)
and also worked for a project related to Training and Placement Cell IIT BHU. I have also made some
personal projects along my journey. Some of them are:

a) Evader: It is an event management app written in react and django.

https://github.com/soumyo123-prog/evader-frontend

b) Group chat application: A group chat application made with react and firebase.

I have been contributing in oppia since September 2021 primarily for the Automated QA and LACE teams.
Till date, I have merged around 19 PRs in oppia related to frontend testing, angular migration and lace
quality team issues. I am currently working on writing beam jobs and backend validation checks for the
LACE android team and also involved in a small project: Identification of stale tabs and informing users
about the same. This project will be finished till mid April and would not hinder with the gsoc coding
period.

My open source contributions other than oppia include contributions I made during hacktoberfest where I
was able to complete the target of 4 PRs. During this period, I contributed to SUI Components (added the
shape property in their input component), The New Boston Developers (converted some sass styles into
styled components) and other organizations.

My list of PRs in oppia

PR Status Topic

Migrate contribution and review
service and write the remaining
frontend tests for it

Merged Angular Migration.

Add frontend tests for some
files

Merged Unit testing.

Fix issues related to skill editor
component in the exploration
editor

Merged Lace quality team issue.

Add frontend validation checks
for some components

Merged Front-end validation.

Add backend validation check
for story description

Merged Beam jobs and backend
validation.

Project size
medium (~175 hours)

Project timeframe
I would be coding for an extended coding period (18 weeks) from June 13 to October 31. This is because
I will be in college this summer to complete a few courses. Hence, the default coding period might be too
rushed for me.

Contact info and timezone(s)
Email: deysoumyajyoti2017@gmail.com (This is also my Google Chat email).

https://github.com/soumyo123-prog/whatsapp-clone
https://docs.google.com/document/u/0/d/1VzEBUNvmRgCOHj3BHxYai6-x_FxRxIvrnYaKo_ODLRg/edit
https://docs.google.com/document/u/0/d/1VzEBUNvmRgCOHj3BHxYai6-x_FxRxIvrnYaKo_ODLRg/edit
https://github.com/oppia/oppia/pull/14471
https://github.com/oppia/oppia/pull/14471
https://github.com/oppia/oppia/pull/14471
https://github.com/oppia/oppia/pull/14650
https://github.com/oppia/oppia/pull/14650
https://github.com/oppia/oppia/pull/14933
https://github.com/oppia/oppia/pull/14933
https://github.com/oppia/oppia/pull/14933
https://github.com/oppia/oppia/pull/14035
https://github.com/oppia/oppia/pull/14035
https://github.com/oppia/oppia/pull/15038
https://github.com/oppia/oppia/pull/15038
mailto:deysoumyajyoti2017@gmail.com

Phone number: +91-8721979265
Preferred methods of communication:

- Google chat
- Google meet
- Email (I usually respond to important emails within the same day)
- Whatsapp (on the same phone number provided above)

Timezone(s): India Standard Time (GMT+5:30)
Github Profile: soumyo123-prog

Time commitment
During the coding period (June 13 - October 31), I would be able to commit at least 2.5 - 3 hours (flexible)
per day which according to me is enough for completing the 175hr long project within the specified
timeframe. However, this is flexible as I can increase my working hours depending upon the situation of
the project.

Hence, the following is my time commitment schedule for the coding period:
- Daily: 2.5 - 3 hours. Can be increased if required.
- Weekly: 17.5 - 21 hours. Can be increased if required.

Essential Prerequisites
Answer the following questions (for Oppia Web GSoC contributors):

● I am able to run a single backend test target on my machine. (Show a screenshot of a successful
test.)

https://github.com/soumyo123-prog

● I am able to run all the frontend tests at once on my machine. (Show a screenshot of a successful
test.)

● I am able to run one suite of e2e tests on my machine. (Show a screenshot of a successful test.)

Other summer obligations
I am not applying to any other jobs during this summer. Also, I am only applying to oppia for GSOC this
year. Regarding classes, my summer vacations are from mid May to mid July and after that, my classes
will resume. However, in any circumstance, 3-3.5 hours can be easily committed per day towards this
project.

Communication channels
I plan to connect with my mentors two times a week through google meet or discord in order to give my
weekly updates. However, this is flexible and can be adjusted by discussion with the mentors.

Section 2: Proposal Details

Problem Statement
Link to PRD
(or N/A if there
isn’t one)

N/A

Target Audience Lesson creators

Core User Need - As a lesson creator, before publishing a new version of the exploration, I will need to
make sure that all the changes made to migrate into the new version of the
exploration are valid and there are not any unnecessary or wrong changes (both
consciously and unconsciously).

- As a lesson creator, it is difficult for me to keep track of changes made to an
exploration properly. This is essential for me so that I can figure out any unnecessary
or wrong changes to a state which are responsible for the exploration not behaving
in the expected way so that I can fix the issue. The current system of comparing
versions with the help of history tab does not help very much in this case because I
will often have to keep comparing consecutive versions of the explorations in order
to see if that particular state has changed and if so, then examine and find the
changes made into it. This often consumes a lot of my time and effort.

What goals do
we want the
solution to
achieve?

- During version comparison, above the comparison graph, the user would see a link
saying “View metadata changes”. Clicking this would open a modal showing the
changes made to the exploration metadata between the two selected versions.

- In each state card, the user would see a link just below the state name saying “Latest
commit by XXX at version YYY”. Clicking this would open a modal and show the
changes made to the state card while migrating from version YYY to version YYY + 1.
On the modal, the user will see another link reading “Previous commit by PPP at
version QQQ” and another one reading “Next commit by ABC at version PQR”. The
user will also be able to explore the commit history of exploration metadata
properties.

Section 2.1: WHAT
This section enumerates the requirements that the technical solution outlined in “Section 2: HOW”
must satisfy.

Key User Stories and Tasks

Title User Story
Description (role,
goal, motivation)
“As a …, I need …,
so that ….”

Priority1 List of tasks needed to
achieve the goal (this is the
“User Journey”)

Links to mocks / prototypes,
and/or PRD sections that
spec out additional
requirements.

1 Use the MoSCow system (“Must have”, “Should have”, “Could have”). You can read more here.

https://en.wikipedia.org/wiki/MoSCoW_method

1 Exploration
metadata
diff
between
selected
versions.

As a lesson
creator, I need to
be able to see the
changes made to
the exploration
metadata along
with changes in
each state card
so that I can
inspect any
unwanted
changes made
into any
exploration
property (title,
goals, tags etc.)
and fix them later
if needed.

Must
have

- Select two versions for
comparison.

- Click on metadata
changes in the visualization
graph.

- See the changes in the
exploration metadata
between the two selected
versions.

Metadata Diff : Prototype

2 Changes
made on a
state card.

As a lesson
creator, I need to
be able to see the
latest changes
made to a state
card and the
creator of those
changes. This
would help me to
track the exact
changes in case
of any
unexpected
behavior of the
exploration and
take the
necessary actions
to fix them.

Must
have

- Open any exploration and
select a state card.

- Look for the link reading
“Latest commit by XXX at
version YYY '' placed at the
bottom right corner of the
state editor. Click on the
link.

- See the modal showing
changes made to the state
card from version YYY to
version YYY + 1.

Version history explorer:
Prototype

Technical Requirements

Additions/Changes to Web Server Endpoint Contracts

Endpoint URL Request
type (GET,
POST, etc.)

New /
Existing

Description of the request/response contract (and, if
applicable, how it’s different from the previous one)

1. /explorehandl
er/init/<explor
ation_id>?v=<v
ersion>

GET Existing This request is used by
ReadOnlyExplorationBackendApiService to fetch version
specific exploration data from the backend. This data is
used during version comparison by the history tab.

The response dict of this request will be slightly modified to

https://www.figma.com/file/OSHTA4JOsOqIoPtcMQ2myE/Part-(a)?node-id=0%3A1
https://www.figma.com/file/r0LlQ4tMbLNoaM8BF4fDif/Part-(b)?node-id=0%3A1
https://www.figma.com/file/r0LlQ4tMbLNoaM8BF4fDif/Part-(b)?node-id=0%3A1

include an extra property called ‘exploration_metadata’.

This new property will be a dict and its structure will be as
follows:

● title: str.
● category: str.
● objective: str.
● language_code: str.
● tags: list[str].
● blurb: str.
● author_notes: str.
● param_specs: dict[str, dict of ParamSpec domain

object].
● param_changes: list[dict of ParamChange]
● init_state_name: str.
● auto_tts_enabled: boolean.
● correctness_feedback_enabled: boolean.
● states_schema_version: number.
● edits_allowed: boolean.

URL Parameters:
exploration_id: str

2. /version_histo
ry/<exploratio
n_id>/<version
>/<state_nam
e>

GET New This request will be used to fetch the previous version
history for a particular state of an exploration at a particular
version.

URL Parameters:

exploration_id: str
version: int
state_name: str

3. /version_histo
ry/<exploratio
n_id>/<version
>/metadata

GET New This request will be used to fetch the previous version
history for the exploration metadata at a particular version.

URL Parameters:

exploration_id: str
version: int

Calls to Web Server Endpoints

Endpoint URL Request
type (GET,
POST, etc.)

Description of why the new call is needed, or why the changes to an
existing call is needed

1. /explorehandler
/init/<exploratio
n_id>?v=<versio
n>

GET The changes to this existing call are required to include the
exploration metadata in the response dict of this request.

2. /version_history
/<exploration_id
>/<version>/<st

GET This new request is needed to fetch the previous version history of a
particular state of an exploration at a particular version.

ate_name>

3. /version_history
/<exploration_id
>/<version>/me
tadata

GET This new request is needed to fetch the previous version history of the
exploration metadata at a particular version.

UI Screens/Components

ID Description of new UI component i18n
required?

Mock/spec links A11y
requirements

1. Additional
link to
show
metadata
changes.

It will be placed above the comparison
which, when clicked, will show the
changes in exploration metadata
between the two selected versions.

No Additional link to
show changes in
Metadata

No

2. Metadata
diff modal.

It will be a new modal which will show
the diff in exploration metadata between
the two selected versions.

No Metadata diff
modal

No

3. “Latest
commit by
XXX at
version
YYY”
annotation
at the state
cards.

It is an information box placed next to the
state name in each state editor which
would contain information about the
latest commit and also contain a link
which, when clicked, would open a modal
showing the diff.

No The new annotation
in the state cards

No

4. “Latest
commit by
XXX at
version
YYY”
annotation
at the
exploration
settings
tab.

It is an information box placed at the top
of the exploration settings tab which
would contain information about the
latest commit and also contain a link
which, when clicked, would open a modal
showing the diff.

No The new annotation
in the settings tab

No

5. Modal that
shows the
difference
between
the
versions
YYY and
YYY + 1.

As the name suggests, this modal will
show the differences in the state card
between versions YYY and YYY + 1 of the
exploration. It will also be similar to the
existing state diff modal.

No Difference modal No

6. Interstitial
loading
screen.

It will be a simple loading screen which
will be shown when the diff data between
2 versions of a state is being fetched.

No Interstitial loading
screen

No

https://www.figma.com/file/L6UasDtVtv5SENLOFDtY0Y/Addition-of-metdata-node?node-id=0%3A1
https://www.figma.com/file/L6UasDtVtv5SENLOFDtY0Y/Addition-of-metdata-node?node-id=0%3A1
https://www.figma.com/file/L6UasDtVtv5SENLOFDtY0Y/Addition-of-metdata-node?node-id=0%3A1
https://www.figma.com/file/FkL2FeKgIHf2nn8NewcKfR/Metadata-Changes-Modal?node-id=0%3A1
https://www.figma.com/file/FkL2FeKgIHf2nn8NewcKfR/Metadata-Changes-Modal?node-id=0%3A1
https://www.figma.com/file/aPbRHQoEMMIIQ2ApaC9LbN/Last-Edited-Link?node-id=0%3A1
https://www.figma.com/file/aPbRHQoEMMIIQ2ApaC9LbN/Last-Edited-Link?node-id=0%3A1
https://www.figma.com/file/DRoukpuN8Ln7FigW9nOZDi/Exploration-metadata-commit-history?node-id=0%3A1
https://www.figma.com/file/DRoukpuN8Ln7FigW9nOZDi/Exploration-metadata-commit-history?node-id=0%3A1
https://www.figma.com/file/8gC2GUVXpzJmMFZAvptHbr/Diff-Modal?node-id=0%3A1
https://www.figma.com/file/iwXOlDFdIH0niEx2ujXcrB/Interstitial-loading-screen?node-id=0%3A1
https://www.figma.com/file/iwXOlDFdIH0niEx2ujXcrB/Interstitial-loading-screen?node-id=0%3A1

Data Handling and Privacy

Type of data Description Why do we need to
store this data?

Anonymized? Can the user opt out? Wipeout
policy

Takeout
policy

1 Previous
commit data
(version
number, state
name and
committer id)
of each state
in each
version of the
exploration.

The structure of
the data is
explained in detail
in the section:
Method 3:
Precomputation
approach (b)
(Efficient and
scalable
approach).

We need this data to
allow the user to
explore the commit
history of an
exploration.

No. Because this
data is explicitly
tied to the user.

No. Locally
Pseudonymi
sed once
the user
deletes their
account.

N/A.
Because this
data does
not contain
relevant
data
correspondi
ng to users.

Section 2.2: HOW

Existing Status Quo
Currently, there is a history tab in the exploration editor page which facilitates the version
comparison between two selected versions of the exploration. However, the user cannot see the
changes in exploration metadata during the version comparison. Also, currently, the user cannot
navigate over the version history of a state.

Meaning of some phrases and terms used in the proposal
● Previous version history of a state

○ It indicates the previous version of the exploration on which the state has been
edited along with the information of the state name at the previous version and
the username of the user who committed those changes.

● Previously edited version OR Previously edited version number of a state
○ It refers to the version number of the exploration on which the state was

previously edited.

Solution Overview

Subproject (a)
● Currently, the following properties are considered as the exploration metadata:

○ Title
○ Category
○ Objective

○ Initial state name
○ Language code
○ Correctness feedback enabled status
○ Auto text to speech enabled status
○ Tags
○ Blurb
○ Author notes
○ Param specs
○ Param changes
○ Edits allowed
○ States schema version

Representation of exploration metadata

Frontend: ExplorationMetadata domain object

● In the frontend, there already exists an ExplorationMetadata domain object. However, it
represents only three properties i.e. id, objective and title. This domain object is used to
represent exploration search results. Hence, this will be renamed to something like:
ExplorationSearchResult.

● After renaming, we will create a new domain object called ExplorationMetadata.
● Properties:

○ title: string.
○ category. string.
○ objective: string.
○ languageCode: string.
○ tags: string[].
○ blurb: string.
○ authorNotes: string.
○ statesSchemaVersion: number.
○ initStateName: string.
○ paramSpecs: ParamDict.
○ paramChanges: ParamChange[].
○ autoTtsEnabled: boolean.
○ correctnessFeedbackEnabled: boolean.
○ editsAllowed: boolean.

● Functions:
○ Basic getters and setters of the above properties.
○ fromBackendDict.
○ toBackendDict.

Backend: ExplorationMetadata domain object

● This will also be newly created.
● Properties:

○ title: str.
○ category: str.
○ objective: str.
○ language_code: str.
○ tags: list(str)
○ blurb: str.
○ author_notes: str.
○ states_schema_version: int.
○ init_state_name: str.
○ param_specs: dict.
○ param_changes: list(ParamChange)
○ auto_tts_enabled: boolean.
○ correctness_feedback_enabled: boolean.
○ edits_allowed: boolean.

● Functions:
○ to_dict

Getting metadata information from the backend

Current system:

Steps taking place in history tab component while fetching diff graph data

● User selects the first version: changeSelectedVersions() of the history tab component
gets called. This function modifies the selectedVersionsArray to include the first
selected version.

● User selects the second version: the same process happens again and
selectedVersionsArray gets modified.

● Now, the length of selectedVersionsArray has become two and
changeSelectedVersions() now calls compareSelectedVersions() automatically.

● compareSelectedVersions() in turn, calls changeCompareVersion(). This function
uses CompareVersionsService to get the processed diff graph data from the backend
and also sets the earlier and later version headers (Eg: Revision #4 by user1 (Mar 12,
3:33 PM)).

Steps taking place in CompareVersionsService.getDiffGraphData()

● Fetching the exploration data for the two selected versions (v1 and v2) using the
ReadOnlyExplorationBackendApiService.loadExplorationAsync() function.

● Find the LCA of versions v1 and v2 where LCA is the lowest common ancestor of the
two versions in the version tree. For this, VersionTreeService.findLca() is used.

● Now, the change list is calculated to go from version v1 to v2. First, we calculate
changes from v1 to lca and then from lca to v2. For this, CompareVersionsService has
a function called _getCombinedChangeList.

● Now, the diff graph data is calculated by using
ExplorationDiffService,getDiffGraphData() which takes the v1States (states dict of the
first selected version), v2States (states dict of the second selected version) and the
changeList as arguments and returns diff graph data.

Required changes:

Modification of the return value of ExplorationHandler

● The request for fetching the exploration data for different versions is handled by
ExplorationHandler in reader.py.

● The return value of the ExplorationHandler will be slightly changed to include a new
property called exploration_metadata which will include the metadata properties for
that particular version of the exploration.

● exploration_metadata: exploration.get_metadata().to_dict()

Addition of a new get_metadata function in Exploration domain object

● This function will return an instance of ExplorationMetadata domain object:

def get_metadata(self):

exploration_metadata = ExplorationMetadata(

self.title, self.category, self.objective, self.language_code,

self.tags, self.blurb, self.author_notes, self.states_schema_version,

self.init_state_name, self.param_specs, self.param_changes,

self.auto_tts_enabled, self.correctness_feedback_enabled,

self.edits_allowed)

return exploration_metadata

The changes can be tabulated as follows:

File name Function name List of changes

reader.py ExplorationHandler : get
method

Include a new property called
exploration_metadata in the final return
value.

exp_domain.py Exploration domain object Add a new function called get_metadata

as mentioned above.

Caching of the fetched exploration versions make the comparison faster

Current system

● Currently, in the read-only-exploration-backend-api-service there is some sort of
caching which stores the latest version of exploration with a particular id.

● However, there is no version specific cache service available to store version specific
exploration data. Having a service like this would help in fetching version specific data
for previously fetched versions of an exploration.

Required changes

● A new cache service will be created called ExplorationVersionCacheService. It will
store data in the following format:

interface ExplorationVersionCache {

[explorationId: string]: {

[version: number]: FetchExplorationBackendResponse;

};

}

The cache service will work as follows:

● While fetching version specific exploration data using
ReadOnlyExplorationBackendApiService.loadExplorationAsync, a new if-check will
be added to check if the data for that particular exploration and that particular version is
already cached.

● If so, then the cached data will be returned. Otherwise, the data will be fetched from the
datastore and will be cached for further use.

The changes can be tabulated as follows:

File name Function name List of changes

exploration-version-cache.ser
vice.ts

ExplorationVersionCacheSer
vice

Create the new service

Addition of two new properties in the Compare versions service’s return value
● These properties will include the values of exploration metadata for the two selected

versions.
● The two new properties will be named v1Metadata and v2Metadata.
● Finally, we have all the information we needed:

○ Metadata node in the diff graph data
○ The metadata information of the earlier and later versions.
○ Later on, while visualizing metadata diff, v1Metadata and v2Metadata will

become the old and new metadata dicts respectively.

The changes can be tabulated as follows:

File name Function name List of changes

compare-versions.service.ts getDiffGraphData Add the properties
v1Metadata and v2Metadata
in the return value of this
function.

Creation of a new service for doing yaml conversions

Current system

● Currently, the diff data between different states is visualized by converting the old and
new state dicts into yaml strings and visualizing the diff between different strings using
codemirror.

● The Codemirror component takes the old state dict (left value) yaml and the new state
dict (right value) yaml and visualizes the diff between the states.

● StateDiffModalBackendApiService is used for conversion of state dict to yaml which
takes the state dict and yaml width as payload and returns the yaml string.

Flaws in the current system

● The current approach is asynchronous and takes some time to finish because of being
dependent on the backend server for doing the conversion.

● If the backend api fails for some reason, the version diff visualization would appear
broken.

● Hence, using a frontend based approach would help us tackle the cons of the backend
approach and also fasten the process a little bit.

Required changes

● The conversion of state or metadata dicts into yaml will be facilitated by using the
‘js-yaml’ library in the frontend itself.

● For doing this, a new service will be created in the frontend called YamlService. This
service will contain basic methods such as stringify and parse.

● The yaml representation of the metadata dict will be used by CODEMIRROR for showing
the changes.

The changes can be tabulated as follows:

File name Function name List of changes

yaml.service.ts Create the service.

Working of the YamlService

The YamlService will have the following structure:

import { Injectable } from '@angular/core';

import { downgradeInjectable } from '@angular/upgrade/static';

import yaml from 'js-yaml';

@Injectable({

providedIn: 'root'

})

export class YamlService {

constructor() {}

stringify(object: unknown): string {

return yaml.dump(object);

}

}

The function stringify will be used to convert the object into yaml string.

Creation of a new YamlConversionService
● This service will be used to share the logic to get left (old) and right (new) yaml strings

from the state/metadata dicts. This will help us avoid duplication of the ‘yaml conversion
logic’.

● Functions:
○ getYamlStringFromObject(object): Promise<string>

if (object) {

setTimeout(() => {

return this.yamlService.stringify(object);

}, 200);

} else {

setTimeout(() => {

return '';

}, 200);

}

The timeout is required to allow CODEMIRROR to fully load.

Example usage of YamlConversionService (in the already existing StateDiffModal)

ngOnInit(): void {

this.yamlConversionService.getYamlStringFromObject(

this.oldState.toBackendDict()

).then((result) => {

this.yamlStrs.leftPane = result;

});

this.yamlConversionService.getYamlStringFromObject(

this.newState.toBackendDict()

).then((result) => {

this.yamlStrs.rightPane = result;

});

}

Showing the metadata diff modal to the user
For this, the following changes need to be done:

Creation of a new Metadata Diff Modal Component

● It will be used to show the metadata diff using codemirror.
● It will have the following properties:

○ oldMetadata: The metadata properties of the older version.
○ newMetadata: The metadata properties of the newer version.
○ headers: The headers to be shown at the top of the modal. (Eg: Revision #4 by

user1 (Mar 12, 3:33 PM)). It will be an object with the following structure:
■ leftPane: string. The headers of the first selected version.
■ rightPane: string. The headers of the second selected version.

○ yamlStrs: The yaml strings from the old and the new metadata. It will have the
following structure:

■ leftPane: string. The yaml string of the oldMetadata dict.
■ rightPane: string. The yaml string of the newMetadata dict.

● The ngOnInit function of this component is important as it will be used to do the yaml
conversions as follows:

ngOnInit(): void {

this.yamlConversionService.getYamlStringFromObject(

this.oldMetadata.toBackendDict()

).then((result) => {

this.yamlStrs.leftPane = result;

});

this.yamlConversionService.getYamlStringFromObject(

this.newMetadata.toBackendDict()

).then((result) => {

this.yamlStrs.rightPane = result;

});

}

Changes in History Tab Component

● In the html file of that component, add a new button according to the mocks.

● Create a new function called showMetadataDiffModal in the history tab component
which will react to the ‘click’ event of the new button added.

● This function will be pretty much similar to the showStateDiffModal function of the
version-diff-visualization component.

● It will have the following structure:

ctrl.showMetaDataDiffModal = function() {

let modalRef: NgbModalRef =

NgbModal.open(MetaDataDiffModalComponent, {

backdrop: true,

windowClass: 'metadata-diff-modal',

size: 'xl'

});

modalRef.componentInstance.oldMetaData = ctrl.diffData.v1MetaData;

modalRef.componentInstance.newMetaData = ctrl.diffData.v2MetaData;

modalRef.componentInstance.headers = {

leftPane: ctrl.earlierVersionHeader,

rightPane: ctrl.laterVersionHeader

};

modalRef.result.then(function() {}, function() {});

};

Extension of this functionality for a newly added metadata field
● For this, we need to make sure that all the properties present in the Exploration domain

object (except id, version and states) are also present in the ExplroationMetadata
domain object.

● The to_dict method of exploration domain objects returns all the metadata properties.
● We can call the to_dict method of both the exploration domain object and exploration

metadata domain object and compare that we have all the properties in both the dicts
(except id and states).

● If any property (Except id or states) is missing in the new domain object, then the test will
fail notifying that the new property should be added in the ExplorationMetadata domain
object.

● A new backend test can be added for this.

Subproject (b)

Decision on the structure and schema of the version history of a state:

Method 1: Without precomputation
In this method, we will be computing and fetching the whole version history of all the states of
an exploration when the exploration editor page loads for the first time and update the version
history in the frontend itself when the user saves some changes on the exploration.

Current System:

● Currently, in the exploration editor page component, there is a function called
initExplorationPage which loads the required data from the backend and initializes the
exploration editor page along with all the services required by it.

● Also, for generating the version history list of all states, we need access to the changes
that were applied to the exploration at all the versions. For this, we have the
ExplorationCommitLogEntryModel. It has a get_multi method that takes the
exploration id and a list of versions of the exploration as arguments and fetches the
commit logs for all the versions at once.

Required Changes

● A new backend api service will be created named
ExplorationStatesVersionHistoryBackendApiService which will send a get request to
fetch the versions history list of all states in the format explained in Structure of the
version history of a state.

● In the initExplorationPage function as discussed above, we will use this backend api
service to fetch the required data.

In the backend, the request will be processed as follows:
● Initialize the versions history list as:

versions_history = {

'Introduction': []

}

● It is initialized like this because when a default exploration is created, it has only one
state and its name is ‘Introduction’.

○ Fetch the commit logs for all the versions of the exploration so that the versions
history can be updated accordingly. As discussed above, it is fetched by
ExplorationCommitLogEntryModel by using a get_multi method.

commit_logs = exp_fetchers.get_commit_logs_for_exploration_versions(

exploration.id, versions)

○ Now, we will iterate over the commit logs and in each iteration, do the following:

■ Get the change list
■ Iterate over the change list and update the versions history accordingly.

This process is similar to the function apply_change_list of
exp_services.

○ After all the iterations over the commit logs and change lists, we get the final
versions history list of all the states. At last, it is returned to the frontend.

● After fetching the versions history list of all states, we can show the “Last/Previously
edited by ….” link to the user. Each time the user clicks on this link, the diff data between
the versions will be fetched by CompareVersionsService for visualization.

If the backend API fails for some reason

● The backend api can fail when there is corrupted data in the datastore due to which the
generation of version history for the exploration states fails. In this case, the corrupted
data will need to be fixed manually.

● When the backend api fails, the rest of the exploration editor page will not become
unusable and will work perfectly fine.

● Just the “Last edited by …” link will be hidden from the user for that particular
exploration. The rest of the page will not be affected.

Method 2: Precomputation approach (a)

Storage of the version history

Per exploration

● The full version history of each state of an exploration will be stored together.
● Generation of the model id:

○ Since there will be one model for each exploration, the id of the model will be the
same as the exploration id.

● Schema:
○ version_history: dict. The full version history of each state of the exploration.

■ Key: str. The state name.
■ Value: list. The version history list of a state with each element being an

object having the following properties.
● version: int. If version is v, it indicates that the state has been

modified while going from version v to v + 1. This list will not
contain versions which were associated with only translation
commits.

● Lifecycle of the model:
○ [CREATION]:

■ A new instance of this model will be created each time a new exploration
is created.

■ The version history of each state will be initialized as empty lists while
creation.

○ [UPDATION]:
■ The version_history will be updated according to the change_list when

new changes are saved onto the exploration.
■ Pseudo algorithm:

● Fetch the version history.
● Update version history of all states according to the change list i.e.

append the new version of the exploration to each state which is
updated in this current change.

● Save the updated version history.
○ [DELETION] The data of the model will be deleted when the exploration gets

deleted.

Per state

● Here, the full version history of a particular state of an exploration will be stored.
● Generation of the model id:

○ Since the name of the states of an exploration should be unique. Hence, for the
“per state” model, the unique id of each model will be (exploration_id +
state_name).

● Schema:
○ exploration_id: str. The id of the exploration to which the state belongs to.
○ state_name: str. The name of the exploration state.
○ version_history: list. The version history list of a state with each element being

an object having the following properties:
■ version: int. If version is v, it indicates that the state has been modified

while going from version v to v + 1. This list will not contain versions
which were associated with only translation commits.

● Lifecycle of the model:
○ [CREATION]:

■ A new instance of this model will be created for each state of the
exploration each time a new exploration is created.

■ For each state, the version history will be initialized as an empty list.
■ Save the models by using a put_multi method.

○ [UPDATION]:
■ The version_history will be updated according to the change_list when

new changes are saved onto the exploration for each state of the
exploration which are modified.

■ Pseudo algorithm:
● Get the state names which have been modified from the change

list.
● Generate a list of model ids by combining exploration_id +

state_name from the above list.
● Get the models for the states which have been modified by using

a get_multi call.
● For states that have been removed, delete the models for those

states using a delete_multi method.
● For states that have been added, create the models for those

states.
● For states that have been renamed, delete the model with

old_state_name and create the model with new_state_name with
content the same as the previous one.

● Lastly, append the new version of the exploration to the version
history of the states which have been modified.

● Save the models by using a put_multi method.
○ [DELETION] The data for each state of the exploration will be deleted when the

exploration gets deleted.

Comparison between the two schemas

Weight of
the point of
comparison

Per exploration Per state

Efficiency
while
fetching of
history data

3 (We will
be fetching
this data
very
frequently)

While fetching for the active
state, this method will have to
fetch the whole version history
of all states first and then
return the version history for
the active state.

This means that a lot of
unnecessary data is being
fetched from the datastore
while we just need a chunk of
it.

While fetching for the active
state, this method will just fetch
the required data because data
for each state will be separately
stored.

This means that there will not
be any unnecessary data being
fetched from the datastore.
Hence, this method will be more
efficient and fast.

Efficiency
while
updating
the data

3 (This
process will
also occur
very
frequently)

While updating, this method
will first fetch the full version
history for all the states,
update the data according to
the change list and finally
save them in the datastore.

If a large portion of the states
have been updated during
that commit, then this method
will be an efficient way.
However, if only a small
portion of states are updated,
then we will be fetching a lot
of data unnecessarily.

While updating, this method will
fetch the data for the states
which have been modified,
update their data according to
the change list and finally save
them in the datastore.

This method will involve
fetching and saving multiple
models. Hence, it might be
more efficient when only a small
number of states have been
modified. However, if a large
number of states are modified,
it will become inefficient.

Ease of
implementat
ion

1 (Ease of
implementat
ion will not
be a very
major
decider)

Relatively easier to implement
than the second method.

Relatively more difficult to
implement than the first
method.

Handling of
exploration
reverts

2 (This can
also be a
significant
decider)

Difficult to implement as one
will have to delete all the
versions greater than the
version to which the
exploration has been reverted
from the version history list of
all states.

However, the plus point in this
approach will be that the
modifications can be done by

Even more difficult and
inefficient to implement as one
will have to fetch multiple
version history models for all
the states first and delete the
versions greater than the
version to which the exploration
has been reverted.

fetching and saving only one
model and not multiple.

Color code:
● Red: Not desirable (Score = 0)
● Yellow: Mediocre (Score = 1)
● Green: Most ideal (Score = 2)

Scores:
● Per exploration: 7.
● Per state: 10.

From the above comparison table and calculating the scores by considering the weights of each
point, we can say that using the second approach will be beneficial if we use this method.

Method 3: Precomputation approach (b) (Efficient and scalable approach)

Storage of the version history

Per exploration per version

● The number of version history models for a particular exploration will be equal to the
number of versions of the exploration.

● Here, for each version of the exploration, we will store the “previously edited version
number” for all the states present at that version.

● Generation of the model id:
○ Here, to generate a unique id, we can use (exploration_id + exploration_version).

Since exploration_version is an increasing quantity, the id will always be unique.
● Schema:

○ exploration_id: str. The id of the corresponding exploration.
○ exploration_version: int. The version number of the exploration.
○ version_history: dict. A mapping of the state names of an exploration in its

current version and their version history.
■ Key: str. The name of the state.
■ Value: dict.

● The structure of the dict will be as follows:

'previously_edited_on_version': int

'state_name_in_previous_version': str

'committer_id': str

■ If the value of “previously_edited_on_version” for a state is None, then it
would mean that the state was newly added in the current exploration
version.

○ metadata_previously_edited_on: int. The version number of the exploration
when the metadata was previously edited.

○ metadata_previously_edited_by: string. The id of the user who committed
changes to exploration metadata previously.

● Lifecycle of the model:
○ [CREATION]:

■ Create a new instance of this model whenever a new exploration is
created.

○ [UPDATION]:
■ The updation process explained in detail in the below section Updation

process of the old version history to get a new one during each
exploration save.

○ [DELETION]:
■ Delete all the instances of this model when the exploration is deleted.

Per state per version

● In this approach, all the processes will be the same except that we will be storing the
data for each state and each version of the exploration.

● The schema of the data will be the same as the schema used for each state in the
previous method.

● The id of the exploration will be generated by using exploration_id + state_name +
exploration_version.

Comparison between the storage schemas

Weights Per exploration per version Per state per version

Efficiency
while
fetching of
data

3 For this, we will first fetch the
‘previous version history’
data for all the states and
then return the data for the
active state.

Unlike the previous method,
we will not be fetching a lot of
unnecessary data while
doing this operation as each
model will store only one
piece of version history
rather than storing the full
data.

For this, we will just fetch the
required data for the active state
and return it.

Hence, it will again be the most
ideal approach for this operation.

Efficiency
while
updating

3 While updating, we will first
fetch the model for the
previous version, update the

While updating, we must fetch
and save multiple models
corresponding to the states

the data data for the states that have
been edited and then save
the data.

For this operation, this
method will be more efficient
as the problem of fetching
huge amounts of
unnecessary data is not
present anymore (because
each model is storing only a
piece of the version history)

which have been updated.

Due to fetching and saving
multiple models, this method will
become less efficient in this
case.

Handling of
exploration
reverts

2 Reverts can be easily
handled with this method
with the approach explained
in Handling of exploration
reverts with just fetching a
single model.

Here, again multiple models will
have to be fetched and updated
separately. This will decrease the
efficiency of this method.

Ease of
implementat
ion

1 Relatively easier to
implement than the second
method.

Relatively more difficult to
implement than the first method.

Color code:
● Red: Not desirable (Score = 0)
● Yellow: Mediocre (Score = 1)
● Green: Most ideal (Score = 2)

Scores:
● Per exploration per version: 15.
● Per state per version: 12.

Hence, the “Per exploration per version” schema would be beneficial for this approach.

Updation process of the old version history to get a new one during each exploration save

Let us suppose that the version of the exploration after saving becomes ‘v’. The updation
process will be carried out inside the _save_exploration function of exp_services. It will be
carried out in the following fashion below (sequentially):

Fetching the old version history model (for version ‘v-1’)

current_version = exploration.version

prev_version = current_version - 1

old_version_history_model = exp_models.ExplorationVersionHistoryModel.get(

exploration.id + str(prev_version))

version_history = old_version_history_model.version_history

Calculating the version diff from the change list

● This will be done using the ExplorationVersionsDiff domain object.

exp_versions_diff = exp_domain.ExplorationVersionsDiff(change_list)

● Some general information about exp_versions_diff which is useful for the steps
described below: (Reference: DocString of the ExplorationVersionsDiff domain
object)

○ added_state_names: list(str). Names of the states added to the exploration from
prev_exp_version to current_exp_version. It stores the newest names of the
added states.

○ deleted_state_names: list(str). Name of the states deleted from the exploration
from prev_exp_version to current_exp_version. It stores the initial names of the
deleted states from pre_exp_version.

○ old_to_new_state_names: dict. Dictionary mapping state names of
prev_exp_version to the state names of current_exp_version. It doesn't include
the name changes of added/deleted states.

Handling of exploration state removals

● After getting the deleted state names from exp_versions_diff, we will remove the state
names from the old version history model.

for state_name in exp_versions_diff.deleted_state_names:

del version_history[state_name]

Handling of exploration state additions
● After getting the added state names from exp_versions_diff, we will add the state

names to the old version history model.
● For each added state, its version history will be initialized as None because these states

were added for the first time and have no ‘previously edited version number’.

for state_name in exp_versions_diff.added_state_names:

version_history[state_name] = (

state_domain.StateVersionHistory(None, None))

Handling of exploration state renames

● After getting the old to new state names mapping, we can iterate over the
exp_versions_diff.old_to_new_state_names and update the version history accordingly.

for old_state_name, new_state_name in

exp_versions_diff.old_to_new_state_names.items():

version_history[new_state_name] = state_domain.StateVersionHistory(

prev_version, old_state_name)

del version_history[old_state_name]

Handling of changes in state properties (only for those states which are present in both the
previous and new versions in the explorations and not have been renamed)

● For this, we first have to calculate those state names.
● Iterate through the old_states of the exploration (states in the older version of the

exploration) and if the following conditions are satisfied, we can append those state
names:

○ If the state_name does not belong to exp_versions_diff.deleted_state_names.
○ If the state_name does not belong to any key of

exp_versions.old_to_new_state_names.

other_modified_state_names = []

for state_name in old_states:

if (

not(state_name in exp_versions_diff.deleted_state_names) and

not(state_name in exp_versions_diff.old_to_new_state_names)

):

other_modified_state_names.append(state_name)

● Now, we will iterate through the change list and flag the states from
other_modified_state_names whose properties have been changed:

state_data = {

state_name: 'unchanged'

for state_name in other_modified_state_names

}

for change in change_list:

if (

change.cmd == exp_domain.CMD_EDIT_STATE_PROPERTY and

change.property_name != (

exp_domain.STATE_PROPERTY_RECORDED_VOICEOVERS) and

change.property_name != (

exp_domain.STATE_PROPERTY_WRITTEN_TRANSLATIONS)

):

state_name = change.state_name

if state_data.get(state_name) == 'unchanged':

state_data[state_name] = 'changed'

● After that, we have to update the version history of only those states which have been
flagged. Also, we need to make sure that the changes made to those states using

EDIT_STATE_PROPERTY are not canceled by later changes in the same commit
(similar to what is done in ExplorationDiffService). To achieve this, a new third-party
library called deepdiff will be used which will deeply compare the old and the new state
dicts:

for state_name, state_property in state_data.items():

if state_property == 'changed':

diff_dict = deepdiff.DeepDiff(

old_states_dict[state_name], new_states_dict[state_name])

if diff_dict != {}:

version_history[state_name] = (

state_domain.StateVersionHistory(

prev_version, state_name

))

Handing of changes in exploration metadata properties

● For this, we can check the condition: change.cmd ==
EDIT_EXPLORATION_PROPERTY.

● Here also, we will use deepdiff to compare two metadata dicts of explorations to make
sure that the changes were not canceled by later changes in the change list.

● If so, we will record the version in the metadata_version_history.

metadata_previously_edited_on = prev_version

Handling of ‘move backward’ clicks

Each time the user presses this button, the backward diff data will be fetched from the backend
and the changes made by the user will be shown. During the fetching of the backward diff data,
an interstitial loading screen will also be shown to the user.

Handling of ‘move forward’ clicks

From the above schema, we can see that we are storing only the data required for moving
backward. So a concern arises that how will we handle the ‘move forward’ clicks. The following
approaches have been considered for this:

Storing the analogous ‘next committed version’ in each of the models

In this case, we will be storing the ‘next committed version’ in each of the models along with the
‘previous committed version’. This will make sure that when the user presses the ‘move forward’
button, the ‘next commit version will be fetched from the backend.

Cons of this approach:
● The updation process will become inefficient as storing and updating the models would

be a costly task. During each save, if a state has been updated in that save, we will have
to fetch multiple models corresponding to the exploration versions upto the 'previously

edited version number' of that state and update the value of 'next commit version' and
username on all of them.

Handling this in the frontend itself

In this case, as the user clicks on the ‘move backward button’, the backward moving data will be
fetched from the backend and appended in an array. Due to this, when the user clicks on the
‘forward moving button’, the cached data can be shown. For more explanation, please refer to
sections Storage of the version history data in the frontend and Explanation of all the above
three sections (fetching, storing and showing) with an example.

How is this approach better than the previous one?
● This approach does not tamper with the performance of the updation process of the

model during each save.
● This approach will show the forward moving data quicker than the first one as the first

one involves a backend call to fetch the data.

How will I make sure that I ignore the changes solely related to translations

● As explained above, we can use two extra conditions which are related to translations in
order to ignore those changes.

● The conditions are:
○ change.property_name != STATE_PROPERTY_RECORDED_VOICEOVERS
○ change.property_name != STATE_PROPERTY_WRITTEN_TRANSLATIONS

● Also, we only need to check these conditions for those states which are present on both
the earlier and newer versions of the explorations and were not renamed (explained in
above section).

Some example cases to make sure that the above explained updation process is correct

● If a new state has been added and been renamed in the same commit, it will be handled
by Handling of exploration state additions. This is because
exp_versions_diff.added_state_names contain the latest names of the added states.
Since the state has been created for the first time during this commit, it will not have any
‘previously_edited_on_version’ and ‘state_name_in_previous_version’.

● If a new state has been added and some properties of that state have been changed, it
will be handled by Handling of exploration state additions. Since the state has been
created for the first time during this commit, it will not have any
‘previously_edited_on_version’ and ‘state_name_in_previous_version’.

● If a state has been deleted and before deletion and some changes were made to the
state (renames, change state properties etc.), it will be handled by Handling of
exploration state removals because the state was ultimately deleted.

● If some properties of a state were changed first by (EDIT_STATE_PROPERTY) and then
the state was renamed in the same commit, it will be handled by Handling of exploration

state renames because along with the version, we also need to keep track of the state
name in the previous version of the exploration.

● If a state has been renamed first and then some properties of it were changed in the
same commit, it will be handled by Handling of exploration state renames because of the
same reason as the previous point.

● If only state properties were changed for a state (without any renaming), then it will be
handled by Handling of changes in state properties (only for those states which are
present in both the previous and new versions in the explorations and not have been
renamed).

Handling of exploration reverts

● This task also becomes very easy if we use this method.
● The revert process can be understood in simple terms as follows:

○ Suppose the exploration version was 5 and it was reverted to version 3. Then the
updated version of the exploration will be 6 with all the states and settings of the
exploration being the same as they were in version 3.

● We can follow the above mechanism to revert the version history model to version 5 to
version 3 by following the below pseudo algorithm:

○ Fetch the version history model corresponding to the version to which the
exploration is reverted. In our case, the value is 3.

○ Create a new version history model corresponding to the new version of the
exploration after the revert. In this case, the value is 6. Make the version_history
of the new model to be the one in the older model.

● Following is the pseudocode for better understanding (Here, current_version is the
version of the exploration before reverting. After reverting, its version would be updated
to current_version + 1):

old_version_history_model = exp_models.ExplorationVersionHistoryModel.get(

exploration_id + str(revert_to_version))

new_version_history_model = exp_models.ExplorationVersionHistoryModel(

id=exploration_id + str(current_version + 1),

exploration_id=exploration_id,

exploration_version=current_version + 1,

version_history=old_version_history_model.version_history

)

new_version_history_model.update_timestamps()

new_version_history_model.put()

Comparison between the three methods explained above

Method 1: Without
precomputation

Method 2:
Precomputation
approach (a)

Method 3:
Precomputation
approach (b)

Query 1 GET: To fetch the 1 GET: To fetch the full 1 GET: To fetch the

complexity exploration by its id.

1 GET MULTI: To fetch
the commit logs for all
the versions of the
exploration.

1 GET: To fetch the
exploration data for the
required version in
order to visualize the
diff between versions.

version history of all the
states.

1 GET: To fetch the
exploration data for the
required version in order
to visualize the diff
between versions.

‘previous version history’ of
all the states.

1 GET: To fetch the
exploration data at the
‘previously edited version
number’ of the active state.
However, this data is
mostly cached in the
caching_service.

Time
complexity

After fetching the data,
it does another O(N2)
operation to compute
the version history of all
the states

This can be very
inefficient when the
value of N (versions)
exceeds 1000.

O(N2)

After fetching the data, it
just returns the data for
the active state.

O(1)

After fetching the data, it
just returns the data for the
active state.

O(1)

Size of
data
transferred

The full version history
of all the states of an
exploration is computed
and returned to the
client each time.

This makes this method
undesirable as the
version history of each
state can have over
100k elements.

The full version history
of all the states is
fetched from the
datastore and the data
for the active state is
returned to the client.

It is more efficient than
the first method but still
returning the full version
history at once is not a
very desirable approach
as there can be more
than 100k elements in
the list.

The ‘previous version
history’ is fetched for each
state and the data for the
active state is returned to
the client.

This will be an ideal
approach as we are just
fetching a single piece of
the version history.

Ease of
implement
ation

Moderately difficult to
implement.

Moderately difficult to
implement.

Easier to implement all the
required features (state
addition, removal,
renaming and changes in
state properties along with

exploration revert).

Color code:
● Red: Not desirable (Score = 0)
● Yellow: Mediocre (Score = 1)
● Green: Most ideal (Score = 2)

Here, we can see that the third method is indeed the best among all of them even without giving
weights to the points of comparison.

Final structure of the version history
● From the above discussions, it is clear that the version history for a particular state for a

particular version of an exploration will have the following structure:
○ previously_edited_on_version: int. The version number of the exploration on

which the state was previously edited.
○ state_name_in_previous_version: str. The name of the state in the previously

edited version. It is helpful in case of state renames.
○ committer_id: str.

● This structure can be represented by a new domain object called StateVersionHistory.

Representation of the version history of a single state

Backend: StateVersionHistory domain object

● It will be newly created in the state_domain (because it is related to a state rather than
an exploration).

● Attributes:
○ previously_edited_on_version
○ state_name_in_previous_version.
○ committer_id.
○ These attributes are explained above

● Functions:
○ It will just have basic to_dict and from_dict methods.

Frontend: StateVersionHistory domain object

● Attributes:
○ _previouslyEditedOnVersion: number.
○ _stateNameInPreviousVersion: string.
○ _committerUsername: string.

● Functions:
○ Basic getters and setters for the above properties.
○ From and to backend dict methods.

● Backend dict:

export interface StateVersionHistoryBackendDict {

'previously_edited_on_version': number;

'state_name_in_previous_version': string;

'committer_username': string;

}

Populating the new model for already existing explorations

Creation of a new one-off beam job

● For this, a new one-off beam job will be created which will iterate through the change list
of every version of the exploration and update the version history of states present at
that version of the exploration.

● The structure of the beam job will be as follows:
○ Get all the exploration models.
○ Get all the exploration commit log entry models.
○ Group the exploration models and commit log entry models for each

exploration_id by using CoGroupByKey.
○ Now, we iterate over each exploration and in each iteration, we do the following:

■ Create an empty list to store the version history models.
■ Iterate over the commit logs for all versions of that particular exploration.

In each iteration, do the following:
● Get the change list from the commit log.
● Get the old version history model from the list (version history

corresponding to the previous version).
● Update the version history according to the process explained in

the section: Updation process of the old version history to get a
new one during each exploration save.

● Create a new version history model for the current version (in the
iteration) with the updated version history. If the model already
exists, then we can update that model itself. This can happen
when the beam job has been run in the past and could not finish
properly.

● Append the model in the version history models list.
○ After getting all the models, we will save the models into the datastore using

ndb_io.PutModels().

Things to check while running the beam job

● There are commit logs present for every version of the exploration i.e. if the number of
versions is ‘v’, then there should be ‘v’ commit log models. For this, an audit job will be
run on the server. If an exploration does not meet this criteria, then we cannot calculate
the proper version history of states for this exploration and hence we can ignore that
exploration while running the main beam job.

● If the change command is ‘add_state’, ‘rename_state’ and ‘delete_state’, we don’t have
to check anything and can move on to the updation process.

● However, for the change command ‘edit_state_property’, we have to check for the
following individual property names:

○ If the property name is ‘written_translations’ or ‘recorded_voiceovers’, then
we must ignore them and do not record the changes as they are related to
translations.

○ If the property name is ‘content_ids_to_audio_translations’,
‘widget_handlers’, ‘widget_sticky’, ‘gadget_visibility’ or
‘gadget_customization_args’, we must not record their changes because these
are deprecated properties.

● The computation will not be affected by deprecated interactions, customization args etc..
However, the version history will be calculated only upto exploration versions having
states schema version greater than or equal to
feconf.EARLIEST_SUPPORTED_STATE_SCHEMA_VERSION. In versions less than
this value, we will show an information message to the user notifying that “Further
version history could not be calculated due to outdated state schema version”.

Since this job will just be computing the version numbers on which the states were edited rather
than the actual change, there are no more concerns left to be discussed about an exploration
being “valid” while running the job.

Handling the cases where the version history cannot be calculated

● This can happen when the exploration does not have commit logs for all of its versions
(i.e. some commit logs are missing).

● In this case, the version history for that particular exploration cannot be computed and
hence no version history models would exist for the corresponding exploration.

● From the below section Fetching of the version history data from the backend, we can
see that the initial fetching of the data will happen when the page loads for the first time.
Now, if the model does not exist for a particular exploration, the backend api will throw
an error and we can catch that error in the frontend. After catching the error, an
information message will be shown to the user notifying that “Due to missing commit
logs, the commit history of the exploration can’t be explored.”

What if the beam job fails midway?

● If it fails, we can check the error logs to understand why the job failed and for which
exploration id and version.

● If the failure is due to “bad code” in the beam job, then it will be rectified and the job will
be run again.

● Otherwise, the job will be run again without any changes.
● While running, the job will first check if the version history model for a particular version

of the model already exists. If so, then the job will just use the existing model and not
create a new one. If not, then the job will create the version history model from scratch.

Fetching of the version history data from the backend

What data we will be fetching during each press of the ‘move backward’ button

For a given state name and a given version of the exploration, we will make a call to the
backend to fetch the following data:

● Previous version history at the given version of the given state name.
● State dict at the previously edited version number of the state.
● DATASTORE CALLS: 3 : GET

○ One for fetching the version history model.
○ One for fetching the exploration data at the previously edited version number.

However, this data is mostly cached by the caching_services.
○ One for fetching the commit log entry model so that we can get the user id of the

user who committed at the previously edited version number.

The initial fetching of the data will take place inside the initStateEditor function of the
exploration editor tab component.

After that, the subsequent fetching of version history data will happen each time the user clicks
on the ‘move backward button’.

Structure of the backend response

interface VersionHistoryBackendResponse {

'version_history': StateVersionHistoryBackendDict;

'state_dict_in_previous_version': StateBackendDict;

}

● Here, the StateVersionHistoryBackendDict is explained at Frontend: StateVersionHistory
domain object.

Structure of the backend handler

● URL: /version_history/<exploration_id>/<version>/<state_name>
● URL Params:

○ exploration_id: The id of the exploration.
○ version: Version of the exploration for which we want to fetch the version history.
○ state_name: Name of the state for which we want to fetch the version history.

● Pseudo algorithm:
○ Fetch the version history model for the given version.

version_history = (

exp_fetchers.get_exploration_version_history(

exploration_id, version))

○ Get the “previously_edited_on_version” value from the fetched version history
model for the given state. Let’s call it exp_version_to_fetch.

exp_version = (

version_history[state_name].previously_edited_on_version)

○ If the value of exp_version_to_fetch is None (i.e. The state has reached the end
of its version history), we return the response in the following format:

■ ‘version_history’: version_history[state_name].to_dict()
■ ‘state_dict_in_previous_version’: None

if exp_version is None

response.update({

'version_history': version_history[state_name].to_dict(),

'state_dict_in_previous_version': None

})

○ If it is not None, then we fetch the state dict for the given state in the “previously
edited version number” of the state and then return the response as follows:

exploration = exp_fetchers.get_exploration_by_id(

exploration_id, version=exp_version)

state_name_in_previous_version = (

version_history[state_name].state_name_in_previous_version

response.update({

'version_history': version_history[state_name].to_dict(),

'state_dict_in_previous_version':

exploration.states[state_name_in_previous_version].to_dict

})

Structure of the backend api service

● It will have a function called fetchVersionHistory which will make a request to the
backend to fetch the version history for the given state and the given version.

● The return value of this function will have the following structure:

interface VersionHistoryResponse {

versionHistory: StateVersionHistory;

stateInPreviousVersion: State;

}

If the backend API fails for some reason

● When the backend api fails, the rest of the exploration editor page will not become
unusable and will work perfectly fine.

● Just the “Latest commit by …” link will be hidden from the user for that particular
exploration. The rest of the page will not be affected.

Data structure to store the fetched version histories in the frontend
● We will be using three arrays to store the fetched version numbers, state data and

committer data respectively as the user keeps going backward over the version history
of a state.

● The arrays will be reset (made empty) each time the active state is changed.
● As the user presses the backward moving button, the previous version history will be

fetched from the backend and appended into the end of the arrays.
● As the user presses the forward moving button, the diff data will be shown by the cached

values as they will already be stored in the array.

Storage of the version history data in the frontend
For this, a new service will be created called VersionHistoryService.

It will have the following attributes:

● _latestVersionOfExploration: number.
○ The latest version of the exploration.

● _fetchedVersionNumbers: number[].
○ It will store the version numbers from the version history of a state as we keep

fetching them one by one as per requirements.
○ It will be initialized as an empty array.
○ This array will be sorted in decreasing order as we insert the versions from the

version history of a state.

● _fetchedStateData: State[].
○ It will store the state data from the version history of a state as we keep fetching

them one by one as per requirements.
○ It will be initialized as an empty array.

● _fetchedCommitterData: string[].
○ It will store the committer usernames for different versions in the version history

of a state as we keep fetching them one by one as per requirements.
○ It will be initialized as an empty array.

● _currentPositionInVersionHistoryList: number.
○ It will be an index pointing to the version in the_fetchedVersionHistory list upto

which the user has explored till now.

○ It will be incremented when the user presses the ‘move backward’ button and
decremented when the user presses the ‘move forward’ button.

○ For example, if the value of _fetchedVersionHistory is [5, 4, 3, 2, 1] and the user
is currently viewing the diff between versions 2 and 3, the value of
_currentPositionInVersionHistoryList will be 3 (pointing to the version 2).

It will have the following functions:

● Basic getters and setters for the above mentioned properties.

● Functions for decrementing and incrementing the value of
_currentPositionInVersionHistoryList.

● init(version: number)
○ It will initialize the value of _latestVersionOfExploration to the latest exploration

version.
○ It will be run inside the initExplorationPage function of the exploration editor

page component.

● reset():
○ It will reset the _currentPositionInVersionHistoryList to null and the values of the

above mentioned arrays to be empty arrays.
○ It will be run each time the function initStateEditor of exploration editor tab

component runs. Hence it will run when the page first loads, each time the
active state changes and also when some changes are saved onto the
exploration.

● shouldFetchNewData():
○ It will return a boolean value which indicates whether the older version history

data must be fetched or it is already cached.
○ Suppose that the user has been exploring the version history upto some versions

and then closed the modal. When they open the modal again, the data upto that
particular version history don’t need to be fetched as they are already cached.
The data will be fetched again when we reach the end of the cached data.

○ The structure of the function is explained below. If the
_currentPositionInVersionHistoryList is not pointing to the end of the list, then no
need to fetch new data as we can use the cached ones.

shouldFetchNewData(): boolean {

if (this._currentPositionInVersionHistoryList <

this._fetchedVersionNumbers.length - 2) {

return false;

}

return true;

}

● insertVersionHistoryData(version: number, stateData: State, committerUsername:
string):

○ It will push the given data into the respective lists.
○ ‘version’ will be pushed to _fetchedVersionNumbers list and so on.

* Note:
● If the _currentPositionInVersionHistoryList at any time is v, then:

○ The backward diff data is given by the versions _fetchedVersionNumbers[v] and
_fetchedVersionNumbers[v + 1].

○ The forward diff data is given by the versions _fetchedVersionNumbers[v - 1] and
_fetchedVersionNumbers[v - 2].

● canShowBackwardDiffData()
○ Return true if there are more versions left to be shown in the version history data.
○ It checks the following conditions:

■ _currentPositionInVersionHistoryList >= 0 (i.e. it should not be null).
■ _currentPositionInVersionHistoryList < _fetchedVersionNumbers.length -

1 (This means that we have not reached the end of the version history).

● getBackwardDiffData()
○ Returns the diff data required to show the changes in the previous commit.
○ The backward diff data is the diff data between versions

_fetchedVersionNumbers[_currentPositionInVersionHistoryList] and
_fetchedVersionNumbers[_currentPositionInVersionHistoryList + 1].

○ It returns the data in the following format:
■ oldState: State.
■ newState: State.
■ oldVersionNumber: number.
■ newVersionNumber: number;
■ committerUsername: string;

getBackwardDiffData(): DiffData {

return {

oldState:

this._fetchedStateData[this._currentPositionInVersionHistoryList + 1],

newState:

this._fetchedStateData[this._currentPositionInVersionHistoryList],

oldVersionNumber: (

this._fetchedVersionNumbers[this._currentPositionInVersionHistoryList +

1]),

newVersionNumber: (

this._fetchedVersionNumbers[this._currentPositionInVersionHistoryList]),

committerUsername: (

this._fetchedCommitterData[this._currentPositionInVersionHistoryList + 1])

};

}

● canShowForwardDiffData()
○ It returns true if the following conditions are true:

■ _currentPositionInVersionHistoryList >= 2
■ _currentPositionInVersionHistoryList < _fetchedVersionNumbers.length.

● getForwardDiffData()
○ It will be similar to the function getBackwardDiffData.

getForwardDiffData(): DiffData {

return {

oldState:

this._fetchedStateData[this._currentPositionInVersionHistoryList - 1],

newState:

this._fetchedStateData[this._currentPositionInVersionHistoryList - 2],

oldVersionNumber: (

this._fetchedVersionNumbers[this._currentPositionInVersionHistoryList -

1]),

newVersionNumber: (

this._fetchedVersionNumbers[this._currentPositionInVersionHistoryList -

2]),

committerUsername: (

this._fetchedCommitterData[this._currentPositionInVersionHistoryList - 1])

};

}

Showing the diff data between versions to the user
● For this, a new modal component will be created.

● It will be similar to the StateDiffModal.
● Properties:

○ committerUsername: string.
■ The username of the committer in the current diff. If we are showing the

diff between versions v and v + 1, then its value will be the username of
the user who committed those changes from v -> v + 1.

○ previousVersionNumber: string.
■ If we are viewing diff between v and v + 1, then its value will be v.

○ newState: State.
■ The state data for version v + 1.

○ oldState: State.
■ The state data for version v.

○ oldStateName: string.
○ newStateName: string.

● Functions:
○ updateLeftPane:

■ Converts the oldState dict into yaml using the newly created Yaml Service
and stores the result.

○ updateRightPane:
■ Converts the newState dict into yaml using the newly created Yaml

Service and stores the result.
○ fetchPreviousVersionHistory:

■ Fetches the previous version history for the active state using the newly
created backend api service.

■ After fetching the data, it updates the data in the VersionHistoryService
and increments the _currentPositionInVersionHistoryList by 1.

■ It also checks if new data needs to be fetched by using the
VersionHistoryService.shouldFetchNewData method. If not, then it just
increments the _currentPositionInVersionHistoryList.

○ ngOnInit:
■ This function is called once when the modal is opened for the first time.
■ Calls updateLeftPane and updateRightPane functions and renders the diff

between the versions.
■ After that, it calls fetchPreviousVersionHistory to fetch the previous

version history of the state.
○ onClickMoveBackwardButton:

■ Gets the backward diff data from VersionHistoryService and updates the
properties such as newState, oldState, newStateName, oldStateName
etc..

■ After that it will call updateLeftPane and updateRightPane to update the
modal with the new diff data.

■ Fetches the previous version history using the
fetchPreviousVersionHistory function.

○ onClickMoveForwardButton:
■ It is similar to the previous function.
■ The differences are that this function gets the forward diff data and

decrements the _currentPositionInVersionHistoryList after updating the
modal with the new data.

■ Also, it does not need to fetch new data as forward diff data will always be
present beforehand.

Explanation of all the above three sections (fetching, storing and showing) with an
example
The above three sections do not explain much about how they are interconnected. However,
they will become more clear after this example.

Suppose that we have an exploration with states a and b. The latest version of the exploration is
6 and the version history of the states a and b look like following:

● a: [4, 3, 2, 1]
● b: [5]

Initially, the values of the properties of version history service will be as follows:

_latestVersionOfExploration null

_currentPositionInVersionHistoryList 0

_fetchedVersionNumbers []

(The other properties are not shown for the sake of simplicity. But they will also be updated
whenever _fetchedVersionNumbers get updated).

The exploration editor page loads for the first time

Firstly, the value of _latestVersionOfExploration will be set to the latest version of the exploration
inside initExplorationPage.

_latestVersionOfExploration 6

_currentPositionInVersionHistoryList 0

_fetchedVersionNumbers []

The state editor gets initialized

Here, the initStateEditor will be called and the lists will be initialized with the data of the latest
version of the exploration.

_latestVersionOfExploration 6

_currentPositionInVersionHistoryList 0

_fetchedVersionNumbers [6]

Again inside the initStateEditor, the first version history for the active state (a) will be fetched
and the data will be updated.

_latestVersionOfExploration 6

_currentPositionInVersionHistoryList 0

_fetchedVersionNumbers [6, 4]

At this point, the user will be able to see the annotation “Latest commit by XXX at version 4”.

The user clicks on the annotation

The backward diff data will be fetched from version history service and the modal will be shown
to the user (diff between versions 4 -> 6).

As soon as the modal shows up, the previous version history will be fetched inside the ngOnInit
function and the data will be updated as follows:

_latestVersionOfExploration 6

_currentPositionInVersionHistoryList 1

_fetchedVersionNumbers [6, 4, 3]

At this point, the user will be able to see the annotation “Previous commit by XXX at version 3”.

The user clicks on the “Previous commit by …” button

Similar to the previous step, the diff data will be fetched from the version history service and the
modal data will be updated (Now, diff between 3 -> 4 will be shown).
Also, the previous version history will be fetched and after the data is received, the properties
will be updated as follows:

_latestVersionOfExploration 6

_currentPositionInVersionHistoryList 2

_fetchedVersionNumbers [6, 4, 3, 2]

At this stage, the button “Next commit by XXX at version 4” will be visible which will help the
user to move forward in the version history.

Now, if the user keeps going backward, the same process will be repeated until they reach the
end of the version history. At that point, only the “Next commit by …” button will be visible.

The user clicks on the “Next commit by ….” button

In this case, the forward diff data will be fetched from the version history service and the modal
data will be updated to show the diff between versions 4 -> 6. Also, the
_currentPositionInVersionHistoryList is decremented.

_latestVersionOfExploration 6

_currentPositionInVersionHistoryList 1

_fetchedVersionNumbers [6, 4, 3, 2]

Now, the “Next commit by ….” button vanishes because the value of
_currentPositionInVersionHistoryList has become 1 now. Only the “Previous commit by XXX at
version 3” will be visible.

The user closes the modal

Closing the modal will set the value of _currentPositionInVersionHistoryList to 0 and the user
can see the annotation “Latest commit by XXX at version 4” again.

However, the already fetched values will not be deleted because the user might open the
version history again and then we would not have to fetch them again.

The user changes the active state

On changing the active state, the initStateEditor will be called again and the steps explained in
The state editor gets initialized will be repeated.

Performance considerations
● Tested on oppia development server.
● Operating system: Ubuntu 20.04
● Browser: Chrome Version 96.0.4664.110 (Official Build) (64-bit)

Without any precomputation

Attempt Result (time taken in seconds to fetch the full version history)

1 0.622

2 0.577

3 0.633

4 0.591

5 0.584

● In this case, the average time taken comes out to be 0.602 seconds.
● Hence, average time taken for fetching versions history list of all states = 0.59 seconds.
● Now, we need to consider the average time taken by CompareVersionsService to fetch

the diff data and return it.

Attempt Result (time taken in seconds to fetch diff data)

1 0.079

2 0.095

3 0.103

4 0.161

5 0.11

● Hence, average time taken for fetching diff data between versions using
CompareVersionsService = 0.1096 seconds.

With precomputation (Precomputation approach (b))

In this approach, we will be fetching the ‘previously edited version number’ along with the state
dict in the previous version (for the active state) as explained in Fetching of the version history
data from the backend.

Attempt Time taken to fetch the previous version history (in ms)

1 46

2 50

3 55

4 56

5 86

Hence, the average time taken comes out to be 58.6 ms or 0.06 seconds (approx.). These
values also depend upon the capability of the development server and the network latency.

However, by looking at the time taken by both methods on the same development server, we
can say that precomputation will save us a lot of time.

Launch plan for Subproject (B)
● The new model will be created along with implementation of its lifecycle (creation,

updation and deletion).
○ The updation process (explained in Updation process of the old version history to

get a new one during each exploration save) will take place if and only if the
version history model exists for the previous exploration version (i.e. if the
exploration is updated from v -> v + 1, then the updated version history model will
only be created for version v + 1 if the version history model for version v exists).
For this, an if-condition will be added to check if the model is not None.

○ Hence, at this stage, the feature will only work for explorations which are newly
created. For older explorations, the version history models will not be present till
now, so the updation process will not take place for them (when they are being
saved).

● During the first release, the new model and its lifecycle implementation will be merged
and released.

● After the new model is implemented and merged, the beam job will be run on the
production server (in maintenance mode) to populate the data for already existing
models.

○ This will be a relatively longer process as the job might fail and might take
multiple iterations of running it in order for it to fill all the models correctly.

○ While running the beam job, we will face the situation where the version history
models will be available for some explorations and not for others.

■ To face that, while running, the job will also fetch the existing version
history models for different versions of the exploration.

■ If the version history models for a particular exporation already exist, then
the job will keep the models as it is and then push it back. If not, then it
will create the models from scratch. It is explained in the section What if
the beam job fails midway?.

● After the beam job has finished properly, we will be sure that the version history for all
the explorations (both newer and older ones) are fully up to date.

○ Now the updation process (while saving some changes to the exploration) will
happen for all the explorations as the version history model of the previous
version of the exploration will exist for all of them.

○ Hence, after running the beam job, we can be sure that the version histories will
remain updated forever (as the lifecycle of the model is merged beforehand).

● During the second release, the frontend will be allowed to show the feature to the users

and make the requests to the backend to fetch the version history data.

Implementation of feature flags

● There will be a feature flag in the frontend called
ALLOW_VERSION_HISTORY_NAVIGATION which will prevent the frontend from
fetching the version history data from the backend. Its value will be false by default and
will be made true once all the data in the backend becomes stable and fully updated (i.e
during the second release).

Third-Party Libraries

No. Third-party
library
name and
version

Link to
third-party
library

Why it is needed License (if2

third-party library)

1 js-yaml (4.1.0) js-yaml It is needed to convert metadata dict into yaml
from the frontend itself. Currently, it is done by
sending a request to the backend and
receiving the yaml representation of the dict.
However, this approach is asynchronous and
takes some time to finish. Also, if the backend
api fails sometime, then the version diff
visualization would appear broken. Hence,
using the frontend library would sweep the
cons of using the backend approach.

MIT License

2 deepdiff deepdiff It is needed to deeply compare two
dictionaries.

MIT License

Impact on Other Oppia Teams
This project will not impact other oppia teams.

Key High-Level and Architectural Decisions

Subproject(a)
For converting metadata dict to yaml string in Subproject(a), the following alternatives were
considered for converting the state or metadata dict into yaml string:

1. Backend approach: Currently, the state dict is converted into yaml string by sending a
POST request to the backend and doing the conversion in the backend.

2. Frontend approach: This is the newly proposed solution in this document. It will use a
party library called ‘yaml’ to do the conversion.

2Note: Oppia can only use third-party libraries that are compatible with our Apache 2.0 license. If you're
unsure about license compatibility, talk to a platform TL.

https://github.com/nodeca/js-yaml
https://pypi.org/project/deepdiff/

Among these, I believe that alternative 2 is a better approach because the backend approach is
asynchronous and will take more time to complete than the frontend approach. Also, if the
backend api fails for some reason, the diff visualization will appear broken. The approaches
have been compared below:

Alternative 1 Alternative 2

Performance Relatively slower than the
second method as it is
asynchronous and involves
sending a request to the server
and getting the response.

Relatively faster than the first
method as it is synchronous and
everything is getting done in the
frontend itself.

Probability of failure If the backend api fails for some
reason, then the diff visualization
would appear broken.

Since everything is done on the
frontend, it is far less probable to
fail.

Usage of third party libraries No new third party library is
used.

A new third party library will be
introduced called ‘yaml’.

Subproject (b)
For this, the following methods were considered:

- Method 1: Without precomputation
- Method 2: Precomputation approach (a)
- Method 3: Precomputation approach (b) (Efficient and scalable approach)

Among them, I believe that method 3 will be the most desirable and beneficial approach. The
comparison among the methods have been shown in Comparison between the three methods
explained above.

Risks and mitigations
There will be no security or reliability risks introduced by implementing this solution for both
subprojects (a) and (b).

Implementation Approach

Storage Model Layer Changes

ExplroationVersionHistoryModel
It will store the ‘previous version history’ of all the states present in a particular version of the
exploration. It is explained in detail in the section Method 3: Precomputation approach (b)
(Efficient and scalable approach).

● Schema:
○ exploration_id: str. The id of the corresponding exploration.
○ exploration_version: int. The version number of the exploration.
○ version_history: dict. A mapping of the state names of an exploration in its

current version and their version history.
■ Key: str. The name of the state.
■ Value: dict.

● The structure of the dict will be as follows:
○ 'previously_edited_on_version': int
○ 'state_name_in_previous_version': str
○ 'committer_id': str

■ committer_id is the id of the user who committed the changes from
version = 'previously_edited_on_version' to version =
'previously_edited_on_version' + 1.

● Lifecycle of the model:
○ [CREATION]:

■ Create a new instance of this model whenever a new exploration is
created.

■ Initialize the version_history of all the states as (None, None) at the
beginning.

○ [UPDATION]:
■ The updation process explained in detail in the below section Updation

process of the old version history to get a new one during each
exploration save.

○ [DELETION]:
■ Delete all the instances of this model when the exploration is deleted.

Domain Objects

Frontend

ExplorationMetadata domain object

It is explained in the section Frontend: ExplorationMetadata domain object.

Renaming the existing ExplorationMetadata domain object

● In the frontend, there already exists an ExplorationMetadata domain object. However, it
represents only three properties i.e. id, objective and title.

● This domain object is used to represent information for searching explorations.
● Hence, it will be renamed to ExplorationSearchResult.

StateVersionHistory domain object

It is explained in Frontend: StateVersionHistory domain object.

Backend

StateVersionHistory domain object

It is explained in the section Backend: StateVersionHistory domain object.

ExplorationMetadata domain object

It is explained in the section Backend: ExplorationMetadata domain object.

User Flows (Controllers and Services)

User stories / tasks
In the below points, “Additional Datastore calls” means the datastore calls introduced by this
project.

Subproject (A)

● User selects two versions in the history tab
○ Pseudo algorithm

■ CompareVersionsService fetches the diff data between the two selected
versions.

■ The history tab component now renders the version diff visualization
component providing the diff graph data.

■ At this point, the user sees the diff graph with the nodes being the
exploration states along with the metadata nodes.

○ URL Endpoint

■ /explorehandler/init/<exploration_id>?v=<version>
○ Handler

■ ExplorationHandler in reader.py.
○ Additional Datastore calls

■ None
● User clicks on the button “Changes in exploration metadata”

○ Pseudo algorithm
■ This will open the newly created metadata diff modal which will show the

metadata changes between the two selected versions.
○ URL Endpoint

■ None
○ Handler

■ None
○ Additional Datastore calls

■ None

Subproject (B)

● User opens the exploration editor page for the first time or changes the active
state from the exploration graph.

○ Pseudo algorithm
■ initStateEditor sends a request to fetch the previous version history for

the active state.
■ The ExplorationVersionHistoryModel is fetched for the given exploration id

and the latest version of the exploration.
■ Along with that, the exploration data for the previously edited version of

the state is fetched.
■ The previous version history along with the state dict for the previously

edited version is sent to the frontend.
○ URL Endpoint

■ /version_history/<exploration_id>/<version>/<state_name>
○ Handler

■ ExplorationVersionHistoryHandler.
○ Additional Datastore calls

■ [SYNC]
● get: 2 (One for fetching the previous version history and other for

fetching the exploration data at the previously edited version).

● User clicks on the link “Latest/Previous commit by XXX at version YYY” (similar to
previous case)

○ Pseudo algorithm
■ The diff data between the versions YYY and YYY + 1 will be shown.
■ Also, a request will be sent to fetch the previous version history of the

active state.

○ URL Endpoint
■ /version_history/<exploration_id>/<version>/<state_name>

○ Handler
■ ExplorationVersionHistoryHandler.

○ Additional Datastore calls
■ [SYNC]

● get: 2 (One for fetching the previous version history and other for
fetching the exploration data at the previously edited version).

● User saves some changes in the exploration.
○ Pseudo algorithm

■ The exploration is saved as per the current system.
■ Additionally, the version history for the exploration states is updated

according to the method explained in the section Updation process of the
old version history to get a new one during each exploration save.

■ After the save is successful, the initStateEditor function runs again and
fetches the updated ‘previous version history’ of the active state.

○ URL Endpoint
■ /createhandler/data/<exploration_id>?apply_draft=<apply_draft>
■ /version_history/<exploration_id>/<version>/<state_name>

○ Handler
■ ExplorationHandler in editor.py (for saving the exploration)
■ ExplorationVersionHistoryHandler (for fetching the updated version

history data)
○ Additional Datastore calls

■ [SYNC] get: 1 (for getting the old version history model)
■ [SYNC] put: 1 (for saving the updated version history model)

Modifications in backend handlers

Changes in ExplorationHandler in reader.py

● Its response dict will be updated to include a new property called
exploration_metadata.

● It is explained in detail in the section Modification of the return value of
ExplorationHandler.

Creation of a new ExplorationVersionHistoryHandler for fetching the version history data

● It will be newly created for this project.
● It is explained in detail in the section Fetching of the version history data from the

backend.

Web frontend changes
● Creation of a new button saying “Changes in exploration metadata” in the history tab

component. When clicked, this button will open a modal showing the changes made in
the exploration metadata between the two selected versions. It is explained in the
section Changes in History Tab Component.

● Creation of a new Metadata diff modal to show the diff in exploration metadata. It is
explained in the section Creation of a new Metadata Diff Modal Component.

● Creation of a new service to store the fetched version history data. It is explained in
detail in the section Storage of the version history data in the frontend.

● Creation of a new modal component to view the diff data between the states as
explained in Showing the diff data between versions to the user.

Testing Plan

E2e testing plan

Test name Initial setup
step

Step Expectation

1. Lesson
creators
can see the
changes in
exploration
metadata
between
two
selected
versions in
the history
tab.

Login and
open the
exploration
editor page.

Create an exploration and make
some changes in the
exploration properties (title,
category etc.). Open the history
tab and select the first and the
last version.

The creator should see a “Metadata” node
along with the other state nodes.

Click on the “Metadata” node. The metadata diff modal should popup
and show the diff between exploration
metadata between the first and the last
versions.

2. Lesson
creators
can see the
annotation
“Last
edited by
XXX at
version
YYY”.

Login and
open the
exploration
editor page.

Create an exploration and make
some changes on the initial
state and save those changes.
After saving, make some more
changes and save them again.

The annotation should show up on the
bottom right corner of the page.

Click on the annotation. A modal should popup showing the diff
between the versions YYY and YYY + 1.
Another annotation should be visible on
the bottom right corner of the modal.

Click on the annotation on the
bottom right corner of the
modal.

The modal data should be updated to
show the diff between the previous
versions.

Feature testing
Does this feature include non-trivial user-facing changes? YES

Implementation Plan

Milestone 1(June 13 - August 14)
Enable creators to see changes in the exploration metadata by clicking a button in the history
tab. Make all the necessary backend changes (up to and including the controller layer) for users
to be able to navigate through the version history of a state (and the exploration metadata) in an
exploration. Also, create the backend api service in the frontend for fetching the version history
data.

No. Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

1 Create all the new domain objects:
● ExplorationMetadata (frontend)
● ExplorationMetadata (backend)
● StateVersionHistory (frontend)
● StateVersionHistory (backend)

None 13th June 18th June

2 Create the new
ExplorationStatesVersionHistoryModel and
implement its lifecycle in the backend (creation,
updation etc.).

1 20th June 26th June

3 Create the new beam job and run it on the server. 2 29th June 5th July
(Merged and
run on the
server)

23rd July
(Date upto
which the job
will create all
the required
data on the
server
correctly. I
am keeping
this leeway to
handle things
properly in
case they go
wrong).

4 Make the changes in the return value of
ExplorationHandler to include the new
exploration_metadata property and also add the
new properties (v1Metadata and v2Metadata) in
CompareVersionsService’s return value.

Also, create the backend test to ensure that a new
metadata property added shows up during
comparison.

1 1st July 6th July

5 Install the ‘js-yaml’ library and create the new
YamlService.

Also, create the new frontend service for caching
of the fetched exploration versions.

None 3rd July 9th July

6 Make the other required changes to show the
metadata diff to the user:

● Create the new metadata diff modal
component.

● Create the new button in the history tab
component to open the metadata diff
modal.

4, 5 11th July 17th July

7 Write the e2e tests for Subproject (A) 6 19th July 25th July

8 Create the backend handler for fetching the
version history data along with the backend api
service in the frontend.

Also, introduce the feature flag:
ALLOW_VERSION_HISTORY_NAVIGATION so that
the frontend does not make any request to fetch
the version history data. Initial value of this flag
will be false.

2 27th July 4th Aug

Milestone 2(August 25 - October 16)
Make all the other required frontend changes so that users can navigate through the version
history of a state and the exploration metadata.

No. Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

9 Create the frontend service to store the fetched
version history data.

2 25th August 31st August

10 Create the new modal to show the diff between
different versions of the state.

9 2nd
September

8th
September

11 Make the other required changes in the exploration
editor tab component to complete the
subproject(b).

Also, make the value of
ALLOW_VERSION_HISTORY_NAVIGATION to be
true so that the frontend can now make requests
to the backend.

10 10th
September

17th
September

12 Write the e2e tests for subproject(b) 11 22nd
September

30th
September

Future Work
● I will continue to be a part of oppia in the future.

