
Section 2: About Your Project

Project Details

Project title Dockerize Oppia

Project size Large (~350 hours)

https://github.com/oppia/oppia/wiki/Google-Summer-of-Code-2023#41-dockerize-oppia

Why did you
choose this
project?

New contributors to Oppia currently face numerous challenges when setting up
the development environment and the installation process can be quite complex
and time-consuming, requiring careful attention to detail. This can discourage
beginners and make the installation process more error-prone, leading to
frustration and, in some cases, even causing contributors to leave the
organization.

To alleviate these issues, we plan to simplify and streamline the installation
process using Docker Compose, which will package our application into multiple
containers. With just a few straightforward commands, developers will be able to
install, build, and run servers in the development environment. Additionally, we
will optimize the test runs of GitHub actions by leveraging Docker images in the
workflows. This approach will reduce the load on the hosted GitHub servers and
speed up test runs, improving the overall efficiency of the development process.

Project Timeframe
Note: Oppia will only be offering a single GSoC coding period timeframe this year, starting on May 29. All
work for Milestone 1 must be completed and submitted by July 14, and all work for Milestone 2 must be
completed and submitted by Sept 15. We will not be able to extend these deadlines.

Coding period ● I will adhere to the above deadlines.

Planned time
commitment

I am having a Summer break from May to July, I will have approximately 8 weeks
starting from 29th May to 26th July. During this period, I will be able to dedicate
around ~30 hrs/week.
(30*8 → 240 hrs.)
From 27th July until 15th September, which is approximately 6 weeks, I will only
be able to devote around ~20 hrs/week due to my college semester being in
session.
(20*6 → 120 hrs.)

The allocated time frame is adequate for completing the project; however, I can
adjust my work hours to meet the project's needs if necessary.

What other
obligations might
you need to work
around during the
summer?

● On 26th July, I will need to travel back to my college campus from my
home, and it may take up to 2 days to complete the journey and settle
down.

● I am expecting my mid-semester exams to begin on 10th September, and
I will need to adjust my work schedule accordingly. The exact date has
not been announced by the university yet.

Communication Channels
Note: The Oppia team places a high emphasis on communication, and we have found that daily contact
between contributors and mentors is important for helping keep projects on track. This is why we ask that
contributors send short daily updates to their mentors explaining what they have done, where they are
stuck, and what they plan to do next.

I can commit to sending daily
updates to my mentor by email,
each day I work during the GSoC
period.

● Yes

In addition to the above: how
often, and through which
channel(s), do you plan on
communicating with your
mentor?

I aim to provide daily updates to my mentor to maintain proper
communication and ensure the project runs smoothly. For such
discussions and addressing my small queries, my preferred
mode of communication would be either Google Chat or Email.

Meetings with mentor: 2 times a week (flexible) - on Google
Meet or any other platform.

Section 3: Proposal Details
Note: This section is largely adapted from .Oppia TDD Template (Dec 2021) -- PLEASE MAKE A COPY
We strongly recommend reading that doc, since it has detailed explanations of how to fill out the various
sections. It also contains some links to sample TDDs, so that you can see what others have done in the
past. Additionally, you might find the guidance for “how to plan a technical project” on this Oppia wiki page
useful.

Problem Statement
Link to PRD N/A

Target Audience All Developers, Testers/QA*, Maintainers

Core User Need ● Developers and testers who are installing Oppia must follow an extensive
installation process to set up the development environment successfully.
The installation process is complex and requires careful attention to detail,
as well as a significant amount of time and effort to complete.

https://docs.google.com/document/d/1mnz8f708DZIa6BpUyRmbb0gCT6EKO3wIvWa_3rOEOYs/edit#
https://github.com/oppia/oppia/wiki/Writing-design-docs

● Developers and testers may encounter inconsistency due to variations in
development environments, such as differences in the versions of services,
packages, and dependencies used in the application. This inconsistency can
result in problems, including the well-known issue of "it works on my
machine, but not on yours."

● Developers face challenges in managing and configuring installed
dependencies and setting up environments for those dependencies, which
can be both difficult and error-prone.

● As a Maintainer of Oppia’s repository, it is a little long process for upgrading
any dependency with a newer version.

What goals do
we want the
solution to
achieve?

● Making the installation process quick, easy, and independent of the
platform/OS.

● Packing up the application dependencies/services into containers,
developers can work in a consistent environment without worrying about the
system packages being affected.

● No extra setting up of environments or configuration of the dependencies is
required.

● The Setup should be quick and easy. It should follow the following steps
○ Install Docker Desktop
○ Clone oppia/oppia
○ Run ‘make install-dependencies’
○ Run ‘make run’

● Any upgradations in the Oppia’s dependencies will be smooth for both
Maintainers and Developers.

● Speeding up the test runs on GitHub Actions by using Docker Image to
install dependencies in the workflows.

* here, Testers/QA can be also referred to as a non-technical person who may not have programming skills or are not
proficient in writing codes, and tests the application(using the development server) to its limits.

Section 3.1: WHAT
This section enumerates the requirements that the technical solution outlined in “Section 2: HOW”
must satisfy.

This project aims to reorganize the installation process for our application by containerizing our

application using Docker. By packaging our application as Docker containers (using several

docker images), users will experience ease and efficiency in setting up a development

environment. To setup the development environment, users must →

1) Install Docker Desktop on their machine

2) Clone the Oppia repository

3) run the "make install-dependencies" command to instantly install all required

dependencies and set up the entire development environment.

4) run the “make run” command to start the Oppia development server.

With Docker's seamless setup of necessary services, users can expect a faster, smoother, and

more error-resistant installation experience.

- make run command example using cached docker images →

Once the application has been containerized with Docker, it is essential to ensure that various

types of tests, including backend, frontend, lints, e2e, and others, can be executed successfully

within the webserver Docker container. To achieve this objective, Docker Compose can be

employed, which enables all services within multiple containers to be connected. In addition,

data consistency and persistence can be ensured by mounting shared volumes. To execute any

test in the local development environment, the developer can leverage Docker Compose to spin

up the necessary containers and execute the tests within the appropriate container. To run any

test in the local development environment →

1) run “make terminal” to enter a terminal within the webserver container’s environment.

2) use existing python scripts to run any test within the terminal session of the webserver

container. example → “python -m scripts.run_lighthouse_tests”

Additionally, we will consolidate all GitHub action workflows into a single build step that utilizes

a Docker image to install all necessary dependencies. This approach will accelerate test runs on

GitHub actions by caching the builds of Docker images.

Key User Stories and Tasks

Title User Story
Description (role,
goal, motivation)
“As a …, I need …,
so that ….”

Priority1 List of tasks
needed to
achieve the
goal (this is the
“User
Journey”)

Links to mocks / prototypes, and/or PRD sections
that spec out additional requirements.

1 Setting-up
developm
ent
environm
ent

As a developer, it
is crucial to have
a fully functional
development
server that is
properly
configured and
can run all pages
of the application
without errors.
This is essential
for debugging,
testing, and
verifying the
functionality of
the application.

Must
Have

User installs
the Docker
Desktop in the
system.

Install Docker Desktop from here

Clone the
‘oppia’
repository

Clone the Oppia (web) from your forked repo
using git commands in a parent folder(preferably
name: opensource): `git clone
https://github.com/{{GITHUB
USERNAME}}/oppia.git`

Building and
running the
containers
from the
docker-compo
se file

Run ‘make
install-dep
endencies’ to
install the
required
dependencies

(building for the first time) →

1 Use the MoSCow system (“Must have”, “Should have”, “Could have”). You can read more here.

https://docs.docker.com/desktop/install/mac-install/
https://en.wikipedia.org/wiki/MoSCoW_method

Run ‘make
run’
command to
run the
application in
the
development
environment.

(running with the cached docker images) →

2 Using git As a developer, it
is essential to
have a properly
executed version
of Git and its
associated
commands to
facilitate tasks
such as pushing
changes for
opening pull
requests and
updating local
forks with the
origin repository.

Must
Have

Run `make
terminal`

Execute the
standard Git
workflow of
staging,
committing,
and pushing
the changes
from the local
to the remote
Oppia
repository
using the
appropriate Git
commands.

3 Running
tests

As a developer, it
is necessary to
execute various
tests (including
end-to-end,
backend,
TypeScript tests,
etc.) on the local
development
environment to
ensure the
correctness of
code changes
and avoid any
test failures.

Must
Have

Run `make
terminal`

Users must run tests with existing Python scripts
using the same commands as before.
The only difference is to run those commands
within the running webserver container. The
command for this is: `make terminal` and then
run the existing command to run the test.
Example: `python -m
scripts.run_frontend_tests`

Run the
standard
commands to
start the tests
inside the
docker
terminal.

4 Migrating
GitHub
Action
workflows

As a developer, I
need to have all
the checks
passed on the
GitHub actions so
that the changes
do not cause any
failure in the
tests.

Must
Have

All GitHub
action
workflows
utilize
dockerfile and
cache the
image, in their
build step
(instead of the
python scripts)

Sample workflow file, having just 1 build step that
uses a dockerfile, and cache the docker image,

to install the
required
dependencies.

installing all the required dependencies for that
workflow.

5 Clean the
entire
Oppia
setup

As a developer, it
is necessary to
perform the task
of cleaning up the
Oppia setup in the
event of data
clearance or
removal of locally
created setups in
multiple
containers.

Must
Have

Run the
command
`make clean`
to clean the
entire setup by
deleting all
containers.

6 Run the
Oppia
developm
ent server
in
offline
mode

As a developer, I
many times need
to start the Oppia
development
server without
checking/building
the dependencies

Must
Have

Run command
`make
run-offline
`
This will start
the previously
build and
stopped
containers for
the Oppia
development
server, and
thus no need
for internet
access.

7 Update
the
required
dependen
cies

As a developer, it
is necessary to
install the
dependencies
specified in the
dependency-speci
fication files
(package.json)
with their exact
version to
maintain
consistency and
avoid any
compatibility
issues.

Must
Have

Assuming that
your forked
repository is
up-to-date with
the upstream
repository,
executing the
command
`make
update-pip-
and-npm-pac
kages` will
install all the
dependencies,
as listed in the
dependency
specification
file, with their
exact versions.

8 Healthche
ck for the
container
s running
for Oppia
developm
ent server

As a developer, I
need the server
operating
seamlessly,
without any
interruption or
complications, for
a smooth working
experience. Thus,
all the containers
must run in a
‘healthy’ state.

Must
Have

Run `docker
ps` to check
the health
condition of
the running
containers.
The
configurations
for the
healthchecks
in the
compose file
will allow
users to check
the health
state in the
‘Status’
section after
running the
`docker ps`
command.

similar to this, the health state can be checked
from the `STATUS` section after running ‘docker
ps’ command.

Other Requirements
For the configuration of the Oppia development server, it is necessary to have Docker Desktop
installed on our system. Additionally, within our docker-compose file, we will be retrieving
certain images published on Docker Hub in order to execute the application in multiple
containers.

1) Docker Desktop (preferably ^4.16.2)
Docker Desktop is a tool for building, running, and managing Docker containers. It includes

Docker Engine and Docker Compose, pre-installed within it. Docker Desktop simplifies the

process of running Docker containers by providing a user-friendly interface and a complete

development environment for building, testing, and deploying Docker containers on the local

machine.

● Docker Engine (v20.10.23)
Docker Engine allows developers to create, deploy, and run applications in

isolated containers. It provides a runtime environment for containers. Docker

Engine uses a client-server architecture where the client provides a

command-line interface for interacting with the server.

https://docs.docker.com/desktop/release-notes/#4162

(image credits: ducmanhphan)

● Docker Compose (v2) – [compose file version (^3.4)]
Docker Compose is a tool for defining and running multi-container Docker

applications by defining the services and dependencies for the application in a

YAML file and then starting them all with a single command “docker-compose

up”. This makes it easier to manage applications that require multiple containers.

● Dockerfile(s)
A Dockerfile provides instructions for building a Docker image. It automates the

process of creating a Docker image by defining the base image, application code,

configurations, and dependencies required to run the application. We need to

create the following dockerfiles →

○ Webserver

(dockerfile to install the dependencies and configure the main webserver)

○ Firebase Emulator

(dockerfile to configure firebase emulator - auth)

The versions mentioned here (for Docker Desktop, Docker Engine, and Docker Compose file)

are the base versions we can use, and it would be recommended to use the latest versions to

ensure maximum compatibility and feature support.

http://ducmanhphan.github.io

2) DockerHub Images
Docker Hub images are pre-built images that can be easily searched and downloaded using the

"docker pull" command. Docker Hub also allows developers to create and publish their own

Docker images, making it easier to share their applications with others.

List of DockerHub Images we will be using →

Service Name
(with link to the Docker Hub

image)

Image version to be used
(according to what we use in

Oppia’s codebase)

Image Type

Redis redis: 7.0-alpine Official Docker Image

Google Cloud SDK google/cloud-sdk: 364.0.0 Verified Docker Image
by Google

ElasticSearch elasticsearch: 7.17.0 Official Docker Image

Section 3.2: HOW

Existing Status Quo

The current installation process for our application is a significant obstacle for users, often

leading to frustration and difficulty due to the intricate set of prerequisites that must be followed

with precision. Any minor error or oversight in the installation process can result in major

problems and errors, making it especially challenging for new contributors to navigate and

troubleshoot. The existing installation process requires users to carefully follow a series of

steps, including:

1) Installing prerequisites packages (python3-pip, python3-setuptools, curl, openjdk-8-jre,

git, python3-dev, python3-yml, python3-matplotlib, uzip, libbz2-dev) and other pyenv

pre-required packages.

2) Installing correct python versions (2 and 3.8.15)

3) Cloning Oppia’s repo

4) Setting up the virtual environment (using pyenv)

https://hub.docker.com/layers/library/redis/7.0-alpine/images/sha256-8158082a62d4dc96ce7492026bb0e0de012bee04a0a50a97a93244112611c60c?context=explore
https://hub.docker.com/r/google/cloud-sdk
https://hub.docker.com/layers/library/elasticsearch/7.17.0/images/sha256-fa7141154a7e14df214e42f08c333702403eb88c02ba44e79322a1f42d733013?context=explore

5) Setting up the virtual-env configurations and adding pyenv environment variables.

(These 2 steps are very error-prone and takes long debugging time if user made even a

small mistake)

6) Start the development server by running up the start.py script

Currently, the use of pyenv to set up a virtualenv only encapsulates Python dependencies, which

are stuck with the host OS. Unfortunately, this falls short of our requirements since we need

many Python scripts to run seamlessly behind the scenes. As a result, these factors contribute

to a challenging installation process, making it a painful experience to debug and not

user-friendly to set up.

Check out the current process for setting up the Oppia development server, with all the

required dependencies and services – link

Solution Overview

To simplify and optimize our installation process and startup procedure for the local

development server, we will use Docker Compose to bundle our application into multiple

containers (microservices). Additionally, we will utilize the docker images in our GitHub

workflows to accelerate testing in GitHub Actions, to install the required dependencies. This will

ultimately increase our efficiency and reduce the overall load on the hosted Github servers.

Packaging the application - Docker

Docker is an open platform for developing, shipping and running applications. Docker will enable

us to separate the application from the infrastructure of the system delivering software quickly

and in an error-resistant way, using OS-level virtualization.

https://www.figma.com/file/LxT4x2tZSYaIm0N8FQH7nZ/Untitled?node-id=0%3A1&t=TscGgkQGDPG8bGzA-1

Docker Compose

Docker Compose runs the multi-container Docker application creating multiple Docker images

for each service so developers can establish a consistent environment and streamline the

installation process of the dependencies in both the development environment and Github

Action workflows.

Dockerizing Oppia Server (overview)

To run the application, we'll utilize Docker containers to build and start the development server.

Each requisite service will be allocated separate docker images. Docker images will contain all

necessary dependencies and libraries for each service, eliminating the need for prerequisite

steps and external environment configuration. Using docker-compose, we can seamlessly

combine, build, and launch all services with a single command: “docker-compose up -d”. Docker

compose also makes it easy to manage communication between containers by sharing them on

the same network. By sharing the same network, containers can communicate with each other

using their unique IP addresses or container namespaces, making communication between

containers both efficient and easy to manage. Data persistence can be achieved through the use

of shared directories or Volumes. By storing data on the host machine, it becomes persistent

and accessible to other containers in the future. Services can be configured to use shared

volumes, allowing them to easily access and maintain the same data, ensuring consistency

across all services.

Once the application has been containerized with Docker, the subsequent steps can be followed

to setup the local development server →

1) Install Docker Desktop – link

2) Fork and Clone the Oppia (web) repo – link

3) Run `make install-dependencies`

4) Run `make run`

This greatly simplifies the installation process as compared to the current installation process,

which is often arduous and troublesome to diagnose.

Docker and Makefile will manage all dependencies for the application. The existing dependency

management logic, which is reliant on Python scripts, will become deprecated. Check the

detailed explanation here.

All required dependencies/services required for Oppia development server
Check flow for the current Oppia development server installation, and all the required

dependencies and services – link

(please refer to this link for better image resolution)

https://docs.docker.com/desktop/install/mac-install/
https://github.com/oppia/oppia/
https://www.figma.com/file/LxT4x2tZSYaIm0N8FQH7nZ/Untitled?node-id=0%3A1&t=TscGgkQGDPG8bGzA-1

(Check the images on figma: link)

This is the flow, how the current Oppia development server starts and installs all the required services and

https://www.figma.com/file/LxT4x2tZSYaIm0N8FQH7nZ/Untitled?node-id=0%3A1&t=TscGgkQGDPG8bGzA-1

dependencies (listed in the flowchart and below)

Through the process of dockerizing our application, we will be deprecating various Python scripts that are

necessary for installing the required dependencies and libraries, as well as the dependencies.json file.

Thus, the packages from `dependencies.json` will be moved to `package.json` or will be added to

the Oppia that can be downloaded while forking, this will do all the dependency management within a single

file.

docker-compose.yml structure:

Docker Compose is a tool for defining and running multi-container Docker applications. It allows

developers to define a group of Docker containers as a single application and specify how they should

interact with each other.

● Version: docker-compose file version to use. Preferably 3.0+ for docker-compose v2

● Services: The services that make up the application, each defined as a separate block

with a unique name. Each service specifies the docker-image to use, the command to

run, entrypoints, service depends-on, network, and any required environment variable,

volumes and ports.

● Volumes: The volumes that the services use to store data, each defined as a separate

block. Volumes persist the data between containers, and share the data between the

services.

-> Services required:

1. Redis server - 7.0

2. Elasticsearch dev server - 7.17.0

3. Firebase emulator

4. Google Cloud SDK - 364.0.0

5. App development server

The settings and environments can be configured within the image (or within in the

docker-compose.yml file, if we use the official docker image), eliminating the need for

developers to perform any additional configuration when setting up their development

environment

Docker Networking

Docker has a DNS server embedded with it that maintains a mapping of namespaces and IP

addresses of the containers. When an application runs with docker-compose, it will

automatically create a network and add containers to that network, so that the running

containers can talk to each other over this virtual network bridge.

By default, docker compose creates a bridge network for the “docker-compose.yml” file, and

attaches all services to that network – (this diagram depicts the container networking within a

shared virtual network bridge). However, we can also define multiple networks in the docker

compose file, and can specify which service should be connected. But here, we will be handling

the container interactions within the same virtual network i.e. the default behavior of the

compose file.

To enable services running within Docker containers to be accessible on the host network, I

will configure and publish the ports in the compose file. This will bind the services from the

exposed ports of the containers to execute on the host network.

Referring to our docker-compose.yml file (link), all of the services will be connected within a

shared virtual network, so we can simply use our service name to communicate with other

services. These services’ names are: webserver, redis, firebase-emulator, elasticsearch, and

cloud-datastore.

Using git command for pushing changes:
In the present scenario, when pushing changes from the local repository to the remote Oppia

repository, a series of checks/tests are triggered, including frontend tests, lint checks, typescript

checks, and other tests. The Git command is executed only if all of these tests pass

successfully.

Once the application has been containerized with Docker, it is possible to run the standard Git

commands within the Docker containers. It is essential to execute these Git commands within

the Docker container, as all the tests must run without failing before any changes are pushed.

The tests rely on all necessary dependencies and services, and executing the Git commands

within the container ensures that these components are present and functional during testing.

The users must not execute the git command for pushing their changes outside the container. If

they do, they should get a warning displayed in the terminal saying that they should run the git

commands with the Docker Container environment using `make terminal` command. I will

ensure that this happens by defining a new environment variable – `oppia-is-dockerized` (its

value will be true when inside the docker container environment) within the container to

determine whether or not we are running inside the container environment. This environment

variable can be subsequently accessed and checked within the pre_push_hook scripts. If the

intended value of the environment variable is detected, the corresponding git command can be

executed using the aforementioned hooks. Conversely, an error can be thrown, instructing users

to execute git commands inside the container.

Running all flags of `start.py` in the dockerized setup
Devs need to run all the flags that they currently have for the start.py in the dockerized setup of

the Oppia development server. The flags we currently have with the `start.py` script –

- save_datastore

- disable_host_checking

- maintenance_mode

- prod_env

- no_browser

- no_auto_restart

- source_maps

All these flags will be working the same in the dockerized setup except the `no_browser` flag.

This flag does not open a browser if specified. As we dockerize our application, it would be the

default behavior (seen in all dockerized applications) that the browser window is not opened

automatically for the localhost. So we will be dropping this `no_browser` flag in the dockerized

setup.

For implementing all the other flags in our dockerized application, we can have all the flags of

`start.py` as the environment variables for the webserver container environment. Devs will pass

the env variable value in the make command, and this sets those values for the env variables

that are passed. For example, if devs want to use `save_datastore` and `prod_env` flag, then

command will be:

`make run prod_env=true save_datastore=true`

and the env variables will have the values passed by the dev (by default, all env variables will be

false). We can access all these env variables in our webserver dockerfile, and can run the

`build.py` script as per our requirements from the webserver dockerfile (NOTE: we are not

deprecating the build.py within this project),

example -- if `prod_env` flag is true, we will run a command `python -m scripts.build

--prod_env` in the webserver dockerfile that will execute the flag.

The environment variables we will be having for the webserver container will be specified in a

`.env` file (inside the /docker directory), this file will be having the whole list of the environment

variables that we will be using –

env variable default value description

oppia-is-dockerized true
(value shouldn’t be changed
by devs)

This boolean will specify
whether we are inside the
docker container
environment or not.

save_datastore false Does not clear the datastore
if specified

disable_host_checking false Disbales the host checking if
true so that the dev server
can be accessed by any
device on the same network
using the host device’s IP.

prod_env false Runs Oppia in prod
environment if this flag is
used.

maintenance_mode false Puts Oppia in maintenance
mode

no_auto_restart false If flag is used, does not
automatically recompile the
webpack on file changes

source_maps false Builds webpack with source
maps if this flag is specified.

NOTE: add comment in this .env file explaining why not to directly change the value of the

variables in this file, especially for the `oppia-is-dockerized`, otherwise errors might occur within

the dockerized Oppia setup. The actual comment can be as follows:

NOTE TO DEVELOPERS: Please do not directly change the values of the variables

specified in this file, as this may lead to unexpected behavior of your local

development server. Specifically:

- Setting `oppia-is-dockerized` to false will prevent the proper execution

of the git push command and the local tests within the dockerized setup.

- Additionally, changing other variables (which are flags for running the

local development server) to true will permanently enable the flag to your

`make run/run-offline` command even you do not explicitly pass the flag.

How we will proceed with the overall project
To achieve project completion, a series of detailed steps and activities will be employed, with

each step thoroughly elaborated and documented →

1. To configure all the services required for our application, we will generate a

docker-compose.yml file. This file will specify the various components of our

application, along with their configurations and dependencies.

2. Create the required dockerfiles for the services (for the webserver, and for the services

whose reliable docker hub images are not available), migrate all dependencies from

dependencies.json to package.json

3. Add the configuration to verify the dependency installation through checksums in

webserver dockerfile, migrate dependencies from `dependencies.json`, add

healthchecks for conatiners in docker-compose.yml file.

4. Configure a Makefile that provides users with commands to build, run, update, or clean

the Oppia development server setup.

5. Making all tests run properly in the dockerized application, within a container

environment.

6. Migrating all GitHub actions to use a single build step that utilizes docker image, which

is cached for use of other runs.

7. Deprecating the existing python scripts used for installing dependencies, start services

and configure the local development server.

1. Configuring docker-compose.yml file

Check the configuration/setting up of webserver and firebase dockerfiles from here: link

A Docker Compose file describes the configuration of multiple Docker containers and how they

interact with each other to form a single application. It allows to define and run a multi-container

Docker application as a single entity, making it easier to manage complex applications. Services

we are setting up in the docker-compose →

a. webserver: This docker image will install and configure dependencies/libraries (listed

here) required to compile the source code and to start the development server.

– configured within a separate dockerfile

– exposed port: 8181

b. firebase_emulator: The service we need to link the Firebase emulator to our application

in order to enable authentication.

– configured within a separate dockerfile.

– exposed port: 9099

c. redis: The service we need to locally cache data from the development server and

backend tests.

– configured using official docker hub image: redis:7.0-alpine

– exposed port: 6379

d. google_cloud_sdk: used for many services and tools in our application like gcloud

(command-line tool for managing the GCP resources and services), Google App Engine

(fully managed, serverless platform for developing and hosting web applications),

Google Cloud Datastore (fully managed NoSQL database service).

– configured using verified docker hub image: google/cloud-sdk:364.0.0

– exposed ports:

1. 8089 - cloud datastore

2. 8080 - app engine

3. 8000 - GAE admin server

e. elasticsearch: service providing distributed and analytics search engine allowing to

store, search, and analyze huge volumes of data quickly in milliseconds.

– configured using official docker hub image: elasticsearch:7.17.0

– exposed port: 9200

https://hub.docker.com/_/redis
https://hub.docker.com/r/google/cloud-sdk
https://hub.docker.com/_/elasticsearch

Mounting Volumes→ persisting and sharing data with multiple running containers

Volumes: is a way to store and manage persistent data outside of a container's file system.

Volumes provide a way for containers to share and persist data even after the containers are

deleted or recreated. They can be used to store application data, configuration files, and logs,

among other things.

Current file structure:

main folder (let's say: opensource)

opensource/
├── cloud_datastore_emulator_cache
├── oppia (main folder – cloned from https://github.com/oppia/oppia)
├── firebase_emulator_cache
├── karma_coverage_reports
├── oppia_tools

Similar file structure we will be following with the dockerized containers within the `app` as the

working directory... Such as:

https://github.com/oppia/oppia

containers shared working directory (WORKDIR): app
app/

|
├── oppia (root)

├──
├──
├──

├── cloud_datastore_emulator_cache
├── firebase_emulator_cache
├── karma_coverage_reports

Volumes Mounted for different Services:

Services directory mapped in container

1. Application files (source code)→ /app/oppia/

2. Firebase Emulator → /app/firebase_emulator_cache

3. Google Cloud Datastore → /app/cloud_datastore_emulator_cache

4. Redis Server → /app/redis_cache

5. Elasticsearch Server → /app/elasticsearch_emulator_cache

The file structure for the dockerfiles (Dockerfile and Dockerfile.firebase) and

`docker-compose.yml` that will be integrated into our code base →

oppia/
|
├──
├── docker (new directory)

├── Dockerfile
├── Dockerfile.firebase
├── docker-compose.yml
├── .env

NOTE: We need to ignore the `docker` directory from being uploaded to production during
releases. So, I will add this docker directory path to the `.gcloudignore` file inorder to ignore this
directory during releases. Refer #here

https://github.com/oppia/oppia/blob/develop/.gcloudignore#L22

2. Setting up dockerfiles and consolidating dependencies into a
single file for more efficient management

These are the dockerfiles we will use for configuring the webserver for installing all the
dependencies and starting the local dev server, and the firebase emulator for authentication.
(structure for the webserver dockerfile)

NOTE: Here, we are dropping the python2 package for matplotlib as we are required to migrate
to python3. Please refer #here.

Firebase-auth-emulator dockerfile structure:

Additionally, we will migrate the dependencies from dependencies.json to package.json,

This will ensure that dependency management is handled through a single file.

Dependencies Management for the application

Developers can efficiently modify the local setup by updating the dependencies whenever

necessary. This is facilitated by pinning all the dependencies to a specific version for

consistency. Users can effortlessly update their forks by pulling changes from the upstream

Oppia repository and running the `make update-pip-and-npm-packages` command. This

command installs all the dependencies listed in the package.json, requirements.txt, or

requirements_dev.txt files, along with their precise versions specified in these

dependency-specification files.

https://github.com/oppia/oppia/commit/72937725a323b0cc1ccec150c81b041abeacb575#diff-c55fb07b54826ed2f13b4d62ca8a866e6c623c0f5482f586882dd101c328f92bR37

3. Verifying checksum of dependencies, migrating dependencies

and integrating healthchecks for containers

Verify the checksum of the dependencies

Checksum verification for dependencies is important because it helps ensure the security and

reliability of the software you are developing or deploying. When you install a dependency, you

trust that the code you are installing is legitimate and has not been tampered with. A checksum

is a hash value calculated from the contents of the file, and any modification to the file would

result in a different checksum. By comparing the expected and actual checksums, you can

detect whether the file has been modified or tampered with.

For installing the dependencies from `package.json`, we already have `yarn.lock` file which

have checksum for each dependency in the `package.json`, and the checksum verification can

be done while installing the dependencies using yarn.

Other than that, we install python dependencies from `requirements.txt` and

`requirements_dev.txt` using pip. And pip-compile already have a flag

`--generate-hashes` which generates the hashes using sha256 for each dependency in

the `requirements.txt` and `requirements_dev.txt` files while compiling them. The command we

can use to generate hashes is –

`pip-compile --generate-hashes requirements.in`

`pip-compile --generate-hashes requirements_dev.in`
After we have generated the hashes for each dependency, we need to verify the
checksum for each dependency which we can verify while installing the dependencies
from these files using `--require-hashes` flag, this will enable the hash checking
mode while installing the dependencies –
`pip install --require-hashes -r requirements.txt`
`pip install --require-hashes -r requirements_dev.txt`

This process of performing checksum verification on the dependencies being installed

guarantees that the packages being installed in Docker conform precisely to the Maintainer's

specifications for other developers' installation, with no alterations or tampering occurring

during transit.

For ensuring that the checksum verification methods works fine, I will pass a wrong checksum

https://github.com/oppia/oppia/blob/develop/yarn.lock

for a dependency and will show that the installation is blocked if wrong hashes are there as a

proof that the checksum verification mechanism works fine.

Migrating dependencies from `dependencies.json`

We need to migrate the dependencies from the `dependencies.json` file, and add them to the
`package.json` file. Within the `dependencies.json` file, there are 2 types of dependencies, one
is those which are available via NPM, and the rest aren’t available via NPM, we need to install
them from their git repositories. Referring to the table below, we can easily identify which
dependencies can be installed via NPM, or can be installed from their git commit hashes.

dependecies.json Version Source

angular 1.8.2 npm

lamejs 1.2.0 npm

angularTest 1.8.2 npm

angularTranslate 2.18.1 npm

angularTranslateLoader 2.18.1 npm

angularDragAndDrop 2.1.0 npm

angularStorageCookiesRev 2.18.1 npm

messageFormat 2.0.5 npm

angularTranslateInterpolation
MessageFormat

2.18.1 npm

popperJs 1.15.0 git commit hash

bootstrap 4.3.1 npm

bowerAngularTranslateLoader
Partial

2.18.1 npm

bowerMaterial 1.1.19 npm

codemirror 5.17.0 npm

diff-match-patch 1.0.0 npm

fontAwesome 5.9.0 npm

angularUiLeaflet 1.0.3 npm

leaflet 1.4.0 npm

angular-simple-logger 0.1.7 npm

guppy git commit hash

jquery 3.5.1 npm

jqueryUI 1.12.1 npm

jqueryUITouchPunch 0.3.1 git commit hash

mathJax 2.7.5 npm

midiJs git commit hash

select2 4.0.3 npm

ckeditor 4.12.1 git commit hash

ckeditorBootstrapCK 1.0.0 git commit hash

uiBootstrap 2.5.0 npm

skulpt-dist 1.1.0 git commit hash

uiCodemirror git commit hash

uiTree 2.22.6 npm

Currently, the dependencies from `dependencies.json` file are installed within
/third_party/static/ folder, and after we migrate the dependencies to the
`package.json`, the dependencies will be installed within the /node_modules/. So, we are
moving these dependencies to a new location and thus we need to change the import
statements everywhere we are importing the migrated dependencies.

There is no problem in migrating the packages which can be installed via NPM, we can simply
add them to the `package.json` with the exact version we currently utilize in Oppia. (Need to
change the import statements in the files where we will be importing the packages since we are
moving the packages to a new location).

For the packages that need to be installed from their git repositories, instead of forking them to
the Oppia organization, we can follow –
We can specify the GitHub repository path with the commit SHA in the package.json along with
the package we need to install. For example –
“dependencies”: {

….
….
"packageName": "git@github.com:{owner}/{project}.git#commitSHA"

}
(Need to change the import statements in the files where we will be importing the packages
since we are moving the installed packages to a new location - /node_modules/).

However, there is a tricky situation here. On checking the `dependencies.json` file, I
observed that there are several packages where we only need to download specific file(s) rather
than the entire GitHub repository for those packages. Unfortunately, NPM does not have built-in
support for installing files from packages using the package.json file. To address this, the
solution is to download the complete GitHub repository for these packages (from which we only
need certain files) into the /node_modules/ directory. And this can be achieved similarly as
we will do for the other packages by specifying the commit hashes in the `package.json` file.
There are many packages for which we just download some files --

angularTest angularTranslate angularTranslateLoader

diff-match-patch angularUiLeaflet angularStorageCookiesRev

bowerAngularTranslateLoader
Partial

leaflet angularTranslateInterpolationM
essageFormat

angular-simple-logger jquery guppy

jqueryUI uiBootstrap

The size of all these packages will be around 40MB, if we download whole packages instead of
some files.
Then, we can specify the file path from the downloaded package in the import statements

wherever the package's file is utilized.

mailto:git@github.com

Healthchecks for the containers

In order to evaluate the operational status of Docker containers/services, it is necessary to

establish healthchecks. These healthchecks can determine whether the containers for a given

service are functioning properly or not. By configuring the healthchecks in the compose file,

users can inspect the health status of containers in the "STATUS" section, accessible via the

`docker ps` command.

The healthcheck configuration in a compose file looks like this →

On running the `docker ps` commands to see the status of the running processes, we can

check the health condition of the containers (under STATUS section) as →

4. Configuring docker commands into Makefile

We will be creating a Makefile that supports the following `make` commands, because these

make commands will be easy to understand for the new developers:

Makefile Command Description

make run-offline Starts the Oppia server without checking dependencies.
Should not require internet access.
This can be done by starting the previously stopped
containers (already built) of our application.
Users will face unusual errors or blank pages or errors in
the console, in the case when all dependencies are not
installed properly

make run Sets up and starts the Oppia server. Also runs the steps in
“make update-pip-and-npm-packages”.
This will build and run the docker compose file to start the
fully functional Oppia development server.

make setup-devserver Installs all the necessary dependencies and services
required for the devserver (redis, App Engine, elasticsearch,
firebase, pip libraries, npm libraries, etc.), but does NOT
start the server.

make clean Cleans the entire setup. Deletes all the dependencies.
This can be done by deleting the containers (and the setup
of the development server can be done again using `make
run`)

make terminal Opens a terminal accessing the Oppia environment built
using Docker. The tests will be run in the standard way
(e.g. python -m scripts.run_frontend_tests) from the
Docker terminal after running the “make terminal”
command.
This will start a terminal within the webserver container so
that we can run the tests.

(structure for Makefile)

5. Running Tests locally under Docker

Tests can be executed in a Docker Compose file or via commands in the terminal of the running

webserver container. To access the container's terminal, use the command:

`make terminal`

which opens a Bash terminal in the container's environment. Once inside the terminal of the

running web server container with all the dependencies installed to run the tests, existing python

scripts can be used to run automated tests. For example, you can run:

`python -m scripts.run_frontend_tests` to execute Frontend tests.

For now, we have the following tests in our application:

Automated Tests

1. Backend Tests : python -m scripts.run_backend_tests

2. Frontend Tests : python -m scripts.run_frontend_tests

3. Frontend test Coverage: python -m scripts.check_frontend_test_coverage

4. Backend test Coverage: python -m scripts.check_overall_backend_test_coverage

5. End-to-end Tests : python -m scripts.run_e2e_tests --suite="suiteName"

6. Typescript Tests : python -m scripts.typescript_checks

7. Lighthouse Tests : python -m scripts.run_lighthouse_tests

8. Acceptance Tests : python -m scripts.rub_acceptance_tests --suite=”suiteName”

9. Mypy Checks : python -m scripts.run_mypy_checks

10. Backend Associated Tests: python -m scripts.check_backend_associated_test_file

Custom Lint Tests

1. Pylint checks : python -m scripts.run_backend_tests

--test_target=scripts.linters.pylint_extensions_test --verbose

2. ESLint checks : python -m scripts.run_custom_eslint_tests

All tests can be executed in the running web server container using python scripts. The

dependencies and services required to run the tests are already installed and running in the

container (containers can also interact if required as they are connected within the same virtual

network bridge), enabling seamless test execution. Therefore, tests can be executed in the

same way as they are currently executed.

The tests will run within the container, and to ensure proper test execution, the volumes have

already been mapped here for the running services. This will allow tests to have access to the

required dependencies and files within the container, ensuring a smooth test execution process.

Considering that we will be having a grace period from 15th July from 10th Sept, during which

both the old setup (using python scripts) and the new setup (using Docker containers) will be

functional (for ensuring a smooth transition for devs), so in this period, the test scripts will be

modified by adding an if-else condition that if the `oppia-is-dockerized` env variable is true, then

developer will be inside the docker container environment and they will use the docker build step

to execute, otherwise, the test scripts will simply use the existing python scripts for their

execution.

With PR#2.3, the if-else conditions that support both python as well as docker setup for the test

scripts will be removed, and the tests will only run using the Docker setup. Instead, the modified

test scripts will solely focus on running the tests.

Problem: Running e2e tests and acceptance tests after Dockerizing the

application
Currently, the end-to-end (e2e) tests and the acceptance tests are executed in a non-headless

mode, which means that the tests are run in a visible browser window. This setup allows

developers to monitor the progress of the tests in real time and quickly identify any potential

issues.

PROBLEM
When running end-to-end tests or acceptance tests in a Docker container, it is necessary to run

them in the headless mode because there is no graphical user interface.

The WebDriverIO documentation explicitly states that end-to-end tests can only be run in

headless mode when they are dockerized (refer here).

However, this can make it difficult for developers to debug issues that may arise due to changes

in the code.

https://webdriver.io/docs/docker

SOLUTION
To facilitate end-to-end (e2e)/acceptance testing in a non-headless mode, we require a virtual

display server that provides an in-memory display server. One such package that offers this

functionality is xvfb or Xvfb – X virtual framebuffer, which offers a display server

based on the X11 display server protocol. In the e2e_tests.yml file (a GitHub action workflow for

e2e tests), we utilize this package to enable non-headless mode testing in the Continuous

Integration (CI) environment. Similarly, we will use this package to run e2e tests in non-headless

mode within the docker container in the local development environment, thus addressing the

aforementioned problem through the utilization of the `xvfb` package.

The new command to run e2e/acceptance tests in the dockerized application to facilitate

non-headless mode testing →

`xvfb-run -a --server-args="-screen 0, 1285x1000x24" python -m

scripts.run_e2e_test`

`xvfb-run -a --server-args="-screen 0, 1285x1000x24" python -m

scripts.run_acceptance_tests –suite={{suiteName}}`

We need to use the server-args flag to specify the screen resolution for the chrome instance

where the tests would be running, as we have specified this already in the e2e tests config file -

refer here.

In addition, we must include the xvfb package as a new dependency essential for our local

development server.

6. Integrating with GitHub Actions

Finally, to speed up the execution of the GitHub tests and overall reduce the load on the hosted

servers provided by GitHub, it is possible to install the necessary dependencies within the

GitHub workflows using the docker-image. This approach ensures that the required

dependencies are already present within the image, which will significantly reduce the time

required to build the images and execute tests.

https://github.com/oppia/oppia/blob/develop/core/tests/wdio.conf.js#L339

Further, caching the docker image will improve the test execution process by avoiding rebuilding

the same image repeatedly. This will not only save time but also reduce the overall load on the

hosted servers. Installing dependencies with docker-image and caching them will result in faster

and more efficient test execution.

Sample workflow (modifying e2e tests workflow file)

`oppia/.github/workflows/e2e_tests.yml`

We utilize our docker containers to install the dependencies and start the services required for

running the workflow on Github actions.

Most commonly, in all of the action workflows, we install the dependencies using a single action

script that is: .github/actions/install-oppia-dependencies/action.yml

So we can simply use `make install-dependencies` and ‘make

update-pip-and-npm-packages’ in the build step of the workflow for installing the required

dependencies and start services that will be required for the execution of the workflow. The

docker image will only be set up once, and then stored and reused (cached the docker image)

for all the remaining CI/CD tests in that run.

https://github.com/oppia/oppia/blob/develop/.github/actions/install-oppia-dependencies/action.yml

7. Deprecating the existing scripts

The current installation process involving `start.py`, `servers.py`, and associated scripts

depicted in the flowchart will be deprecated. The current setup process utilizes `start.py` to

invoke other scripts for installing the necessary dependencies, configuring required services,

and initiating the local development server. These operations and all configurations will be

entirely managed by Docker and Makefile, facilitating the smooth execution of the

development server.

Therefore, we intend to discontinue the usage of such scripts that carry out the installation of

dependencies or the initiation of different services, such scripts are →

1. start.py

2. servers.py

3. install_third_party.py

4. install_third_party_libs.py

5. install_python_dev_dependencies.py

6. install_python_prod_dependencies.py

7. install_chrome_for_ci.py

8. setup_gae.py

9. setup.py

(additionally, I will also deprecate the test scripts of the above mentioned scripts)

Prototype of Dockerized Oppia
I have successfully created a functional prototype that incorporates the Oppia development

server and dockerization. The prototype accurately reflects the development server's structure

when dockerized. Please do checkout the repository and the repository’s Readme file →

https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia
(repository)

https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia#dockerizing

-oppia-
(Readme)

Other useful links from the prototype repository –

Dockerfile Dockerfile.firebase_emulator docker-compose.yml Makefile

As this was merely a prototype, I utilized pre-existing build artifacts and avoided webpack

compilation, along with some other adjustments that I plan to address during GSoC. It is

important to note that not all tasks can be completed within the scope of the prototype, as

those things are intended to be done during GSoC!

https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia
https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia#dockerizing-oppia-
https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia#dockerizing-oppia-
https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia/blob/master/Dockerfile
https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia/blob/master/Dockerfile.firebase_emulator
https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia/blob/master/docker-compose.yml
https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia/blob/master/Makefile

Execution of the Dockerized Oppia prototype on different platforms

(mac M1, Windows, Linux)→
Recordings of the screen displaying the prototype being run on different platforms:

drive-link

1) macOS with M1chip – repo Readme for mac M1

● Screen recording of the dockerized development server → drive-link

● Installing dependencies using `make install-dependencies`

https://drive.google.com/drive/folders/1nezqPoSI319_z-X63XLSosGZTVivmJIR?usp=sharing
https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia#mac-m1
https://drive.google.com/file/d/1BkdYZ83FE_UVjUEsehDUolr4nOKXDUAy/view?usp=sharing

● Starting development server with `make run`

2) Linux (ubuntu 22.04) – repo Readme for Linux

● Screen recording of the dockerized development server → drive-link

● Installing dependencies using `make install-dependencies`

https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia#linux---ubuntu-2204
https://drive.google.com/file/d/1LoPmMaIo3RPr_TG20gYqZokAueeUFM2I/view?usp=sharing

● Starting development server with `make run`

3) Windows 11 – repo Readme for Windows

● Screen recording of the dockerized development server → drive-link

● Starting development server with `make run`

https://github.com/Shivkant-Chauhan/prototype---dockerizing-oppia#windows-11
https://drive.google.com/file/d/1VbszRDxoa_gtJLEcBR05dDJhFD4wjG-L/view?usp=sharing

● Logs of the Oppia development server under Docker

Opting Docker Setup instead of python scripts
When running the Python scripts for the first time, it takes approximately 25-27 minutes or even

longer. Additionally, there are prerequisite steps to follow for setting up the development server

and resolving any issues that may arise during the setup process. However, after dockerizing the

process, the setup time significantly reduced compared to using Python scripts, making the

overall setup of the development server quicker and smoother. Docker made it effortless to set

up the Oppia development server as there was no need for additional configurations or

environment settings.

While setting up the development server for the first time using Docker, it builds the docker

image for the web-server container, so I think it took around 10-12 minutes. Running the

development server (using the cached docker images), took 2-3 minutes. But the actual

dockerized server will take some more time (8-10 minutes more in the building docker images

process) because I was having some internet connectivity problems at that time in my college

campus so for running the prototype, I don’t build the other services(redis, firebase, and google

cloud SDK) used in local development server in that prototype.

Challenges that may arise from the Docker Hub images we are using
We will be using the following Docker Hub images for dockerizing our application →

Service Name
(with link to the Docker Hub

image)

Image version to be used
(according to what we use in

Oppia’s codebase)

Image Type

Redis redis: 7.0-alpine Official Docker Image

Google Cloud SDK google/cloud-sdk: 364.0.0 Verified Docker Image
by Google

ElasticSearch elasticsearch: 7.17.0 Official Docker Image

The Redis and Elasticsearch images available on Docker Hub are the official Docker Hub

Images, and as such, can be relied upon for their stability and sustainability. Additionally, the

Google Cloud SDK Image has been verified by Google and can be considered a trustworthy

https://hub.docker.com/layers/library/redis/7.0-alpine/images/sha256-8158082a62d4dc96ce7492026bb0e0de012bee04a0a50a97a93244112611c60c?context=explore
https://hub.docker.com/r/google/cloud-sdk
https://hub.docker.com/layers/library/elasticsearch/7.17.0/images/sha256-fa7141154a7e14df214e42f08c333702403eb88c02ba44e79322a1f42d733013?context=explore

resource for integration into our application.

PROBLEM that may arise
It is important to anticipate potential contingencies in the event that the Google Cloud SDK

image is removed from Docker Hub in accordance with the new policies of Docker.

SOLUTION
In such a scenario, a prudent solution would be to create a separate Dockerfile to configure the

Google Cloud SDK by downloading it directly from the official website. This would ensure that

the functionality of the application is not affected and that it continues to run smoothly. The

Google Cloud SDK dockerfile would look like this →

(this is the sample Dockerfile for configuring the Google Cloud SDK)

Note: This is no longer required as this was a big concern when docker announced that they will

be deleting many dockerhub images according to their new policies. But after few days, another

announcement was made to not to worry about the dockerhub images and all the images will

remain as they are! So this problem will not be concerning for us now.

Running the local development server in offline mode→
Oppia contains certain components that are not available offline, and they need to be loaded on

specific instances when we visit that page/component. For example - we are using iframe

components in many places which loads another component within the page. Rendering

iframes in offline mode is not possible because iframes require external resources to load, such

as images, videos, and scripts. Without internet, they cannot be loaded, and the iframe content

may not load/display correctly or at all. In this case, the pages or components that use these

components will not function as intended, in the offline mode. Note that this is the same

scenario that we currently have, and would remain the same as we dockerize the development

server setup.

Problems we can face during the project→
1) Stop/Remove containers if not necessary

The simultaneous execution of multiple containers on a single machine can lead to a

substantial surge in memory utilization, particularly if the containers require a significant

amount of memory or are resource-intensive. Inadequate memory availability may

compel the operating system to initiate memory swapping to disk, which can

significantly impair the performance of the overall application and the containers.

In specific instances, there may be pre-existing containers that are already operational,

and their existence can be confirmed by executing the `docker ps` command. While it

is possible to establish the Oppia development server successfully with 8GB of RAM,

there may be scenarios where executing other memory-intensive applications

simultaneously may not be feasible. In such circumstances, the Oppia development

server may fail to start due to insufficient available memory or vice-versa, when the

Oppia server is running, and a memory-intensive application is launched.

To tackle such situations, it may be necessary to stop or delete the running containers.

The `make clean` command can be employed to stop and delete the Oppia setup.

Within the GSoC project, I will provide explanations and possible solutions for the issues that

developers might face, which means I will provide a detailed section on "how to debug setup

issues in Docker" under the Troubleshooting wiki page. Developers will be shown the log

message – "Please go to our troubleshooting page at {{URL}} if you are facing any issue with the

oppia development server" whenever they run the `make run/run-offline/setup-devserver`

commands in their terminal, pointing to our troubleshooting page in the wiki for any

setup-related issues.

References from: Official Docker documentation, Project Idea Doc, docker layer caching

in github actions, docker-healthcheck, Lighthouse integration with Docker

Impact on Other Oppia Teams
Prospective developers, QA testers, and new contributors intending to contribute to Oppia's

codebase and utilize the Oppia development server will benefit from an improved installation

process and streamlined startup procedure for the local development server, that will be more

streamlined, efficient and minimizes the likelihood of errors.

Key High-Level and Architectural Decisions

Decision 1:
Using the Verified Docker Hub image for Google Cloud SDK (364.0.0)
An alternative approach would be to create a distinct Dockerfile for configuring the Google

Cloud SDK and its associated services (such as Google App Engine, Google Cloud Datastore,

etc.) that our application uses.

Utilizing a Docker Hub image for the Google Cloud SDK, which has been verified by Google, can

provide greater reliability and efficiency due to the following reasons:→

1. Using this Docker Hub image can be considered a more reliable and secure source, as it

undergoes verification by Google to ensure its authenticity and integrity.

2. Reduce the required time and effort (for configuring separate dockerfile)

3. Benefit from robust community support.

4. Developed in accordance with established industry-standard best practices and

guidelines.

5. Additional level of security to the Docker image.

https://docs.docker.com/get-started/
https://docs.google.com/document/d/1DnNy87Vhpa6748RzvsDKtAfzyl8DRRexPTFPVhFxYXU/edit?usp=sharing
https://depot.dev/blog/docker-layer-caching-in-github-actions
https://depot.dev/blog/docker-layer-caching-in-github-actions
https://www.paulsblog.dev/how-to-successfully-implement-a-healthcheck-in-docker-compose/
https://akanksha98.medium.com/lighthouse-integration-with-docker-b8d9fddedce6
https://hub.docker.com/r/google/cloud-sdk

Decision 2:
Asking devs to download the Docker Desktop in their local system
Another approach could involve specifying a particular version of Docker Desktop and
instructing developers to install that specific version. However, it's important to note that Docker
Desktop will be installed system-wide on the developer's computer, and they might utilize it for
tasks unrelated to Oppia as well.

Including a link to the Docker Desktop downloader page pointing to the official Docker
downloader page within our wiki pages will allow developers to conveniently download the
Docker Desktop App installer with a single click. Furthermore, since Docker regularly releases
updates, developers can easily download the latest version of Docker from the downloader page
of Docker.

Documentation changes
The Wiki pages will be updated to include comprehensive instructions for →

(Note: We will have a single wiki page instructing the installation process for Oppia development

server for all platforms - as we will be dockerizing our application and that will make the

development server platform independent)

- Installing Oppia

(Devs can set up Oppia's development server by following the

Docker installation and configuration procedures, as well as executing the relevant

Makefile commands)

- Setting up Oppia development server using Docker.

(Include instructions for setting up the fresh local development server and

launching it using appropriate make commands) –

- Download and install the latest version of Docker Desktop in your

system.

- Fork and Clone oppia (web) repo.

(above 2 steps will be required for the first time only for setting up

the fresh development server)

- To start the Docker Engine in your system, launch the Docker

Desktop App from your ‘Applications’ menu.

https://www.docker.com/products/docker-desktop/
https://www.docker.com/products/docker-desktop/
https://github.com/oppia/oppia/wiki/Installing-Oppia-%28Mac-OS%3B-Python-3%29#clone-oppia

(NOTE: To verify the Docker Engine has launched

successfully, run `docker version` in your terminal to

ensure that both the Client and Server are active.

It is not necessary to run this command every time you

start the development server, this is just so you can verify

the successful launch of the docker engine.)

- In the root oppia/ directory:

- Run `make setup-devserver` command to set up the local

development server.

- Run `make run` command to start the local development

server.

- Migrate to Docker Setup

(ask folks to delete the current setup and move to the dockerized setup)

- Overview for the new Oppia setup.

(brief overview for the dockerized Oppia development server with information

regarding all the services we specified in the docker compose file)

- Troubleshooting

- Debugging dockerized Oppia setup

(information related to resolution of debugging issues that arise within the

Docker environment, the sharing of Docker images, and other considerations for

utilizing Docker with Oppia)

Testing Plan

Docker Action

I am planning to include a Docker Action that would serve to test the setup and configuration of

Docker within the application’s environment. The purpose of this action would be to verify that

Docker is working correctly and that the application can be built and run as intended within a

Docker container and also that the other devs will not break the changes of my PR after

merging.

A Docker action that tests the Docker setup in the application will involve building a Docker

container image with application configuration or code, and then running the container to ensure

that it is functioning as expected. This Docker action can be used to verify that Docker is

properly installed and configured on the host machine, and that the application can be deployed

and run within a Docker container. It will be added as part of a Continuous Integration (CI)

pipeline in the GitHub Action Workflows to ensure that changes to the application's codebase do

not affect the functionality of the Docker setup.

Note: This Docker Action will be merged into `develop` branch with PR#1.3 but will be dropped

with the PR#2.2 where I will migrate the GitHub actions to use Docker. The reason to drop this

docker action with PR#2.2 is that the testing of this docker action will be automatically handled

with the other github actions as they will utilize Docker in their build step.

The Docker Setup Action (docker_setup_test.yml) will look like →

Note: We need to remove this action, once we have the docker setup being used for the GitHub

action tests.

E2e testing plan
There is no explicit requirement for end-to-end (e2e) testing.

TESTING THE NEW SETUP

It is imperative to conduct thorough testing of the entire Oppia development server setup across

all platforms, including Linux, Windows, and macOS (with Intel chips, M1, and M2), to ensure the

smooth functioning of every page and functionality, without encountering any errors.

Additionally, the testing must ensure that developers can continue to use Git commands as they

presently do, while the various services utilized in the application, such as Redis, Elasticsearch,

Cloud Datastore, and Firebase, perform their intended functions as expected.

SOLUTION: Given that I possess a Mac with an M1 chip, I am capable of conducting thorough

tests of the development server setup, as well as all its functionalities on this platform.

However, for testing on other systems, I plan to seek help from my friends, as well as I can ask

for support in the Oppia community.

We will have a grace period from around 15th July to 10th Sept. In this period, both the old setup

(using python scripts) and the new setup (using Docker) will be functional, and this will ensure

the smooth transition to the new development setup for the devs.

CONFLICT WITH OTHER PROJECTS

The "Make CI faster" project involves making changes to the GitHub Workflows and pre-push

Python scripts, as well as other scripts that may require modifications. However, these

modifications may conflict with the changes that I intend to introduce in this project.

SOLUTION: To resolve any potential conflicts arising in such a situation, I will engage in a

discussion with the contributor regarding their approach and ideas. This communication can

help identify any areas of potential conflict with the ongoing projects and facilitate prompt

resolution of any issues that may arise.

Implementation Plan

Milestone 1

Key objective for this milestone: Developers are able to set up and start the Oppia

development server using appropriate Make commands on all platforms utilizing Docker, without

errors, and with smooth operation of all Oppia webpages. There will be a Docker Action that will

test the setup and ensure anyone won’t break my changes. The `dependencies.json` file should

be completely removed from the codebase, and developers can refer to updated wiki pages

regarding setting up of Oppia development server using Docker. Developers are able to run all

the tests within the docker container environment.

No. Description of PR / action Prereq
PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

1.1 Approximately half of the dependencies from
dependencies.json file are migrated to the
package.json. The dependencies migrated
within this PR –
angular, lamejs, angularTest,
angularTranslate, angularTranslateLoader,
angularDragAndDrop,
angularStorageCookiesRev, messageFormat,
angularTranslateInterpolationMessageForma
t, popperJs, bootstrap,
bowerAngularTranslateLoaderPartial,
bowerMaterial, codemirror.

- 1 June 5 June

1.2 The dependencies.json file must be removed
from the codebase, and all the dependencies
from the dependencies.json file must be
migrated to package.json.

- 7 June 10 June

1.3 Developers on all platforms are able to set up
the fully functional local development server
using the Make commands (run-offline, run,
setup-devserver, clean, terminal). The `make

1.1, 1.2 20 June 25 June

run` and `make run-offline` commands can be
executed with all the flags (save_datastore,
disable_host_checking, prod_env,
maintenance_mode, no_auto_restart and
source_maps) functioning we currently have
for the start.py. A checksum verification
mechanism must verify the installation of the
dependencies. There is a Docker Action that
tests the Docker setup in our application.

1.4 Developers can run all the tests, including
backend, frontend, lint, e2e, etc., successfully
within the Docker container environment.

1.3 4 July 10 July

1.5 The new “Installing Oppia” wiki page will be
created and published, and the existing
per-OS “Installing Oppia” wiki pages will be
removed. Refer #here

1.3, 1.4 11 July 14 July

Milestone 2

Key objective for this milestone: All contributors must have updated wiki pages with all

relevant information regarding migrating to the new Oppia development server setup using

Docker, how to debug Docker setup-related issues, and guidance related to the basic

understanding of Docker. Testing of the new dockerized setup in all platforms (MacOS, Linux,

Windows) will be done. Developers see CI test runs on GitHub sped up because of using

cached Docker Images in their build step. The docker action is removed from the workflow.

Developers run tests locally using Docker only, the if-else conditions in test scripts for

supporting both python and docker setup will be removed and tests can only execute with

Docker setup.

No. Description of PR / action Prereq PR
numbers

Target date
for PR
creation

Target date
for PR to be
merged

2.1 The “Debugging dockerized Oppia setup”
wiki page will be created and published.
Refer #here.
Wiki pages will keep updating based on the

- 10 Aug 17 Aug

issues faced by the developers.

Ask all the developers to create an
alternative setup using Docker, and report
issues they face while setting up the Docker
setup and within the development server.

Testing the entire dockerized setup in all
platforms (MacOS with Intel/M1/M2 chips,
Linux, Windows) will start including the
testing of all docker-compose services, git
commands, running tests.

2.2 Developers can experience sped-up CI test
runs on GitHub Actions because of utilizing
cached Docker Images in the build step of
the runs. The Docker Action is removed from
the workflows.

- 3 Sept 9 Sept

2.3 The python scripts - start.py, servers.py,
install_third_party.py,
install_third_party_libs.py,
install_python_dev_dependencies.py,
install_python_prod_dependencies.py,
install_chrome_for_ci.py setup_gae.py and
setup.py are deprecated, together with their
corresponding test scripts. All tests will run
using Docker only (this includes removing
the if-else conditions that supported both
python and docker setup, and test scripts
will only support docker setup for their
execution).

Now, since the new Docker setup is
completed and thoroughly tested, we can
force devs to switch to the Docker setup for
the development server.

2.1, 2.2 11 Sept 14 Sept

Demo Plan to the Product Manager
I plan to demo the working parts of the project during the milestones to the Product Manager,
and here are the proposed timelines –

DATE Working Parts that can be showed

27 June Dockerized Oppia setup
(local tests will not be functional under the Docker setup)

12 July Local tests fully functional within the dockerized setup

11 Sept Final product with all project requirements completed

Future Work
Note: This section is mainly for reference (since it is understood that items in this section will not be part of the GSoC
project). Proposals will primarily be evaluated based on the implementation plan above.

● Create Dockerfiles for the production environment as well (docker-compose.prod.yml,
Dockerfile.prod, etc..)

● Run Docker Hub actions on a Docker Hub repository - Oppia, where users can simply pull
the published images, allowing quick deployments.

