
Guide to
Implementing Network
Security for Kubernetes
September 2018

ç Guide to Implementing Network Security for Kubernetes

Contents
About this Book 1

Introduction to Kubernetes Networking 1
Kubernetes Concepts 1

Pod 1
Controllers 2

Replica Set/Replication Controller 2
Deployment 2
Daemonset 2
Statefulset 2

Pod Networking and CNI Plugins 2
Intra-Pod Communication 2
Pod-to-Pod Communication 3
Services 3
Ingress 5

Networking with Calico 6
Architecture 6

calico/node 6
Interface and Route Management 6
State Reporting 6
Policy Enforcement 6

BIRD 7
Etcd 7

Installation 9
Pre-Requisites 9
Install Calico 9
Install and Configure calicoctl 10
Post Install Verification 12

Overlay and Non-Overlay Networking 14
Calico IP-in-IP Mode 14

IP Address Management 15
IP Pools 16

Multiple IP Pools 16
IP Pool per Pod 16
Manual IP Per Pod 17
NAT 17

Address Blocks 17
Address Borrowing 18

i

ç Guide to Implementing Network Security for Kubernetes

Installation Instructions 18
Network Policy for Network Segmentation 18

Motivation for Network Policy 18
Labels and Label Selectors 19
Defining Policy [K8s policy API, Calico Network Policy] 20

Network Policy in Kubernetes 20
Calico Network Policy 21

Policy Enforcement 26
Hierarchical Policies [Commercial Software Capability] 26

Securing Kubernetes Connectivity 27
Deficiencies in the Traditional Approach 28
Zero-Trust Approach 29

Monitoring and Troubleshooting 29
Monitoring 29
Connectivity and Routing 32
Policy Issues [Commercial Software Capability] 33

Advanced Topics 34
Scale Considerations 34

Typha 34
Route Reflector 37

Host Protection 39
Service Mesh 40
Compliance 42

Policy Violation and Alerting 42
Policy Auditing 43

ii

ç Guide to Implementing Network Security for Kubernetes 1

About this Book
Fast becoming the standard for deploying containerized workloads, Kubernetes also brings new
requirements for networking and security teams. This is because applications, that are designed to run on
Kubernetes, are usually architected as microservices that rely on the network. They make API calls to each
other, rather than the class and function calls used in monolithic applications. There are many benefits to
this modern architecture, but steps must be taken to ensure proper security protocols are in place.

This book is intended to provide guidance for implementing network security for a Kubernetes platform.
Most of the examples use open source software. Some more advanced use cases, that make use of
commercial software, are also included. Those use cases are clearly called out.

Introduction to Kubernetes Networking
Kubernetes has taken a different approach to networking that can be categorized into four areas.

1. Container Groups

For logically grouped containers, the communication should be highly coupled. This is achieved using an
abstraction called a Pod that contains one or more containers.

2. Communication between Pods

Pods are the smallest unit of deployment in Kubernetes. A Pod can be scheduled on one of the many nodes
in a cluster and has a unique IP address. Kubernetes places certain requirements on communication between
Pods when the network has not been intentionally segmented. These requirements include:

a. Containers should be able to communicate with other Pods without using network address translation
(NAT).

b. All the nodes in the cluster should be able to communicate with all the containers in the cluster.

c. The IP address assigned to a container should be the same that is visible to other entities communicating
with the container.

3. Pods and Services

Since Pods are ephemeral in nature, an abstraction called a Service provides a long-lived virtual IP address
that is tied to the service locator (e.g., a DNS name). Traffic destined for that service VIP is then redirected to
one of the Pods and offers the service using that specific Pod’s IP address as the destination.

4. Traffic Direction

Traffic is directed to Pods and services in the cluster via multiple mechanisms. The most common is via an
ingress controller, which exposes one or more service VIPs to the external network. Other mechanisms
include nodePorts and even publicly-addressed Pods.

KUBERNETES CONCEPTS

POD
The smallest unit of deployment in Kubernetes is a Pod. A Pod encapsulates a container or a set of
containers. Containers within a Pod will often share resources, such as the network stack (including IP
address), storage resources, resource limits, etc. Containers within a Pod can communicate with each other
via localhost, since they share the same network namespace.

ç Guide to Implementing Network Security for Kubernetes 2

A single application or microservice instance is expected to run within a Pod. In order to horizontally scale
the application, multiple replicas of a Pod are created. This is typically handled by another resource in the
Kubernetes object model, such as a replication controller, statefulset, daemonset, or a deployment.

CONTROLLERS
Kubernetes stores the desired state of its workloads in a distributed key-value store, such as etcd. When
a deployment of an application Pod with three instances or replicas is requested by the end user, a
Kubernetes scheduler component allocates those Pods to be run on a set of nodes. Managing the desired
state of the required deployment is the job of a controller object.

Kubernetes offers several variants of the controller objects which provide the flexibility to define the
desired state of an application.

Replica Set/Replication Controller
A replica set is the next generation of a replication controller that ensures the desired state of replicas is
running on the cluster at any given time.

Deployment
A deployment controller is a higher level abstraction of a replica set or a replication controller. It provides
a declarative mechanism to update Pods and replica sets. A deployment has many more features than a
replica set, including where rollout strategies and scaling rules can be defined.

Daemonset
A daemonset controller ensures that the defined Pod runs on each node in the Kubernetes cluster. This
model provides the flexibility to run daemon processes, such as log management, monitoring, storage
providers, or to provide Pod networking for the cluster.

Statefulset
A statefulset controller ensures that the Pods deployed as part of it are provided with durable storage and
a sticky identity. The PPods are also provided with a stable network ID or hostname, since the hostname is
a function of the Pod name and its ordinal index.

POD NETWORKING AND CNI PLUGINS
There are seven distinct paths available in Kubernetes networking.

1. Intra-Pod communication

2. Inter-Pod to Pod communication

3. Pod-to-Node and Node-to-Pod communication

4. Pod-to-Service communication

5. Pod-to-External communication

6. External-to -Service communication

7. External-to-Pod communication

INTRA-POD COMMUNICATION
A Pod is a collection of one or more containers that share certain resources. Since they share the same
network stack and IP address as the Pod, they can reach each other with localhost ports.

ç Guide to Implementing Network Security for Kubernetes 3

Adopting the principle of multiple containers sharing the same network namespace provides a few
benefits. There is increased security, since the ports bound to localhost are scoped only to the Pod and not
outside it. There is also simplicity in networking between the colocated containers in a Pod.

Note that this communication path does not utilize the container network interface (CNI).

POD-TO-POD COMMUNICATION
Kubernetes assumes that Pods communicate with each other over routable IP addresses. This allows Pods
to communicate without translations or service-discovery tooling. This is also fundamentally different from
how Docker networking works. With Docker networking, containers are provided addresses in the 172.x
range and the IP address that a peer container sees is different than what it is allocated. This model also
allows for easier porting of applications into the Kubernetes platform where they might be running on
VMs.

Container Network Interface (CNI)

The way to achieve Inter-Pod communication is via networking Plugins, which adhere to the CNI
specification.

CNI plugins allow configuration and cleaning of the networking constructs, when a Pod is created or
destroyed. They follow a specification which allows for the standardization of principles and the flexibility
of implementation.

A CNI plugin is implemented as an executable binary which is passed to the kubelet running on each
node. This plugin binary is responsible for the management of the host-to-Pod network, which translates
to connecting the Pod’s network namespace to the host network namespace. This is achieved by creating
some form of virtual network interface between the Pod and the underlying host (or some shared
networking construct on the host, external to the Pod). The CNI interface also provides the necessary
configurations to enable Pod networking external to the host, such as routing, L2 overlay constructs, and
NAT configuration. It also requires a plugin configuration which should be present on each node of the
cluster, typically in /etc/cni/net.d.

The CNI plugin also interfaces with IP Address Management (IPAM) which is responsible for IP Address
management and assignment of IP addresses to Pods. IPAM is also responsible for adding routes for the
veth created for the Pod.

A few CNI plugins include:

 • Flannel: Provides Overlay networking.

 • Weave: Provides Overlay networking focused on Docker integration.

 • Calico: A routed network that is able to either seamlessly interwork with the underlying infrastructure,
or deploy in an overlay above it. It commonly, but not always, uses BGP for the internetworking/route
exchanges.

SERVICES
Pod-to-Service Communication

Because Pods are ephemeral in nature, each time a Pod is destroyed and launched, the IP address
will change. A Service object in Kubernetes provides an abstraction that enables groups of Pods to be
addressed based on a label selector, rather than using an IP address.

ç Guide to Implementing Network Security for Kubernetes 4

Each service is assigned a Virtual IP address, also known as the ClusterIP that can be used to communicate
to the Pods. Services provide load balancing and access to the underlying Pods, and use an object called
Endpoints to track changes in IP addresses of the Pods. The Endpoints object is updated whenever the IP
address of a Pod changes.

Services provide four ways to access Pods:

1. ClusterIP: Allows the Service to be accessible only from within the cluster. The Service is exposed on the
cluster-IP address.

2. NodePort: Selects a port from the range 30000-32767 and will proxy this port on each node and update the
Service endpoint. The NodePort service is accessible by addressing it via the NodeIP and the NodePort.

3. LoadBalancer: A load balancer type allows the use of an external load balancer to route traffic to the Pods.
This is typically used with public cloud platforms.

4. ExternalName: A Service that specifies an ExternalName defines an alias to an external Service outside the
cluster. When the service is looked up, the CNAME of the external service is returned. This type of service does
not have an Endpoints object defined.

Here is a sample Service spec.

apiVersion: v1
kind: Service
metadata:
 name: myapp
 labels:
 component: myapp
 role: client
spec:
 type: NodePort
 selector:
 component: myapp
 role: client
 ports:
 - name: http
 port: 9090
 protocol: TCP
Here is a sample Endpoints spec
kind: Endpoints
apiVersion: v1
metadata:
 name: myapp
subsets:
 - addresses:
 - ip: 10.32.5.4
 ports:
 - port: 9090

ç Guide to Implementing Network Security for Kubernetes 5

INGRESS
External-to-Internal Communication

Pods and Services are assigned IP addresses that are part of the networking setup for the cluster. They are
accessible outside the cluster via a LoadBalancer or NodePort. An Ingress is a way of specifying a set of
rules that allow incoming traffic to the Service. This is typically used to provide the service a URL which can
be accessed externally.

Here is a sample Ingress resource spec.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: test-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /myapp
spec:
 rules:
 - http:
 paths:
 - path: /myapp
 backend:
 serviceName: myapp-service
 servicePort: 9090

In this example, traffic is redirected to the myapp-service on the servicePort 9090 when the /myapp path is
accessed.

An Ingress controller is required to fulfill the ingress rules specified for the service. An Ingress controller
runs separately and isn’t part of the controller manager that is run on the Kubernetes master.

ç Guide to Implementing Network Security for Kubernetes 6

Networking with Calico
ARCHITECTURE
Calico creates and manages a Layer 3 network that provides inter-Pod communication in the Kubernetes
cluster. It provides routable IP addresses to Pods that enable easier interoperability. Calico allows
enforcement of network security policies that provide fine-grained control over the communications
between Pods.

Calico uses the following components to achieve this.

 • calico/node: The agent that runs as part of the Calico daemonset Pod. It manages interfaces, routes, and
status reporting of the node and enforces policies.

 • BIRD: A BGP client that broadcasts routes that are programmed by Felix

 • Etcd: An optional distributed datastore

 • Calico Controller: The Calico policy controller

CALICO/NODE
calico/node is a pod with two containers.

1. A calico/node container that runs two daemon processes:

a. Felix

b. the Bird BGP daemon (optional)

2. A Calico-CNI plugin container (optional) that respond to CNI requests from the kubelet on the node

The Felix component is at the heart of networking with Calico. It runs on every node of the cluster and is
responsible for interface and route management, state reporting, and policy enforcement.

Interface and Route Management
The Felix daemon is responsible for programming the interface and creating routes in the kernel route
table to provide routable IP addresses for Pods when they get created. Felix creates a virtual network
interface and assigns an IP address from the Calico IPAM for each Pod. This interface carries the prefix, cali
unless specified otherwise.

This ensures that the Pods carry a routable IP address and the packets are routed appropriately. It also is
responsible for cleaning up the interfaces when a Pod is evicted.

State Reporting
Felix exposes metrics that are used for instance state reporting via a monitoring tool, such as Prometheus.

Policy Enforcement
Felix is responsible for network policy enforcement. Felix monitors the labels on the Pods and compares
against the defined network policy objects to decide whether to allow or deny traffic to the Pod.

Felix writes information about the interfaces with their IP Addresses and the state of the host network to
etcd.

ç Guide to Implementing Network Security for Kubernetes 7

BIRD
BIRD is a BGP daemon that distributes routing information written by Felix to other BIRD agents on the
cluster nodes. The BIRD agent is installed with the Calico daemonset Pod. This ensures that traffic is routed
across nodes. Calico, by default, creates a full mesh topology. This means that every BIRD agent needs to
be connected to every other BIRD agent in the cluster.

For larger deployments, BIRD can be configured as a route reflector. The route reflector topology allows
BIRD to be set up as a centralized point which other BIRD agents communicate. It also reduces the number
of open connections for each BGP agent.

ETCD
Calico uses a distributed datastore called etcd that stores the Calico resource configurations and network
policy rules. The Felix daemon communicates with the etcd datastore for publishing routes, node, and
interface information for every node among other information.

For higher availability, a multi-node etcd cluster should be set up for larger deployments. In this setup, etcd
ensures that the Calico configurations are replicated across the etcd cluster enabling them to always be in
the last known good state.

An optional deployment model is to use the Kubernetes API server as the distributed datastore, eliminating
the need to stand-up and maintain an etcd datastore.

Bringing it all together :

An example of a deployment of three nginx Pods on a Kubernetes cluster demonstrates how these
components work together to provide networking.

ç Guide to Implementing Network Security for Kubernetes 8

1. When one of the Nginx Pods is scheduled on the Kubernetes node, Felix will create a virtual interface with
the cali prefix and assigns it a /32 IP address.

Note the interface cali09f9c3884e9 created for the Pod nginx-8586cf59-rv5gm scheduled on node
ip-172-31-51-121.

Routes on the host where the Pod nginx-8586cf59-rv5gm is scheduled.

Cali Interface on the host where the Pod nginx-8586cf59-rv5gm is scheduled.

ç Guide to Implementing Network Security for Kubernetes 9

The interfaces in the container nginx-8586cf59-rv5gm. Arp, also shows that the eth0 interface within the Pod
is mapped to the MAC address of the cali09f9c3884e9 interface created by Felix. This is done by the host
responding via proxy arp and returning the mac address of the cali interface.

This allows for the Pod traffic to be routed to the host.

Note: In some cases, the kernel is not able to create a persistent mac address for the interface. Since Calico uses point-to-point
routed interfaces, traffic does not reach the data link layer the MAC Address is never used and can, therefore, be the same for
all the cali* interfaces which is ee:ee:ee…

2. The BIRD BGP daemon realizes that there is a new network interface that has come up and it advertises that
to the other peers.

Note the route with 192.168.91.0/26 routed via the IP address of the host 172.31.52.121 where the nginx-
8586cf59-rv5gm Pod is.

Note: Notice that the route shows tunl0. This is because of the use of IPIP. Calico allows the use of a smarter way of defining
IPIP via an option called cross-subnet. If IPIP is disabled, the route would show the actual interface name. E.g., eth0. For a
discussion of IPIP vs direct networking, please see the ‘Calico IP-in-IP mode’ section below.

INSTALLATION
Installing Calico for networking with a Kubernetes cluster has a few prerequisites.

PRE-REQUISITES
 • kube-proxy configured to run without the --masquerade-all option, since this conflicts with Calico.

Note: If kubeadm is used to setup a Kubernetes cluster, an easier way to verify this would be to run the
following command and verify the options under ipTables

kubectl get cm kube-proxy -n kube-system -o yaml

 • kubelet must be configured to use CNI plugins for networking, `--network-plugin=cni` as the option.

Note: If kubeadm was used to set up a cluster, verify using the command `cat /etc/systemd/system/kubelet.
service.d/10-kubeadm.conf`

 • kube-proxy must run with the proxy mode of iptables. This is the default option.

INSTALL CALICO
Calico is deployed as a daemonset on the Kubernetes cluster. The daemonset construct of Kubernetes
ensures that Calico runs on each node of the cluster. The installation is performed by applying a
specification, which defines the required Kubernetes resources for it to function correctly.

ç Guide to Implementing Network Security for Kubernetes 10

Note: If the Kubernetes cluster is RBAC enabled, make sure the necessary RBAC policies are applied on the cluster
for the Calico-kube-controller to function correctly.

kubectl apply -f https://docs.projectcalico.org/v3.1/getting-started/kubernetes/installation/rbac.yaml

The deployment manifest can be found at Calico Deployment Manifest and is applied via kubectl.

A quick inspection of the manifest shows the following Kubernetes resources defined.

 • The Calico-config ConfigMap which contains parameters for configuring the install. This holds the etcd
configuration parameter `etcd_endpoints` used to specify the etcd store for Calico.

 • A calico/node Pod which contains the following containers:

 – A container that installs the CNI binaries and the CNI config in the standard locations as per the CNI
specification (/etc/cni/net.d and /opt/cni/bin).

 – The calico/node container which manages routes and network policy.

 • A Calico-etcd-secrets secret, which allows for providing etcd TLS assets.

 • A Calico-kube-controller, which runs control loops to watch over node changes, policy changes and Pod label
changes, to name a few.

Here is a sample screenshot showing what the cluster looks like after applying the Calico manifest.

INSTALL AND CONFIGURE CALICOCTL
Calico provides a command line utility called calicoctl that is used to manage Calico configurations. The
host where the calicoctl utility is run requires connectivity to the Calico etcd datastore. Alternatively,
calicoctl can be configured to connect to the Kubernetes API datastore.

calicoctl can also be deployed as a standalone container or a Pod.

Install calicoctl as a stand-alone binary on any host that you may use for management.

curl -O -L https://github.com/projectcalico/calicoctl/releases

chmod +x calicoctl

sudo mv calicoctl /usr/local/bin

`calicoctl` requires information of the etcd datastore to communicate with it. This can be provided in two
different ways.

https://docs.projectcalico.org/v3.1/getting-started/kubernetes/installation/rbac.yaml
https://docs.projectcalico.org/v3.1/getting-started/kubernetes/installation/hosted/calico.yaml
https://github.com/projectcalico/calicoctl/releases

ç Guide to Implementing Network Security for Kubernetes 11

1. Configuration file:
`calicoctl` by default looks for a configuration file to be present at /etc/calico/calicoctl.cfg. The
format of the calicoctl.cfg can either be YAML or JSON.

A valid example configuration file looks like the one below.

 apiVersion: projectcalico.org/v3
kind: CalicoAPIConfig
metadata:
spec:
 etcdEndpoints: https://etcd1:2379,https://etcd2:2379,https://etcd3:2379
 etcdKeyFile: /etc/calico/key.pem
 etcdCertFile: /etc/calico/cert.pem
 etcdCACertFile: /etc/calico/ca.pem

2. Environment Variables:
In the absence of a configuration file, calicoctl can accept environment variables to connect to the
etcd datastore.

The table below defines the environment variables for a dedicated etcd datastore.

Environment Variable Description Schema

DATASTORE_TYPE Indicates the datastore to use.
If unspecified, defaults to etcdv3. (optional)

Kubernetes, etcdv3

ETCD_ENDPOINTS This is a required parameter.
The Calico etcd datastore URL endpoints.

For example: http://etcd1:2379, http://etcd2:2379 where
etcd1/etcd2 are either DNS names or IP Addresses.

string

ETCD_USERNAME Username for RBAC. Example: user (optional) string

ETCD_PASSWORD Password for the given username. (optional) string

ETCD_KEY_FILE The path to the etcd key file.
Example: /etc/calico/key.pem (optional)

string

ETCD_CERT_FILE The path to the etcd client certificate,
Example: /etc/calico/cert.pem (optional)

string

ETCD_CA_CERT_FILE The path to the etcd Certificate Authority file.
Example: /etc/calico/ca.pem (optional)

string

ç Guide to Implementing Network Security for Kubernetes 12

The table below defines the list of environment variables for the Kubernetes datastore.

Environment Variable Description Schema

DATASTORE_TYPE Indicates the datastore to use. [Default: etcdv3] Kubernetes, etcdv3

KUBECONFIG When using the Kubernetes datastore, the location of a
kubeconfig file to use, e.g. /path/to/kube/config.

string

K8S_API_ENDPOINT Location of the Kubernetes API. Not required if using
kubeconfig. [Default: https://kubernetes-api:443]

string

K8S_CERT_FILE Location of a client certificate for accessing the
Kubernetes API, e.g., /path/to/cert.

string

K8S_KEY_FILE Location of a client key for accessing the Kubernetes
API, e.g., /path/to/key.

string

K8S_CA_FILE Location of a CA for accessing the Kubernetes API, e.g., /
path/to/ca.

string

K8S_TOKEN Token to be used for accessing the Kubernetes API. string

Tip: The name of the configuration options to be used in the configuration file can be arrived at by camel
casing the environment variable without the underscore.

For example: `ETCD_CA_CERT_FILE` as the environment variable can be used as `etcdCACertFile` in the
configuration file.

`K8S_API_ENDPOINT` as the environment variable can be used as `k8sAPIEndpoint` in the configuration file.

Install calicoctl as a Pod in the Kubernetes Cluster.

To use a dedicated etcd datastore (recommended)
kubectl apply -f https://docs.projectcalico.org/master/getting-started/kubernetes/installation/hosted/
calicoctl.yaml

To use the Kubernetes datastore

kubectl apply -f https://docs.projectcalico.org/master/getting-started/kubernetes/installation/hosted/
kubernetes-datastore/calicoctl.yaml

POST INSTALL VERIFICATION
The following steps describe the quickest way to verify a successfully running Calico installation.

 Create a nginx deployment with two replicas.

`kubectl run nginx --image=nginx --replicas=2`

This creates two nginx Pods scheduled on the Kubernetes worker nodes.

https://docs.projectcalico.org/master/getting-started/kubernetes/installation/hosted/calicoctl.yaml
https://docs.projectcalico.org/master/getting-started/kubernetes/installation/hosted/calicoctl.yaml
https://docs.projectcalico.org/master/getting-started/kubernetes/installation/hosted/kubernetes-datastore/calicoctl.yaml
https://docs.projectcalico.org/master/getting-started/kubernetes/installation/hosted/kubernetes-datastore/calicoctl.yaml

ç Guide to Implementing Network Security for Kubernetes 13

Verify Calico node status via calicoctl
`calicoctl node status`

Verify the workload endpoints via `calicoctl`
`calicoctl get workLoadEndpoints`.

The Pods show a routable IP address for each running Pod.
Login to the hosts that are running the nginx Pods to inspect the route table.

The Felix daemon in the Calico node Pod has created a virtual network interface with a routable IP address
for each running Pod on the node. The name of the interface is named cali appended by an alphanumeric
number.

`cali25b3cd8343b` is the name of one of the interfaces on the nginx Pod.

ç Guide to Implementing Network Security for Kubernetes 14

OVERLAY AND NON-OVERLAY NETWORKING
Calico provides a standard networking model based on the principles of the Internet. It allows for standard
BGP peering for on-premises solutions as well as IP-in-IP encapsulation. Calico also can be deployed as
a network policy enforcement engine alongside Flannel as the CNI plugin, which provides the required
Overlay network.

CALICO IP-IN-IP MODE
Calido uses IP-in-IP mode when

 • There is no other way to share routes between the infrastructure;

 • The network architecture performs validates addresses and discards all traffic that is not recognized;

 • The Pods need to communicate across subnets.

Public cloud environments usually impose these restrictions.

Calico can be configured to use IP-in-IP encapsulation by setting the IPIP configuration parameter on
the IP Pool resource. When enabled, Calico encapsulates the packets originating from a Pod in a packet
which carries the header containing the source IP address of the host and the destination IP of the host
where the target Pods are running. This IP-in-IP encapsulation is performed by the Linux kernel using
stateless IP-in-IP encapsulation. The routes in this mode are not pre-created. It allows for dynamic IP-in-IP
encapsulation. This allows the router to make the route decision following standard network routing.

Calico IP-in-IP provides three modes of operation to allow network traffic to use IP-in-IP encapsulation.
These options are as follows.

1. ipip Mode: Always.

2. ipip Mode: Cross Subnet

3. ipip Mode: Off

When ipip Mode is set as Always, all packets originating from the Pod are encapsulated using the IPIP
mechanism.

With ipip Mode set to CrossSubnet, Calico provides the ability to perform encapsulation only when it is
necessary. IP-in-IP encapsulation in this mode is performed only when the traffic needs to cross over
subnet boundaries.

Applying the following spec would enable CrossSubnet mode for the IP Pool my.ippool

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: my.ippool
spec:
 cidr: 10.1.0.0/16
 ipipMode: CrossSubnet
 natOutgoing: true
 disabled: false

Note: natOutgoing is always required if IPIP is enabled and set to Always or CrossSubnet mode. If IPIP is
not enabled, or the mode is set to off, natOutgoing may not be necessary. This depends on the network
and addressing architecture.

ç Guide to Implementing Network Security for Kubernetes 15

IP ADDRESS MANAGEMENT
The Calico IP Address Management (IPAM) is responsible for IP address management for Pods on each
node of the Kubernetes cluster.

The CNI plugin is responsible for the creation of the communication channel from the Pod to the network.
In order to do so, the CNI plugin points to an IPAM module which is responsible for assigning IP Addresses
to Pods.

The Calico CNI configuration uses Calico-ipam as the default configuration for the CNI plugin.

Here is an example of a Calico CNI configuration file.

{
 “name”: “k8s-pod-network”,
 “cniVersion”: “0.3.0”,
 “plugins”: [
 {
 “type”: “calico”,
 “etcd_endpoints”: “http://10.96.232.136:6666”,
 “log_level”: “info”,
 “mtu”: 1500,
 “ipam”: {
 “type”: “calico-ipam”
 },
 “policy”: {
 “type”: “k8s”,
 “k8s_api_root”: “https://10.96.0.1:443”,
 “k8s_auth_token”: “eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZ-
pY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN-
5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJjYWxpY28tY-
25pLXBsdWdpbi10b2tlbi03MnM0YiIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2Vydml-
jZS1hY2NvdW50Lm5hbWUiOiJjYWxpY28tY25pLXBsdWdpbiIsImt1Ym”
 },
 “kubernetes”: {
 “kubeconfig”: “/etc/cni/net.d/calico-kubeconfig”
 }
 },
 {
 “type”: “portmap”,
 “snat”: true,
 “capabilities”: {“portMappings”: true}
 }
]

}

The kubelet on each node uses this CNI configuration to set up network connectivity for the Pods running
on that host.

ç Guide to Implementing Network Security for Kubernetes 16

IP POOLS
IP Pools are a collection of IP Addresses that are used for assigning IP addresses to Pods. The IPPools
Calico resource can be managed using the calicoctl command line.

The IPPools are created during the deployment of the Calico daemonset. The parameter, CALICO_
IPV4POOL_CIDR defines the IPPool addresses.

Multiple IP Pools
Calico supports the creation of multiple IP Pools in the IPAM. Calico can assign IP Addresses to Pods from
a specific IP Pool based on the Pod annotation. This allows for fine-grained control over the IP Address
assignment of Pods.

Using the Calico IPAM feature, it is possible to create multiple IP Pools – one of them routable and the
other with a private address range IP Pool. Then, a subset of Pods is allowed to be assigned IP addresses
from the routable pool whereas the rest of the Pods to be assigned IP addresses from the private pool.

IP Pool per Pod
Calico IPAM allows specification of an IP Pool to be used Per Pod in addition to specifying the IP Pools in
the CNI config. This is achieved by using Kubernetes Pod Annotations.

This annotation is used for IPv4 annotations:

 “cni.projectcalico.org/ipv4pools”: “[\”10.1.0.0/16\”]”

This annotation is used for IPv6 annotations:

 “cni.projectcalico.org/ipv6pools”: “[\”2001:db8::1/120\”]”

Note: The IP Pool needs to be created before using it as part of the Pod annotation.

Here is an example Pod specification with the IPPool annotation

apiVersion: v1
kind: Pod
metadata:
 name: private-nginx
 labels:
 app: private-nginx
 annotations:
 “cni.projectcalico.org/ipv4pools”: “[\”10.1.0.0/16\”]”
spec:
 containers:
 - image: nginx
 name: private-nginx

ç Guide to Implementing Network Security for Kubernetes 17

Manual IP Per Pod
Calico allows requesting for a specific IP address from the IP Pool for a Pod. The requested IP addresses
will be assigned from Calico IPAM and must exist within a configured IP pool.

The following annotation is used.

Annotations:
 “cni.projectcalico.org/ipAddrs”: “[\”192.168.0.1\”]”

Calico also allows a means to bypass the IPAM to request a specific IP address. Calico only distributes
routes for the IP addresses, which are part of the Calico IP Pool. The routing or conflict resolution needs to
be taken care of manually or via another mechanism.

Annotations:
“cni.projectcalico.org/ipAddrsNoIpam”: “[\”10.0.0.1\”]”

The annotations ipAddrs and ipAddrsNoIpam cannot be used simultaneously on the Pod Specification.

NAT
Calico allows setting outbound Internet access to Pods on the IP Pool. Calico will then perform outbound
NAT on the node where the Pod is scheduled. This is achieved by setting the parameter.

Set `natOutgoing` on the IP Pool configuration to true. This parameter accepts a Boolean value with the
default being `false`.

A sample IP Pool definition

apiVersion: projectcalico.org/v3
kind: IPPool
metadata:
 name: my.ippool
spec:
 cidr: 10.1.0.0/16
 ipipMode: CrossSubnet
 natOutgoing: true
 disabled: false

ADDRESS BLOCKS
Calico does dynamic address management by allocating a /26 address block to each node when the Calico
node runs successfully.

This /26 space address block is written to the etcd datastore to reserve it. All Pods scheduled on that host
then use IP addresses from that address block.

A /26 address space allocation allows assignment of IP addresses to 64 Pods. If an address block gets
exhausted, then another /26 address block is associated to the node.

Calico follows this model to avoid wasting IP Addresses. This helps optimize the IP address management
and Calico will simply request another /26 address block when the Node exhausts all available IP
addresses.

ç Guide to Implementing Network Security for Kubernetes 18

The following screenshow shows the /26 block reservation against the node k8s-n1 and the Pod running on
that node allocated an IP address from that address range.

ADDRESS BORROWING
In situations where no more /26 blocks are available, Calico uses a method called Address Borrowing.

In a very large cluster, Calico borrows the specific /32 IP Address from the address block of another node
and uses that for IP assignment to the Pod. It then advertises that on the cluster. A very large cluster is
defined as where the IP Pool consists of a /16 block and individual nodes are allocated /26 address blocks
and there are no more /26 address blocks to be allocated for a new Pod on a node, but there are individual
/32 address on another node (the IP addresses of the /26 block are not exhausted on another node)Pod.

Due to the general network policy of routing where network traffic always tries to find the most specific IP
addresses. Then, it rolls up if that address is not directly accessible. Communication to the Pod IP happens
directly due to its allocated /32 Address.

INSTALLATION INSTRUCTIONS
Please see the current installation documents for a discussion of the various ways to install and configure
Calico on either public or private cloud. Further discussion about considerations specific to a given public
cloud can be found in the reference documents section titled configuration on public clouds. A discussion
of private cloud network architectures can be found in the network architecture documents, with the most
common deployment model being AS-per-Rack.

NETWORK POLICY FOR NETWORK SEGMENTATION
Network policy allows you to specify access control rules for network communication between workloads
using a declarative model. Following are some details of network policy.

MOTIVATION FOR NETWORK POLICY
As Kubernetes is adopted as part of an organization’s IT environment. Security controls will need to be
applied to:

 • Manage fine-grained access controls to application workloads (Pods).

 • Manage these restrictions dynamically on a running workload to allow or deny traffic

https://docs.projectcalico.org/master/getting-started/kubernetes/installation/
https://docs.projectcalico.org/v3.2/reference/

ç Guide to Implementing Network Security for Kubernetes 19

Kubernetes Pods, by default, do not restrict any incoming traffic. There are no firewall rules for inter-Pod
communication. The need to have proper access restrictions to the workloads becomes imperative when
Kubernetes is used as a multi-tenant platform or as a shared PaaS.

In order to provide a simple yet native interface for management of these access controls, a network policy
object was introduced as a Kubernetes resource. This network policy object allows a user to define a set of
access rules for to a set of workloads. The network policy resource requires a CNI plugin that supports the
policy feature to enable enforcement of these rules.

The Calico CNI plugin has the capability to define and enforce network policies that can be used in
conjunction with the Kubernetes network policy object.

Network policy definitions are implemented for the following use cases:

 • Granular control over a multi-tiered application, such as allowing network traffic to a set of database Pods
originating from a specific set of web application Pods.

 • Allowing communication to the caching Pods only from a set of Pods running the UI application.

LABELS AND LABEL SELECTORS
Access control mechanisms allowing and denying traffic between Pods is achieved by using label selectors
as part of the network policy definition.

Labels are a set of key/value pairs that can be applied to an object, typically a Pod, and are used to define
the identity of the Kubernetes object. They also help organize and group these objects.

Labels have reasonable restrictions on the length and value that can be used. They do not have a lifecycle
of their own and are applied to the Pod with the objective of providing a meaningful definition of the Pod.
They can be applied during the definition of the Pod or later while it is running.

A label selector is a condition which selects an object based on the labels that are applied to it.

The following table shows the primitives that can be used as part of the label selector in the Calico network
policy object. They can all be combined together by the standard `&&` primitive.

Syntax Schema

all() Match all resources.

k == ‘v’ Matches any resource with the label ‘k’ and value ‘v’.

k != ‘v’ Matches any resource with the label ‘k’ and value that is not ‘v’.

has(k) Matches any resource with label ‘k’, independent of value.

!has(k) Matches any resource that does not have label ‘k’

k in { ‘v1’, ‘v2’ } Matches any resource with label ‘k’ and value in the given set

k not in { ‘v1’, ‘v2’ } Matches any resource without label ‘k’ or any with label ‘k’ and value not in the given set

ç Guide to Implementing Network Security for Kubernetes 20

DEFINING POLICY [K8S POLICY API, CALICO NETWORK POLICY]
Network Policy in Kubernetes
Network policy objects are namespaced. They follow the standard specification model of defining
Kubernetes objects.

A sample Kubernetes network policy object is as described below.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-network-policy
 namespace: np-demo
spec:
 podSelector:
 matchLabels:
 role: db
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 172.17.0.0/16
 except:
 - 172.17.1.0/24
 - namespaceSelector:
 matchLabels:
 project: myproject
 - podSelector:
 matchLabels:
 role: frontend
 ports:
 - protocol: TCP
 port: 6379
 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 5978

ç Guide to Implementing Network Security for Kubernetes 21

The apiVersion, kind and metadata fields are mandatory similar to other object definitions with
Kubernetes.

The spec section is the definition of the network policy for the provided namespace (np-demo in the
example above).

policyTypes: Each network policy includes a policyTypes list which may include either Ingress, Egress, or
both.

 • Ingress: defines rules for incoming traffic. Read as `Allow traffic from`

 • Egress: defines rules for outgoing traffic. Read as `Allow traffic to`

If no `policyTypes` parameter is specified, Ingress is applied.

Ingress: Each rule allows traffic which matches both the from and ports sections. In the above example, the
policy contains a single rule, which matches traffic on the port 6379, from one of three sources: specified
via an ipBlock, a namespaceSelector and a PodSelector.

Egress: Each network policy may include a list of whitelist egress rules. Each rule allows traffic which
matches both the to and ports sections. The example policy contains a single rule, which matches traffic on
a single port to any destination in 10.0.0.0/24.

Calico Network Policy
Calico provides the capability to define network policy and global network policy objects. They are applied
to a workload endpoint object in Calico to define access restrictions for Pod workloads.

Workload Endpoint:
A workload endpoints resource in Calico is the object which holds information about the virtual cali
interface associated to the Pod. The workload endpoint resource is a namespaced object. Fora network
policy to be applied on this endpoint, it needs to be in the same namespace.

The workload endpoint resource can define a set of labels and profiles which are used by Calico to enforce
network policy on the Pod. Defining a profile is an alternate way of applying access rules on individual
endpoints.

An example definition of the workload endpoint resource:

apiVersion: projectcalico.org/v3
kind: WorkloadEndpoint
metadata:
 name: k8s-node1-k8s-frontend--5gs43-eth0
 namespace: myproject
 labels:
 app: frontend
 projectcalico.org/namespace: myproject
 projectcalico.org/orchestrator: k8s
spec:
 node: k8s-node1
 orchestrator: k8s
 endpoint: eth0

ç Guide to Implementing Network Security for Kubernetes 22

 containerID: 133725156942031415926535
 pod: my-nginx-b1337a
 endpoint: eth0
 interfaceName: cali0ef25fa
 mac: ca:fe:1d:52:bb:e9
 ipNetworks:
 - 192.168.0.0/16
 profiles:
 - frontend-profile
 ports:
 - name: connect-port
 port: 1234
 protocol: tcp
 - name: another-port
 port: 5432
 protocol: udp

Network Policy and Global Network Policy:
Calico, like Kubernetes, allows the definition of a network policy resource which is a namespaced resource
and is applied to the workload endpoints resource.

Network Policy:
A sample Calico network policy resource definition:

apiVersion: projectcalico.org/v3
kind: NetworkPolicy
metadata:
 name: allow-tcp-6379
 namespace: myproject
spec:
 selector: app == ‘database’
 types:
 - Ingress
 - Egress
 ingress:
 - action: Allow
 protocol: TCP
 source:
 selector: app == ‘frontend’
 destination:
 ports:
 - 6379
 egress:
 - action: Allow

ç Guide to Implementing Network Security for Kubernetes 23

The above policy allows incoming traffic on port 6379 for the endpoints that carry the label `app:
database` and when the source is from the endpoints which carry the labels `app: frontend`. This allows a
declarative way of specifying rules between a group of endpoints matched based on the label selector.

The Spec section describes the rules to be applied for the type of traffic, which is applied based on labels of
the workload.

Field Description Accepted
Values Schema Default

order

Controls the order of precedence. Calico
applies the policy with the lowest value
first. float

selector
Selects the endpoints to which this
policy applies. selector all()

types

Applies the policy based on the direction
of the traffic. To apply the policy to
inbound traffic, set to Ingress. To apply
the policy to outbound traffic, set to
Egress. To apply the policy to both, set
to Ingress, Egress.

Ingress,
Egress

List of
strings

Depends
on the
presence
of ingress/
egress
rules*

ingress
An ordered list of ingress rules applied
by policy. List of Rule

egress
An ordered list of egress rules applied
by this policy. List of Rule

doNotTrack*

Indicates to apply the rules in this policy
before any data plane connection
tracking, and that packets allowed by
these rules should not be tracked. true, false boolean false

preDNAT*
Indicates to apply the rules in this policy
before any DNAT. true, false boolean false

applyOnForward*

Indicates to apply the rules in this policy
on forwarded traffic as well as to locally
terminated traffic. true, false boolean false

https://docs.projectcalico.org/v3.1/reference/calicoctl/resources/networkpolicy#selector
https://docs.projectcalico.org/v3.1/reference/calicoctl/resources/networkpolicy#rule
https://docs.projectcalico.org/v3.1/reference/calicoctl/resources/networkpolicy#rule

ç Guide to Implementing Network Security for Kubernetes 24

Types

The types field defines the type of traffic for which the policy is applied. In the absence of the types field,
the following defaults apply.

Ingress Rules Present Egress Rules Present Type Value

No No Ingress

Yes No Ingress

No Yes Egress

Yes Yes Ingress, Egress

Rule

A Rule is the definition of the action to be taken with the Source and the Destination.

Field Description Accepted Values Schema

action Action to perform when matching this rule. Allow, Deny, Log, Pass string

protocol Positive protocol match.
TCP, UDP, ICMP, ICMPv6,
SCTP, UDPLite, 1-255 string | integer

notProtocol Negative protocol match.
TCP, UDP, ICMP, ICMPv6,
SCTP, UDPLite, 1-255 string | integer

icmp ICMP match criteria. ICMP

notICMP Negative match on ICMP. ICMP

source Source match parameters. EntityRule

destination Destination match parameters. EntityRule

ipVersion Positive IP version match 4, 6 integer

http

Match HTTP request parameters.
Application layer policy must be enabled to
use this field. HTTPMatch

If the action is specified as Pass, further policies would be skipped and the Profile rules specified against
the endpoint would be executed. If there are no Profiles set for the workload endpoint, the default applied
action is Deny.

ç Guide to Implementing Network Security for Kubernetes 25

Entity Rule

An Entity rule helps match the workload endpoints based on selectors.

Field Description Accepted Values Schema

nets
Match packets with IP in any of the listed
CIDRs.

List of valid IPv4
or IPv6 CIDRs list of CIDRs

notNets
Negative match on CIDRs. Match packets with
IP not in any of the listed CIDRs.

List of valid IPv4
or IPv6 CIDRs list of CIDRs

selector

Positive match on selected endpoints. If a
namespaceSelector is also defined, the set
of endpoints this applies to is limited to the
endpoints in the selected namespaces. Valid selector selector

notSelector

Negative match on selected endpoints. If a
namespaceSelector is also defined, the set
of endpoints this applies to is limited to the
endpoints in the selected namespaces. Valid selector selector

namespaceSelector

Positive match on selected namespaces.
If specified, only workload endpoints in
the selected Kubernetes namespaces are
matched. Matches namespaces based on
the labels that have been applied to the
namespaces. Defines the context that
selectors will apply to, if not defined then
selectors apply to the network policy’s
namespace. Valid selector selector

ports Positive match on the specified ports list of ports

notPorts Negative match on the specified ports list of ports

serviceAccounts

Match endpoints running under service
accounts. If a namespaceSelector is also
defined, the set of service accounts this
applies to is limited to the service accounts in
the selected namespaces. Application layer
policy must be enabled to use this field.

Service
AccountsMatch

A global network policy provides the ability to define a network policy which is non-namespaced. A global
network policy, similar to a network policy, is applied on a group of endpoints matched by the label
selector. The difference is it applies to all endpoints regardless of the namespace that they are in.

Global Network Policy

A global network policy also applies policy rules to a host endpoint. A host endpoint resource carries the
information about the interface attached to the host which is running Calico. If a host endpoint carries a
label which is matched by the global network policy, the policy rules get applied to it.

This capability allows the host network interface to be secured by applying declarative rules to it as well.

ç Guide to Implementing Network Security for Kubernetes 26

A sample global network policy object definition:

apiVersion: projectcalico.org/v3
kind: GlobalNetworkPolicy
metadata:
 name: allow-tcp-6379
spec:
 selector: app == ‘database’
 types:
 - Ingress
 - Egress
 ingress:
 - action: Allow
 protocol: TCP
 source:
 selector: app == ‘frontend’
 destination:
 ports:
 - 6379
 egress:
 - action: Allow

This policy allows incoming traffic to the endpoints with the label `app: database` on port 6379 originating
from endpoints with the label `app: frontend` and is applied across namespaces.

POLICY ENFORCEMENT
Declaring network policy and global network policy, Calico resources provide the flexibility to define access
rules for an individual endpoint or to a group of endpoints either in a namespace or across namespaces.
This is handled by label selectors that are present on the endpoints or the host endpoint resource.

Calico enforces these policy rules as defined in the above resources by translating them into iptable and
ipset rules.

The Felix agent that runs as part of the Calico daemonset on Kubernetes reads the declared network
policies and translates them into iptable rules and ipsets on the host where the Pod runs.

Calico policies are applied on workload endpoints. Workload endpoints already hold information about the
Calico interface, the Pod using that interface, and the node on which the Pod is scheduled. This enables
Calico to provide security and isolation using the native kernel iptable rules. No custom modules are
required to achieve this.

Calico runs a Calico-kube-controller Pod as part of installation. The controller Pod has several controller
loops, including a policy controller. The policy controller watches over network policies and programs
Calico policy objects. Removal or changes to the network policies are reflected by the controller loop which
ensures the policy changes are applied to workloads in real time.

HIERARCHICAL POLICIES [COMMERCIAL SOFTWARE CAPABILITY]
Hierarchical policies can be setup using Tigera Secure Enterprise Edition (TSEE).

ç Guide to Implementing Network Security for Kubernetes 27

TSEE introduces a resource object called Tier that represents an ordered collection of network policies and
global network policies. A Tier helps divide the network policies into groups of different priorities. Policies
within a Tier are ordered based on the order field on the network policy. The order of execution of a Tier is
dependent on the order field defined on the Tier object. It is important to note that this evaluation, like all
rules in Calico and TSEE, is evaluated at creation or modification time and not at packet time.

Important flexibility provided by the Tier resource is when a Pass action is encountered on the network
policy rule, the next Tier is executed. This allows network policies to be modeled in a hierarchy.

The introduction of Tier helps in the following ways.

 • Allowing privileged users to specify Policy rules which take precedence over other policies

 • A physical firewall hierarchy can be translated directly in terms of Network Policies defined via Calico

The way a hierarchical policy is evaluated is as follows. When a new endpoint access is processed by Calico,
every Tier that has a network policy defined for the endpoint processes the request. A Tier with the least
value of the order field takes precedence over a higher value. Policies within each Tier are then processed
on the value of the order field of the Policy object.

 • If a network policy or global network policy in the Tier Allows or Denies the packet, then the packet is handled
accordingly.

 • If a network policy or global network policy in the Tier Passes the packet, the next Tier containing a policy that
applies to the endpoint processes the packet.

If the last Tier (the one with the highest value in the order field) applying to the workload endpoint Passes
the packet, that is evaluated.

An example of the Tier resource:

apiVersion: projectcalico.org/v3
kind: Tier
metadata:
 name: internal-access
spec:
 order: 100

Network policy and global network policy objects are added to a Tier by specifying the name of the
Tier under the metadata section. The requirement is that the name should follow the format of <tier
name>.<policy name>. If the Tier name is not specified, the calicoctl command would not allow the policy
object to be created.

Kubernetes network policies are always created in the default Tier. The default Tier carries the order as
<nil>, which is treated as infinite and hence is the lowest in precedence when using Tiers.

SECURING KUBERNETES CONNECTIVITY
There are a number of steps that can be performed to secure application workloads on Kubernetes. Some
of them are as below.

The API service of Kubernetes is the brain of all the workloads that are being run on the cluster. By default,
the API server traffic is TLS enabled. There needs to be a review of the installation mechanism to verify the
API server traffic is secure, always authenticated and authorized via RBAC (Role-Based Access Control).

ç Guide to Implementing Network Security for Kubernetes 28

Kubernetes also distinguishes between a user account and a service account. Enabling RBAC on the
Kubernetes cluster is imperative to secure workloads. Service accounts are typically namespaced and
created by the application to run the Pods. The right API-level access restrictions must also be provided on
the service accounts which run the applications.

The kubelet is responsible for running application workloads on its respective node. It is also one of the
components that talks to the API server to receive the workload definitions for itself. The kubelet exposes
an HTTPS endpoint which grants access over the node and the Pods running on that node. The Kubernetes
cluster should enable kubelet authentication and authorization.

Enabling resource and limit quotas helps to address starvation of resources. Quotas can also be set up on
the number of Pods that can be created in a namespace.

Pods can request privileged access by using the Pod security context where a specific user can be defined
to run the Pod. Pod security policies enable fine-grained control over Pod creation. This makes it possible
to restrict the running of privileged Pods.

Pod placement, with Affinity and Anti-Affinity rules, taint and tolerations-based evictions, helps control
where the Pods can be scheduled via Kubernetes.

With all of the above measures, the approach to securing the Kubernetes cluster or its workloads can best
be described as enforcing a perimeter over what actions can be performed or not.

DEFICIENCIES IN THE TRADITIONAL APPROACH
With the adoption of a microservices- based architecture for developing applications, an enterprise can
potentially have services which run in the thousands. Each of which these can be independently scaled,
versioned and deployed. These independently- deployed services have well-defined communication points
with other services, which typically is via consuming REST APIs.

Enterprises also require consumption of these services over multiple channels, such as mobile devices,
and intranet/extranet applications, as well as upstream and downstream applications interacting with the
API endpoints.

One of the assumptions of the perimeter security model is that the boundaries of the application largely
do not change.

The boundaries of the application continue to be pushed with the adoption of cloud services for
deployment of applications, them applications spanning across regions, and the need to provide a unified
experience across mobile devices, all of these factors keep pushing the boundaries of the application. With
the adoption of public cloud infrastructure, applications are designed to be elastically scalable thereby
creating a dynamic workload. Perimeter security does not scale well with workloads that largely are
dynamic or elastic in nature.

This problem is further compounded wWith the adoption of hybrid cloud environments where part of
application workloads run on a Private private cloud and other workloads run on Public public clouds this
problem compounds further.

Another assumption with providing perimeter security is that the traffic within the perimeter is assumed
to be safe and a level of trust is placed on the communication of workloads within the network. Spear-
phishing, privileged user access, and virtualized environments all work on a trusted network where finding
the root cause of the breach can take a long time to discover.

The perimeter model, thus although necessary, isn’t usually sufficient enough to deal with this kind of
dynamic infrastructure and heterogeneous workloads.

ç Guide to Implementing Network Security for Kubernetes 29

ZERO-TRUST APPROACH
The traditional security models, which depend on placing a level of trust in the network, are being migrated
to a zero-trust model. The guiding principle of the zero trust model is as follows.

 • Trust is only established once the identity of the application or a user is verified.

 • The Zero zero-trust model assumes that the intranet or internal network is as hostile as the external network.

 • A local network does not mean that it is trustworthy.

 • Policies need to be dynamic in nature to accommodate the dynamic nature of workloads being deployed.

 • Policies need to be enforced at multiple points in the infrastructure.

Kubernetes makes few assumptions about the security models that can be placed on the cluster. In the
case of Kubernetes and Calico, the assumptions of the zero-trust model could be fulfilled as below.

 • Calico allows enabling host protection on the interfaces of your VMs where the Kkubernetes workloads
run with policy management for the ingress and egress traffic.

 • Role-based access controls are enforced on the workloads that run on the cluster.

 • Sensitive workloads should be deployed with TLS/SSL capabilities even within a trusted network.

 • Calico Network network Policy policy enforcement provides an abstraction above IP addresses of
workloads thus providing dynamic policy management.

 • With the nature of kKubernetes, it is always assumed that IP addresses are not a durable identity and
can change, h. Hence, network policies need to be designed at a higher abstraction.

MONITORING AND TROUBLESHOOTING
MONITORING
As described earlier, Calico gets deployed as a daemonset in the Kubernetes cluster to ensure the calico/
node Pod runs on each member of the cluster. The Felix agent runs as part of the calico/node Pod and
carries out several functions, such as route programming, access control list (ACL) enforcement and
interface management on the host. This agent also allows scraping of metrics, via Prometheus, to enable
proactive monitoring of the agent.

Felix can be configured using the FelixConfiguration object resource. Calico creates a default
FelixConfiguration which represents cluster level settings. individual node.<nodename> contain node
specific overrides.

To enable Prometheus metrics reporting, turn the prometheusMetricsEnabled field to true.

An example default FelixConfiguration spec:

apiVersion: projectcalico.org/v3
kind: FelixConfiguration
metadata:
 name: default
spec:
 ipipEnabled: true
 logSeverityScreen: Info
 reportingInterval: 0s
 prometheusMetricsEnabled: true
prometheusMetricsPort: 9081

ç Guide to Implementing Network Security for Kubernetes 30

This enables Prometheus stats reporting at the port 9081 for every node.

Calico currently enables the following metrics to be reported to Prometheus.

Name Description

felix_active_local_endpoints The number of active endpoints on this host.

felix_active_local_policies The number of active policies on this host.

felix_active_local_selectors The number of active selectors on this host.

felix_active_local_tags The number of active tags on this host.

felix_calc_graph_output_events The number of events emitted by the calculation graph.

felix_calc_graph_update_time_seconds Seconds to update calculation graph for each datastore OnUpdate call.

felix_calc_graph_updates_processed Number of datastore updates processed by the calculation graph.

felix_cluster_num_host_endpoints The total number of host endpoints cluster-wide.

felix_cluster_num_hosts The number of CNX hosts in the cluster.

felix_cluster_num_workload_endpoints The total number of workload endpoints cluster-wide.

felix_exec_time_micros Summary of time taken to fork/exec child processes

felix_int_dataplane_addr_msg_batch_
size

The number of interface address messages processed in each batch.
Higher values indicate we’re doing more batching to try to keep up.

felix_int_dataplane_apply_time_
seconds Time in seconds that it took to apply a dataplane update.

felix_int_dataplane_failures The number of times dataplane updates failed and will be retried.

felix_int_dataplane_iface_msg_batch_
size

The number of interface state messages processed in each batch.
Higher values indicate we’re doing more batching to try to keep up.

felix_int_dataplane_messages Number dataplane messages by type.

felix_int_dataplane_msg_batch_size
The number of messages processed in each batch. Higher values
indicate we’re doing more batching to try to keep up.

felix_ipset_calls The number of ipset commands executed.

felix_ipset_errors The number of ipset command failures.

felix_ipset_lines_executed The number of ipset operations executed.

felix_ipsets_calico The number of active CNX IP sets.

felix_ipsets_total The total number of active IP sets.

ç Guide to Implementing Network Security for Kubernetes 31

Name Description

felix_iptables_chains The number of active iptables chains.

felix_iptables_lines_executed The number of iptables rule updates executed.

felix_iptables_restore_calls The number of iptables-restore calls.

felix_iptables_restore_errors The number of iptables-restore errors.

felix_iptables_rules The number of active iptables rules.

felix_iptables_save_calls The number of iptables-save calls.

felix_iptables_save_errors The number of iptables-save errors.

felix_resync_state Current datastore state.

felix_resyncs_started The number of times Felix has started resyncing with the datastore.

felix_route_table_list_seconds Time taken to list all the interfaces during a resync.

felix_route_table_per_iface_sync_
seconds Time taken to sync each interface

The Prometheus Operator is used by TSEE for setting up a Prometheus server along with an AlertManager.
The following section talks about Prometheus monitoring used by TSEE.

The Prometheus Operator deploys three CustomResources which help monitor the TSEE nodes based on
the above metrics.

 • Prometheus

 • ServiceMonitor

 • AlertManager

The Prometheus CustomResource (CRD) defines a Prometheus setup to be run on the cluster providing
it the desired state. The Prometheus instance set up by the custom resource deploys a statefulset in the
same namespace. The CRD defines which service monitors should be selected for scraping metrics based
on label selectors.

The ServiceMonitor CRD defines the service(s) which are used to scrape for metrics by the Prometheus
Pods. This selection of services is achieved by means of a label selector. The ServiceMonitor configures
Prometheus to monitor the Pod(s) selected by the service(s). The ServiceMonitor should reside in the
same namespace as the Prometheus resource, but it allows service selection across namespaces. This is
achieved by means of a namespace selector.

The AlertManager CRD allows defining an AlertManager cluster to be run as part of the cluster.

The AlertManager is used to manage alerts generated by Prometheus. Prometheus’ configuration
allows inclusion of rules which contain alerting specifics. When an alerting rule is fired, it alerts all the
AlertManagers in the cluster. The AlertManager acts on the fired rule and can perform the following
operations.

ç Guide to Implementing Network Security for Kubernetes 32

 • Deduplicate alerts.

 • Silence alerts

 • Route and send grouped notifications via providers such as PagerDuty, OpsGenie etc.

CONNECTIVITY AND ROUTING
In order to provide connectivity across workload endpoints, the calico/node Pod must gather information
about the name of the node (host) on which it runs.

When the calico/node Pod is scheduled on the host, it gathers this information and creates a Node
resource object. The verification, if the Node object exists, is done based on the hostname of the node.
BGPConfiguration and FelixConfiguration provide node based overrides, which are associated based on
the name of the node as well.

If there is a workload that does not have network connectivity, the likely case would be that the node name
for the workload endpoint does not match with the node registered with Calico.

In that case, query the workload endpoints for the workload and make sure that the nodename is the
same as that from the output of the command calicoctl get nodes.

In the case where there are nodename mismatches, the following steps would need to be performed to
allow calico Calico to provide network connectivity to the workload.

1. Cordon the node to disallow further workloads to be scheduled on it.
- kubectl cordon <node-name>

2. Ensure there are no workloads running on the node by draining it. This will ensure the workloads running on
the node get scheduled to other nodes and Kubernetes would take care of the same.
- kubectl drain <node-name> --ignore-daemonsets

3. Set the right hostname on the node. This command must be run on the node itself.
- sudo hostnamectl set-hostname <new-node-name>

4. Delete the node definition from Calico
- calicoctl delete node <node-name>

5. Restarting the daemonset calico-node Pod should allow it to pick up the changes to the nodename.
- kubectl delete pod -n kube-system <calico-node Pod on the node>

6. Uncordon the node which allows scheduling of workloads on it.
- kubectl uncordon <new-node-name>

ç Guide to Implementing Network Security for Kubernetes 33

If there is network connectivity between the workloads running on the same host but inter-host
connectivity fails, the possible cause might be a misconfigured BGPConfiguration, if in a private network,
or if using BGP with AWS. If in public cloud (and using their CNI), there is probably an issue with the
underlying SDN provided by the cloud provider and their CNI plugin.

If BGP is in use, ensure that the BGP port 179 is open across the nodes within the cluster.

Verify BGP peering by running:

`calicoctl node status`. This command requires superuser permissions to execute.

The output should be the one mentioned below.

POLICY ISSUES [COMMERCIAL SOFTWARE CAPABILITY]
Tigera Secure Enterprise Edition (TSEE) adds policy management and monitoring on top of the Calico
deployment. It provides a TSEE manager, which is a web interface for creating and managing hierarchical
policies.

It also provides a policy query tool, namely calicoq, which allows inspecting CNX policies being enforced on
the workloads as well as the Pods which are affected by it.

The calicoq command line interface provides several subcommands to verify that the policies are applied
as per the desired effect.

A few of the subcommands are as listed below.

 • The endpoint command shows you the CNX policies and profiles that relate to specified endpoints.

 • The eval command displays the endpoints that a selector selects.

 • The host command displays the policies and profiles that are relevant to all endpoints on a given host.

 • The policy command shows the endpoints that are relevant to a given policy.

The calicoq endpoint subcommand allows searching for CNX policies that relate to a specific endpoint.

The command takes the form as :
`calicoq endpoint <substring>`

ç Guide to Implementing Network Security for Kubernetes 34

The <substring> does a contains match for the endpoints full ID which is formed as <host-
name>/<orchestrator>/<workload-name>/<endpoint-name>.

For each endpoint, it displays the following.

 • The policies and profiles that apply to that endpoint in the order that they apply.

 • The policies and profiles whose rule selectors match that endpoint (that allow or disallow that endpoint as a
traffic source or destination).

calicoq policy <policy-name> shows the endpoints that are relevant to the named policy, comprising:

 • The endpoints that the policy applies to.

 • The endpoints that match the policy’s rule selectors.

 • A policy that specifies:

policy selector: role==‘database’; rule: allow from role == ‘webserver’

Then the “policy applies to” selector is role == `database` and the “policy’s rule selector” is role == ‘webserver’.)

These subcommands help identify if the right policies are applied to the right endpoints

ADVANCED TOPICS

SCALE CONSIDERATIONS
Typha
With a large Kkubernetes cluster with (somewhere in the order of 100+ nodes), there is a lot of load
generated on the datastore by the Felix daemon. Each Felix daemon connects to the datastore, to which is
the single source of truth. In consideration wWith a cluster of this scale, Calico introduces a daemon which
that sits between the datastore and Felix.

ç Guide to Implementing Network Security for Kubernetes 35

This setup has the following benefits.

 • Typha helps reduce the load on the datastore drastically. This is especially important and beneficial when
Calico is deployed with the Kubernetes datastore driver.

 • The Kubernetes datastore generates a lot of updates that might not be relevant to Felix. Typha helps filter
these updates, thus helping improve Felix’s footprint on the CPU usage. The API server updates would
increase dramatically with more nodes or workloads added to it which is filtered out by Typha.

The configuration of Typha is read from the following.

 • Environment Variables variables prefixed with TYPA_

 • A config file located at /etc/calico/typha.cfg

The environment variables take precedence over the configuration file.

Typha also supports metrics reporting to Prometheus. This allows for a unified monitoring dashboard with
all the Calico components.

Following are the full list of parameters that can be set for configuration of Typha.

Environment Variable Description Schema

TYPHA_DATASTORETYPE
The datastore that Typha should read endpoints and
policy information from. [Default: etcdv3] etcdv3, Kubernetes

TYPHA_HEALTHENABLED
When enabled, exposes Typha health information via an
HTTP endpoint. Boolean

TYPHA_LOGFILEPATH
The full path to the Typha log. Set to none to disable file
logging. [Default: /var/log/calico/typha.log] string

TYPHA_LOGSEVERITYFILE
The log severity above which logs are sent to the log file.
[Default: Info]

Debug, Info,
Warning, Error, Fatal

TYPHA_
LOGSEVERITYSCREEN

The log severity above which logs are sent to the stdout.
[Default: Info]

Debug, Info,
Warning, Error, Fatal

TYPHA_LOGSEVERITYSYS
The log severity above which logs are sent to the syslog.
Set to "" for no logging to syslog. [Default: Info]

Debug, Info,
Warning, Error, Fatal

TYPHA_PROMETHEUS
GOMETRIC SENABLED

Set to false to disable the Go runtime metrics collection,
which the Prometheus client does by default. This
reduces the number of metrics reported, reducing
Prometheus load. [Default: true] Boolean

TYPHA_
PROMETHEUSMETRICS
ENABLED

Set to true to enable the Prometheus metrics server in
Typha. [Default: false] Boolean

TYPHA_PROMETHEUS
METRICSPORT

Experimental: TCP port that the Prometheus metrics
server should bind to. [Default: 9091] int

TYPHAPROMETHEUS
PROCESS
METRICSENABLED

Set to false to disable process metrics collection, which
the Prometheus client does by default. This reduces the
number of metrics reported, reducing Prometheus load.
[Default: true] Boolean

ç Guide to Implementing Network Security for Kubernetes 36

To deploy Typha on a Kubernetes cluster follow the steps below.

apiVersion: v1
kind: Service
metadata:
 name: calico-typha
 namespace: kube-system
 labels:
 k8s-app: calico-typha
spec:
 ports:
 - port: 5473
 protocol: TCP
 targetPort: calico-typha
 name: calico-typha
 selector:
 k8s-app: calico-typha

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: calico-typha
 namespace: kube-system
 labels:
 k8s-app: calico-typha
spec:
 replicas: 3
 revisionHistoryLimit: 2
 template:
 metadata:
 labels:
 k8s-app: calico-typha
 annotations:
 scheduler.alpha.kubernetes.io/critical-pod: ‘’
 spec:
 tolerations:
 - key: CriticalAddonsOnly
 operator: Exists
 hostNetwork: true
 containers:
 - image: calico/typha:v0.2.2
 name: calico-typha

ç Guide to Implementing Network Security for Kubernetes 37

 ports:
 - containerPort: 5473
 name: calico-typha
 protocol: TCP
 env:
 - name: TYPHA_LOGFILEPATH
 value: “none”
 - name: TYPHA_LOGSEVERITYSYS
 value: “none”
 - name: TYPHA_LOGSEVERITYSCREEN
 value: “info”
 - name: TYPHA_PROMETHEUSMETRICSENABLED
 value: “true”
 - name: TYPHA_PROMETHEUSMETRICSPORT
 value: “9093”
 - name: TYPHA_DATASTORETYPE
 value: “kubernetes”
 - name: TYPHA_CONNECTIONREBALANCINGMODE
 value: “kubernetes”
 volumeMounts:
 - mountPath: /etc/calico
 name: etc-calico
 readOnly: true
 resources:
 requests:
 cpu: 1000m
 volumes:
 # Mount in the Calico config directory from the host.
 - name: etc-calico
 hostPath:
 path: /etc/calico

Felix needs to be configured to talk to Typha, which can be done by editing the calico/node Pod spec and
updating the following environment variable parameter. This allows Felix to discover Typha using the
Kubernetes API endpoint.

- name: FELIX_TYPHAK8SSERVICENAME
 value: “calico-typha”

Note: Felix needs to connect to the same datastore as Typha to read its node configuration first before connecting to Typha.

Route Reflector
The route reflector topology allows setting up BIRD as a centralized point which other BIRD agents
communicate with. This largely reduces the number of open connections for each BGP agent.

ç Guide to Implementing Network Security for Kubernetes 38

In a full node-to-node mesh setup, each calico/node opens up TCP connections to every other calico/node.
This setup quickly becomes quite complex with a large deployment.

To install a route reflector and configure other BGP nodes to connect to the route reflector, follow the
steps below.

Prerequisites

A machine running either Ubuntu or RHEL that is not already being used as a compute host.

1. Install BIRD

The BIRD package is present in the following repository for Ubuntu

sudo add-apt-repository ppa:cz.nic-labs/bird

For CentOS the repository is epel-release

sudo yum install epel-release

2. Configure BIRD

The BIRD configuration requires the AS Number setup for the BGP nodes. Create the BIRD configuration
file /etc/bird/bird.conf on the route reflector system and replace <routereflector_ip> with the IPv4 address
of the node:

Configure logging
log syslog { debug, trace, info, remote, warning, error, auth, fatal, bug };
log stderr all;

Override router ID
router id <routereflector_ip>;

Turn on global debugging of all protocols
debug protocols all;

For each compute node in the cluster add the block

protocol bgp <node_shortname> {
 description “<node_ip>”;
 local as <as_number>;
 neighbor <node_ip> as <as_number>;
 multihop;
 rr client;
 graceful restart;
 import all;
 export all;
}

<node_shortname> is a unique name for each node (this takes only alphabets as the input and must be
unique for each host. The parameter is only used with the route reflector config:

ç Guide to Implementing Network Security for Kubernetes 39

<node_ip> with the IPv4 address of the node.

<as_number> with the AS number being used

Restart the BIRD service.

 systemctl restart bird
 systemctl enable bird

3. Configure compute nodes.

Disable the node-to-node mesh configuration

cat << EOF | calicoctl create -f -
 apiVersion: projectcalico.org/v3
 kind: BGPConfiguration
 metadata:
 name: default
 spec:
 logSeverityScreen: Info
 nodeToNodeMeshEnabled: false

Create a global BGP peer for the route reflector

cat << EOF | calicoctl create -f -
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
 name: bgppeer-global-1
spec:
 peerIP: 192.20.30.40 #< IP Address of the Route reflector node>
 asNumber: 64567 #< AS Number as defined for the deployment>
EOF

This will setup BGP peering of the calico/nodes with the route reflector.

HOST PROTECTION
Calico allows securing the network interface of the host/node similar to how it allows securing virtual
interfaces for the workload endpoints that run on the host. It allows application of the same network
security model, which is applied to the workload endpoints even to a host interface.

This is managed by representing the host interface as a Calico resource, namely, host endpoint.

An example configuration for HostEndpoint.

apiVersion: projectcalico.org/v3
kind: HostEndpoint
metadata:
 name: dev-vm1-interface

ç Guide to Implementing Network Security for Kubernetes 40

 labels:
 type: development
spec:
 interfaceName: eth0
 node: devv1
 expectedIPs:
 - 192.168.0.1
 - 192.168.0.2
 ports:
 - name: web
 port: 9090
 protocol: TCP
 - name: healthcheck
 port: 7071
 protocol: TCP

Calico distinguishes workload endpoints by a configurable prefix, the default being cali for the interface.
This option can be changed via the FelixConfiguration by setting the `InterfacePrefix` field. Interfaces that
start with a value listed in `InterfacePrefix` field are assumed to be workload interfaces, while the others
are treated as host interfaces.

Calico blocks all ingress/egress traffic for the workload interfaces by default unless the interface is a known
interface or a network policy allows it.

In the case of the host interface, Calico only applies restrictions to the ingress/egress traffic to the
interfaces which are configured with the host endpoints resource.

Calico can be used to secure a NAT gateway or a router. Following the model of applying selector based
policies depending on the labels configured on the host endpoints allows for security policies being applied
dynamically.

Host endpoint policies can be applied to three types of traffic:

1. Traffic that is terminated locally.

2. Traffic that is forwarded between host endpoints.

3. Traffic that is forwarded between a host endpoint and a workload endpoint on the same host.

SERVICE MESH
Istio and Project Calico

Istio is an opensource project as an implementation of the service mesh concept. A service mesh is
referred to as a network of microservices which communicate with each other. The mesh of these services
communicating with each other can grow fairly quickly as the services get enhanced and developed
further.

ç Guide to Implementing Network Security for Kubernetes 41

Istio helps provide:

 • Service discovery

 • Traffic management and application level load balancing.

 • Circuit breaking and fault recovery.

 • Request tracing.

 • Monitoring.

 • Network policy enforcement for enhanced security.

 • Telemetry and reporting

Istio service mesh logically has components which provide the control plane and the data plane

 • The control plane runs the Istio controller Pod as part of a Kubernetes deployment. It enforces policies
and programs the dataplane components to route traffic.

 • The data plane component runs a sidecar container within each Pod of an application. This is an envoy
proxy container that deals with ingress and egress traffic.

Data Plane Components:
Envoy

Envoy is deployed as a sidecar to the application podPods within kKubernetes. The envoy proxy provides
a rich feature set of dynamic service discovery, load balancing, health checks, staged rollouts, etc., which is
leveraged by Istio.

Control Plane Components:
Mixer

Mixer is designed to be a platform-independent component, which is responsible for policy enforcement
on the service mesh. It also collects telemetry data from the envoy proxy.

Pilot

Pilot is the component that provides service discovery for the Envoy sidecar containers. It is also
responsible for programming the sidecar proxy with routing rules.

Istio-Auth

Istio-Auth allows services to communicate with each other using mutual TLS.

Istio operates at the service layer (Layer 7) of the application, which is typically HTTP and the Istio proxy
operates at that level. This allows the Istio proxy to make policy decisions based on HTTP headers and
route traffic based on them as well as other things. The Calico network policy operates at the Layer 3 of the
OSI model, making it much more universal. This enables enforcement of the policy at traffic which does not
use HTTP.

With Istio, the policy enforcement is performed by the sidecar container injected into the application
Pods which run in the same network namespace as that of the Pod. The Calico network policy is enforced
outside the network namespace of the Pods. This ensures that the policy enforcement cannot be
bypassed.

Calico policy can extend beyond the service mesh as well allow enforcement on VMs and bare metal which
are outside Kubernetes.

ç Guide to Implementing Network Security for Kubernetes 42

One of the very important features of Istio is that it allows the services to communicate over TLS. The
sidecar Pods encrypt traffic where the service still believes it is communicating over HTTP. The Istio-Auth
component takes away the hassle of managing certificates. The envoy proxy mutually authenticates with
services thus creating an identity which can be used to identify outside traffic.

In conjunction with the network policy of Calico, this provides two-layered security. Calico allows specifying
policies on egress traffic to provide fine-grained isolation and ensure that a malicious attacker who has
gained access to a Pod cannot attack other Pods other than the ones that are visible via egress to him
alone.

One area where Project Calico and Istio have a deep integration is in application layer policy. As can be
seen in the policy objects in the above network policy section, Calico policy now can match on both service
accounts (which map to TLS certificates in Istio) and HTTP actions (such as PUT, POST, and GET as well as
an event the URI targets of those actions. This allows a single policy to encompass not only Layers 3 and 4
matching, but also Layer 5 to 7 behaviors and TLS encryption.

COMPLIANCE
Policy Violation and Alerting
CNX provides the ability to monitor violations of policies configured in the cluster.

Denied traffic is continuously monitored and alerts are configured based on a set of rules and thresholds.

Architecture

Policy violation and reporting follows the workflow defined below.

 • A CNX-specific Felix binary running inside calico/node container monitors the host for Denied packets
and collects metrics.

 • A Prometheus server(s), which gets deployed as part of the CNX manifest, keeps scraping the
calico/node.

 • An AlertingRule is configured in Prometheus, which triggers an alert based on the denied packet metrics.

ç Guide to Implementing Network Security for Kubernetes 43

 • The AlertingRule fires are acted upon by an AlertManager, which is deployed as part of the CNX manifest.
The AlertManager receives the alert and forwards alerts to the configured alerting provider. E.g.,
OpsGenie, Pagerduty.

The PrometheusReporterEnabled and PrometheusReporterPort attributes need to be set on Felix to
enable reporting of the denied packets metrics.

The metrics generated are:

 • calico_denied_packets - Total number of packets denied by CNX policies.

 • calico_denied_bytes - Total number of bytes denied by CNX policies.

The denied packets, as well as denied bytes metrics, allow identification of the source IP address of the
traffic as well as the policy in play.

Each one of these metrics is available as a combination of {policy, srcIP}. An HTTP GET request to retrieve
metrics from a calico-node container provides the metrics output as below

HELP calico_denied_bytes Total number of bytes denied by calico policies.
TYPE calico_denied_bytes gauge
calico_denied_bytes{policy=”profile/k8s_ns.ns-0/0/deny”,srcIP=”10.245.13.133”} 300
calico_denied_bytes{policy=”profile/k8s_ns.ns-0/0/deny”,srcIP=”10.245.13.149”} 840

HELP calico_denied_packets Total number of packets denied by calico policies.
TYPE calico_denied_packets gauge
calico_denied_packets{policy=”profile/k8s_ns.ns-0/0/deny”,srcIP=”10.245.13.133”} 5
calico_denied_packets{policy=”profile/k8s_ns.ns-0/0/deny”,srcIP=”10.245.13.149”} 14

This means that the profile k8s_ns.ns-0 denied five packets (totaling 300 bytes) originating from the
IP Address “10.245.13.133” and the same profile denied 14 packets originating from the IP Address
“10.245.13.149”.

A metric is generated only when there are packets which were being actively denied at an endpoint via a
policy. The time to live for the metric is 60 seconds after the last packet was denied.

Prometheus expires the metric considering it stale if there are no further updates on the metric for some
time. This is a configurable option and the time until the metric is considered as stale can be defined with
Prometheus.

Policy Auditing
CNX adds a field DropActionOveride to the Felix configuration, which allows defining how the Deny action
in a network policyNetworkPolicy rule should be treated.

This is a CNX only option.

the The DropActionOveride field carries the following values:

 • Drop

 • Accept

 • LogAndDrop

 • LogAndAccept

ç Guide to Implementing Network Security for Kubernetes 44

Typically, the Drop and the LogAndDrop values are used with Felix, since the Deny action does specify
that in the network policyNetworkPolicy Rule. The Accept / LogAndAccept options would be useful while
debugging an issue. These options allow traffic even when the action on the Rule is Deny.

When the LogAndDrop or LogAndAccept values are used, there is a syslog entry created for every packet
that passes through this rule.

The Felix agent keeps track of these denied packets and publishes the count of denied packets as
Prometheus metrics on the port configured by the PrometheusReporterPort setting. The reporting of
denied packets is unaffected by the DropActionOverride setting on Felix. Even with the values being set as
Accept or LogAndAccept, those packets are still considered as denied packets for metrics reporting.

An example Felix Configuration spec with the DropActionOverride option:

apiVersion: projectcalico.org/v3
kind: FelixConfiguration
metadata:
 name: node.myhost
spec:
 defaultEndpointToHostAction: Return
 dropActionOverride: LogAndDrop

	About this Book
	Introduction to Kubernetes Networking
	Kubernetes Concepts
	Pod
	Controllers
	Replica Set/Replication Controller
	Deployment
	Daemonset
	Statefulset

	Pod Networking and CNI Plugins
	Intra-Pod Communication
	Pod-to-Pod Communication
	Services
	Ingress

	Networking with Calico
	Architecture
	calico/node
	Interface and Route Management
	State Reporting
	Policy Enforcement

	BIRD
	Etcd

	Installation
	Pre-Requisites
	Install Calico
	Install and Configure calicoctl
	Post Install Verification

	Overlay and Non-Overlay Networking
	Calico IP-in-IP Mode

	IP Address Management
	IP Pools
	Multiple IP Pools
	IP Pool per Pod
	Manual IP Per Pod
	NAT

	Address Blocks
	Address Borrowing

	Installation Instructions
	Network Policy for Network Segmentation
	Motivation for Network Policy
	Labels and Label Selectors
	Defining Policy [K8s policy API, Calico Network Policy]
	Network Policy in Kubernetes
	Calico Network Policy

	Policy Enforcement
	Hierarchical Policies [Commercial Software Capability]

	Securing Kubernetes Connectivity
	Deficiencies in the Traditional Approach
	Zero-Trust Approach

	Monitoring and Troubleshooting
	Monitoring
	Connectivity and Routing
	Policy Issues [Commercial Software Capability]

	Advanced Topics
	Scale Considerations
	Typha
	Route Reflector

	Host Protection
	Service Mesh
	Compliance
	Policy Violation and Alerting
	Policy Auditing

