Optuna Documentation
Release 2.8.0.dev0

Optuna Contributors.

Apr 05, 2021

CONTENTS:

1 Key Features 3
2 Basic Concepts 5
3 Communication 7
4 Contribution 9
5 License 11
6 Reference 13
6.1 Installation e e e e 13
6.2 Tutorial e e e e e e e 13
6.3 APIReference e e e e e 53
6.4 FAQ e 257
7 Indices and tables 265
Python Module Index 267
Index 269

Optuna Documentation, Release 2.8.0.dev0

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning.
It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna
enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters.

CONTENTS: 1

Optuna Documentation, Release 2.8.0.dev0

2 CONTENTS:

CHAPTER
ONE

KEY FEATURES

Optuna has modern functionalities as follows:
» Lightweight, versatile, and platform agnostic architecture
— Handle a wide variety of tasks with a simple installation that has few requirements.
e Pythonic search spaces
— Define search spaces using familiar Python syntax including conditionals and loops.
e Efficient optimization algorithms
— Adopt state-of-the-art algorithms for sampling hyperparameters and efficiently pruning unpromising trials.
e Easy parallelization
— Scale studies to tens or hundreds or workers with little or no changes to the code.
e Quick visualization

— Inspect optimization histories from a variety of plotting functions.

Optuna Documentation, Release 2.8.0.dev0

4 Chapter 1. Key Features

CHAPTER
TWO

BASIC CONCEPTS

We use the terms study and trial as follows:
 Study: optimization based on an objective function
* Trial: a single execution of the objective function

Please refer to sample code below. The goal of a study is to find out the optimal set of hyperparameter values (e.g.,
classifier and svm_c) through multiple trials (e.g., n_trials=100). Optuna is a framework designed for the
automation and the acceleration of the optimization studies.

import

Define an objective function to be minimized.
def objective(trial):

Invoke suggest methods of a Trial object to generate hyperparameters.

regressor_name = trial.suggest_categorical('classifier', ['SVR', 'RandomForest'])
if regressor_name == 'SVR':

svr_c = trial.suggest_float('svr_c', 1le-10, 1el0, log=True)

regressor_obj = sklearn.svm.SVR(C=svr_c)
else:

rf_max_depth = trial.suggest_int ('rf _max_depth', 2, 32)

regressor_obj = sklearn.ensemble.RandomForestRegressor (max_depth=rf_max_depth)
X, y = sklearn.datasets.load_boston (return_X_y=True)
X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split (X, vy,

—random_state=0)

regressor_obj.fit (X_train, y_train)
y_pred = regressor_obj.predict (X_val)

error = sklearn.metrics.mean_squared_error (y_val, y_pred)
return error # An objective value linked with the Trial object.
study = optuna.create_study() # Create a new study.

study.optimize (objective, n_trials=100) # Invoke optimization of the objective,
—function.

http://colab.research.google.com/github/optuna/optuna/blob/master/examples/quickstart.ipynb

Optuna Documentation, Release 2.8.0.dev0

6 Chapter 2. Basic Concepts

CHAPTER
THREE

COMMUNICATION

» GitHub Issues for bug reports, feature requests and questions.
* Gitter for interactive chat with developers.

* Stack Overflow for questions.

https://github.com/optuna/optuna/issues
https://gitter.im/optuna/optuna
https://stackoverflow.com/questions/tagged/optuna

Optuna Documentation, Release 2.8.0.dev0

8 Chapter 3. Communication

CHAPTER
FOUR

CONTRIBUTION

Any contributions to Optuna are welcome! When you send a pull request, please follow the contribution guide.

https://github.com/optuna/optuna/blob/master/CONTRIBUTING.md

Optuna Documentation, Release 2.8.0.dev0

10 Chapter 4. Contribution

CHAPTER
FIVE

LICENSE

MIT License (see LICENSE).

11

https://github.com/optuna/optuna/blob/master/LICENSE

Optuna Documentation, Release 2.8.0.dev0

12 Chapter 5. License

CHAPTER
SIX

REFERENCE

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-
generation Hyperparameter Optimization Framework. In KDD (arXiv).

6.1 Installation

Optuna supports Python 3.6 or newer.

We recommend to install Optuna via pip:

’$ pip install optuna ‘

You can also install the development version of Optuna from master branch of Git repository:

’$ pip install git+https://github.com/optuna/optuna.git ‘

You can also install Optuna via conda:

’$ conda install -c conda-forge optuna ‘

6.2 Tutorial

If you are new to Optuna or want a general introduction, we highly recommend the below video.

6.2.1 Key Features

Showcases Optuna’s Key Features.

Lightweight, versatile, and platform agnostic architecture

Optuna is entirely written in Python and has few dependencies. This means that we can quickly move to the real
example once you get interested in Optuna.

13

https://arxiv.org/abs/1907.10902
https://github.com/optuna/optuna/blob/master/README.md#key-features

Optuna Documentation, Release 2.8.0.dev0

Quadratic Function Example

Usually, Optuna is used to optimize hyperparameters, but as an example, let’s optimize a simple quadratic function:
(r —2)2

First of all, import optuna.

’import optuna

In optuna, conventionally functions to be optimized are named objective.

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x - 2) ** 2

This function returns the value of (z — 2)2. Our goal is to find the value of x that minimizes the output of the
objective function. This is the “optimization.” During the optimization, Optuna repeatedly calls and evaluates the
objective function with different values of x.

A Trial object corresponds to a single execution of the objective function and is internally instantiated upon each
invocation of the function.

The suggest APIs (for example, suggest_float ()) are called inside the objective function to obtain parameters
for a trial. suggest_float () selects parameters uniformly within the range provided. In our example, from —10
to 10.

To start the optimization, we create a study object and pass the objective function to method opt imize () as follows.

study = optuna.create_study ()
study.optimize (objective, n_trials=100)

You can get the best parameter as follows.

best_params = study.best_params
found_x = best_params["x"]
print ("Found x: , (x — 2)72: ".format (found_x, (found_x — 2) %% 2))

Out:

Found x: 2.01204497628707, (x — 2)72: 0.00014508145375607373

We can see that the x value found by Optuna is close to the optimal value of 2.

Note: When used to search for hyperparameters in machine learning, usually the objective function would return the
loss or accuracy of the model.

14 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

Study Object

Let us clarify the terminology in Optuna as follows:
 Trial: A single call of the objective function
¢ Study: An optimization session, which is a set of trials
e Parameter: A variable whose value is to be optimized, such as x in the above example

In Optuna, we use the study object to manage optimization. Method create study () returns a study object. A
study object has useful properties for analyzing the optimization outcome.

To get the dictionary of parameter name and parameter values:

’study.best_params

Out:

’{'x': 2.01204497628707}

To get the best observed value of the objective function:

’study.best_value

Out:

’0.00014508145375607373

To get the best trial:

study.best_trial

Out:

FrozenTrial (number=81, values=[0.00014508145375607373], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 19, 616846), datetime_complete=datetime.datetime (2021,
—~4, 5, 1, 58, 19, 619989), params={'x': 2.01204497628707}, distributions={'x"':
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_1id=81, state=TrialState.COMPLETE, value=None)

[

To get all trials:

study.trials

Out:

[FrozenTrial (number=0, values=[69.34000849259169], datetime_start=datetime.

—datetime (2021, 4, 5, 1, 58, 19, 372801), datetime_complete=datetime.datetime (2021,
—~4, 5, 1, 58, 19, 373148), params={'x': -6.327064818565525}, distributions={'x"':
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=0, state=TrialState.COMPLETE, wvalue=None)
—FrozenTrial (number=1, values=[38.54750055245735], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 19, 373469), datetime_complete=datetime.datetime (2021,
—~4, 5, 1, 58, 19, 373782), params={'x': -4.208663346683998}, distributions={'x"':
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=1, state=TrialState.COMPLETE, value=None)
—FrozenTrial (number=2, values=[22.35552357251056], datetime_start=datetime.
—~datetime (2021, 4, 5, 1, 58, 19, 374036), datetime_complete=datetime.datetime (2021,

4, 5, 1, 58, 19, 374310), params={'x"': 6.728162811548536}, distributions={"'x"':

[

r

o

rr't,
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system;attrég???fso next page)

—intermediate_values={}, trial_id=2, state=TrialState.COMPLETE, value=None),
Gﬂirq%ﬁBFﬁﬂal(number:3, values=[21.736594736998725], datetime_start=datetime. 15
—datetime (2021, 4, 5, 1, 58, 19, 374558), datetime_complete=datetime.datetime (2021,
-4, 5, 1, 58, 19, 374826), params={'x': -2.662252109978473}, distributions={'x"':
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=3, state=TrialState.COMPLETE, value=None)

[

I

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

[J

To get the number of trials:

’len(study.trials) ‘

Out:

100 |

By executing optimize () again, we can continue the optimization.

’study.optimize(objective, n_trials=100) ‘

To get the updated number of trials:

’len(study.trials) ‘

Out:

B |

As the objective function is so easy that the last 100 trials don’t improve the result. However, we can check the result
again:

best_params = study.best_params
found_x = best_params["x"]
print ("Found x: , (x = 2)72: ".format (found_x, (found_x — 2) *% 2))

Out:

Found x: 1.9968718971934352, (x — 2)"2: 9.785027168438806e-06

Total running time of the script: (0 minutes 0.709 seconds)

Pythonic Search Space

For hyperparameter sampling, Optuna provides the following features:
* optuna.trial.Trial.suggest_categorical () for categorical parameters
e optuna.trial.Trial.suggest_int () for integer parameters
e optuna.trial.Trial.suggest_float () for floating point parameters

With optional arguments of step and log, we can discretize or take the logarithm of integer and floating point
parameters.

import optuna

def objective(trial):
Categorical parameter
optimizer = trial.suggest_categorical ("optimizer", ["MomentumSGD", "Adam"])

Integer parameter

num_layers = trial.suggest_int ("num_layers", 1, 3)

(continues on next page)

16 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

Integer parameter (log)
num_channels = trial.suggest_int ("num_channels", 32, 512, log=True)

Integer parameter (discretized)
num_units = trial.suggest_int ("num_units", 10, 100, step=5)

Floating point parameter
dropout_rate = trial.suggest_float ("dropout_rate", 0.0, 1.0)

Floating point parameter (log)
learning_rate = trial.suggest_float ("learning rate", le-5, le-2, log=True)

Floating point parameter (discretized)
drop_path_rate = trial.suggest_float ("drop_path_rate", 0.0, 1.0, step=0.1)

Defining Parameter Spaces

In Optuna, we define search spaces using familiar Python syntax including conditionals and loops.
Also, you can use branches or loops depending on the parameter values.
For more various use, see examples.

¢ Branches:

import sklearn.ensemble
import sklearn.svm

def objective(trial):

classifier_name = trial.suggest_categorical ("classifier", ["SVC", "RandomForest"])

if classifier_name == "SVC":
svc_c = trial.suggest_float ("svc_c", 1le-10, 1el0, log=True)
classifier_obj = sklearn.svm.SVC (C=svc_c)

else:
rf_max_depth = trial.suggest_int ("rf_max_depth", 2, 32, log=True)
classifier_obj = sklearn.ensemble.RandomForestClassifier (max_depth=rf max_

—depth)
e Loops:

import torch
import torch.nn as nn

def create_model (trial, in_size):

n_layers = trial.suggest_int ("n_layers", 1, 3)
layers = []
for i in range(n_layers):
n_units = trial.suggest_int ("n_units_1{}".format (i), 4, 128, log=True)

layers.append (nn.Linear (in_size, n_units))
layers.append (nn.ReLU())
in_size = n_units

layers.append(nn.Linear (in_size, 10))

(continues on next page)

6.2. Tutorial 17

https://github.com/optuna/optuna/tree/master/examples

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

return nn.Sequential (xlayers)

Note on the Number of Parameters

The difficulty of optimization increases roughly exponentially with regard to the number of parameters. That is, the
number of necessary trials increases exponentially when you increase the number of parameters, so it is recommended
to not add unimportant parameters.

Total running time of the script: (0 minutes 0.001 seconds)

Efficient Optimization Algorithms

Optuna enables efficient hyperparameter optimization by adopting state-of-the-art algorithms for sampling hyperpa-
rameters and pruning efficiently unpromising trials.

Sampling Algorithms

Samplers basically continually narrow down the search space using the records of suggested parameter values and
evaluated objective values, leading to an optimal search space which giving off parameters leading to better objective
values. More detailed explanation of how samplers suggest parameters is in optuna . samplers.BaseSampler.

Optuna provides the following sampling algorithms:
¢ Tree-structured Parzen Estimator algorithm implemented in optuna. samplers. TPESampler
* CMA-ES based algorithm implemented in optuna. samplers.CmaEsSampler
* Grid Search implemented in optuna. samplers.GridSampler
¢ Random Search implemented in optuna. samplers.RandomSampler

The default sampler is optuna. samplers.TPESampler.

Switching Samplers

import optuna

By default, Optuna uses TPESampler as follows.

study = optuna.create_study ()
print (f"Sampler is {study.sampler. class__ . name ")

Out:

Sampler is TPESampler

If you want to use different samplers for example RandomSampler and CmaEsSampler,

18 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

study = optuna.create_study (sampler=optuna.samplers.RandomSampler ())
print (f"Sampler is {study.sampler. class__.__name__ }")

study = optuna.create_study (sampler=optuna.samplers.CmaEsSampler ())
print (f"Sampler is {study.sampler. class__ . _name__ }")

Out:

Sampler is RandomSampler
Sampler is CmaEsSampler

Pruning Algorithms

Pruners automatically stop unpromising trials at the early stages of the training (a.k.a., automated early-stopping).
Optuna provides the following pruning algorithms:

* Asynchronous Successive Halving algorithm implemted in optuna.pruners.
SuccessiveHalvingPruner

* Hyperband algorithm implemented in optuna.pruners. HyperbandPruner
¢ Median pruning algorithm implemented in optuna.pruners.MedianPruner
* Threshold pruning algorithm implemented in optuna.pruners. ThresholdPruner

We use optuna.pruners.MedianPruner in most examples, though basically it is outperformed by optuna.
pruners.SuccessiveHalvingPruner and optuna.pruners.HyperbandPruner as in this benchmark
result.

Activating Pruners

To turn on the pruning feature, you need to call report () and should_prune () after each step of the iterative
training. report () periodically monitors the intermediate objective values. should prune () decides termina-
tion of the trial that does not meet a predefined condition.

We would recommend using integration modules for major machine learning frameworks. Exclusive listis optuna.
integration and usecases are available in optuna/examples.

import logging
import sys

import sklearn.datasets

import sklearn.linear_model
import sklearn.model_selection

def objective(trial):

iris = sklearn.datasets.load_iris()
classes = list (set(iris.target))
train_x, valid_x, train_y, valid_y = sklearn.model_selection.train_test_split (

iris.data, iris.target, test_size=0.25, random_state=0

alpha = trial.suggest_float ("alpha", le-5, le-1, log=True)
clf = sklearn.linear_model.SGDClassifier (alpha=alpha)

(continues on next page)

6.2. Tutorial 19

https://github.com/optuna/optuna/wiki/%5BUnder-Construction%5D-Benchmarks-with-Kurobako
https://github.com/optuna/optuna/wiki/%5BUnder-Construction%5D-Benchmarks-with-Kurobako
https://github.com/optuna/optuna/tree/master/examples/

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

for step in range(100) :
clf.partial_fit(train_x, train_y, classes=classes)

Report intermediate objective value.
intermediate_value = 1.0 - clf.score(valid_x, valid_y)
trial.report (intermediate_value, step)

Handle pruning based on the intermediate value.
if trial.should_prune():

raise optuna.TrialPruned()

return 1.0 - clf.score(valid_x, valid_y)

Set up the median stopping rule as the pruning condition.

Add stream handler of stdout to show the messages
optuna.logging.get_logger ("optuna") .addHandler (logging.StreamHandler (sys.stdout))
study = optuna.create_study (pruner=optuna.pruners.MedianPruner ())

study.optimize (objective, n_trials=20)

Out:

A new study created in memory with name: no-name-c34d0e34-14ad-4131-b518-8b4a3736£89f
Trial 0 finished with value: 0.23684210526315785 and parameters: {'alpha': 0.
—02760600748111276}. Best is trial 0 with value: 0.23684210526315785.

Trial 1 finished with value: 0.07894736842105265 and parameters: {'alpha': 3.
—764350743416773e-05}. Best is trial 1 with value: 0.07894736842105265.

Trial 2 finished with value: 0.1578947368421053 and parameters: {'alpha': 0.
—+03133884470809709}. Best is trial 1 with value: 0.07894736842105265.

Trial 3 finished with value: 0.07894736842105265 and parameters: {'alpha': 5.
—034108008965986e-05}. Best is trial 1 with value: 0.07894736842105265.

Trial 4 finished with value: 0.23684210526315785 and parameters: {'alpha': 0.
—~013203749930564852}. Best is trial 1 with value: 0.07894736842105265.

Trial 5 pruned.

Trial 6 pruned.

Trial 7 pruned.

Trial 8 finished with value: 0.052631578947368474 and parameters: {'alpha': 9.
<+321886293035837e-05}. Best is trial 8 with value: 0.052631578947368474.
Trial 9 pruned.

Trial 10 pruned.

Trial 11 pruned.

Trial 12 pruned.

Trial 13 finished with value: 0.10526315789473684 and parameters: {'alpha': 0.
—0008551010713908288}. Best is trial 8 with value: 0.052631578947368474.
Trial 14 pruned.

Trial 15 pruned.

Trial 16 finished with value: 0.10526315789473684 and parameters: {'alpha': O.
—0003945128222658016}. Best is trial 8 with value: 0.052631578947368474.
Trial 17 pruned.

Trial 18 finished with value: 0.39473684210526316 and parameters: {'alpha': 2.
—9285769426129593e-05}. Best is trial 8 with value: 0.052631578947368474.
Trial 19 pruned.

As you can see, several trials were pruned (stopped) before they finished all of the iterations. The format of message
is"Trial <Trial Number> pruned.".

20 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

Which Sampler and Pruner Should be Used?

From the benchmark results which are available at optuna/optuna - wiki “Benchmarks with Kurobako”, at least for not
deep learning tasks, we would say that

e For optuna.samplers.RandomSampler, optuna.pruners.MedianPruner is the best.
* For optuna.samplers. TPESampler, optuna.pruners.Hyperband is the best.

However, note that the benchmark is not deep learning. For deep learning tasks, consult the below table. This ta-
ble is from the Ozaki et al., Hyperparameter Optimization Methods: Overview and Characteristics, in IEICE Trans,
Vol.J103-D No.9 pp.615-631, 2020 paper, which is written in Japanese.

Parallel Compute Re- | Categorical/Conditional Hyper- | Recommended Algorithms
source parameters
Limited No TPE. GP-EI if search space is low-dimensional
and continuous.
Yes TPE. GP-EI if search space is low-dimensional
and continuous
Sufficient No CMA-ES, Random Search
Yes Random Search or Genetic Algorithm

Integration Modules for Pruning

To implement pruning mechanism in much simpler forms, Optuna provides integration modules for the following
libraries.

For the complete list of Optuna’s integration modules, see optuna.integration.

For example, XGBoostPruningCallback introduces pruning without directly changing the logic of training iter-
ation. (See also example for the entire script.)

pruning_callback = optuna.integration.XGBoostPruningCallback (trial, 'validation-error
=)

bst = xgb.train(param, dtrain, evals=[(dvalid, 'validation')], callbacks=[pruning_
—callback])

Total running time of the script: (0 minutes 1.863 seconds)

Easy Parallelization

It’s straightforward to parallelize optuna. study. Study.optimize ().
If you want to manually execute Optuna optimization:

1. start an RDB server (this example uses MySQL)

2. create a study with —storage argument

3. share the study among multiple nodes and processes
Of course, you can use Kubernetes as in the kubernetes examples.

To just see how parallel optimization works in Optuna, check the below video.

6.2. Tutorial 21

https://github.com/optuna/optuna/wiki/%5BUnder-Construction%5D-Benchmarks
https://doi.org/10.14923/transinfj.2019JDR0003
https://doi.org/10.14923/transinfj.2019JDR0003
https://github.com/optuna/optuna/blob/master/examples/xgboost/xgboost_integration.py
https://github.com/optuna/optuna/tree/master/examples/kubernetes

Optuna Documentation, Release 2.8.0.dev0

Create a Study

You can create a study using optuna create-study command. Alternatively, in Python script you can use
optuna.create_study ().

$ mysgl -u root —-e "CREATE DATABASE IF NOT EXISTS example"

$ optuna create-study —--study-name "distributed-example" —--storage "mysgl://
—root@localhost/example"

[T 2020-07-21 13:43:39,642] A new study created with name: distributed-example

Then, write an optimization script. Let’s assume that foo . py contains the following code.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x — 2) x% 2

if name == "_ _main_ ":
study = optuna.load_study (
study_name="distributed-example", storage="mysqgl://root@localhost/example"

)

study.optimize (objective, n_trials=100)

Share the Study among Multiple Nodes and Processes

Finally, run the shared study from multiple processes. For example, run Process 1 inaterminal, and do Process
2 in another one. They get parameter suggestions based on shared trials’ history.

Process 1:

$ python foo.py

[T 2020-07-21 13:45:02,973] Trial 0 finished with value: 45.35553104173011 and_
—parameters: {'x': 8.73465151598285}. Best 1is trial O with value: 45.35553104173011.
[T 2020-07-21 13:45:04,013] Trial 2 finished with value: 4.6002397305938905 and
—parameters: {'x'"': 4.144816945707463}. Best is trial 1 with wvalue: 0.
—028194513284051464.

Process 2 (the same command as process 1):

$ python foo.py

[T 2020-07-21 13:45:03,748] Trial 1 finished with value: 0.028194513284051464 and_
—parameters: {'x': 1.8320877810162361}. Best is trial 1 with value: 0.
—028194513284051464.

[T 2020-07-21 13:45:05,783] Trial 3 finished with value: 24.45966755098074 and,_
—parameters: {'x': 6.945671597566982}. Best is trial 1 with value: O.
—028194513284051464.

Note: We do not recommend SQLite for distributed optimizations at scale because it may cause deadlocks and serious
performance issues. Please consider to use another database engine like PostgreSQL or MySQL.

22 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

Note: Please avoid putting the SQLite database on NFS when running distributed optimizations. See also: https:
/Iwww.sqlite.org/faq.html#q5

Total running time of the script: (0 minutes 0.000 seconds)

Quick Visualization for Hyperparameter Optimization Analysis

Optuna provides various visualization features in optuna.visualization to analyze optimization results visu-
ally.

This tutorial walks you through this module by visualizing the history of lightgbm model for breast cancer dataset.

import lightgbm as 1lgb

import numpy as np

import sklearn.datasets

import sklearn.metrics

from sklearn.model_selection import train_test_split

import optuna

from optuna.visualization import plot_contour

from optuna.visualization import plot_edf

from optuna.visualization import plot_intermediate_values
from optuna.visualization import plot_optimization_history
from optuna.visualization import plot_parallel_coordinate
from optuna.visualization import plot_param_ importances
from optuna.visualization import plot_slice

SEED = 42

np.random. seed (SEED)

Define the objective function.

def objective(trial):

data, target = sklearn.datasets.load_breast_cancer (return_X_y=True)

train_x, wvalid_x, train_y, valid_ y = train_test_split(data, target, test_size=0.
—25)

dtrain = lgb.Dataset (train_x, label=train_y)

dvalid = lgb.Dataset (valid_x, label=valid_y)

param = {
"objective": "binary",
"metric": "auc",
"verbosity": -1,
"boosting_type": "gbdt",

"bagging_fraction": trial.suggest_float ("bagging_ fraction", 0.4, 1.0),
"bagging_ freqg": trial.suggest_int ("bagging_ freq", 1, 7),
"min_child_samples": trial.suggest_int ("min_child samples", 5, 100),

Add a callback for pruning.
pruning_callback = optuna.integration.LightGBMPruningCallback (trial, "auc")
gbm = lgb.train(
param, dtrain, valid_sets=[dvalid], verbose_eval=False, callbacks=[pruning_
—callback]

(continues on next page)

6.2. Tutorial 23

https://www.sqlite.org/faq.html#q5
https://www.sqlite.org/faq.html#q5

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

preds = gbm.predict (valid_x)

pred_labels = np.rint (preds)

accuracy = sklearn.metrics.accuracy_score(valid_y, pred_labels)
return accuracy

study = optuna.create_study (
direction="maximize",
sampler=optuna.samplers.TPESampler (seed=SEED),
pruner=optuna.pruners.MedianPruner (n_warmup_steps=10),
)
study.optimize (objective, n_trials=100, timeout=600)

Plot functions

Visualize the optimization history. See plot_optimization history () for the details.

’plot_optimization_history(study)

Visualize the learning curves of the trials. See plot_intermediate values () for the details.

’plot_intermediate_values(study)

Visualize high-dimensional parameter relationships. See plot_parallel coordinate () for the details.

’plot_parallel_coordinate(study)

Select parameters to visualize.

’plot_parallel_coordinate(study, params=["bagging_freq", "bagging fraction"])

Visualize hyperparameter relationships. See plot_contour () for the details.

’plot_contour(study)

Select parameters to visualize.

’plot_contour(study, params=["bagging_freq", "bagging fraction"])

Visualize individual hyperparameters as slice plot. See plot_slice () for the details.

’plot_slice(study)

Select parameters to visualize.

’plot_slice(study, params=["bagging_freqg", "bagging_ fraction"])

Visualize parameter importances. See plot_param importances () for the details.

’plot_param_importances(study)

Visualize empirical distribution function. See plot_edf () for the details.

24 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

plot_edf (study)

Total running time of the script: (0 minutes 4.288 seconds)

6.2.2 Recipes

Showcases the recipes that might help you using Optuna with comfort.

Saving/Resuming Study with RDB Backend

An RDB backend enables persistent experiments (i.e., to save and resume a study) as well as access to history of stud-
ies. In addition, we can run multi-node optimization tasks with this feature, which is described in Easy Parallelization.

In this section, let’s try simple examples running on a local environment with SQLite DB.

Note: You can also utilize other RDB backends, e.g., PostgreSQL or MySQL, by setting the storage argument to the
DB’s URL. Please refer to SQLAlchemy’s document for how to set up the URL.

New Study

We can create a persistent study by calling create_study () function as follows. An SQLite file example.db is
automatically initialized with a new study record.

import logging
import sys

import optuna

Add stream handler of stdout to show the messages
optuna.logging.get_logger ("optuna") .addHandler (logging.StreamHandler (sys.stdout))
study_name = "example-study" # Unique identifier of the study.

storage_name = "sqglite:///{).db".format (study_name)

study = optuna.create_study (study_name=study_name, storage=storage_name)

Out:

A new study created in RDB with name: example-study

To run a study, call optimize () method passing an objective function.

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x — 2) x% 2

study.optimize (objective, n_trials=3)

Out:

6.2. Tutorial 25

https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Optuna Documentation, Release 2.8.0.dev0

Trial 0 finished with value: 18.04918112894684 and parameters: {'x': -2.
—2484327850334225}. Best is trial 0 with value: 18.04918112894684.

Trial 1 finished with value: 0.0034351527707770814 and parameters: {'x': 1.
—9413898236585396}. Best is trial 1 with value: 0.0034351527707770814.
Trial 2 finished with value: 49.844546165184354 and parameters: {'x': -5.
—060067008547748}. Best is trial 1 with value: 0.0034351527707770814.

Resume Study

To resume a study, instantiate a Study object passing the study name example-study and the DB URL
sglite:///example-study.db.

study = optuna.create_study (study_name=study_name, storage=storage_name, load_if_
—exists=True)
study.optimize (objective, n_trials=3)

Out:

Using an existing study with name 'example-study' instead of creating a new one.
Trial 3 finished with wvalue: 8.737523671655262 and parameters: {'x': 4.
—955930254869905}. Best is trial 1 with value: 0.0034351527707770814.

Trial 4 finished with value: 35.539802267067486 and parameters: {'x': -3.
—961526840253886}. Best is trial 1 with value: 0.0034351527707770814.
Trial 5 finished with value: 67.33071639846814 and parameters: {'x': -6.

—205529623276497}. Best is trial 1 with value: 0.0034351527707770814.

Experimental History

We can access histories of studies and trials via the Study class. For example, we can get all trials of
example—-study as:

study = optuna.create_study (study_name=study_name, storage=storage_name, load_if_
—exists=True)
df = study.trials_dataframe (attrs=("number", "value", "params", "state"))

Out:

’Using an existing study with name 'example-study' instead of creating a new one.

The method trials_dataframe () returns a pandas dataframe like:

’print(df)
Out:

number value params_x state
0 0 18.049181 -2.248433 COMPLETE
1 1 0.003435 1.941390 COMPLETE
2 2 49.844546 -5.060067 COMPLETE
3 3 8.737524 4.955930 COMPLETE
4 4 35.539802 -3.961527 COMPLETE
5 5 67.330716 -6.205530 COMPLETE

26 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

A Study object also provides properties such as trials, best_value, best_params (see also Lightweight,
versatile, and platform agnostic architecture).

print ("Best params: ", study.best_params)
print ("Best value: ", study.best_value)
print ("Best Trial: ", study.best_trial)
print ("Trials: ", study.trials)

Out:

Best params: {'"x"': 1.9413898236585396}

Best value: 0.0034351527707770814

Best Trial: FrozenTrial (number=1, values=[0.0034351527707770814], datetime_
—start=datetime.datetime (2021, 4, 5, 1, 58, 26, 946805), datetime_complete=datetime.
—datetime (2021, 4, 5, 1, 58, 26, 960379), params={'x': 1.9413898236585396},
—distributions={'x': UniformDistribution (high=10.0, low=-10.0)}, user_attrs={},
—system_attrs={}, intermediate_values={}, trial_id=2, state=TrialState.COMPLETE,
—value=None)

Trials: [FrozenTrial (number=0, values=[18.04918112894684], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 26, 900412), datetime_complete=datetime.datetime (2021,
—~4, 5, 1, 58, 26, 917126), params={'x': -2.2484327850334225}, distributions={'x":_|

—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=1, state=TrialState.COMPLETE, value=None),
—FrozenTrial (number=1, values=[0.0034351527707770814], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 26, 946805), datetime_complete=datetime.datetime (2021,
—~4, 5, 1, 58, 26, 960379), params={'x': 1.9413898236585396}, distributions={'x"':
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=2, state=TrialState.COMPLETE, value=None),
—FrozenTrial (number=2, values=[49.844546165184354], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 26, 979536), datetime_complete=datetime.datetime (2021,
—~4, 5, 1, 58, 26, 994053), params={'x': -5.060067008547748}, distributions={'x"':
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=3, state=TrialState.COMPLETE, value=None)
—FrozenTrial (number=3, values=[8.737523671655262], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 27, 51408), datetime_complete=datetime.datetime (2021, 4,
-~ 5, 1, 58, 27, 67158), params={'x"': 4.955930254869905}, distributions={'x"':_
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=4, state=TrialState.COMPLETE, value=None),
—FrozenTrial (number=4, values=[35.539802267067486], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 27, 91609), datetime_complete=datetime.datetime (2021, 4,
-~ 5, 1, 58, 27, 104881), params={'x': -3.961526840253886}, distributions={'x"':
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=5, state=TrialState.COMPLETE, value=None),
—~FrozenTrial (number=5, values=[67.33071639846814], datetime_start=datetime.
—datetime (2021, 4, 5, 1, 58, 27, 124626), datetime_complete=datetime.datetime (2021,
—~4, 5, 1, 58, 27, 137693), params={'x': -6.205529623276497}, distributions={'x"':,
—UniformDistribution (high=10.0, low=-10.0)}, user_attrs={}, system_attrs={},
—intermediate_values={}, trial_id=6, state=TrialState.COMPLETE, value=None)]

[

[

e

[

Total running time of the script: (0 minutes 0.508 seconds)

6.2. Tutorial 27

Optuna Documentation, Release 2.8.0.dev0

Multi-objective Optimization with Optuna

This tutorial showcases Optuna’s multi-objective optimization feature by optimizing the validation accuracy of Fashion

MNIST dataset and the FLOPS of the model implemented in PyTorch.
We use thop to measure FLOPS.

import
import
import
import
import

thop

torch

torch.nn as nn

torch.nn. functional as F
torchvision

import optuna

DEVICE = torch.device ("cuda")
DIR = ".."
BATCHSIZE = 128
N_TRAIN_EXAMPLES =
N_VALID_EXAMPLES =

if torch.cuda.is_available ()

BATCHSIZE = 30
BATCHSIZE = 10

def define_model (trial) :
n_layers = trial.suggest_int ("n_layers", 1, 3)

layers = []

in_features = 28 % 28

for i in range(n_layers):
out_features =
layers.append (nn.Linear (in_features,
layers.append (nn.ReLU())
p = trial.suggest_float ("dropout_
layers.append (nn.Dropout (p))

in_features = out_features

layers.append (nn.Linear (in_features, 10))

layers.append (nn.LogSoftmax (dim=1))

return nn.Sequential (xlayers)

Defines training and evaluation.

trial.suggest_int ("n_units_1{}".format (i), 4,
out__features))

J" . format (1), O.

else torch.device ("cpu")

128)

2, 0.5)

def train_model (model, optimizer, train_loader):
model.train ()
for batch_idx, (data, target) in enumerate (train_loader):

data, target = data.view(-1, 28 % 28).to(DEVICE),
optimizer.zero_grad()
F.nll_loss (model (data),

optimizer.step ()

target) .backward()

def eval_model (model, valid_loader):
model.eval ()

correct = 0
with torch.no_grad() :

for batch_idx, (data, target)

target.to (DEVICE)

in enumerate (valid_loader) :

(continues on next page)

28

Chapter 6. Reference

https://github.com/Lyken17/pytorch-OpCounter

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

data, target = data.view(-1, 28 * 28).to(DEVICE), target.to(DEVICE)
pred = model (data) .argmax (dim=1, keepdim=True)
correct += pred.eqg(target.view_as (pred)).sum() .item()

accuracy = correct / N_VALID_EXAMPLES
flops, _ = thop.profile(model, inputs=(torch.randn(l, 28 % 28).to(DEVICE),),

—verbose=False)
return flops, accuracy

[

Define multi-objective objective function. Objectives are FLOPS and accuracy.

def objective(trial):
train_dataset = torchvision.datasets.FashionMNIST (
DIR, train=True, download=True, transform=torchvision.transforms.ToTensor ()
)
train_loader = torch.utils.data.DatalLoader (
torch.utils.data.Subset (train_dataset, list (range (N_TRAIN_EXAMPLES))),
batch_size=BATCHSIZE,
shuffle=True,

val_dataset = torchvision.datasets.FashionMNIST (
DIR, train=False, transform=torchvision.transforms.ToTensor ()
)
val_loader = torch.utils.data.DatalLoader (
torch.utils.data.Subset (val_dataset, list (range (N_VALID_EXAMPLES))),
batch_size=BATCHSIZE,
shuffle=True,
)
model = define_model (trial) .to (DEVICE)

optimizer = torch.optim.Adam (
model .parameters (), trial.suggest_float("lr", le-5, le-1, log=True)

for epoch in range(10):

train_model (model, optimizer, train_loader)
flops, accuracy = eval_model (model, val_loader)
return flops, accuracy

Run multi-objective optimization

If your optimization problem is multi-objective, Optuna assumes that you will specify the optimization direction for
each objective. Specifically, in this example, we want to minimize the FLOPS (we want a faster model) and maximize
the accuracy. So we set directionsto ["minimize", "maximize"].

study = optuna.create_study(directions=["minimize", "maximize"])
study.optimize (objective, n_trials=30, timeout=300)

print ("Number of finished trials: ", len(study.trials))

Out:

6.2. Tutorial 29

Optuna Documentation, Release 2.8.0.dev0

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-
—i1dx3-ubyte.gz to ../FashionMNIST/raw/train-images—-idx3-ubyte.gz

0% | 0/26421880 [00:00<?, ?it/s]

0% | | 40960/26421880 [00:00<01:22, 318353.24it/s]

0% | | 104448/26421880 [00:00<01:13, 356690.10it/s]

13511 | 293888/26421880 [00:00<00:28, 904174.54it/s]
2%12 | 612352/26421880 [00:00<00:15, 1672987.43it/s]

5%14 | 1208320/26421880 [00:00<00:08, 3066429.61it/s]

8%18 | 2226176/26421880 [00:00<00:04, 5321601.90it/s]
15% | #4 | 3880960/26421880 [00:00<00:02, 8821319.44it/s]
21% | ##1 | 5550080/26421880 [00:00<00:01, 11246240.86it/s]
27% | ##7 | 7153664/26421880 [00:00<00:01, 12710085.13it/s]
33% | ##43 | 8811520/26421880 [00:01<00:01, 13885785.09it/s]
40% | ##49 | 10536960/26421880 [00:01<00:01, 14905548.89it/s]
46% | ####6 | 12235776/26421880 [00:01<00:00, 15534228.81it/s]
S53% | ####4#2 | 13947904/26421880 [00:01<00:00, 16012455.29it/s]
S59% | #####9 | 15603712/26421880 [00:01<00:00, 16176366.181it/s]
66% | #H##H###5 | 17314816/26421880 [00:01<00:00, 16457367.55it/s]
T2% | ####EH#L | 18971648/26421880 [00:01<00:00, 16490649.29it/s]
T8% | ####EH#8 | 20624384/26421880 [00:01<00:00, 16497768.891it/s]
8A% | ########4 | 22277120/26421880 [00:01<00:00, 15531149.24it/s]
1% | ########E | 23917568/26421880 [00:02<00:00, 13208069.84it/s]
97% | #H####H####6| 25528320/26421880 [00:02<00:00, 13949677.52it/s]

264222721t [00:02, 12054313.31it/s]
Extracting ../FashionMNIST/raw/train-images—idx3-ubyte.gz to ../FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels—

—idxl-ubyte.gz to

../FashionMNIST/raw/train-labels-idxl-ubyte.gz

0% | | 0/29515 [00:00<?, ?it/s]
296961t [00:00, 298596.97it/s]
Extracting ../FashionMNIST/raw/train-labels—-idxl-ubyte.gz to

../FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/tl0k-images—
—idx3-ubyte.gz to ../FashionMNIST/raw/tl0k-images—-idx3-ubyte.gz

0% | | 0/4422102 [00:00<?, ?it/s]
1% | 39936/4422102 [00:00<00:15, 289713.62it/s]
2%12 | 96256/4422102 [00:00<00:10, 428896.38it/s]

4% |3 | 161792/4422102 [00:00<00:08, 524196.821it/s]
8% 17 | 336896/4422102 [00:00<00:04, 984908.77it/s]
15% | #5 | 677888/4422102 [00:00<00:02, 1831572.43it/s]
1S | ##4# | 1361920/4422102 [00:00<00:00, 3498368.50it/s]
60% | #H#H### | 2674688/4422102 [00:00<00:00, 6600922.09it/s]
OT7% | ########47| 4310016/4422102 [00:00<00:00, 9674946.77it/s]

44226561t [00:00, 5272669.68it/s]
Extracting ../FashionMNIST/raw/t10k-images—idx3-ubyte.gz to ../FashionMNIST/raw

Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/tl10k—-labels-
—idxl-ubyte.gz to ../FashionMNIST/raw/tl0k-labels-idxl-ubyte.gz

0% | 0/5148 [00:00<?, ?it/s]
6144it [00:00, 37401747.13it/s]
Extracting ../FashionMNIST/raw/t10k-labels—-idxl-ubyte.gz to ../FashionMNIST/raw
Processing...

/home/docs/checkouts/readthedocs.org/user_builds/optuna/envs/v2.7.0/1ib/python3.8/
—site-packages/torchvision/datasets/mnist.py:479: UserWarning:

The given NumPy array is not writeable, and PyTorch does not support non-writeable
—tensors. This means you can write to the underlying (supposedly non-writeable)

—NumPy array using the tensor. You may want to copy the array to protecéa?%%w%gF§x8¥§ﬂ
—make it writeable before converting it to a tensor. This type of warning will be,

suppres§ed for the rest of this program. (Triggered internally at Cfﬁﬁﬁgf%f/?ﬁﬁépénce
—csrc/utils/tensor_numpy.cpp:143.)

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

Done!
Number of finished trials: 30

Check trials on pareto front visually

optuna.visualization.plot_pareto_front (study, target_names=["FLOPS", "accuracy"])

Out:

/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/v2.7.0/tutorial/20_
—recipes/002_multi_objective.py:123: ExperimentalWarning:

plot_pareto_front is experimental (supported from v2.4.0). The interface can change
—in the future.

Total running time of the script: (1 minutes 37.125 seconds)

User Attributes

This feature is to annotate experiments with user-defined attributes.

Adding User Attributes to Studies

A Study object provides set_user_attr () method to register a pair of key and value as an user-defined attribute.
A key is supposed to be a st r, and a value be any object serializable with json.dumps.

import sklearn.datasets
import sklearn.model_selection
import sklearn.svm

import optuna
study = optuna.create_study (storage="sqglite:///example.db")

study.set_user_attr ("contributors", ["Akiba", "Sano"])
study.set_user_attr ("dataset”, "MNIST")

We can access annotated attributes with user_attr property.

’study.user_attrs # {'contributors': ['Akiba', 'Sano'], 'dataset': 'MNIST'}
Out:
’{'contributors': ['Akiba', 'Sano'], 'dataset': 'MNIST'}

StudySummary object, which can be retrieved by get_all study_ summaries (), also contains user-defined
attributes.

study_summaries = optuna.get_all_study_summaries ("sglite:///example.db")
study_summaries[0] .user_attrs # {"contributors": ["Akiba", "Sano"], "dataset": "MNIST
s ”}

Out:

6.2. Tutorial 31

Optuna Documentation, Release 2.8.0.dev0

{'contributors': ['Akiba', 'Sano'], 'dataset': 'MNIST'}

See also:

optuna study set-user-attr command, which sets an attribute via command line interface.

Adding User Attributes to Trials

As with Study, a Trial object provides set_user_attr () method. Attributes are set inside an objective
function.

def objective(trial):
iris = sklearn.datasets.load_iris|()
X, y = iris.data, iris.target
svc_c = trial.suggest_float ("svc_c", 1le-10, 1lel0, log=True)
clf = sklearn.svm.SVC (C=svc_c)
accuracy = sklearn.model_selection.cross_val_score(clf, x, y).mean()

trial.set_user_attr ("accuracy", accuracy)

return 1.0 - accuracy # return error for minimization

study.optimize (objective, n_trials=1)

‘We can access annotated attributes as:

study.trials[0] .user_attrs

Out:

’{'accuracy': 0.9733333333333334}

Note that, in this example, the attribute is not annotated to a St udy but a single Trial.

Total running time of the script: (0 minutes 0.240 seconds)

Command-Line Interface

Command Description

create-study Create a new study.

delete-study Delete a specified study.
dashboard Launch web dashboard (beta).
storage upgrade Upgrade the schema of a storage.
studies Show a list of studies.

study optimize Start optimization of a study.
study set-user-attr Set a user attribute to a study.

Optuna provides command-line interface as shown in the above table.

Let us assume you are not in IPython shell and writing Python script files instead. It is totally fine to write scripts like
the following:

32 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

import optuna

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x - 2) ** 2

if name_ == "_ main_ ":
study = optuna.create_study ()
study.optimize (objective, n_trials=100)
print ("Best value: (params:)y\n".format (study.best_value, study.best_params))

Out:

Best value: 0.00021709814480694095 (params: {'x': 2.0147342507378876})

However, we can reduce boilerplate codes by using our optuna command. Let us assume that foo . py contains
only the following code.

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x - 2) ** 2

Even so, we can invoke the optimization as follows. (Don’t care about ——storage sqglite:///example.db
for now, which is described in Saving/Resuming Study with RDB Backend.)

$ cat foo.py

def objective (trial):
x = trial.suggest_float('x', -10, 10)
return (x — 2) ** 2

$ STUDY NAME= optuna create-study --storage sqglite:///example.db"

$ optuna study optimize foo.py objective —--n-trials=100 --storage sqlite:///example.
—db —--study-name S$STUDY_ NAME

[T 2018-05-09 10:40:25,196] Finished a trial resulted in value: 54.353767789264026.
—Current best value is 54.353767789264026 with parameters: {'x': -5.372500782588228}.
[T 2018-05-09 10:40:25,197] Finished a trial resulted in value: 15.784266965526376.
—Current best value is 15.784266965526376 with parameters: {'x': 5.972941852774387}.

[T 2018-05-09 10:40:26,204] Finished a trial resulted in value: 14.704254135013741._
—Current best value is 2.280758099793617e-06 with parameters: {'x': 1.
—9984897821018828} .

Please note that foo . py only contains the definition of the objective function. By giving the script file name and the
method name of objective function to optuna study optimize command, we can invoke the optimization.

Total running time of the script: (0 minutes 0.318 seconds)

6.2. Tutorial 33

Optuna Documentation, Release 2.8.0.dev0

User-Defined Sampler

Thanks to user-defined samplers, you can:
¢ experiment your own sampling algorithms,
 implement task-specific algorithms to refine the optimization performance, or
» wrap other optimization libraries to integrate them into Optuna pipelines (e.g., Skopt Sampler).

This section describes the internal behavior of sampler classes and shows an example of implementing a user-defined
sampler.

Overview of Sampler

A sampler has the responsibility to determine the parameter values to be evaluated in a trial. When a suggest
API (e.g., suggest_float ()) is called inside an objective function, the corresponding distribution object (e.g.,
UniformDistribution) is created internally. A sampler samples a parameter value from the distribution. The
sampled value is returned to the caller of the suggest API and evaluated in the objective function.

To create a new sampler, you need to define a class that inherits BaseSampler. The base class has three abstract
methods; infer relative search_space (), sample_relative (), and sample_ independent ().

As the method names imply, Optuna supports two types of sampling: one is relative sampling that can consider
the correlation of the parameters in a trial, and the other is independent sampling that samples each parameter
independently.

At the beginning of a trial, infer relative search space () is called to provide the relative search space
for the trial. Then, sample relative () isinvoked to sample relative parameters from the search space. During
the execution of the objective function, sample_independent () is used to sample parameters that don’t belong
to the relative search space.

Note: Please refer to the document of BaseSamp1er for further details.

An Example: Implementing SimulatedAnnealingSampler

For example, the following code defines a sampler based on Simulated Annealing (SA):

import numpy as np
import optuna

class SimulatedAnnealingSampler (optuna.samplers.BaseSampler) :
def _ _init__ (self, temperature=100):
self._rng = np.random.RandomState ()
self._temperature = temperature # Current temperature.
self._current_trial = None # Current state.

def sample_relative(self, study, trial, search_space):
if search_space == {}:
return {}

Simulated Annealing algorithm.
1. Calculate transition probability.
prev_trial = study.trials[-2]

(continues on next page)

34 Chapter 6. Reference

https://en.wikipedia.org/wiki/Simulated_annealing

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

if self._current_trial is None or prev_trial.value <= self._current_trial.
—value:
probability = 1.0
else:

probability = np.exp(
(self._current_trial.value - prev_trial.value) / self._temperature
)

self._temperature = 0.9 # Decrease temperature.

2. Transit the current state if the previous result is accepted.
if self._rng.uniform(0, 1) < probability:
self._current_trial = prev_trial

3. Sample parameters from the neighborhood of the current point.
The sampled parameters will be used during the next execution of
the objective function passed to the study.
params = {}
for param_name, param_distribution in search_space.items () :
if not isinstance (param_distribution, optuna.distributions.
—UniformDistribution) :
raise NotImplementedError ("Only suggest_float () is supported")

current_value = self._current_trial.params|[param_name]

width = (param_distribution.high - param distribution.low) = 0.1
neighbor_low = max (current_value - width, param_distribution.low)
neighbor_high = min(current_value + width, param_distribution.high)
params [param_name] = self._rng.uniform(neighbor_low, neighbor_high)

return params

The rest are unrelated to SA algorithm: boilerplate
def infer_ relative_search_space(self, study, trial):
return optuna.samplers.intersection_search_space (study)

def sample_independent (self, study, trial, param_name, param_distribution):
independent_sampler

optuna.samplers.RandomSampler ()
return independent_sampler.sample_independent (study, trial, param_name, param_
—distribution)

Note: In favor of code simplicity, the above implementation doesn’t support some features (e.g., maximization). If
you’re interested in how to support those features, please see examples/samplers/simulated_annealing.py.

You can use SimulatedAnnealingSampler in the same way as built-in samplers as follows:

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
y = trial.suggest_float("y", -5, 5)
return x *x 2 + y

sampler = SimulatedAnnealingSampler ()
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=100)

best_trial

study.best_trial

(continues on next page)

6.2. Tutorial 35

https://github.com/optuna/optuna/blob/master/examples/samplers/simulated_annealing_sampler.py

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

print ("Best value: ", best_trial.value)
print ("Parameters that achieve the best value: ", best_trial.params)

Out:

Best value: -4.909533060293563
Parameters that achieve the best value: {'x"'": 0.12068467686711326, 'y': -4.
—924097851524082}

In this optimization, the values of x and y parameters are sampled by using SimulatedAnnealingSampler.
sample_relative method.

Note: Strictly speaking, in the first trial, SimulatedAnnealingSampler.sample_independent
method is used to sample parameter values. Because intersection_search_space () used in
SimulatedAnnealingSampler.infer_ relative_search_space cannot infer the search space if there
are no complete trials.

Total running time of the script: (0 minutes 0.303 seconds)

User-Defined Pruner

In optuna.pruners, we described how an objective function can optionally include calls to a pruning feature
which allows Optuna to terminate an optimization trial when intermediate results do not appear promising. In this
document, we describe how to implement your own pruner, i.e., a custom strategy for determining when to stop a trial.

Overview of Pruning Interface

The create_study () constructor takes, as an optional argument, a pruner inheriting from BasePruner. The
pruner should implement the abstract method prune (), which takes arguments for the associated St udy and Trial
and returns a boolean value: True if the trial should be pruned and False otherwise. Using the Study and Trial ob-
jects, you can access all other trials through the get _trial () method and, and from a trial, its reported intermediate
values through the intermediate _values () (adictionary which maps an integer step to a float value).

You can refer to the source code of the built-in Optuna pruners as templates for building your own. In this document,
for illustration, we describe the construction and usage of a simple (but aggressive) pruner which prunes trials that are
in last place compared to completed trials at the same step.

Note: Please refer to the documentation of BasePruner or, for example, ThresholdPruner or
PercentilePruner for more robust examples of pruner implementation, including error checking and complex
pruner-internal logic.

36 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Optuna Documentation, Release 2.8.0.dev0

An Example: Implementing LastPlacePruner

We aim to optimize the loss and alpha hyperparameters for a stochastic gradient descent classifier
(SGDClassifier) run on the sklearn iris dataset. We implement a pruner which terminates a trial at a certain
step if it is in last place compared to completed trials at the same step. We begin considering pruning after a “warmup”
of 1 training step and 5 completed trials. For demonstration purposes, we print () a diagnostic message from
prune when it is about to return True (indicating pruning).

It may be important to note that the SGDClassifier score, as it is evaluated on a holdout set, decreases with enough
training steps due to overfitting. This means that a trial could be pruned even if it had a favorable (high) value on a
previous training set. After pruning, Optuna will take the intermediate value last reported as the value of the trial.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.linear model import SGDClassifier

import optuna
from optuna.pruners import BasePruner
from optuna.trial._state import TrialState

class LastPlacePruner (BasePruner) :
def _ _init__ (self, warmup_steps, warmup_trials):
self._warmup_steps = warmup_steps
self._warmup_trials = warmup_trials

def prune(self, study: "optuna.study.Study", trial: "optuna.trial.FrozenTrial") ->
— bool:
Get the latest score reported from this trial
step = trial.last_step

if step: # trial.last_step == None when no scores have been reported yet
this_score = trial.intermediate_values|[step]

Get scores from other trials in the study reported at the same step
completed_trials = study.get_trials (deepcopy=False, states=(TrialState.
—COMPLETE,))
other_scores = [
t.intermediate_values[step]
for t in completed_trials
if step in t.intermediate_values
]

other_scores = sorted(other_scores)

Prune 1f this trial at this step has a lower value than all completed,
—~trials
at the same step. Note that steps will begin numbering at 0 in the,
—objective
function definition below.
if step >= self._warmup_steps and len (other_scores) > self._warmup_trials:
if this_score < other_scores[0]:
print (f"prune () True: Trial {trial.number/}, Step {step/), Score
— {this_score ")
return True

return False

6.2. Tutorial 37

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 2.8.0.dev0

Lastly, let’s confirm the implementation is correct with the simple hyperparameter optimization.

def objective(trial):
iris = load_iris ()
classes = np.unique (iris.target)
X_train, X_valid, y_train, y_valid = train_test_split (
iris.data, iris.target, train_size=100, test_size=50, random_state=0

loss = trial.suggest_categorical ("loss", ["hinge", "log", "perceptron"])
alpha = trial.suggest_float ("alpha", 0.00001, 0.001, log=True)

clf = SGDClassifier(loss=loss, alpha=alpha, random_state=0)

score = 0

for step in range (0, 5):
clf.partial_fit(X_train, y_train, classes=classes)
score = clf.score(X_valid, y_valid)

trial.report (score, step)

if trial.should_prune():
raise optuna.TrialPruned()

return score

pruner = LastPlacePruner (warmup_steps=1, warmup_trials=5)
—_n

study = optuna.create_study(direction="maximize", pruner=pruner)
study.optimize (objective, n_trials=50)

Total running time of the script: (0 minutes 0.713 seconds)

Callback for Study.optimize

This tutorial showcases how to use & implement Optuna Callback for optimize ().

Callback is called after every evaluation of objective, and it takes St udy and FrozenTrial as arguments,
and does some work.

MLflowCallback is a great example.

Stop optimization after some trials are pruned in a row

This example implements a stateful callback which stops the optimization if a certain number of trials are pruned in a
row. The number of trials pruned in a row is specified by threshold.

import optuna

class StopWhenTrialKeepBeingPrunedCallback:
def _ init_ (self, threshold: int):
self.threshold = threshold
self._consequtive_pruned_count = 0

def _ _call_(self, study: optuna.study.Study, trial: optuna.trial.FrozenTrial) —>
—None:

[

(continues on next page)

38 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

if trial.state == optuna.trial.TrialState.PRUNED:
self._consequtive_pruned_count += 1

else:
self._consequtive_pruned_count = 0

if self._consequtive_pruned_count >= self.threshold:
study.stop ()

This objective prunes all the trials except for the first 5 trials (t rial . number starts with 0).

def objective(trial):
if trial.number > 4:
raise optuna.TrialPruned

return trial.suggest_float ("x", 0, 1)

Here, we set the threshold to 2: optimization finishes once two trials are pruned in a row. So, we expect this study to
stop after 7 trials.

import logging
import sys

Add stream handler of stdout to show the messages
optuna.logging.get_logger ("optuna") .addHandler (logging.StreamHandler (sys.stdout))

study_stop_cb = StopWhenTrialKeepBeingPrunedCallback (2)
study = optuna.create_study ()
study.optimize (objective, n_trials=10, callbacks=[study_stop_cb])

Out:

A new study created in memory with name: no-name-735el1409-ac50-4e3a-acfe-e3e2831e8c99
Trial 0 finished with wvalue: 0.7835633957417836 and parameters: {'x': 0.
—7835633957417836}. Best is trial 0 with value: 0.7835633957417836.
Trial 1 finished with value: 0.6571821231067395 and parameters: {'x': 0.
—6571821231067395}. Best is trial 1 with value: 0.6571821231067395.
Trial 2 finished with value: 0.750899809430996 and parameters: {'x': 0.
—750899809430996}. Best is trial 1 with value: 0.6571821231067395.
Trial 3 finished with value: 0.4328722703743789 and parameters: {'x': 0.
—4328722703743789}. Best is trial 3 with value: 0.4328722703743789.
Trial 4 finished with value: 0.5477946556257093 and parameters: {'x': 0.
—5477946556257093}. Best is trial 3 with value: 0.4328722703743789.
Trial 5 pruned.

Trial 6 pruned.

As you can see in the log above, the study stopped after 7 trials as expected.

Total running time of the script: (0 minutes 0.007 seconds)

6.2. Tutorial 39

Optuna Documentation, Release 2.8.0.dev0

Specify Hyperparameters Manually

It’s natural that you have some specific sets of hyperparameters to try first such as initial learning rate values and the
number of leaves. Also, it’s also possible that you’ve already tried those sets before having Optuna find better sets of
hyperparameters.

Optuna provides two APIs to support such cases:
1. Passing those sets of hyperparameters and let Optuna evaluate them - enqueue_trial ()

2. Adding the results of those sets as completed Trials- add_trial ()

First Scenario: Have Optuna evaluate your hyperparameters

In this scenario, let’s assume you have some out-of-box sets of hyperparameters but have not evaluated them yet and
decided to use Optuna to find better sets of hyperparameters.

Optuna has optuna.study.Study.enqueue_trial () which lets you pass those sets of hyperparameters to
Optuna and Optuna will evaluate them.

This section walks you through how to use this lit API with LightGBM.

import lightgbm as 1lgb

import numpy as np

import sklearn.datasets

import sklearn.metrics

from sklearn.model_selection import train_test_split

import optuna

Define the objective function.

def objective(trial):

data, target = sklearn.datasets.load_breast_cancer (return_X_y=True)

train_x, valid_x, train_y, valid_y = train_test_split (data, target, test_size=0.
—25)

dtrain = lgb.Dataset (train_x, label=train_y)

dvalid = lgb.Dataset (valid_x, label=valid_y)

param = {
"objective": "binary",
"metric": "auc",
"verbosity": -1,
"boosting_type": "gbdt",

"bagging_ fraction": min(trial.suggest_float ("bagging_fraction", 0.4, 1.0 + le-
—12), 1),

"bagging_freg": trial.suggest_int ("bagging_freqg", 0, 7),

"min_child_samples": trial.suggest_int ("min_child_samples", 5, 100),

Add a callback for pruning.
pruning_callback = optuna.integration.LightGBMPruningCallback (trial, "auc")
gbm = lgb.train(
param, dtrain, valid_sets=[dvalid], verbose_eval=False, callbacks=[pruning_
—callback]
)

preds = gbm.predict (valid_x)

(continues on next page)

40 Chapter 6. Reference

https://lightgbm.readthedocs.io/en/latest/

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

pred_labels = np.rint (preds)
accuracy = sklearn.metrics.accuracy_score (valid_y, pred_labels)
return accuracy

Then, construct Study for hyperparameter optimization.

study = optuna.create_study(direction="maximize", pruner=optuna.pruners.
—MedianPruner())

Here, we get Optuna evaluate some sets with larger "bagging_fraqg" value and the default values.

study.enqueue_trial (
{
"bagging_fraction": 1.0,
"bagging_freg": 0,
"min_child_samples": 20,

study.enqueue_trial (

"bagging_fraction": 0.75,
"bagging_freqg": 5,
"min_child_samples": 20,

import logging
import sys

Add stream handler of stdout to show the messages to see Optuna works expectedly.
optuna.logging.get_logger ("optuna") .addHandler (logging.StreamHandler (sys.stdout))
study.optimize (objective, n_trials=100, timeout=600)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/v2.7.0/tutorial/20_
—recipes/008_specify_params.py:77: ExperimentalWarning:

enqueue_trial is experimental (supported from v1.2.0). The interface can change in_,
—the future.

/home/docs/checkouts/readthedocs.org/user_builds/optuna/envs/v2.7.0/1ib/python3.8/
—site-packages/optuna/study.py:857: ExperimentalWarning:

create_trial is experimental (supported from v2.0.0). The interface can change in the
—future.

/home/docs/checkouts/readthedocs.org/user_builds/optuna/envs/v2.7.0/1ib/python3.8/
—site-packages/optuna/study.py:856: ExperimentalWarning:

add_trial is experimental (supported from v2.0.0). The interface can change in the
—future.

/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/v2.7.0/tutorial/20_
—recipes/008_specify_params.py:85: ExperimentalWarning:

(continues on next page)

6.2. Tutorial 41

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

enqueue_trial is experimental (supported from v1.2.0). The interface can change in
—the future.

Trial 0 finished with value: 0.972027972027972 and parameters: {'bagging_fraction': 1.
-0, 'bagging_freqg': 0, 'min_child_samples': 20}. Best is trial 0 with wvalue: 0.
—972027972027972.

Trial 1 finished with value: 0.965034965034965 and parameters: {'bagging_fraction': 0.
—75, 'bagging_freq': 5, 'min_child_samples': 20}. Best is trial 0 with value: 0.
—972027972027972.

Trial 2 finished with value: 0.958041958041958 and parameters: {'bagging_fraction': 0.
—41290140944743037, 'bagging_freqg': 1, 'min_child samples': 70}. Best is trial O
—with value: 0.972027972027972.

Trial 3 finished with value: 0.972027972027972 and parameters: {'bagging_fraction': 0.
—9427895053283064, 'bagging_freqg': 1, 'min_child samples': 24}. Best 1is trial 0 with_
—value: 0.972027972027972.

Trial 4 finished with value: 0.9370629370629371 and parameters: {'bagging_fraction':
—0.5001041104010937, 'bagging freq': 1, 'min_child_samples': 100}. Best is trial O,
—with value: 0.972027972027972.

Trial 5 pruned. Trial was pruned at iteration O.
Trial 6 pruned. Trial was pruned at iteration O.
Trial 7 pruned. Trial was pruned at iteration O.
Trial 8 pruned. Trial was pruned at iteration O.
Trial 9 pruned. Trial was pruned at iteration 0

Trial 10 pruned. Trial was pruned at iteration O
Trial 11 pruned. Trial was pruned at iteration O
Trial 12 pruned. Trial was pruned at iteration 0
Trial 13 pruned. Trial was pruned at iteration O
Trial 14 pruned. Trial was pruned at iteration 0.
Trial 15 pruned. Trial was pruned at iteration 0
Trial 16 pruned. Trial was pruned at iteration O
Trial 17 pruned. Trial was pruned at iteration 0
Trial 18 pruned. Trial was pruned at iteration 0
Trial 19 pruned. Trial was pruned at iteration O
Trial 20 finished with value: 0.972027972027972 and parameters: {'bagging_fraction':
—0.8595082743229087, 'bagging_freq': 7, 'min_child_samples': 6}. Best is trial O,
—with value: 0.972027972027972.

Trial 21 pruned. Trial was pruned at iteration 0.

Trial 22 pruned. Trial was pruned at iteration 33.

Trial 23 pruned. Trial was pruned at iteration 17.

Trial 24 finished with value: 0.965034965034965 and parameters: {'bagging_fraction':
—0.8895937677023859, 'bagging_freqg': 4, 'min_child_samples': 28}. Best is trial O
—with value: 0.972027972027972.

Trial 25 pruned. Trial was pruned at iteration 2.
Trial 26 pruned. Trial was pruned at iteration 0.
Trial 27 pruned. Trial was pruned at iteration 0.
Trial 28 pruned. Trial was pruned at iteration 1.
Trial 29 pruned. Trial was pruned at iteration O.
Trial 30 pruned. Trial was pruned at iteration 0.
Trial 31 pruned. Trial was pruned at iteration 0.
Trial 32 pruned. Trial was pruned at iteration 0.
Trial 33 pruned. Trial was pruned at iteration 0.
Trial 34 pruned. Trial was pruned at iteration 0.
Trial 35 pruned. Trial was pruned at iteration 0.
Trial 36 pruned. Trial was pruned at iteration 0.

Trial 37 finished with wvalue: 0.9790209790209791 and parameters: {'bagging_fraction':
—0.5625447412457188, 'bagging_freqg': 1, 'min_child_samples': 14}. Best is trial 37,
—with value: 0.9790209790209791.

(continues on next page)

42 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

Trial 38 pruned. Trial was pruned at iteration
Trial 39 pruned. Trial was pruned at iteration
Trial 40 pruned. Trial was pruned at iteration
Trial 41 pruned. Trial was pruned at iteration
Trial 42 pruned. Trial was pruned at iteration
Trial 43 pruned. Trial was pruned at iteration
Trial 44 pruned. Trial was pruned at iteration
Trial 45 pruned. Trial was pruned at iteration
Trial 46 pruned. Trial was pruned at iteration 0.

Trial 47 finished with wvalue: 0.9790209790209791 and parameters: {'bagging_fraction':
—0.7226495098407482, 'bagging freq': 1, 'min_child_samples': 16}. Best is trial 37,
—with value: 0.9790209790209791.

O O O O O O o o

Trial 48 pruned. Trial was pruned at iteration 0.
Trial 49 pruned. Trial was pruned at iteration 55.
Trial 50 pruned. Trial was pruned at iteration 0.
Trial 51 pruned. Trial was pruned at iteration 0.
Trial 52 pruned. Trial was pruned at iteration 2.
Trial 53 pruned. Trial was pruned at iteration 0.
Trial 54 pruned. Trial was pruned at iteration 0.
Trial 55 pruned. Trial was pruned at iteration 1.
Trial 56 pruned. Trial was pruned at iteration 0.
Trial 57 pruned. Trial was pruned at iteration 0.
Trial 58 pruned. Trial was pruned at iteration 0.
Trial 59 pruned. Trial was pruned at iteration 0.
Trial 60 pruned. Trial was pruned at iteration 0.
Trial 61 pruned. Trial was pruned at iteration 0.
Trial 62 pruned. Trial was pruned at iteration 0.

Trial 63 pruned. Trial was pruned at iteration 0.

Trial 64 finished with wvalue: 0.9790209790209791 and parameters: {'bagging_fraction':
—0.7515579258213221, 'bagging_freq': 5, 'min_child_samples': 40}. Best is trial 37,
—with value: 0.9790209790209791.

Trial 65 pruned. Trial was pruned at iteration
Trial 66 pruned. Trial was pruned at iteration
Trial 67 pruned. Trial was pruned at iteration
Trial 68 pruned. Trial was pruned at iteration
Trial 69 pruned. Trial was pruned at iteration
Trial 70 pruned. Trial was pruned at iteration
Trial 71 pruned. Trial was pruned at iteration
Trial 72 pruned. Trial was pruned at iteration
Trial 73 pruned. Trial was pruned at iteration
Trial 74 pruned. Trial was pruned at iteration
Trial 75 pruned. Trial was pruned at iteration
Trial 76 pruned. Trial was pruned at iteration
Trial 77 pruned. Trial was pruned at iteration
Trial 78 pruned. Trial was pruned at iteration
Trial 79 pruned. Trial was pruned at iteration
Trial 80 pruned. Trial was pruned at iteration
Trial 81 pruned. Trial was pruned at iteration
Trial 82 pruned. Trial was pruned at iteration
Trial 83 pruned. Trial was pruned at iteration
Trial 84 pruned. Trial was pruned at iteration
Trial 85 pruned. Trial was pruned at iteration
Trial 86 pruned. Trial was pruned at iteration
Trial 87 pruned. Trial was pruned at iteration
Trial 88 pruned. Trial was pruned at iteration
Trial 89 pruned. Trial was pruned at iteration
Trial 90 pruned. Trial was pruned at iteration

O O O O O OO OO OO O OO OO OO OO0 OO O oDN

(continues on next page)

6.2. Tutorial 43

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

Trial 91 pruned. Trial was pruned at iteration
Trial 92 pruned. Trial was pruned at iteration
Trial 93 pruned. Trial was pruned at iteration
Trial 94 pruned. Trial was pruned at iteration
Trial 95 pruned. Trial was pruned at iteration
Trial 96 pruned. Trial was pruned at iteration
Trial 97 pruned. Trial was pruned at iteration
Trial 98 pruned. Trial was pruned at iteration
Trial 99 pruned. Trial was pruned at iteration

O O O O O o o o o

Second scenario: Have Optuna utilize already evaluated hyperparameters

In this scenario, let’s assume you have some out-of-box sets of hyperparameters and you have already evaluated them
but the results are not desirable so that you are thinking of using Optuna.

Optuna has optuna.study.Study.add _trial () which lets you register those results to Optuna and then
Optuna will sample hyperparameters taking them into account.

In this section, the objective is the same as the first scenario.

study = optuna.create_study(direction="maximize", pruner=optuna.pruners.
—MedianPruner ())
study.add_trial (
optuna.trial.create_trial(
params={
"bagging_fraction": 1.0,
"bagging_freqg": 0,
"min_child_samples": 20,
}I
distributions={
"bagging_ fraction": optuna.distributions.UniformDistribution(0.4, 1.0 +_,
<le-12),
"bagging freqg": optuna.distributions.IntUniformDistribution (0, 7),
"min_child_samples": optuna.distributions.IntUniformDistribution (5, 100),
}I
value=0.94,

)
study.add_trial (
optuna.trial.create_trial(
params={
"bagging_fraction": 0.75,
"bagging_freq": 5,
"min_child_samples": 20,
s
distributions={
"bagging_fraction": optuna.distributions.UniformDistribution (0.4, 1.0 +_
—~le-12),
"bagging freqg": optuna.distributions.IntUniformDistribution (0, 7),
"min_child_samples": optuna.distributions.IntUniformDistribution(5, 100),
s
value=0.95,

)

study.optimize (objective, n_trials=100, timeout=600)

44 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

Out:

A new study created in memory with name: no-name-53bf1362-d063-448b-8bf7-def65048££77
/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/v2.7.0/tutorial/20_
—recipes/008_specify_params.py:115: ExperimentalWarning:

create_trial is experimental (supported from v2.0.0). The interface can change in the
—future.

/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/v2.7.0/tutorial/20_
—recipes/008_specify_params.py:114: ExperimentalWarning:

add_trial is experimental (supported from v2.0.0). The interface can change in the
—future.

/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/v2.7.0/tutorial/20_
—recipes/008_specify_params.py:130: ExperimentalWarning:

create_trial is experimental (supported from v2.0.0). The interface can change in the
—future.

/home/docs/checkouts/readthedocs.org/user_builds/optuna/checkouts/v2.7.0/tutorial/20_
—recipes/008_specify_params.py:129: ExperimentalWarning:

add_trial is experimental (supported from v2.0.0). The interface can change in the
—future.

Trial 2 finished with value: 0.9440559440559441 and parameters: {'bagging_fraction':
—0.5727495629948887, 'bagging_freq': 3, 'min_child_samples': 84}. Best is trial 1
—with value: 0.95.

Trial 3 finished with wvalue: 0.9790209790209791 and parameters: {'bagging_fraction':
—0.4615153505478339, 'bagging_freqg': 3, 'min_child_samples': 93}. Best is trial 3
—with value: 0.9790209790209791.

Trial 4 finished with value: 0.972027972027972 and parameters: {'bagging_fraction': 0.
—7153239356278835, 'bagging_freq': 3, 'min_child samples': 24}. Best 1is trial 3 with_
—value: 0.9790209790209791.

Trial 5 finished with value: 0.972027972027972 and parameters: {'bagging_fraction': 0.
—754908250224628, 'bagging_freqg': 4, 'min_child_samples': 5}. Best is trial 3 with_
—value: 0.9790209790209791.

Trial 6 pruned. Trial was pruned at iteration 1.

Trial 7 pruned. Trial was pruned at iteration 1

=
&

Trial 8 pruned. Trial was pruned at iteration
Trial 9 pruned. Trial was pruned at iteration O.
Trial 10 pruned. Trial was pruned at iteration 0.
Trial 11 pruned. Trial was pruned at iteration 0.
Trial 12 pruned. Trial was pruned at iteration 1.
Trial 13 pruned. Trial was pruned at iteration 0.
Trial 14 pruned. Trial was pruned at iteration 0.
Trial 15 pruned. Trial was pruned at iteration 9.
Trial 16 pruned. Trial was pruned at iteration 0.
Trial 17 pruned. Trial was pruned at iteration 0.
Trial 18 pruned. Trial was pruned at iteration 65.
Trial 19 pruned. Trial was pruned at iteration 1.

Trial 20 finished with wvalue: 0.972027972027972 and parameters: {'bagging_ fraction':
—0.6944101829849761, 'bagging_freq': 2, 'min_child_samples': 47}. Best is trial 3
—with value: 0.9790209790209791.

Trial 21 pruned. Trial was pruned at iteration 9.

Trial 22 pruned. Trial was pruned at iteration 0.

(continues on next page)

6.2. Tutorial 45

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

Trial 23 pruned. Trial was pruned at iteration 0.
Trial 24 pruned. Trial was pruned at iteration 0.
Trial 25 pruned. Trial was pruned at iteration 1.
Trial 26 finished with value: 0.986013986013986 and parameters: {'bagging_fraction':
—0.7034498107027325, 'bagging_ freq': 3, 'min_child_samples': 24}. Best is trial 26,
—with value: 0.986013986013986.
Trial 27 pruned. Trial was pruned at iteration
Trial 28 pruned. Trial was pruned at iteration
Trial 29 pruned. Trial was pruned at iteration
Trial 30 pruned. Trial was pruned at iteration
Trial 31 pruned. Trial was pruned at iteration
Trial 32 finished with wvalue: 0.986013986013986 and parameters: {'bagging_ fraction':
—0.784473572818712, 'bagging_freq': 5, 'min_child_samples': 26}. Best is trial 26
—with value: 0.986013986013986.
Trial 33 pruned. Trial was pruned at iteration O
Trial 34 pruned. Trial was pruned at iteration 0
Trial 35 pruned. Trial was pruned at iteration 2
Trial 36 pruned. Trial was pruned at iteration 0.

0

0

0

O O O O O

Trial 37 pruned. Trial was pruned at iteration

Trial 38 pruned. Trial was pruned at iteration

Trial 39 pruned. Trial was pruned at iteration

Trial 40 pruned. Trial was pruned at iteration 0.

Trial 41 finished with wvalue: 0.9790209790209791 and parameters: {'bagging_fraction':
—0.6831898452426733, 'bagging_ freq': 2, 'min_child_samples': 46}. Best is trial 26,
—with value: 0.986013986013986.

Trial 42 pruned. Trial was pruned at iteration 0
Trial 43 pruned. Trial was pruned at iteration O
Trial 44 pruned. Trial was pruned at iteration O
Trial 45 pruned. Trial was pruned at iteration 0
Trial 46 pruned. Trial was pruned at iteration O
Trial 47 pruned. Trial was pruned at iteration O
Trial 48 pruned. Trial was pruned at iteration 0
Trial 49 pruned. Trial was pruned at iteration O
Trial 50 pruned. Trial was pruned at iteration O
Trial 51 pruned. Trial was pruned at iteration 0
Trial 52 pruned. Trial was pruned at iteration O
Trial 53 pruned. Trial was pruned at iteration O
Trial 54 pruned. Trial was pruned at iteration 0
Trial 55 pruned. Trial was pruned at iteration 0.
Trial 56 pruned. Trial was pruned at iteration 0.
Trial 57 pruned. Trial was pruned at iteration O
Trial 58 pruned. Trial was pruned at iteration O
Trial 59 pruned. Trial was pruned at iteration O
Trial 60 pruned. Trial was pruned at iteration 0
Trial 61 pruned. Trial was pruned at iteration O
Trial 62 pruned. Trial was pruned at iteration O
Trial 63 pruned. Trial was pruned at iteration O
Trial 64 pruned. Trial was pruned at iteration O
Trial 65 pruned. Trial was pruned at iteration O
Trial 66 pruned. Trial was pruned at iteration 0
Trial 67 pruned. Trial was pruned at iteration O
Trial 68 pruned. Trial was pruned at iteration O
Trial 69 pruned. Trial was pruned at iteration O
Trial 70 pruned. Trial was pruned at iteration O
Trial 71 finished with value: 0.965034965034965 and parameters: {'bagging_fraction':
—0.7673974059823012, 'bagging_freq': 6, 'min_child_samples': 21}. Best is trial 26,
—with value: 0.986013986013986.

(continues on next page)

46 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

Trial 72 pruned. Trial was pruned at iteration 0.

Trial 73 pruned. Trial was pruned at iteration 1.

Trial 74 finished with value: 0.993006993006993 and parameters: {'bagging_fraction':
—0.8007167664060137, 'bagging_freq': 6, 'min_child_samples': 10}. Best is trial 74
—with value: 0.993006993006993.

Trial 75 pruned. Trial was pruned at iteration 0.

Trial 76 finished with value: 0.986013986013986 and parameters: {'bagging_fraction':
—0.8108681697315372, 'bagging_ freq': 3, 'min_child_samples': 10}. Best is trial 74
—with value: 0.993006993006993.

Trial 77 finished with wvalue: 0.9790209790209791 and parameters: {'bagging_fraction':
—0.829171796994586, 'bagging_freq': 3, 'min_child_samples': 9}. Best is trial 74
—with value: 0.993006993006993.

Trial 78 pruned. Trial was pruned at iteration
Trial 79 pruned. Trial was pruned at iteration
Trial 80 pruned. Trial was pruned at iteration
Trial 81 pruned. Trial was pruned at iteration
Trial 82 pruned. Trial was pruned at iteration
Trial 83 finished with wvalue: 0.986013986013986 and parameters: {'bagging_ fraction':
—0.8299363069819753, 'bagging freq': 4, 'min_child_samples': 12}. Best is trial 74,
—with value: 0.993006993006993.

Trial 84 pruned. Trial was pruned at iteration
Trial 85 pruned. Trial was pruned at iteration
Trial 86 pruned. Trial was pruned at iteration
Trial 87 pruned. Trial was pruned at iteration
Trial 88 pruned. Trial was pruned at iteration
Trial 89 pruned. Trial was pruned at iteration
Trial 90 pruned. Trial was pruned at iteration
Trial 91 pruned. Trial was pruned at iteration
Trial 92 pruned. Trial was pruned at iteration
Trial 93 pruned. Trial was pruned at iteration
Trial 94 pruned. Trial was pruned at iteration
Trial 95 pruned. Trial was pruned at iteration
Trial 96 pruned. Trial was pruned at iteration
Trial 97 pruned. Trial was pruned at iteration
Trial 98 pruned. Trial was pruned at iteration
Trial 99 pruned. Trial was pruned at iteration
Trial 100 pruned. Trial was pruned at iteration O.
Trial 101 pruned. Trial was pruned at iteration 2.

O N O O O

O O O O O ONOOOOO O O O

Total running time of the script: (0 minutes 6.784 seconds)

Ask-and-Tell Interface
Optuna has an Ask-and-Tell interface, which provides a more flexible interface for hyperparameter optimization. This
tutorial explains three use-cases when the ask-and-tell interface is beneficial:

» Apply Optuna to an existing optimization problem with minimum modifications

* Define-and-Run

* Batch Optimization

6.2. Tutorial 47

Optuna Documentation, Release 2.8.0.dev0

Apply Optuna to an existing optimization problem with minimum modifications

Let’s consider the traditional supervised classification problem; you aim to maximize the validation accuracy. To do
80, you train LogisticRegression as a simple model.

import numpy as np

from sklearn.datasets import make_classification
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import train_test_split

import optuna

X, v = make_classification(n_features=10)
X_train, X_test, y_train, y_test = train_test_split (X, vy)

C =0.01

clf = LogisticRegression (C=C)

clf.fit (X_train, y_train)

val_accuracy = clf.score(X_test, y_test) # the objective

Then you try to optimize hyperparameters C and solver of the classifier by using optuna. When you introduce
optuna naively, you define an objective function such that it takes trial and calls suggest_* methods of
trial to sample the hyperparameters:

def objective(trial):
X, yv = make_classification(n_features=10)
X_train, X_test, y_train, y_test = train_test_split (X, vy)

C = trial.suggest_loguniform("C", 1le-7, 10.0)
solver = trial.suggest_categorical ("solver", ("lbfgs", "saga"))

clf = LogisticRegression (C=C, solver=solver)
clf.fit (X_train, y_train)

val_accuracy = clf.score(X_test, y_test)
return val_accuracy

study = optuna.create_study(direction="maximize™)
study.optimize (objective, n_trials=10)

This interface is not flexible enough. For example, if objective requires additional arguments other than trial,
you need to define a class as in How to define objective functions that have own arguments?. The ask-and-tell interface
provides a more flexible syntax to optimize hyperparameters. The following example is equivalent to the previous code
block.

study = optuna.create_study(direction="maximize")

n_trials = 10
for _ in range(n_trials):
trial = study.ask() # ‘trial’ is a ‘Trial' and not a ‘FrozenTrial' .

C = trial.suggest_loguniform("C", le-7, 10.0)
solver = trial.suggest_categorical ("solver", ("lbfgs", "saga"))

clf = LogisticRegression (C=C, solver=solver)

(continues on next page)

48 Chapter 6. Reference

../../faq.html#how-to-define-objective-functions-that-have-own-arguments

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

clf.fit(X_train, y_train)
val_accuracy = clf.score(X_test, y_test)

study.tell (trial, val_accuracy) # tell the pair of trial and objective value

The main difference is to use two methods: optuna.study.Study.ask () and optuna.study.Study.
tell (). optuna.study.Study.ask () creates a trial that can sample hyperparameters, and optuna. study.
Study.tell () finishes the trial by passing t rial and an objective value. You can apply Optuna’s hyperparameter
optimization to your original code without an ob jective function.

If you want to make your optimization faster with a pruner, you need to explicitly pass the state of trial to the argument
of optuna.study.Study.tell () method as follows:

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear _model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna

X, v = load_iris(return_X_y=True)

X_train, X_valid, y_train, y_valid = train_test_split (X, vy)
classes = np.unique (y)

n_train_iter = 100

define study with hyperband pruner.
study = optuna.create_study (
direction="maximize",
pruner=optuna.pruners.HyperbandPruner (
min_resource=1, max_resource=n_train_iter, reduction_factor=3

)y

for _ in range(20):
trial = study.ask()

alpha = trial.suggest_uniform("alpha", 0.0, 1.0)

clf = SGDClassifier (alpha=alpha)
pruned_trial = False

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report (intermediate_value, step)

if trial.should_prune():
pruned_trial = True
break

if pruned_trial:

study.tell (trial, state=optuna.trial.TrialState.PRUNED) # tell the pruned state
else:

score = clf.score(X_valid, y_valid)

study.tell (trial, score) # tell objective value

6.2. Tutorial 49

Optuna Documentation, Release 2.8.0.dev0

Note: optuna.study.Study.tell () method can take a trial number rather than the trial object. study.
tell (trial.number, y) isequivalentto study.tell (trial, vy).

Define-and-Run

The ask-and-tell interface supports both define-by-run and define-and-run APIs. This section shows the example of
the define-and-run API in addition to the define-by-run example above.

Define distributions for the hyperparameters before calling the optuna. study. Study.ask () method for define-
and-run API. For example,

distributions = {
"C": optuna.distributions.LogUniformDistribution(le-7, 10.0),
"solver": optuna.distributions.CategoricalDistribution(("lbfgs", "saga")),

Pass distributionsto optuna.study.Study.ask () method at each call. The retuned t rial contains the
suggested hyperparameters.

study = optuna.create_study(direction="maximize")
n_trials = 10
for _ in range(n_trials):
trial = study.ask(distributions) # pass the pre-defined distributions.

two hyperparameters are already sampled from the pre-defined distributions
C = trial.params["C"]
solver = trial.params|["solver"]

clf = LogisticRegression (C=C, solver=solver)
clf.fit (X_train, y_train)

val_accuracy = clf.score(X_test, y_test)

study.tell (trial, val_accuracy)

Batch Optimization

The ask-and-tell interface enables us to optimize a batched objective for faster optimization. For example, paralleliz-
able evaluation, operation over vectors, etc.

The following objective takes batched hyperparameters xs instead of a single hyperparameter and calculates the
objective over the full vector.

def batched_objective (xs: np.ndarray):
return xs *x 2 + 1

In the following example, the number of hyperparameters in a batch is 10, and batched_objective is evaluated
three times. Thus, the number of trials is 30. Note that you need to store either trial_ids or trial to call
optuna.study.Study.tell () method after the batched evaluations.

batch_size = 10
study = optuna.create_study ()

(continues on next page)

50 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

for _ in range(3):

create batch

trial_ids = []

samples = []

for _ in range (batch_size):
trial = study.ask()
trial_ids.append(trial.number)
x = trial.suggest_int ("x", -10, 10)
samples.append (x)

evaluate batched objective
samples = np.array (samples)
objectives = batched_objective (samples)

finish all trials in the batch
for trial_id, objective in zip(trial_ids, objectives):
study.tell (trial_id, objective)

Total running time of the script: (0 minutes 0.155 seconds)

Re-use the best values

In some cases, you may want to re-evaluate the objective function with the best hyperparameters again after the
hyperparameter optimization.

For example,

* You have found good hyperparameters with Optuna and want to run a similar objective function using the best
hyperparameters found so far to further analyze the results, or

* You have optimized with Optuna using a partial dataset to reduce training time. After the hyperparameter tuning,
you want to train the model using the whole dataset with the best hyperparameter values found.

best_trial provides an interface to re-evaluate the objective function with the current best hyperparameter values.

This tutorial shows an example of how to re-run a different objective function with the current best values, like the first
example above.

Investigating the best model further

Let’s consider a classical supervised classification problem with Optuna as follows:

from sklearn import metrics

from sklearn.datasets import make_classification
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import train_test_split

import optuna

def objective(trial):
X, y = make_classification(n_features=10, random_state=1)
X_train, X_test, y_train, y_test = train_test_split (X, y, random_state=1)

(continues on next page)

6.2. Tutorial 51

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

C = trial.suggest_loguniform("C", le-7, 10.0)

clf = LogisticRegression (C=C)
clf.fit (X_train, y_train)

return clf.score(X_test, y_test)

study = optuna.create_study(direction="maximize")
study.optimize (objective, n_trials=10)

print (study.best_trial.value) # Show the best value.

Out:

0.92

Suppose after the hyperparameter optimization, you want to calculate other evaluation metrics such as recall, precision,
and f1-score on the same dataset. You can define another objective function that shares most of the objective
function to reproduce the model with the best hyperparameters.

def detailed_objective(trial):
Use same code objective to reproduce the best model
X, vy = make_classification(n_features=10, random_state=1)
X_train, X_test, y_train, y_test = train_test_split (X, y, random_state=1)

C = trial.suggest_loguniform("C", 1le-7, 10.0)

clf = LogisticRegression (C=C)
clf.fit (X_train, y_train)

calculate more evaluation metrics
pred = clf.predict (X_test)

acc = metrics.accuracy_score (pred, y_test)

recall = metrics.recall_score(pred, y_test)
precision = metrics.precision_score (pred, y_test)
fl = metrics.fl_score(pred, y_test)

return acc, fl, recall, precision

Pass study.best_trial asthe argument of detailed_objective.

’detailed_objective(study.best_trial) # calculate acc, f1, recall, and precision

Out:

’(0.92, 0.9285714285714286, 0.9285714285714286, 0.9285714285714286)

52 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

The difference between best_trial and ordinal trials

This uses best_trial, which returns the best trial as a FrozenTrial. The FrozenTrial is different from
an active trial and behaves differently from Trial in some situations. For example, pruning does not work because
should_prune always returns False.

Total running time of the script: (0 minutes 0.056 seconds)

6.3 API Reference

6.3.1 optuna

The optuna module is primarily used as an alias for basic Optuna functionality coded in other modules. Currently,
two modules are aliased: (1) from optuna. study, functions regarding the Study lifecycle, and (2) from optuna.
except ions, the TrialPruned Exception raised when a trial is pruned.

optuna.create_study Create a new Study.

optuna.load_study Load the existing St udy that has the specified name.
optuna.delete_study Delete a St udy object.
optuna.get_all_study_summaries Get all history of studies stored in a specified storage.
optuna.TrialPruned Exception for pruned trials.

optuna.create_study

optuna.create_study (storage=None, sampler=None, pruner=None, study_name=None, direc-
tion=None, load_if _exists=False, *, directions=None)
Create a new Study.
Example
import optuna
def objective(trial):
x = trial.suggest_float ("x", 0, 10)
return x *x 2
study = optuna.create_study ()
study.optimize (objective, n_trials=3)
Parameters
* storage (Optional [Union[str, optuna.storages._base.

BaseStorage]]) — Database URL. If this argument is set to None, in-memory
storage is used, and the St udy will not be persistent.

Note:

When a database URL is passed, Optuna internally uses SQLAlchemy to handle
the database. Please refer to SQLAIchemy’s document for further details. If you

6.3. API Reference

53

https://docs.python.org/3/library/stdtypes.html#str
https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Optuna Documentation, Release 2.8.0.dev0

want to specify non-default options to SQLAlchemy Engine, you can instantiate
RDBStorage with your desired options and pass it to the storage argument in-
stead of a URL.

* sampler (Optional [optuna.samplers._base.BaseSampler]) — A sampler
object that implements background algorithm for value suggestion. If None is specified,
TPESampler is used during single-objective optimization and NSGAT T Sampler during
multi-objective optimization. See also samplers.

* pruner (Optional [optuna.pruners._base.BasePruner])— A pruner object
that decides early stopping of unpromising trials. If None is specified, MedianPruner is
used as the default. See also pruners.

* study_name (Optional[str]) — Study’s name. If this argument is set to None, a
unique name is generated automatically.

e direction (Optional [Union[str, optuna._study direction.
StudyDirection]])— Direction of optimization. Set minimi ze for minimization and
maximize for maximization. You can also pass the corresponding StudyDirection
object.

Note: If none of direction and directions are specified, the direction of the study is set to
“minimize”.

* load_if_ exists (bool) — Flag to control the behavior to handle a conflict of study
names. In the case where a study named study_name already exists in the storage, a
DuplicatedStudyErrorisraisedif load_if_ existsissettoFalse. Otherwise,
the creation of the study is skipped, and the existing one is returned.

* directions (Optional [Sequence[Union[str, optuna.
_study_direction.StudyDirection]]]) — A sequence of directions during
multi-objective optimization.

Returns A Study object.

Raises ValueError —If the length of directions is zero. Or, if direct ion is neither ‘mini-
mize’ nor ‘maximize’ when it is a string. Or, if the element of direct ions is neither minimize
nor maximize. Or, if both direction and directions are specified.

Return type optuna.study.Study

See also:
optuna.create_study () is an alias of optuna.study.create_study ().
optuna.load_study

optuna.load_study (study_name, storage, sampler=None, pruner=None)
Load the existing St udy that has the specified name.

54 Chapter 6. Reference

https://docs.sqlalchemy.org/en/latest/core/engines.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", 0, 10)
return x *x*x 2

study = optuna.create_study (storage="sqglite:///example.db", study_name="my_study")
study.optimize (objective, n_trials=3)

loaded_study = optuna.load_study (study_name="my_study", storage="sglite:///
—example.db")
assert len(loaded_study.trials) == len(study.trials)

Parameters
* study_name (st r)— Study’s name. Each study has a unique name as an identifier.

* storage (Union[str, optuna.storages._base.BaseStorage]) -
Database URL such as sglite:///example.db. Please see also the documen-
tation of create_study () for further details.

* sampler (Optional [optuna.samplers._base.BaseSampler])— A sampler
object that implements background algorithm for value suggestion. If None is specified,
TPESampler is used as the default. See also samplers.

* pruner (Optional [optuna.pruners._base.BasePruner])— A pruner object
that decides early stopping of unpromising trials. If None is specified, MedianPruner is
used as the default. See also pruners.

Return type optuna.study.Study

See also:

optuna.load study () is analias of optuna.study. load study ().

optuna.delete_study

optuna.delete_study (study_name, storage)

Delete a St udy object.

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x — 2) #*x 2

study = optuna.create_study (study_name="example-study", storage="sqglite:///
—example.db")

(continues on next page)

6.3.

API Reference 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

study.optimize (objective, n_trials=3)

optuna.delete_study (study_name="example-study", storage="sqglite:///example.db")

Parameters
* study_name (str) - Study’s name.

* storage (Union[str, optuna.storages._base.BaseStorage]) -
Database URL such as sglite:///example.db. Please see also the documen-
tation of create_study () for further details.

Return type None
See also:
optuna.delete_study () is an alias of optuna.study.delete_study ().
optuna.get_all_study summaries

optuna.get_all_study summaries (sftorage)
Get all history of studies stored in a specified storage.

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x — 2) #*x 2

study = optuna.create_study (study_name="example-study", storage="sqglite:///
—example.db")
study.optimize (objective, n_trials=3)

study_summaries = optuna.study.get_all_study_summaries (storage="sqglite:///example.
—db")

assert len(study_summaries) == 1

study_summary = study_summaries[0]

assert study_summary.study_name == "example-study"

Parameters storage (Union[str, optuna.storages._base.BaseStorage]) -
Database URL such as sglite:///example.db. Please see also the documentation of
create_study () for further details.

Returns List of study history summarized as St udySummary objects.

Return type List[optuna._study_summary.StudySummary]

56 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

See also:

optuna.get_all_ study_summaries () is an
get_all_study_summaries ().

optuna.TrialPruned

exception optuna.TrialPruned
Exception for pruned trials.

alias

of

optuna.study.

This error tells a trainer that the current Tr1ial was pruned. It is supposed to be raised after opt una.trial.

Trial.should prune () as shown in the following example.

See also:

optuna.TrialPrunedis an alias of optuna.exceptions.TrialPruned.

Example

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear _model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna
X, y = load_iris(return_X_y=True)
classes = np.unique (y)
def objective(trial):
alpha trial.suggest_float ("alpha", 0.0, 1.0)

clf = SGDClassifier (alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):

trial.report (intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize™)
study.optimize (objective, n_trials=20)

X_train, X_valid, y_train, y_valid = train_test_split (X, vy)

clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)

6.3. API Reference

57

Optuna Documentation, Release 2.8.0.dev0

6.3.2 optuna.cli

The c1i module implements Optuna’s command-line functionality using the cliff framework.

optuna
[--version]
[-v | —q]
[--log-file LOG_FILE]
[-—debug]
[-—storage STORAGE]
——version

show program’s version number and exit

-v, ——verbose
Increase verbosity of output. Can be repeated.

-q, —-—-quiet
Suppress output except warnings and errors.

——log-file <LOG_FILE>

Specify a file to log output. Disabled by default.

——-debug
Show tracebacks on errors.

——storage <STORAGE>
DB URL. (e.g. sqlite:///example.db)

create-study

Create a new study.

optuna create-study
[-—study—name STUDY_NAME]
[-—direction {minimize,maximize}]
[-—skip-if-exists]

—--study—-name <STUDY_NAME>

A human-readable name of a study to distinguish it from others.

——direction <DIRECTION>

Set direction of optimization to a new study. Set ‘minimize’ for minimization and ‘maximize’ for maximization.

—-skip-if-exists

If specified, the creation of the study is skipped without any error when the study name is duplicated.

This command is provided by the optuna plugin.

58

Chapter 6. Reference

https://docs.openstack.org/cliff/latest/index.html

Optuna Documentation, Release 2.8.0.dev0

dashboard

Launch web dashboard (beta).

This feature is deprecated since version 2.7.0. Please use optuna-dashboard instead.

optuna dashboard
[-—study STUDY]
[-—study—name STUDY_NAME]
[-—out OUT]
[-—allow-websocket-origin BOKEH_ALLOW_WEBSOCKET_ORIGINS]

—-—-study <STUDY>
This argument is deprecated. Use —study-name instead.

——study—-name <STUDY_NAME>
The name of the study to show on the dashboard.

-—-out <OUT>, =—-o <O0UT>

Output HTML file path. If it is not given, a HTTP server starts and the dashboard is served.

—-allow-websocket—-origin <BOKEH_ALLOW_WEBSOCKET_ORIGINS>

Allow websocket access from the specified host(s).Internally, it is used as the value of bokeh’s
—allow-websocket-origin option. Please refer to https://bokeh.pydata.org/en/latest/docs/reference/command/

subcommands/serve.html for more details.

This command is provided by the optuna plugin.

delete-study

Delete a specified study.

optuna delete-study [--study-name STUDY_NAME]

—--study—-name <STUDY_NAME>
The name of the study to delete.

This command is provided by the optuna plugin.

storage upgrade

Upgrade the schema of a storage.

optuna storage upgrade

This command is provided by the optuna plugin.

6.3. API Reference

59

https://github.com/optuna/optuna-dashboard
https://bokeh.pydata.org/en/latest/docs/reference/command/subcommands/serve.html
https://bokeh.pydata.org/en/latest/docs/reference/command/subcommands/serve.html

Optuna Documentation, Release 2.8.0.dev0

studies

Show a list of studies.

optuna studies
[-f {csv, json,table,value,yaml}]
—-c COLUMN |
—-—quote {all,minimal,none, nonnumeric}]
—--noindent]
—--max-width <integer>]
——fit-width]
——print-empty]
——sort—-column SORT_COLUMN]
—-—-sort-ascending | —--sort-descending]

[
[
[
[
[
[
[
[

-f <FORMATTER>, --format <FORMATTER>
the output format, defaults to table

—-c COLUMN, =-column COLUMN
specify the column(s) to include, can be repeated to show multiple columns

——quote <QUOTE_MODE>
when to include quotes, defaults to nonnumeric

——noindent
whether to disable indenting the JSON

—--max-width <integer>

Maximum display width, <1 to disable. You can also use the CLIFF_MAX_TERM_WIDTH environment

variable, but the parameter takes precedence.

——fit-width

Fit the table to the display width. Implied if —max-width greater than 0. Set the environment variable

CLIFF_FIT_WIDTH=1 to always enable

——print-empty
Print empty table if there is no data to show.

——sort—-column SORT_COLUMN

specify the column(s) to sort the data (columns specified first have a priority, non-existing columns are ignored),

can be repeated

——sort-ascending
sort the column(s) in ascending order

—-sort-descending
sort the column(s) in descending order

This command is provided by the optuna plugin.

60

Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

study optimize

Start optimization of a study. Deprecated since version 2.0.0.

optuna study optimize
[--n-trials N_TRIALS]
[-——timeout TIMEOUT]
[-—n-jobs N_JOBS]
[-—-study STUDY]
[-—study—name STUDY_NAME]
file
method

—-n-trials <N_TRIALS>

The number of trials. If this argument is not given, as many trials run as possible.

——timeout <TIMEOUT>

Stop study after the given number of second(s). If this argument is not given, as many trials run as possible.

——n—jobs <N_JOBS>

The number of parallel jobs. If this argument is set to -1, the number is set to CPU counts.

—--study <STUDY>

This argument is deprecated. Use —study-name instead.

——study—-name <STUDY_NAME>
The name of the study to start optimization on.

file
Python script file where the objective function resides.

method
The method name of the objective function.

This command is provided by the optuna plugin.

study set-user-attr

Set a user attribute to a study.

optuna study set-user-attr
[-—study STUDY]
[-—study—name STUDY_NAME]
—-—key KEY
—--value VALUE

—--study <STUDY>

This argument is deprecated. Use —study-name instead.

——study—-name <STUDY_NAME>
The name of the study to set the user attribute to.

—--key <KEY>, -k <KEY>
Key of the user attribute.

—--value <VALUE>, -v <VALUE>
Value to be set.

This command is provided by the optuna plugin.

6.3. API Reference

61

Optuna Documentation, Release 2.8.0.dev0

6.3.3 optuna.distributions

The distributions module defines various classes representing probability distributions, mainly used to sug-
gest initial hyperparameter values for an optimization trial. Distribution classes inherit from a library-internal
BaseDistribution, and is initialized with specific parameters, such as the 1ow and high endpoints for a
UniformDistribution

Optuna users should not use distribution classes directly, but instead use utility functions provided by Trial such as
suggest_int ().

optuna.distributions. A uniform distribution in the linear domain.
UniformDistribution

optuna.distributions. A uniform distribution in the log domain.
LogUniformDistribution

optuna.distributions. A discretized uniform distribution in the linear domain.
DiscreteUniformDistribution

optuna.distributions. A uniform distribution on integers.
IntUniformDistribution

optuna.distributions. A uniform distribution on integers in the log domain.
IntLogUniformDistribution

optuna.distributions. A categorical distribution.
CategoricalDistribution

optuna.distributions. Serialize a distribution to JSON format.
distribution _to_json

optuna.distributions. Deserialize a distribution in JSON format.
json_to_distribution

optuna.distributions. A function to check compatibility of two distributions.

check_distribution_compatibility

optuna.distributions.UniformDistribution
class optuna.distributions.UniformDistribution (low, high)
A uniform distribution in the linear domain.
This object is instantiated by suggest_uniform (), and passed to samplers in general.

low
Lower endpoint of the range of the distribution. 1ow is included in the range.

high
Upper endpoint of the range of the distribution. high is included from the range.

Raises ValueError —If 1ow value is larger than high value.

62 Chapter 6. Reference

https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_reprConvert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr{Convert external representation of a parameter value
into internal representation.

single ()
Test whether the range of this distribution contains just a single value.

Returns True if the range of this distribution contains just a single value, otherwise False.
Return type bool

to_external_repr (param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters param_value_in_internal_repr (float) — Optuna’s internal represen-
tation of a parameter value.

Returns Optuna’s external representation of a parameter value.
Return type Any

to_internal_repr (param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters param_value_in_external_repr (Any) — Optuna’s external representa-
tion of a parameter value.

Returns Optuna’s internal representation of a parameter value.

Return type float

optuna.distributions.LogUniformDistribution

class optuna.distributions.LogUniformDistribution (low, high)
A uniform distribution in the log domain.

This object is instantiated by suggest_float () with log=True and suggest_loguniform(), and
passed to samplers in general.

low

Lower endpoint of the range of the distribution. 1ow is included in the range.
high

Upper endpoint of the range of the distribution. high is included from the range.

Raises ValueError — If low value is larger than high value, or 1ow value is smaller than or
equal to 0.

6.3. API Reference 63

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Methods

Test whether the range of this distribution contains
just a single value.
to_external_repr(param_value_in_internal_reprConvert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr{Convert external representation of a parameter value
into internal representation.

single()

single ()
Test whether the range of this distribution contains just a single value.

Returns True if the range of this distribution contains just a single value, otherwise False.

Return type bool

to_external_repr (param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters param_value_in_internal_repr (float) — Optuna’s internal represen-
tation of a parameter value.

Returns Optuna’s external representation of a parameter value.
Return type Any

to_internal_repr (param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters param_value_in_external_repr (Any) — Optuna’s external representa-
tion of a parameter value.

Returns Optuna’s internal representation of a parameter value.

Return type float

optuna.distributions.DiscreteUniformDistribution

class optuna.distributions.DiscreteUniformDistribution (low, high, q)
A discretized uniform distribution in the linear domain.

This object is instantiated by suggest_uniform/() with step argument and
suggest_discrete_uniform(), and passed to samplers in general.

Note: If the range [low, high] is not divisible by g, high will be replaced with the maximum of kq + low < high,
where k is an integer.

low
Lower endpoint of the range of the distribution. 1ow is included in the range.

high
Upper endpoint of the range of the distribution. high is included in the range.

q
A discretization step.

Raises ValueError —If 1ow value is larger than high value.

64 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_reprConvert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr{Convert external representation of a parameter value
into internal representation.

single ()
Test whether the range of this distribution contains just a single value.

Returns True if the range of this distribution contains just a single value, otherwise False.
Return type bool

to_external_repr (param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters param_value_in_internal_repr (float) — Optuna’s internal represen-
tation of a parameter value.

Returns Optuna’s external representation of a parameter value.
Return type Any

to_internal_repr (param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters param_value_in_external_repr (Any) — Optuna’s external representa-
tion of a parameter value.

Returns Optuna’s internal representation of a parameter value.

Return type float

optuna.distributions.IntUniformDistribution

class optuna.distributions.IntUniformDistribution (low, high, step=1)
A uniform distribution on integers.

This object is instantiated by suggest_int (), and passed to samplers in general.

Note: If the range [low, high] is not divisible by step, high will be replaced with the maximum of k X step +
low < high, where k is an integer.

low

Lower endpoint of the range of the distribution. 1ow is included in the range.
high

Upper endpoint of the range of the distribution. high is included in the range.

step
A step for spacing between values.

Raises ValueError — If 1ow value is larger than high value, or step value is smaller or equal
to 0.

6.3. API Reference 65

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_reprConvert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repr{Convert external representation of a parameter value
into internal representation.

single ()
Test whether the range of this distribution contains just a single value.

Returns True if the range of this distribution contains just a single value, otherwise False.
Return type bool

to_external_repr (param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters param_value_in_internal_repr (float) — Optuna’s internal represen-
tation of a parameter value.

Returns Optuna’s external representation of a parameter value.
Return type int

to_internal_repr (param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters param_value_in_external_repr (int) — Optuna’s external representa-
tion of a parameter value.

Returns Optuna’s internal representation of a parameter value.

Return type float

optuna.distributions.IntLogUniformDistribution

class optuna.distributions.IntLogUniformDistribution (low, high, step=1)
A uniform distribution on integers in the log domain.
This object is instantiated by suggest_int (), and passed to samplers in general.

low

Lower endpoint of the range of the distribution. 1ow is included in the range.
high

Upper endpoint of the range of the distribution. high is included in the range.

step
A step for spacing between values.

Warning: Deprecated in v2.0.0. step argument will be removed in the future. The removal of this
feature is currently scheduled for v4.0.0, but this schedule is subject to change.

Samplers and other components in Optuna relying on this distribution will ignore this value and assume
that step is always 1. User-defined samplers may continue to use other values besides 1 during the
deprecation.

66 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

Raises ValueError —If 1ow value is larger than high value, or 1ow value is smaller than 1.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external_repr(param_value_in_internal_reprConvert internal representation of a parameter value
into external representation.

to_internal repr(param_value_in_external_reprConvert external representation of a parameter value
into internal representation.

Attributes

Step

single ()
Test whether the range of this distribution contains just a single value.

Returns True if the range of this distribution contains just a single value, otherwise False.
Return type bool

to_external_repr (param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters param_value_in_internal_repr (float) — Optuna’s internal represen-
tation of a parameter value.

Returns Optuna’s external representation of a parameter value.
Return type int

to_internal_repr (param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters param_value_in_external_repr (int) — Optuna’s external representa-
tion of a parameter value.

Returns Optuna’s internal representation of a parameter value.

Return type float

optuna.distributions.CategoricalDistribution
class optuna.distributions.CategoricalDistribution (choices)
A categorical distribution.
This object is instantiated by suggest_categorical (), and passed to samplers in general.

Parameters choices — Parameter value candidates.

Note: Not all types are guaranteed to be compatible with all storages. It is recommended to restrict the types

of the choices to None, bool, int, float and str.

6.3. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

choices
Parameter value candidates.

Raises ValueError —If choices do not contain any elements.

Methods

single() Test whether the range of this distribution contains
just a single value.

to_external repr(param_value_in_internal_reprConvert internal representation of a parameter value
into external representation.

to_internal_repr(param_value_in_external_repriConvert external representation of a parameter value
into internal representation.

single ()
Test whether the range of this distribution contains just a single value.

Returns True if the range of this distribution contains just a single value, otherwise False.
Return type bool

to_external_repr (param_value_in_internal_repr)
Convert internal representation of a parameter value into external representation.

Parameters param_value_in_internal_repr (float) — Optuna’s internal represen-
tation of a parameter value.

Returns Optuna’s external representation of a parameter value.
Return type Union[None, bool, int, float, str]

to_internal_repr (param_value_in_external_repr)
Convert external representation of a parameter value into internal representation.

Parameters param_value_in_external_repr (Union[None, bool, int,
float, str])—Optuna’s external representation of a parameter value.

Returns Optuna’s internal representation of a parameter value.

Return type float

optuna.distributions.distribution_to_json
optuna.distributions.distribution_to_json (dist)
Serialize a distribution to JSON format.

Parameters dist (optuna.distributions.BaseDistribution)— A distribution to be
serialized.

Returns A JSON string of a given distribution.

Return type str

68 Chapter 6. Reference

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

optuna.distributions.json_to_distribution
optuna.distributions.json_to_distribution (json_str)
Deserialize a distribution in JSON format.
Parameters json_str (str)— A JSON-serialized distribution.
Returns A deserialized distribution.
Raises ValueError — If the unknown class is specified.

Return type optuna.distributions.BaseDistribution

optuna.distributions.check_distribution_compatibility
optuna.distributions.check_distribution compatibility (dist_old, dist_new)
A function to check compatibility of two distributions.
Note that this method is not supposed to be called by library users.
Parameters

* dist_old (optuna.distributions.BaseDistribution)— A distribution pre-
viously recorded in storage.

e dist_new (optuna.distributions.BaseDistribution) — A distribution
newly added to storage.

Returns True denotes given distributions are compatible. Otherwise, they are not.

Raises ValueError - If different distribution kinds are set to dist_old and
dist_new, or dist_old.choices doesn’t match dist_new.choices for
CategoricalDistribution.

Return type None

6.3.4 optuna.exceptions

The exceptions module defines Optuna-specific exceptions deriving from a base OptunaError class. Of
special importance for library users is the TrialPruned exception to be raised if optuna.trial.Trial.
should_prune () returns True for a trial that should be pruned.

optuna.exceptions.OptunaError Base class for Optuna specific errors.
optuna.exceptions.TrialPruned Exception for pruned trials.
optuna.exceptions.CLIUsageError Exception for CLI.
optuna.exceptions. Exception for storage operation.
StoragelnternalError

optuna.exceptions. Exception for a duplicated study name.

DuplicatedStudyError

6.3. API Reference 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.exceptions.OptunaError

exception optuna.exceptions.OptunaError
Base class for Optuna specific errors.

optuna.exceptions.TrialPruned

exception optuna.exceptions.TrialPruned
Exception for pruned trials.

This error tells a trainer that the current Trial was pruned. It is supposed to be raised after optuna.trial.

Trial.should prune () as shown in the following example.

See also:

optuna.TrialPrunedis an alias of optuna.exceptions.TrialPruned.

Example

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna

X, vy = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, vy)
classes = np.unique (y)

def objective(trial):
alpha = trial.suggest_float ("alpha", 0.0, 1.0)
clf = SGDClassifier (alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report (intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize™)
study.optimize (objective, n_trials=20)

70

Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

optuna.exceptions.CLIUsageError
exception optuna.exceptions.CLIUsageError
Exception for CLI.

CLI raises this exception when it receives invalid configuration.

optuna.exceptions.StoragelnternalError
exception optuna.exceptions.StorageInternalError
Exception for storage operation.

This error is raised when an operation failed in backend DB of storage.

optuna.exceptions.DuplicatedStudyError

exception optuna.exceptions.DuplicatedStudyError
Exception for a duplicated study name.

This error is raised when a specified study name already exists in the storage.

6.3.5 optuna.importance

The importance module provides functionality for evaluating hyperparameter importances based on completed
trials in a given study. The utility function get_param importances () takes a Study and optional evalua-
tor as two of its inputs. The evaluator must derive from BaseImportanceEvaluator, and is initialized as a
FanovalImportanceEvaluator by default when not passed in. Users implementing custom evaluators should
refer to either FanovalImportanceEvaluator or MeanDecreaseImpurityImportanceEvaluator as
a guide, paying close attention to the format of the return value from the Evaluator’s evaluate () function.

optuna.importance. Evaluate parameter importances based on completed tri-
get_param_importances als in the given study.

optuna.importance. fANOVA importance evaluator.
FanovalmportanceEvaluator

optuna.importance. Mean Decrease Impurity (MDI) parameter importance

MeanDecreaseImpurityImportanceEvaluatorevaluator.

optuna.importance.get_param_importances

optuna.importance.get_param_ importances (study, * evaluator=None, params=None, tar-

get=None)
Evaluate parameter importances based on completed trials in the given study.

The parameter importances are returned as a dictionary where the keys consist of parameter names and their
values importances. The importances are represented by floating point numbers that sum to 1.0 over the entire
dictionary. The higher the value, the more important. The returned dictionary is of type collections.
OrderedDict and is ordered by its values in a descending order.

If params is None, all parameter that are present in all of the completed trials are assessed. This implies
that conditional parameters will be excluded from the evaluation. To assess the importances of conditional
parameters, a 1 ist of parameter names can be specified via params. If specified, only completed trials that
contain all of the parameters will be considered. If no such trials are found, an error will be raised.

6.3. API Reference 71

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

Optuna Documentation, Release 2.8.0.dev0

If the given study does not contain completed trials, an error will be raised.

Note: If params is specified as an empty list, an empty dictionary is returned.

See also:

See plot_param_importances () to plot importances.

Parameters

* study (optuna.study.Study)— An optimized study.

* evaluator (Optional [optuna.importance._base.
BaseImportanceEvaluator]) — An importance evaluator object that spec-
ifies which algorithm to base the importance assessment on. Defaults to

FanovalmportanceEvaluator.

* params (Optional [List [str]])— A list of names of parameters to assess. If None,
all parameters that are present in all of the completed trials are assessed.

* target (Optional[Callable([[optuna.trial._frozen.FrozenTrial],
float]]) — A function to specify the value to evaluate importances. If it is None and
study is being used for single-objective optimization, the objective values are used.

Note: Specify this argument if study is being used for multi-objective optimization.

Returns An collections.OrderedDict where the keys are parameter names and the values
are assessed importances.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type Dict[str, float]

optuna.importance.FanovalmportanceEvaluator

class optuna.importance.FanovaImportanceEvaluator (¥, n_trees=64, max_depth=64,

seed=None)
fANOVA importance evaluator.

Implements the fANOVA hyperparameter importance evaluation algorithm in An Efficient Approach for As-
sessing Hyperparameter Importance.

Given a study, fANOVA fits a random forest regression model that predicts the objective value given a parameter
configuration. The more accurate this model is, the more reliable the importances assessed by this class are.

Note: Requires the sklearn Python package.

Note: Pairwise and higher order importances are not supported through this class. They can be computed using
_Fanova directly but is not recommended as interfaces may change without prior notice.

72 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://proceedings.mlr.press/v32/hutter14.html
http://proceedings.mlr.press/v32/hutter14.html
https://github.com/scikit-learn/scikit-learn

Optuna Documentation, Release 2.8.0.dev0

Note: The performance of fANOVA depends on the prediction performance of the underlying random forest
model. In order to obtain high prediction performance, it is necessary to cover a wide range of the hyperparam-
eter search space. It is recommended to use an exploration-oriented sampler such as RandomSampler.

Note: For how to cite the original work, please refer to https://automl.github.io/fanova/cite.html.

Parameters
e n_trees — The number of trees in the forest.
* max_depth — The maximum depth of the trees in the forest.

* seed — Controls the randomness of the forest. For deterministic behavior, specify a value
other than None.

Methods

evaluate(study[, params, target]) Evaluate parameter importances based on completed
trials in the given study.

evaluate (study, params=None, *, target=None)
Evaluate parameter importances based on completed trials in the given study.

Note: This method is not meant to be called by library users.

See also:
Please refer to get_param importances () for how a concrete evaluator should implement this
method.
Parameters
e study (optuna.study.Study)— An optimized study.

* params (Optional[List[str]]) — A list of names of parameters to assess. If
None, all parameters that are present in all of the completed trials are assessed.

* target (Optional[Callable[[optuna.trial._frozen.
FrozenTrial], float]])— A function to specify the value to evaluate importances.
If it is None and study is being used for single-objective optimization, the objective
values are used.

Note: Specify this argument if study is being used for multi-objective optimization.

Returns An collections.OrderedDict where the keys are parameter names and the val-
ues are assessed importances.

Raises ValueError —If target is None and study is being used for multi-objective opti-
mization.

Return type Dict[str, float]

6.3. API Reference 73

https://automl.github.io/fanova/cite.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

optuna.importance.MeanDecreaselmpuritylmportanceEvaluator

class optuna.importance.MeanDecreaseImpurityImportanceEvaluator (*, n_trees=64,
max_depth=64,
)) seed=None)
Mean Decrease Impurity (MDI) parameter importance evaluator.

This evaluator fits a random forest that predicts objective values given hyperparameter configurations. Feature
importances are then computed using MDI.

Note: This evaluator requires the sklean Python package and is based on
sklearn.ensemble.RandomForestClassifier.feature_importances_.

Parameters
e n_trees — Number of trees in the random forest.
* max_depth — The maximum depth of each tree in the random forest.

¢ seed - Seed for the random forest.

Methods

evaluate(study[, params, target]) Evaluate parameter importances based on completed
trials in the given study.

evaluate (study, params=None, *, target=None)
Evaluate parameter importances based on completed trials in the given study.

Note: This method is not meant to be called by library users.

See also:

Please refer to get_param importances () for how a concrete evaluator should implement this
method.

Parameters
e study (optuna.study.Study)— An optimized study.

e params (Optional [List[str]]) — A list of names of parameters to assess. If
None, all parameters that are present in all of the completed trials are assessed.

* target (Optional[Callable[[optuna.trial._frozen.
FrozenTrial], float]])— A function to specify the value to evaluate importances.
If it is None and study is being used for single-objective optimization, the objective
values are used.

Note: Specify this argument if study is being used for multi-objective optimization.

Returns An collections.OrderedDict where the keys are parameter names and the val-
ues are assessed importances.

74 Chapter 6. Reference

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_importances_
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.OrderedDict

Optuna Documentation, Release 2.8.0.dev0

Raises ValueError —If target is None and study is being used for multi-objective opti-
mization.

Return type Dict[str, float]

6.3.6 optuna.integration

The integration module contains classes used to integrate Optuna with external machine learning frameworks.

For most of the ML frameworks supported by Optuna, the corresponding Optuna integration class serves only to
implement a callback object and functions, compliant with the framework’s specific callback API, to be called with
each intermediate step in the model training. The functionality implemented in these callbacks across the different ML
frameworks includes:

(1) Reporting intermediate model scores back to the Optuna trial using optuna.trial.report (),

(2) According to the results of optuna.trial.Trial.should_prune (), pruning the current model by rais-
ing optuna.TrialPruned (), and

(3) Reporting intermediate Optuna data such as the current trial number back to the framework, as done in
MLflowCallback.

For scikit-learn, an integrated OptunaSearchCV estimator is available that combines scikit-learn BaseEstimator
functionality with access to a class-level Study object.

AllenNLP
optuna.integration.AllenNLPExecutor AllenNLP extension to use optuna with Jsonnet config
file.
optuna.integration.allennlp. Save JSON config file after updating with parameters
dump_best_config from the best trial in the study.
optuna.integration. AllenNLP callback to prune unpromising trials.

AllenNLPPruningCallback

optuna.integration.AllenNLPExecutor

class optuna.integration.AllenNLPExecutor (frial, config_file, serialization_dir, met-
rics='best_validation_accuracy’, * in-
clude_package=None, force=False,
file_friendly_logging=False)
AllenNLP extension to use optuna with Jsonnet config file.

This feature is experimental since AllenNLP major release will come soon. The interface may change without
prior notice to correspond to the update.

See the examples of objective function.

You can also see the tutorial of our AllenNLP integration on AllenNLP Guide.

Note: From Optuna v2.1.0, users have to cast their parameters by using methods in Jsonnet. Call std.
parselInt forinteger, or std.parsedJson for floating point. Please see the example configuration.

6.3. API Reference 75

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/blob/master/examples/allennlp/allennlp_jsonnet.py
https://guide.allennlp.org/hyperparameter-optimization
https://github.com/optuna/optuna/blob/master/examples/allennlp/classifier.jsonnet

Optuna Documentation, Release 2.8.0.dev0

Note: In AllenNLPExecutor, you can pass parameters to AllenNLP by either defining a search space
using Optuna suggest methods or setting environment variables just like AllenNLP CLI. If a value is set in both
a search space in Optuna and the environment variables, the executor will use the value specified in the search
space in Optuna.

Parameters
* trial - A Trial corresponding to the current evaluation of the objective function.

* config_file - Config file for AllenNLP. Hyperparameters should be masked with std.
extVar. Please refer to the config example.

* serialization_dir — A path which model weights and logs are saved.
* metrics — An evaluation metric for the result of objective.
* force - If True, an executor overwrites the output directory if it exists.

* file friendly_ logging-If True, tqdm status is printed on separate lines and slows
tqdm refresh rate.

* include_package — Additional packages to include. For more information, please see
AllenNLP documentation.

Note: Added in v1.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

Methods

run() Train a model using AllenNLP.

run ()
Train a model using AllenNLP.

Return type float

optuna.integration.allennlp.dump_best_config

optuna.integration.allennlp.dump_best_config (input_config_file, output_config_file,
study)
Save JSON config file after updating with parameters from the best trial in the study.
Parameters
* input_config file (str) — Input Jsonnet config file wused with
AllenNLPExecutor.

* output_config file (str) - Output JSON config file.

e study (optuna.study.Study) — Instance of Study. Note that opt imize () must
have been called.

Return type None

76 Chapter 6. Reference

https://github.com/allenai/allentune/blob/master/examples/classifier.jsonnet
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.allennlp.org/master/api/commands/train/
https://github.com/optuna/optuna/releases/tag/v1.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.integration.AllenNLPPruningCallback

class optuna.integration.AllenNLPPruningCallback (trial=None, monitor=None)
AllenNLP callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes a metric.

You can also see the tutorial of our AllenNLP integration on AllenNLP Guide.

Note: When A1 lenNLPPruningCallback is instantiated in Python script, trial and monitor are manda-
tory.

On the other hand, when A1 lenNLPPruningCallback is used with A1 lenNLPExecutor, trial and
monitor would be None. A1 lenNLPExecutor sets environment variables for a study name, trial id, mon-
itor, and storage. Then A1 1enNLPPruningCallback loads them to restore trial and monitor.

Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* monitor — An evaluation metric for pruning, e.g. validation_loss or
validation_accuracy.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

Methods
on__epoch(trainer, metrics, epoch[, is_primary]) Check if a training reaches saturation.
register(*args, **kwargs) Stub method for TrainerCallback.register.

on_epoch (trainer, metrics, epoch, is_primary=True, **kwargs)
Check if a training reaches saturation.

Parameters
e trainer (GradientDescentTrainer)— AllenNLP’s trainer
* metrics (Dict[str, Any])- Dictionary of metrics.
* epoch (int)— Number of current epoch.
* is_primary (bool) — A flag for AllenNLP internal.
* kwargs (Any) —
Return type None

classmethod register (*args, **kwargs)
Stub method for TrainerCallback.register.

This method has the same signature as Registrable.register in AllenNLP.
Parameters

* args (Any) -

6.3. API Reference 77

https://github.com/optuna/optuna/blob/master/examples/allennlp/allennlp_simple.py
https://guide.allennlp.org/hyperparameter-optimization
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.allennlp.org/master/api/common/registrable/#registrable

Optuna Documentation, Release 2.8.0.dev0

* kwargs (Any) —
Return type Callable

BoTorch

optuna.integration.BoTorchSampler A sampler that uses BoTorch, a Bayesian optimization
library built on top of PyTorch.

optuna.integration.botorch. Quasi MC-based batch Expected Improvement (qEI).
gei_candidates_func
optuna.integration.botorch. Quasi MC-based batch Expected Hypervolume Im-
gehvi_candidates_func provement (QEHVI).
optuna.integration.botorch. Quasi MC-based extended ParEGO (qParEGO) for con-
gparego_candidates_func strained multi-objective optimization.

optuna.integration.BoTorchSampler

class optuna.integration.BoTorchSampler (*, candidates_func=None, con-

straints_func=None, n_startup_trials=10, in-
dependent_sampler=None)
A sampler that uses BoTorch, a Bayesian optimization library built on top of PyTorch.

This sampler allows using BoTorch’s optimization algorithms from Optuna to suggest parameter configurations.
Parameters are transformed to continuous space and passed to BoTorch, and then transformed back to Optuna’s
representations. Categorical parameters are one-hot encoded.

See also:
See an example how to use the sampler.
See also:

See the BoTorch homepage for details and for how to implement your own candidates_func.

Note: An instance of this sampler should be not used with different studies when used with constraints. Instead,
a new instance should be created for each new study. The reason for this is that the sampler is stateful keeping
all the computed constraints.

Parameters

* candidates_func — An optional function that suggests the next candidates. It must
take the training data, the objectives, the constraints, the search space bounds and return
the next candidates. The arguments are of type torch.Tensor. The return value must
be a torch.Tensor. However, if constraints_func is omitted, constraints will be
None. For any constraints that failed to compute, the tensor will contain NaN.

If omitted, is determined automatically based on the number of objectives. If the number of
objectives is one, Quasi MC-based batch Expected Improvement (qEI) is used. If the num-
ber of objectives is larger than one but smaller than four, Quasi MC-based batch Expected
Hypervolume Improvement (QEHVI) is used. Otherwise, for larger number of objectives,
the faster Quasi MC-based extended ParEGO (qParEGO) is used.

The function should assume maximization of the objective.

78 Chapter 6. Reference

https://github.com/optuna/optuna/blob/master/examples/multi_objective/botorch_simple.py
https://botorch.org/
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

See also:

See optuna.integration.botorch.qgei_candidates_ func () for an exam-
ple.

* constraints_func — An optional function that computes the objective constraints. It
must take a FrozenTrial and return the constraints. The return value must be a sequence
of f1loat s. A value strictly larger than 0 means that a constraints is violated. A value equal
to or smaller than O is considered feasible.

If omitted, no constraints will be passed to candidates_func nor taken into account
during suggestion if candidates_func is omitted.

* n_startup_trials — Number of initial trials, that is the number of trials to resort to
independent sampling.

* independent_sampler — An independent sampler to use for the initial trials and for
parameters that are conditional.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer._relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_ independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None

. API Reference 79

https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using

sample_independent () method.
Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial. frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]

See also:

Please refer to intersection_search_ space () as an implementation of
infer_relative search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each

random number generator.
Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

e param_name (str)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

sample_relative (study, trial, search_space)
Sample parameters in a given search space.

80 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_ search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.integration.botorch.qei_candidates_func

optuna.integration.botorch.qei_candidates_func (frain_x, train_obj, train_con, bounds)
Quasi MC-based batch Expected Improvement (qEI).

The default value of candidates_func in BoTorchSampler with single-objective optimization.
Parameters

* train_x(torch. Tensor)—Previous parameter configurations. A torch.Tensor of
shape (n_trials, n_params). n_trials isthe number of already observed trials
and n_params is the number of parameters. n_params may be larger than the actual
number of parameters if categorical parameters are included in the search space, since these
parameters are one-hot encoded. Values are not normalized.

* train_obj (torch. Tensor) — Previously observed objectives. A torch.Tensor
of shape (n_trials, n_objectives).n_trials isidentical tothatof train_x.
n_objectives is the number of objectives. Observations are not normalized.

* train_con (Optional[torch.Tensor]) — Objective constraints. A torch.
Tensor of shape (n_trials, n_constraints). n_trials is identical to that
of train_x. n_constraints is the number of constraints. A constraint is violated if
strictly larger than 0. If no constraints are involved in the optimization, this argument will
be None.

* bounds (torch.Tensor) — Search space bounds. A torch.Tensor of shape
(n_params, 2). n_params is identical to that of train_x. The first and the sec-
ond column correspond to the lower and upper bounds for each parameter respectively.

Returns Next set of candidates. Usually the return value of BoTorch’s optimize_acqgf.

Return type torch.Tensor

6.3. API Reference 81

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

optuna.integration.botorch.qehvi_candidates_func

optuna.integration.botorch.gehvi_candidates_func (train_x, train_obj, train_con,

bounds)
Quasi MC-based batch Expected Hypervolume Improvement (QEHVI).

The default value of candidates_func in BoTorchSampler with multi-objective optimization when the
number of objectives is three or less.

See also:

gei_candidates_func () for argument and return value descriptions.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e train_x (torch.Tensor) -
* train_obj(torch.Tensor)—
e train_con (Optional [torch.Tensor])—
* bounds (torch. Tensor) —

Return type torch.Tensor

optuna.integration.botorch.qparego_candidates_func

optuna.integration.botorch.qgparego_candidates_func (train_x, train_obj, train_con,

bounds)
Quasi MC-based extended ParEGO (qParEGO) for constrained multi-objective optimization.

The default value of candidates_func in BoTorchSampler with multi-objective optimization when the
number of objectives is larger than three.

See also:

gei_candidates_func () for argument and return value descriptions.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e train_x (torch.Tensor) -
* train_obj(torch.Tensor)—

e train_con (Optional [torch.Tensor])—

82 Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

* bounds (torch. Tensor) —

Return type torch.Tensor

Catalyst

optuna.integration. Catalyst callback to prune unpromising trials.
CatalystPruningCallback

optuna.integration.CatalystPruningCallback

class optuna.integration.CatalystPruningCallback (*args, **kwargs)
Catalyst callback to prune unpromising trials.

This class is an alias to Catalyst’s OptunaPruningCallback.

See the Catalyst’s documentation for the detailed description.

Warning: Deprecated in v2.7.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.7.0.

Chainer
optuna.integration. Chainer extension to prune unpromising trials.
ChainerPruningExtension
optuna.integration.ChainerMNStudy A wrapper of St udy to incorporate Optuna with Chain-
erMN.
optuna.integration.ChainerPruningExtension
class optuna.integration.ChainerPruningExtension (trial, observation_key,

pruner_trigger)
Chainer extension to prune unpromising trials.

See the example if you want to add a pruning extension which observes validation accuracy of a Chainer Trainer.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* observation_key - An evaluation metric for pruning, e.g., main/loss and
validation/main/accuracy. Please refer to chainer.Reporter reference for further
details.

* pruner_trigger — A trigger to execute pruning. pruner_trigger is an instance of
IntervalTrigger or ManualScheduleTrigger. IntervalTrigger can be specified by a tuple of
the interval length and its unit like (1, 'epoch').

6.3. API Reference 83

https://catalyst-team.github.io/catalyst/api/callbacks.html?highlight=optuna#catalyst.callbacks.optuna.OptunaPruningCallback
https://github.com/optuna/optuna/releases/tag/v2.7.0
https://github.com/optuna/optuna/releases/tag/v2.7.0
https://github.com/optuna/optuna/blob/master/examples/chainer/chainer_integration.py
https://docs.chainer.org/en/stable/reference/generated/chainer.training.Trainer.html
https://docs.chainer.org/en/stable/reference/util/generated/chainer.Reporter.html
https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.IntervalTrigger.html
https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.ManualScheduleTrigger.html
https://docs.chainer.org/en/stable/reference/generated/chainer.training.triggers.IntervalTrigger.html

Optuna Documentation, Release 2.8.0.dev0

optuna.integration.ChainerMNStudy

class optuna.integration.ChainerMNStudy (study, comm)
A wrapper of Study to incorporate Optuna with ChainerMN.

See also:

ChainerMNStudy provides the same interface as Study. Please refer to optuna.study.Study for
further details.

See the example if you want to optimize an objective function that trains neural network written with Chain-
erMN.

Parameters
* study — A Study object.

e comm— A ChainerMN communicator.

Methods

optimize(func[, n_trials, timeout, catch]) Optimize an objective function.

optimize (func, n_trials=None, timeout=None, catch=())
Optimize an objective function.

This method provides the same interface as optuna. study. Study.optimize () except the absence
of n_jobs argument.

Parameters
e func (Callable[[ChainerMNTrial, CommunicatorBase], float])—
e n_trials (Optional[int])—
* timeout (Optional[float]) -
e catch (Tuple [Type [Exception], ..])-—
Return type None

fast.ai
optuna.integration. FastAl callback to prune unpromising trials for fastai.
FastAIV1PruningCallback
optuna.integration. FastAl callback to prune unpromising trials for fastai.
FastAIV2PruningCallback
optuna.integration. alias of optuna.integration.fastaiv2.
FastAIPruningCallback FastAIV2PruningCallback

84 Chapter 6. Reference

https://github.com/optuna/optuna/blob/master/examples/chainer/chainermn_integration.py
https://docs.chainer.org/en/stable/chainermn/reference/index.html#communicators
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.integration.FastAlV1PruningCallback

class optuna.integration.FastAIV1PruningCallback (learn, trial, monitor)
FastAl callback to prune unpromising trials for fastai.

Note: This callback is for fastai<2.0.

See the example if you want to add a pruning callback which monitors validation loss of a Learner.

Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

learn.fit (n_epochs, callbacks=[FastAIPruningCallback (learn, trial, "valid_loss")])
learn.fit_one_cycle(

n_epochs,

cyc_len,

max_1lr,

callbacks=[FastAIPruningCallback (learn, trial, "valid loss")],

Parameters
* learn — fastai.basic_train.Learner.
* trial — A Trial corresponding to the current evaluation of the objective function.

* monitor — An evaluation metric for pruning, e.g. valid_loss and Accuracy. Please
refer to fastai.callbacks.TrackerCallback reference for further details.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.4.0.

Methods

on_epoch_end(epoch, **kwargs)

optuna.integration.FastAlV2PruningCallback

class optuna.integration.FastAIV2PruningCallback (trial, monitor="valid_loss")
FastAl callback to prune unpromising trials for fastai.

Note: This callback is for fastai>=2.0.

See the example if you want to add a pruning callback which monitors validation loss of a Learner.

6.3. API Reference 85

https://github.com/optuna/optuna/blob/master/examples/fastai/fastaiv1_simple.py
https://docs.fast.ai/basic_train.html#Learner
https://fastai1.fast.ai/callbacks.tracker.html#TrackerCallback
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/blob/master/examples/fastai/fastaiv2_simple.py

Optuna Documentation, Release 2.8.0.dev0

Example

Register a pruning callback to learn.fit and learn.fit_one_cycle.

learn = cnn_learner(dls, resnetl8, metrics=[error_rate])
learn.fit (n_epochs, cbs=[FastAIPruningCallback (trial)]) # Monitor "valid loss"
learn.fit_one_cycle(

n_epochs,

lr_max,

cbs=[FastAIPruningCallback (trial, monitor="error_rate")], # Monitor "error_
—rate”

)

Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* monitor — An evaluation metric for pruning, e.g. valid_loss or accuracy. Please
refer to fastai.callback.TrackerCallback reference for further details.

Methods

after_epoch()

after_fit()

optuna.integration.FastAlPruningCallback

optuna.integration.FastAIPruningCallback
alias of optuna.integration.fastaiv2.FastAIV2PruningCallback

Keras

optuna.integration. Keras callback to prune unpromising trials.
KerasPruningCallback

optuna.integration.KerasPruningCallback

class optuna.integration.KerasPruningCallback (trial, monitor, interval=1)
Keras callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes validation accuracy.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* monitor — An evaluation metric for pruning, e.g., val_loss and val_accuracy.
Please refer to keras.Callback reference for further details.

* interval — Check if trial should be pruned every n-th epoch. By default interval=1

86 Chapter 6. Reference

https://docs.fast.ai/callback.tracker#TrackerCallback
https://github.com/optuna/optuna/blob/master/examples/keras/keras_integration.py
https://keras.io/callbacks/#callback

Optuna Documentation, Release 2.8.0.dev0

and pruning is performed after every epoch. Increase interval to run several epochs
faster before applying pruning.

Warning: Deprecated in v2.1.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.1.0.

Recent Keras release (2.4.0) simply redirects all APIs in the standalone keras package to point to tf.keras.
There is now only one Keras: tf.keras. There may be some breaking changes for some workflows by up-
grading to keras 2.4.0. Test before upgrading. REF:https://github.com/keras-team/keras/releases/tag/2.4.0

Methods

on_epoch_end(epochl, logs])

LightGBM
optuna.integration. Callback for LightGBM to prune unpromising trials.
LightGBMPruningCallback
optuna.integration.lightgbm.train Wrapper of LightGBM Training API to tune hyperpa-

rameters.

optuna.integration.lightgbm. Hyperparameter tuner for LightGBM.
LightGBMTuner
optuna.integration.lightgbm. Hyperparameter tuner for LightGBM with cross-
LightGBMTunerCV validation.

optuna.integration.LightGBMPruningCallback

class optuna.integration.LightGBMPruningCallback (trial, metric, valid_name='valid_0")
Callback for LightGBM to prune unpromising trials.

See the example if you want to add a pruning callback which observes AUC of a LightGBM model.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* metric — An evaluation metric for pruning, e.g., binary_error and multi_error.
Please refer to LightGBM reference for further details.

* valid _name — The name of the target validation. Validation names are specified by
valid_names option of train method. If omitted, valid_0 is used which is the de-
fault name of the first validation. Note that this argument will be ignored if you are calling
cv method instead of train method.

6.3. API Reference 87

https://github.com/optuna/optuna/releases/tag/v2.1.0
https://github.com/optuna/optuna/releases/tag/v2.1.0
https://github.com/optuna/optuna/blob/master/examples/lightgbm/lightgbm_integration.py
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric
https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.train
https://lightgbm.readthedocs.io/en/latest/Python-API.html#lightgbm.cv

Optuna Documentation, Release 2.8.0.dev0

optuna.integration.lightgbm.train

optuna.integration.lightgbm.train (*args, **kwargs)
Wrapper of LightGBM Training API to tune hyperparameters.

It tunes important hyperparameters (e.g., min_child_samples and feature_fraction) in a stepwise
manner. It is a drop-in replacement for lightgbm.train(). See a simple example of LightGBM Tuner which
optimizes the validation log loss of cancer detection.

train () is a wrapper function of LightGBMTuner. To use feature in Optuna such as suspended/resumed
optimization and/or parallelization, refer to L.i ght GBMTuner instead of this function.

Arguments and keyword arguments for lightgbm.train() can be passed.
Parameters
* args (Any) -
* kwargs (Any) —

Return type Any

optuna.integration.lightgbm.LightGBMTuner

class optuna.integration.lightgbm.LightGBMTuner (params, train_set,
num_boost_round=1000,
valid_sets=None, valid names=None,
fobj=None, feval=None,
feature_name='"auto’, cat-
egorical_feature="auto’,
early_stopping_rounds=None,
evals_result=None,
verbose_eval=True,
learning_rates=None,
keep_training_booster=False, call-
backs=None, time_budget=None,
sample_size=None, study=None,
optuna_callbacks=None,
model_dir=None, verbosity=None,

show_progress_bar=True)
Hyperparameter tuner for LightGBM.

It optimizes the following hyperparameters in a stepwise manner: lambda_11, lambda_12, num_leaves,
feature_fraction,bagging_fraction,bagging_freqandmin_child_samples.

You can find the details of the algorithm and benchmark results in this blog article by Kohei Ozaki, a Kaggle
Grandmaster.

Arguments and keyword arguments for lightgbm.train() can be passed. @ The arguments that only
LightGBMTuner has are listed below:

Parameters
* time_budget — A time budget for parameter tuning in seconds.

* study — A Study instance to store optimization results. The Tria I instances in it has the
following user attributes: e Lapsed_secs is the elapsed time since the optimization starts.
average_iteration_time is the average time of iteration to train the booster model

88 Chapter 6. Reference

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html
https://github.com/optuna/optuna/blob/master/examples/lightgbm/lightgbm_tuner_simple.py
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html
https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258
https://www.kaggle.com/confirm
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html

Optuna Documentation, Release 2.8.0.dev0

in the trial. 1gbm_params is a JSON-serialized dictionary of LightGBM parameters used
in the trial.

* optuna_callbacks — List of Optuna callback functions that are invoked at the end
of each trial. Each function must accept two parameters with the following types in this
order: Study and FrozenTrial. Please note that this is not a callbacks argument of
lightgbm.train() .

* model_dir — A directory to save boosters. By default, it is set to None and no boost-
ers are saved. Please set shared directory (e.g., directories on NFS) if you want to
access get_best_booster () in distributed environments. Otherwise, it may raise
ValueError. If the directory does not exist, it will be created. The filenames of the boost-
ers willbe {model_dir}/{trial_number}.pkl (e.g., . /boosters/0.pkl).

* verbosity — A verbosity level to change Optuna’s logging level. The level is aligned to
LightGBM’s verbosity .

Warning: Deprecated in v2.0.0. verbosity argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject
to change.

Please use set_verbosity () instead.

* show_progress_bar — Flag to show progress bars or not. To disable progress bar, set
this False.

Note: Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.

Methods

compare_validation_metrics(val_score,

best_score)

get_best_booster() Return the best booster.
higher_is_better()

run() Perform the hyperparameter-tuning with given pa-
rameters.
sample_train_ set() Make subset of self.train_set Dataset object.

tune_bagging([n_trials])

tune_feature_fraction([n_trials])

tune_feature_fraction_stage2([n_trials])

tune_min_data_in_leaf()

tune_num_leaves([n_trials])

continues on next page

6.3. API Reference 89

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://lightgbm.readthedocs.io/en/latest/Parameters.html#verbosity
https://docs.python.org/3/library/constants.html#False

Optuna Documentation, Release 2.8.0.dev0

Table 28 — continued from previous page
tune_regularization_factors([n_trials])

Attributes
best_booster Return the best booster.
best_params Return parameters of the best booster.
best_score Return the score of the best booster.

property best_booster
Return the best booster.

Warning: Deprecated in v1.4.0. This feature will be removed in the future. The removal of this
feature is currently scheduled for v3.0.0, but this schedule is subject to change. See https://github.com/
optuna/optuna/releases/tag/v1.4.0.

Please get the best booster via get__best_booster instead.

property best_params
Return parameters of the best booster.

property best_score
Return the score of the best booster.

get_best_booster ()
Return the best booster.

If the best booster cannot be found, ValueError will be raised. To prevent the errors, please save
boosters by specifying the model_dir argumentof __init__ (), when you resume tuning or you run
tuning in parallel.

Return type lightgbm.basic.Booster

run ()
Perform the hyperparameter-tuning with given parameters.

Return type None

sample_train_set ()
Make subset of self.train_set Dataset object.

Return type None

90 Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v1.4.0
https://github.com/optuna/optuna/releases/tag/v1.4.0
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.integration.lightgbm.LightGBMTunerCV

class optuna.integration.lightgbm.LightGBMTunerCV (params, train_set,
num_boost_round=1000,
folds=None, nfold=5, strat-

ified=True, shuffle=True,
fobj=None, feval=None,
feature_name="auto’, cat-

egorical_feature="auto’,
early_stopping_rounds=None, fpre-
proc=None, verbose_eval=True,
show_stdv=True, seed=0, call-
backs=None, time_budget=None,
sample_size=None, study=None,
optuna_callbacks=None,
verbosity=None,
show_progress_bar=True,
model_dir=None, re-

turn_cvbooster=None)
Hyperparameter tuner for LightGBM with cross-validation.

It employs the same stepwise approach as LightGBMTuner. LightGBMTunerCV invokes lightgbm.cv()
to train and validate boosters while LightGBMTuner invokes lightgbm.train(). See a simple example which
optimizes the validation log loss of cancer detection.

Arguments and keyword arguments for lightgbm.cv() can be passed except metrics, init_model and
eval_train_metric. The arguments that only i ght GBMTunerCV has are listed below:

Parameters
* time_budget — A time budget for parameter tuning in seconds.

* study - A Study instance to store optimization results. The Tria I instances in it has the
following user attributes: elapsed_secs is the elapsed time since the optimization starts.
average_iteration_time is the average time of iteration to train the booster model
in the trial. 1gbm_params is a JSON-serialized dictionary of LightGBM parameters used
in the trial.

* optuna_callbacks — List of Optuna callback functions that are invoked at the end
of each trial. Each function must accept two parameters with the following types in this
order: Study and FrozenTrial. Please note that this is not a callbacks argument of
lightgbm.train() .

* model_dir — A directory to save boosters. By default, it is set to None and no boost-
ers are saved. Please set shared directory (e.g., directories on NFS) if you want to
access get_best_booster () in distributed environments. Otherwise, it may raise
ValueError. If the directory does not exist, it will be created. The filenames of the boost-
ers willbe {model_dir}/{trial_number}.pkl (e.g., . /boosters/0.pkl).

* verbosity — A verbosity level to change Optuna’s logging level. The level is aligned to
LightGBM’s verbosity .

Warning: Deprecated in v2.0.0. verbosity argument will be removed in the future.
The removal of this feature is currently scheduled for v4.0.0, but this schedule is subject
to change.

Please use set_verbosity () instead.

6.3. API Reference 91

https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.cv.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html
https://github.com/optuna/optuna/blob/master/examples/lightgbm/lightgbm_tuner_cv.py
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.cv.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.train.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://lightgbm.readthedocs.io/en/latest/Parameters.html#verbosity

Optuna Documentation, Release 2.8.0.dev0

* show_progress_bar — Flag to show progress bars or not. To disable progress bar, set
this False.

Note: Progress bars will be fragmented by logging messages of LightGBM and Optuna.
Please suppress such messages to show the progress bars properly.

* return_cvbooster — Flag to enable get_best_booster ().

Methods

compare_validation_metrics(val_score,
best_score)

get_best_booster() Return the best cvbooster.

higher_is_better()

run() Perform the hyperparameter-tuning with given pa-
rameters.
sample_train_set() Make subset of self.train_set Dataset object.

tune_bagging([n_trials])

tune_feature_fraction([n_trials])

tune_feature_fraction_stage2([n_trials])

tune_min_data_in_leaf()

tune_num_leaves([n_trials])

tune_regularization_factors([n_trials])

Attributes
best_params Return parameters of the best booster.
best_score Return the score of the best booster.

property best_params
Return parameters of the best booster.

property best_score
Return the score of the best booster.

get_best_booster ()
Return the best cvbooster.

If the best booster cannot be found, ValueError will be raised. To prevent the errors, please save boost-
ers by specifying both of the model_dir and the return_cvbooster arguments of __init__ (),
when you resume tuning or you run tuning in parallel.

Return type lightgbm.engine.CVBooster

92

Chapter 6. Reference

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

run ()
Perform the hyperparameter-tuning with given parameters.

Return type None

sample_train_set ()
Make subset of self.train_set Dataset object.

Return type None

MLflow

optuna.integration.MLflowCallback Callback to track Optuna trials with MLflow.

optuna.integration.MLflowCallback

class optuna.integration.MLflowCallback (tracking _uri=None, metric_name="value',

nest_trials=False, tag_study_user_attrs=False)
Callback to track Optuna trials with MLflow.

This callback adds relevant information that is tracked by Optuna to MLflow. The MLflow experiment will be
named after the Optuna study name.

Example

Add MLflow callback to Optuna optimization.

import optuna
from optuna.integration.mlflow import MLflowCallback

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x — 2) #** 2

mlflc = MLflowCallback (
tracking_uri=YOUR_TRACKING_URI,
metric_name="my metric score",

study = optuna.create_study (study_name="my_study")
study.optimize (objective, n_trials=10, callbacks=[mlflc])

Parameters
* tracking_uri — The URI of the MLflow tracking server.
Please refer to mlflow.set_tracking_uri for more details.

* metric_name — Name of the metric. Since the metric itself is just a number, metric_name
can be used to give it a name. So you know later if it was roc-auc or accuracy.

* nest_trials - Flag indicating whether or not trials should be logged as nested runs.
This is often helpful for aggregating trials to a particular study, under a given experiment.

6.3. API Reference 93

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.set_tracking_uri

Optuna Documentation, Release 2.8.0.dev0

* tag_study_user_attrs - Flag indicating whether or not to add the study’s user at-
trs to the mlflow trial as tags. Please note that when this flag is set, key value pairs in
study.user_attrs will supersede existing tags.

Note: Added in v1.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

MXNet

optuna.integration. MXNet callback to prune unpromising trials.
MXNetPruningCallback

optuna.integration.MXNetPruningCallback

class optuna.integration.MXNetPruningCallback (trial, eval_metric)
MXNet callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes accuracy.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* eval_metric — An evaluation metric name for pruning, e.g., cross—entropy and
accuracy. If using default metrics like mxnet.metrics.Accuracy, use it’s default metric
name. For custom metrics, use the metric_name provided to constructor. Please refer to
mxnet.metrics reference for further details.

pycma
optuna.integration.PyCmaSampler A Sampler using cma library as the backend.
optuna.integration.CmaEsSampler Wrapper class of PyCmaSampler for backward compat-
ibility.
optuna.integration.PyCmaSampler
class optuna.integration.PyCmaSampler (xO=None, sigmaO=None, cma_stds=None,
seed=None, cma_opts=None,
n_startup_trials=1, independent_sampler=None,

warn_independent_sampling=True)
A Sampler using cma library as the backend.

94 Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v1.4.0
https://github.com/optuna/optuna/blob/master/examples/mxnet/mxnet_integration.py
https://mxnet.apache.org/api/python/metric/metric.html

Optuna Documentation, Release 2.8.0.dev0

Example

Optimize a simple quadratic function by using PyCmaSampler.

sampler =

import optuna

def objective(trial):
x = trial.suggest_float ("x", -1, 1)
y = trial.suggest_int ("y", -1, 1)
return x *x 2 + y

optuna.integration.PyCmaSampler ()
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=20)

Note that parallel execution of trials may affect the optimization performance of CMA-ES, especially if the
number of trials running in parallel exceeds the population size.

Note: CmaEsSampler is deprecated and renamed to PyCmaSampler in v2.0.0.

PyCmaSampler instead of CmaEsSampler.

Please use

Parameters

%0 — A dictionary of an initial parameter values for CMA-ES. By default, the mean of 1ow
and high for each distribution is used. Please refer to cma.CMAEvolutionStrategy for
further details of x0.

sigmaO - Initial standard deviation of CMA-ES. By default, sigma0 is set to
min_range / 6, where min_range denotes the minimum range of the distributions
in the search space. If distribution is categorical, min_range is len (choices) - 1.
Please refer to cma.CMAEvolutionStrategy for further details of sigma0.

cma_stds — A dictionary of multipliers of sigma0 for each parameters. The default value
is 1.0. Please refer to cma.CMAEvolutionStrategy for further details of cma_stds.

seed — A random seed for CMA-ES.
cma_opts — Options passed to the constructor of cma.CMAEvolutionStrategy class.

Note that BoundaryHandler, bounds, CMA_stds and seed arguments in
cma_opts will be ignored because it is added by PyCmaSamp1er automatically.

n_startup_trials — The independent sampling is used instead of the CMA-ES algo-
rithm until the given number of trials finish in the same study.

independent_sampler - A BaseSampler instance that is used for indepen-
dent sampling. The parameters not contained in the relative search space are sam-
pled by this sampler. The search space for PyCmaSampler is determined by
intersection_search space().

If None is specified, RandomSampler is used as the default.
See also:

optuna.samplers module provides built-in independent samplers such as
RandomSampler and TPESampler.

6.3. API Reference

95

http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html
http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html
http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html
http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.CMAEvolutionStrategy.html
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

* warn_independent_sampling - If this is True, a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled via an independent
sampler, so no warning messages are emitted in this case.

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer._relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_ independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
* study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

96 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

See also:

Please refer to intersection_search space () as an implementation of
infer_relative_search_space ().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

e param_name (str)— Name of the sampled parameter.

* param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type float
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

6.3.

API Reference 97

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_search _space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, float]

optuna.integration.CmaEsSampler

class optuna.integration.CmaEsSampler (xO=None, sigmaO=None, cma_stds=None,
seed=None, cma_opts=None,
n_startup_trials=1, independent_sampler=None,

warn_independent_sampling=True)
Wrapper class of PyCmaSampler for backward compatibility.

Warning: Deprecated in v2.0.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.0.0.

This class is renamed to PyCmaSampler.

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer relative_search_ space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_ relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

98 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search space () as an implementation of
infer _relative search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* param_name (str)— Name of the sampled parameter.

* param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type float

6.3.

API Reference 99

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_search _space ().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, float]

PyTorch
optuna.integration. PyTorch Ignite handler to prune unpromising trials.
PyTorchIgnitePruningHandler
optuna.integration. PyTorch Lightning callback to prune unpromising trials.
PyTorchLightningPruningCallback
optuna.integration. A wrapper of Trial to incorporate Optuna with Py-
TorchDistributedTrial Torch distributed.

optuna.integration.PyTorchlgnitePruningHandler

class optuna.integration.PyTorchIgnitePruningHandler (trial, metric, trainer)
PyTorch Ignite handler to prune unpromising trials.

See the example if you want to add a pruning handler which observes validation accuracy.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.
* metric — A name of metric for pruning, e.g., accuracy and loss.

* trainer — A trainer engine of PyTorch Ignite. Please refer to ignite.engine.Engine refer-
ence for further details.

100 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/blob/master/examples/pytorch/pytorch_ignite_simple.py
https://pytorch.org/ignite/engine.html#ignite.engine.Engine
https://pytorch.org/ignite/engine.html#ignite.engine.Engine

Optuna Documentation, Release 2.8.0.dev0

optuna.integration.PyTorchLightningPruningCallback

class optuna.integration.PyTorchLightningPruningCallback (trial, monitor)
PyTorch Lightning callback to prune unpromising trials.

See the example if you want to add a pruning callback which observes accuracy.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* monitor — An evaluation metric for pruning, e.g., val_loss or val_acc. The metrics
are obtained from the returned dictionaries from e.g. pytorch_lightning.
LightningModule.training_step or pytorch_lightning.
LightningModule.validation_epoch_end and the names thus depend on
how this dictionary is formatted.

Methods

on_validation_end(trainer, pl_module)

optuna.integration.TorchDistributedTrial

class optuna.integration.TorchDistributedTrial (trial, device=None)
A wrapper of Trial to incorporate Optuna with PyTorch distributed.

See also:

TorchDistributedTrial provides the same interface as Trial. Please refer to optuna.trial.
Trial for further details.

See the example if you want to optimize an objective function that trains neural network written with PyTorch
distributed data parallel.

Parameters

* trial - A Trial object or None. Please set trial object in rank-0 node and set None in
the other rank node.

e device — A rorch.device to communicate with the other nodes. Please set a CUDA device
assigned to the current node if you use “nccl” as torch.distributed backend.

Note: The methods of TorchDistributedTrial are expected to be called by all workers at once. They
invoke synchronous data transmission to share processing results and synchronize timing.

Note: Added in v2.6.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.6.0.

6.3. API Reference 101

https://github.com/optuna/optuna/blob/master/examples/pytorch/pytorch_lightning_simple.py
https://github.com/optuna/optuna/blob/master/examples/pytorch/pytorch_distributed_simple.py
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.6.0

Optuna Documentation, Release 2.8.0.dev0

Methods

report(value, step)

set_system_attr(key, value)

set_user_attr(key, value)

should_prune()

suggest_categorical(name, choices)

suggest_discrete_uniform(name, low,

high, q)
suggest_float(name, low, high, *[, step, log])

suggest_int(name, low, high[, step, log])

suggest_loguniform(name, low, high)

suggest_uniform(name, low, high)

Attributes

datetime_start

distributions

number

params

system_attrs

user_attrs

scikit-learn

optuna.integration.OptunaSearchCV Hyperparameter search with cross-validation.

102 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

optuna.integration.OptunaSearchCV

class optuna.integration.OptunaSearchCV (estimator, param_distributions, cv=>5, en-

Hyperparameter search with cross-validation.

Parameters

able_pruning=False,
max_iter=1000, n_jobs=1, n_trials=10,
random_state=None, refit=True, re-
turn_train_score=False,
study=None, subsample=1.0, timeout=None,
verbose=0)

error_score=nan,

scoring=None,

* estimator - Object to use to fit the data. This is assumed to implement the scikit-learn
estimator interface. Either this needs to provide score, or scoring must be passed.

* param_distributions — Dictionary where keys are parameters and values are distri-
butions. Distributions are assumed to implement the optuna distribution interface.

* cv — Cross-validation strategy. Possible inputs for cv are:

— integer to specify the number of folds in a CV splitter,

— a CV splitter,

— an iterable yielding (train, validation) splits as arrays of indices.

For integer, if estimator is a classifier and y is either binary or multiclass,
sklearn.model_selection.StratifiedKFold is used. otherwise, sklearn.

model_selection.KFoldis used.

* enable_pruning - If True, pruning is performed in the case where the underlying

estimator supports partial fit.

* error_score — Value to assign to the score if an error occurs in fitting. If ‘raise’, the
error is raised. If numeric, sklearn.exceptions.FitFailedWarning is raised.
This does not affect the refit step, which will always raise the error.

* max_iter — Maximum number of epochs. This is only used if the underlying estimator

supports partial_ fit.

* n_jobs — Number of threading based parallel jobs. —1 means using the number is set

to CPU count.

Note: n_jobs allows parallelization using threading and may suffer from
Python’s GIL. It is recommended to use process-based parallelization if func is CPU

bound.

Warning: Deprecated in v2.7.0. This feature will be removed in the future. It
is recommended to use process-based parallelization. The removal of this feature
is currently scheduled for v4.0.0, but this schedule is subject to change. See https:
//github.com/optuna/optuna/releases/tag/v2.7.0.

e n trials — Number of trials. If None, there is no limitation on the number of trials.
If timeout is also set to None, the study continues to create trials until it receives a
termination signal such as Ctrl+C or SIGTERM. This trades off runtime vs quality of the

solution.

6.3. API Reference

103

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/threading.html#module-threading
https://wiki.python.org/moin/GlobalInterpreterLock
https://github.com/optuna/optuna/releases/tag/v2.7.0
https://github.com/optuna/optuna/releases/tag/v2.7.0
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

* random_state — Seed of the pseudo random number generator. If int, this is the seed
used by the random number generator. If numpy . random.RandomState object, this is
the random number generator. If None, the global random state from numpy . random is
used.

* refit —If True, refit the estimator with the best found hyperparameters. The refitted esti-
mator is made available at the best_estimator_ attribute and permits using predict
directly.

* return_train_ score - If True, training scores will be included. Computing training
scores is used to get insights on how different hyperparameter settings impact the over-
fitting/underfitting trade-off. However computing training scores can be computationally
expensive and is not strictly required to select the hyperparameters that yield the best gen-
eralization performance.

* scoring — String or callable to evaluate the predictions on the validation data. If None,
score on the estimator is used.

* study — Study corresponds to the optimization task. If None, a new study is created.
* subsample — Proportion of samples that are used during hyperparameter search.

— If int, then draw subsample samples.

— If float, then draw subsample * X.shape [0] samples.

* timeout — Time limit in seconds for the search of appropriate models. If None, the study
is executed without time limitation. If n_trials is also set to None, the study continues
to create trials until it receives a termination signal such as Ctrl+C or SIGTERM. This trades
off runtime vs quality of the solution.

* verbose - Verbosity level. The higher, the more messages.

best_estimator_
Estimator that was chosen by the search. This is present only if refit is setto True.

n_splits_
Number of cross-validation splits.

refit_time_
Time for refitting the best estimator. This is present only if refit is setto True.

sample_indices_
Indices of samples that are used during hyperparameter search.

scorer_
Scorer function.

study__
Actual study.

104

Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 2.8.0.dev0

Examples

import optuna
from sklearn.datasets import load_iris
from sklearn.svm import SVC

clf = SVC(gamma="auto")

param_distributions = {"C": optuna.distributions.LogUniformDistribution(le-10,
—1el0)}

optuna_search = optuna.integration.OptunaSearchCV(clf, param_distributions)

X, v = load_iris(return_X_y=True)

optuna_search.fit (X, vy)

y_pred = optuna_search.predict (X)

Note: Added in v0.17.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v0.17.0.

Methods

£1t(X[, y, groups])

Run fit with all sets of parameters.

get_params([deep])

Get parameters for this estimator.

score(X[, y])

Return the score on the given data.

set_params(**params)

Set the parameters of this estimator.

Attributes

best_index

Index which corresponds to the best candidate pa-
rameter setting.

best_params__

Parameters of the best trial in the St udy.

best_score

Mean cross-validated score of the best estimator.

best_trial

Best trial in the St udy.

classes_

Class labels.

decision_function

Call decision_function on the best estimator.

inverse_ transform

Call inverse_transform on the best estimator.

n trials

Actual number of trials.

predict

Call predict on the best estimator.

predict_log_proba

Call predict_log_proba on the best estimator.

predict_proba

Call predict_proba on the best estimator.

score_samples

Call score_samples on the best estimator.

set_user_attr

Call set_user_attr onthe Study.

transform

Call t ransform on the best estimator.

trials_

All trials in the St udy.

trials dataframe

Call trials_dataframe onthe Study.

user_attrs__

User attributes in the St udy.

property best_index

Index which corresponds to the best candidate parameter setting.

property best_params_

6.3. API Reference

105

https://github.com/optuna/optuna/releases/tag/v0.17.0

Optuna Documentation, Release 2.8.0.dev0

Parameters of the best trial in the St udy.

property best_score_
Mean cross-validated score of the best estimator.

property best_trial_
Best trial in the St udy.

property classes_
Class labels.

property decision_function
Call decision_function on the best estimator.

This is available only if the underlying estimator supports decision_function and refit is set to
True.

fit (X, y=None, groups=None, **fit_params)
Run fit with all sets of parameters.

Parameters

* X (Union[List[List[float]], numpy.ndarray, pandas.core.
frame.DataFrame, scipy.sparse.base.spmatrix])— Training data.

cy (Optional [Union[List[float], numpy.ndarray, pandas.
core.series.Series, List[List[float]], pandas.core.frame.
DataFrame, scipy.sparse.base.spmatrix]])— Target variable.

* groups (Optional [Union([List[float], numpy.ndarray, pandas.
core.series.Series]]) — Group labels for the samples used while splitting the
dataset into train/validation set.

* »xfit_params — Parameters passed to £it on the estimator.
e fit_params (Any) -

Returns Return self.

Return type self

get_params (deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) — If True, will return the parameters for this
estimator and contained subobjects that are estimators.

Returns params — Parameter names mapped to their values.
Return type dict

property inverse_transform
Call inverse_transform on the best estimator.

This is available only if the underlying estimator supports inverse_transformand refit is set to
True.

property n_trials_
Actual number of trials.

property predict
Call predict on the best estimator.

This is available only if the underlying estimator supports predict and refit issetto True.

106 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 2.8.0.dev0

property predict_log proba
Call predict_log_proba on the best estimator.

This is available only if the underlying estimator supports predict_log_proba and refit is set to
True.

property predict_proba
Call predict_proba on the best estimator.

This is available only if the underlying estimator supports predict_proba and refit issetto True.

score (X, y=None)
Return the score on the given data.

Parameters

* X (Union[List[List[float]], numpy.ndarray, pandas.core.
frame.DataFrame, scipy.sparse.base.spmatrix])— Data.

ey (Optional [Union[List[float], numpy.ndarray, pandas.
core.series.Series, List[List[float]], pandas.core.frame.
DataFrame, scipy.sparse.base.spmatrix]])— Target variable.

Returns Scaler score.
Return type score

property score_samples
Call score_samples on the best estimator.

This is available only if the underlying estimator supports score_samples and refit issetto True.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have

parameters of the form <component>__ <parameter> so that it’s possible to update each component
of a nested object.

Parameters **params (dict)— Estimator parameters.
Returns self — Estimator instance.
Return type estimator instance

property set_user_attr
Call set_user_attr onthe Study.

property transform
Call t ransform on the best estimator.

This is available only if the underlying estimator supports t ransformand refit issetto True.

property trials_
All trials in the St udy.

property trials_dataframe
Call trials_dataframe onthe Study.

property user_attrs_
User attributes in the St udy.

6.3.

API Reference 107

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 2.8.0.dev0

scikit-optimize

optuna.integration.SkoptSampler Sampler using Scikit-Optimize as the backend.

optuna.integration.SkoptSampler

class optuna.integration.SkoptSampler (independent_sampler=None,
warn_independent_sampling=True,
skopt_kwargs=None, n_startup_trials=1, *, con-

sider_pruned_trials=False)
Sampler using Scikit-Optimize as the backend.

Example

Optimize a simple quadratic function by using SkoptSampler.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
y = trial.suggest_int ("y", 0, 10)
return x *x 2 + y

sampler = optuna.integration.SkoptSampler ()
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

Parameters

* independent_sampler - A BaseSampler instance that is used for indepen-
dent sampling. The parameters not contained in the relative search space are sam-
pled by this sampler. The search space for SkoptSampler is determined by
intersection_search_space().

If None is specified, RandomSampler is used as the default.
See also:

optuna.samplers module provides built-in independent samplers such as
RandomSampler and TPESampler.

* warn_independent_sampling - If this is True, a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled via an independent
sampler, so no warning messages are emitted in this case.

* skopt_kwargs — Keyword arguments passed to the constructor of skopt.Optimizer class.

Note that dimensions argument in skopt_kwargs will be ignored because it is added
by Skopt Sampler automatically.

* n_startup_trials - The independent sampling is used until the given number of trials
finish in the same study.

108 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://scikit-optimize.github.io/#skopt.Optimizer

Optuna Documentation, Release 2.8.0.dev0

* consider_pruned_trials — If this is True, the PRUNED trials are considered for
sampling.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

Note: As the number of trials n increases, each sampling takes longer and longer on a scale
of O(n?). And, if this is True, the number of trials will increase. So, it is suggested to set
this flag Fa 1 se when each evaluation of the objective function is relatively faster than each
sampling. On the other hand, it is suggested to set this flag True when each evaluation of
the objective function is relatively slower than each sampling.

Methods
after trial(study, trial, state, values) Trial post-processing.
infer_relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
* study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

e state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence[float]])— Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

6.3.

API Reference 109

https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search_space () as an implementation of
infer._relative search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* param_name (str)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

110 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_search _space ().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

skorch

optuna.integration. Skorch callback to prune unpromising trials.
SkorchPruningCallback

optuna.integration.SkorchPruningCallback

class optuna.integration.SkorchPruningCallback (trial, monitor)
Skorch callback to prune unpromising trials.

New in version 2.1.0.

Parameters

* trial — A Trial corresponding to the current evaluation of the objective function.

* monitor — An evaluation metric for pruning, e.g. val_loss or val_acc. The metrics
are obtained from the returned dictionaries, i.e., net .histroy. The names thus depend
on how this dictionary is formatted.

Methods

on_epoch_end(net, **kwargs)

6.3. API Reference 111

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

TensorFlow
optuna.integration. Callback to track Optuna trials with TensorBoard.
TensorBoardCallback
optuna.integration. TensorFlow SessionRunHook to prune unpromising tri-
TensorFlowPruningHook als.
optuna.integration. tf.keras callback to prune unpromising trials.

TFRKerasPruningCallback

optuna.integration.TensorBoardCallback

class optuna.integration.TensorBoardCallback (dirname, metric_name)
Callback to track Optuna trials with TensorBoard.

This callback adds relevant information that is tracked by Optuna to TensorBoard.
See the example.
Parameters
* dirname - Directory to store TensorBoard logs.

* metric_name — Name of the metric. Since the metric itself is just a number, metric_name
can be used to give it a name. So you know later if it was roc-auc or accuracy.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

optuna.integration.TensorFlowPruningHook

class optuna.integration.TensorFlowPruningHook (frial, estimator, metric,

run_every_steps)
TensorFlow SessionRunHook to prune unpromising trials.

See the example if you want to add a pruning hook to TensorFlow’s estimator.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.
* estimator — An estimator which you will use.
* metric — An evaluation metric for pruning, e.g., accuracy and loss.

* run_every_steps — An interval to watch the summary file.

112 Chapter 6. Reference

https://github.com/optuna/optuna/blob/master/examples/tensorboard_simple.py
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://github.com/optuna/optuna/blob/master/examples/tensorflow/tensorflow_estimator_integration.py

Optuna Documentation, Release 2.8.0.dev0

Methods

after_run(run_context, run_values)

before_run(run_context)

begin()

optuna.integration.TFKerasPruningCallback

class optuna.integration.TFKerasPruningCallback (trial, monitor)
tf keras callback to prune unpromising trials.

This callback is intend to be compatible for TensorFlow v1 and v2, but only tested with TensorFlow v2.
See the example if you want to add a pruning callback which observes the validation accuracy.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* monitor — An evaluation metric for pruning, e.g., val_loss or val_acc.

Methods

on_epoch_end(epochl, logs])

XGBoost

optuna.integration. Callback for XGBoost to prune unpromising trials.
XGBoostPruningCallback

optuna.integration.XGBoostPruningCallback

class optuna.integration.XGBoostPruningCallback (rial, observation_key)
Callback for XGBoost to prune unpromising trials.

See the example if you want to add a pruning callback which observes validation AUC of a XGBoost model.
Parameters
* trial — A Trial corresponding to the current evaluation of the objective function.

* observation_key — An evaluation metric for pruning, e.g., validation-error
and validation-merror. When using the Scikit-Learn API, the index number of
eval_set mustbeincluded inthe observation_key,e.g.,validation_O-error
and validation_O-merror. Please refer to eval_metric in XGBoost reference for
further details.

6.3. API Reference 113

https://github.com/optuna/optuna/blob/master/examples/tfkeras/tfkeras_integration.py
https://github.com/optuna/optuna/blob/master/examples/xgboost/xgboost_integration.py
https://xgboost.readthedocs.io/en/latest/parameter.html

Optuna Documentation, Release 2.8.0.dev0

6.3.7 optuna.logging

The I1ogging module implements logging using the Python 1logging package. Library users may be espe-
cially interested in setting verbosity levels using set_verbosity () to one of optuna.logging.CRITICAL
(aka optuna.logging.FATAL), optuna.logging.ERROR, optuna.logging.WARNING (aka optuna.
logging.WARN), optuna.logging.INFO, or optuna.logging.DEBUG

optuna.logging.get_verbosity Return the current level for the Optuna’s root logger.
optuna.logging.set_verbosity Set the level for the Optuna’s root logger.
optuna.logging.disable_default_handler Disable the default handler of the Optuna’s root logger.
optuna.logging.enable default_handler Enable the default handler of the Optuna’s root logger.
optuna.logging.disable propagation Disable propagation of the library log outputs.
optuna.logging.enable propagation Enable propagation of the library log outputs.

optuna.logging.get_verbosity

optuna.logging.get_verbosity ()
Return the current level for the Optuna’s root logger.

Returns Logging level, e.g., optuna.logging.DEBUG and optuna.logging.INFO.

Return type int

Note: Optuna has following logging levels:

optuna.
optuna.
optuna.
optuna.

optuna.

logging.CRITICAL, optuna.logging.FATAL
logging.ERROR

logging.WARNING, optuna.logging.WARN
logging.INFO

logging.DEBUG

optuna.logging.set_verbosity

optuna.logging.set_verbosity (verbosity)
Set the level for the Optuna’s root logger.

Parameters verbosity (int) — Logging level, e.g., optuna.logging.DEBUG and
optuna.logging.INFO

Return type None

Note: Optuna has following logging levels:

optuna
optuna
optuna
optuna

optuna

logging.CRITICAL, optuna.logging.FATAL
logging.ERROR

logging.WARNING, optuna.logging.WARN
logging.INFO

logging.DEBUG

114

Chapter 6. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.logging.disable_default_handler

optuna.logging.disable_default_handler ()
Disable the default handler of the Optuna’s root logger.

Example

Stop and then resume logging to sys.stderr.

import optuna
study = optuna.create_study ()

There are no logs in sys.stderr.
optuna.logging.disable_default_handler ()
study.optimize (objective, n_trials=10)

There are logs in sys.stderr.
optuna.logging.enable_default_handler ()

study.optimize (objective, n_trials=10)

[I 2020-02-23 17:00:54,314] Trial 10 finished with value:
[I 2020-02-23 17:00:54,356] Trial 11 finished with value:
oo,

Return type None

optuna.logging.enable_default_handler
optuna.logging.enable_default_handler ()

Enable the default handler of the Optuna’s root logger.

Please refer to the example shown in disable default handler ().

Return type None

optuna.logging.disable_propagation
optuna.logging.disable_propagation ()
Disable propagation of the library log outputs.
Note that log propagation is disabled by default.
Return type None

optuna.logging.enable_propagation

optuna.logging.enable_propagation ()
Enable propagation of the library log outputs.

Please disable the Optuna’s default handler to prevent double logging if the root logger has been configured.

6.3. API Reference 115

https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Example

Propagate all log output to the root logger in order to save them to the file.

import optuna
import logging

logger = logging.getLogger ()

study = optuna.create_study ()

with open("foo.log") as f:

optuna.logging.enable_propagation ()
optuna.logging.disable_default_handler ()

logger.info ("Start optimization.™)
study.optimize (objective, n_trials=10)

logger.setlLevel (logging. INFO) # Setup the root logger.
logger.addHandler (logging.FileHandler ("foo.log", mode="w"))

Propagate logs to the root logger.

Stop showing logs in sys.stderr.

assert f.readline () .startswith("A new study created")
assert f.readline() == "Start optimization.\n"

Return type None

6.3.8 optuna.multi_objective

This module is deprecated, with former functionality moved to optuna. samplers, optuna.study, optuna.

trialand optuna.visualization.

optuna.multi_objective.samplers

optuna.multi_objective.samplers.
BaseMultiObjectiveSampler

Base class for multi-objective samplers.

optuna.multi_objective.samplers.
NSGAIIMultiObjectiveSampler

Multi-objective sampler using the NSGA-II algorithm.

optuna.multi_objective.samplers.
RandomMultiObjectiveSampler

Multi-objective sampler using random sampling.

optuna.multi_objective.samplers.
MOTPEMultiObjectiveSampler

Multi-objective sampler using the MOTPE algorithm.

116

Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.multi_objective.samplers.BaseMultiObjectiveSampler

class optuna.multi_objective.samplers.BaseMultiObjectiveSampler (*args,
**kwargs)
Base class for multi-objective samplers.
The abstract methods of this class are the same as ones defined by BaseSampler except for taking multi-
objective versions of study and trial instances as the arguments.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/

releases/tag/v2.4.0.

Methods
infer_relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_ relative(study, trial, search_space) Sample parameters in a given search space.

abstract infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters

e study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

* trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search_ space () as an implementation of
infer_relative_ search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the MultiOb jectiveStudy instance if trials are executed in parallel with the
option n__jobs>1. In that case, the sampler instance will be replicated including the state of the random
number generator, and they may suggest the same values. To prevent this issue, this method assigns a
different seed to each random number generator.

Return type None

6.3. API Reference 117

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

abstract sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use the
relationship between parameters such as random sampling.

Parameters

* study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

e trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

e param_name (str)— Name of the sampled parameter.

* param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any

abstract sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use the relationship between parameters.

Parameters

* study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

e trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_ search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler

class optuna.multi_objective.samplers.NSGAIIMultiObjectiveSampler (population_size=50,
muta-
tion_prob=None,
crossover_prob=0.9,
swap-
ping_prob=0.5,
seed=None)

Multi-objective sampler using the NSGA-II algorithm.

NSGA-II stands for “Nondominated Sorting Genetic Algorithm II”, which is a well known, fast and elitist
multi-objective genetic algorithm.

For further information about NSGA-II, please refer to the following paper:

* A fast and elitist multiobjective genetic algorithm: NSGA-II

118 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://ieeexplore.ieee.org/document/996017

Optuna Documentation, Release 2.8.0.dev0

Parameters
* population_size — Number of individuals (trials) in a generation.

* mutation_ prob - Probability of mutating each parameter when creating a new individ-
val. If None is specified, the value 1.0 / len(parent_trial.params) is used
where parent_trial is the parent trial of the target individual.

* crossover_prob — Probability that a crossover (parameters swapping between parents)
will occur when creating a new individual.

* swapping prob - Probability of swapping each parameter of the parents during
Crossover.

* seed - Seed for random number generator.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.4.0.

Methods
infer relative_search_ space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters

e study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

e trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search space () as an implementation of
infer _relative search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the MultiObjectiveStudy instance if trials are executed in parallel with the
option n__jobs>1. In that case, the sampler instance will be replicated including the state of the random

6.3.

API Reference 119

https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

number generator, and they may suggest the same values. To prevent this issue, this method assigns a
different seed to each random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use the
relationship between parameters such as random sampling.

Parameters

e study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

e trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

e param_name (st r)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any

sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use the relationship between parameters.

Parameters

e study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

* trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer _relative search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.multi_objective.samplers.RandomMultiObjectiveSampler

class optuna.multi_objective.samplers.RandomMultiObjectiveSampler (seed=None)
Multi-objective sampler using random sampling.

This sampler is based on independent sampling. See also BaseMultiObjectiveSampler for more details
of ‘independent sampling’.

120 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

Example

import optuna
from optuna.multi_ objective.samplers import RandomMultiObjectiveSampler

def objective(trial):
x = trial.suggest_float ("x", -5, 5)
y = trial.suggest_float("y", -5, 5)
return x *x 2, y + 10

study = optuna.multi_objective.create_study (
["minimize", "minimize"], sampler=RandomMultiObjectiveSampler ()

)

study.optimize (objective, n_trials=10)

Args: seed: Seed for random number generator.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.4.0.

Methods
infer._relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_ independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters

e study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

e trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also:
Please refer to intersection_search space () as an implementation of
6.3. API Reference 121

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

infer._relative search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the MultiOb jectiveStudy instance if trials are executed in parallel with the
option n__jobs>1. In that case, the sampler instance will be replicated including the state of the random
number generator, and they may suggest the same values. To prevent this issue, this method assigns a
different seed to each random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use the
relationship between parameters such as random sampling.

Parameters

e study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

e trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

e param_name (str)— Name of the sampled parameter.

* param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any

sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use the relationship between parameters.

Parameters

e study (optuna.multi_objective.study.MultiObjectiveStudy) — Tar-
get study object.

e trial (optuna.multi_objective.trial.FrozenMultiObjectiveTrial)
— Target trial object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_ search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

122 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler

class optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler (consider_prior=True,
prior_weight=1.0,
con-
sider_magic_clip=True,
con-
sider_endpoints=True,
n_startup_trials=10,
n_ehvi_candidates=24,
gamma=<function
de-
fault_gamma>,
weights_above=<function
_de-
Sfault_weights_above>,

seed=None)
Multi-objective sampler using the MOTPE algorithm.

This sampler is a multiobjective version of TPESampler.
For further information about MOTPE algorithm, please refer to the following paper:

* Multiobjective tree-structured parzen estimator for computationally expensive optimization problems

Parameters

* consider_prior - Enhance the stability of Parzen estimator by imposing a
Gaussian prior when True. The prior is only effective if the sampling distribu-
tion is either UniformDistribution, DiscreteUniformDistribution,
LogUniformDistribution, IntUniformDistribution, or
IntLogUniformDistribution.

* prior_weight - The weight of the prior. This argument is used
in UniformDistribution, DiscreteUniformDistribution,
LogUniformDistribution, IntUniformDistribution,

IntLogUniformDistribution,and CategoricalDistribution.

* consider_magic_clip - Enable aheuristic to limit the smallest variances of Gaussians
used in the Parzen estimator.

* consider_endpoints — Take endpoints of domains into account when calculating vari-
ances of Gaussians in Parzen estimator. See the original paper for details on the heuristics
to calculate the variances.

* n_startup_trials — The random sampling is used instead of the MOTPE algorithm
until the given number of trials finish in the same study. 11 * number of variables - 1 is
recommended in the original paper.

* n_ehvi_candidates — Number of candidate samples used to calculate the expected
hypervolume improvement.

* gamma — A function that takes the number of finished trials and returns the number of trials
to form a density function for samples with low grains. See the original paper for more
details.

* weights_above — A function that takes the number of finished trials and returns a weight
for them. As default, weights are automatically calculated by the MOTPE’s default strategy.

* seed - Seed for random number generator.

6.3. API Reference 123

https://dl.acm.org/doi/abs/10.1145/3377930.3389817
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 2.8.0.dev0

Note: Initialization with Latin hypercube sampling may improve optimization performance.
current implementation only supports initialization with random sampling.

However, the

Example

import optuna

seed = 128
num_variables = 9
n_startup_trials = 11 * num_variables - 1

def objective(trial):
x = []
for i in range(l, num_variables + 1):
x.append (trial.suggest_float (£"x/i/", 0.0, 2.0 % 1i))
return x

sampler = optuna.multi_objective.samplers.MOTPEMultiObjectiveSampler (
n_startup_trials=n_startup_trials, n_ehvi_candidates=24, seed=seed
)
study = optuna.multi_objective.create_study (
["minimize"] % num_variables, sampler=sampler
)

study.optimize (objective, n_trials=250)

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/

releases/tag/v2.4.0.
Methods
after_trial(study, trial, state, values) Trial post-processing.
hyperopt_parameters() Return the the default parameters of hyperopt
(v0.1.2).
infer_relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state

is stored.

124

Chapter 6.

Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None

static hyperopt_parameters ()
Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned by this method.

Example

Create a TPESampler instance with the default parameters of hyperopt.

import optuna
from optuna.samplers import TPESampler

def objective (trial):
x = trial.suggest_float ("x", -10, 10)
return x *x 2

sampler = TPESampler (x*TPESampler.hyperopt_parameters())
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

Returns A dictionary containing the default parameters of hyperopt.
Return type Dict[str, Any]
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters

* study (Union[optuna.study.Study, optuna.multi_objective.
study.MultiObjectiveStudy])— Target study object.

6.3.

API Reference 125

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://github.com/hyperopt/hyperopt/tree/0.1.2
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

* trial (Union[optuna.trial._frozen.FrozenTrial, optuna.
multi_objective.trial.FrozenMultiObjectiveTrial]) - Target
trial object. Take a copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

See also:

Please refer to intersection_search_space () as an implementation of
infer _relative_search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each

random number generator.
Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters

* study (Union[optuna.study.Study, optuna.multi_objective.
study.MultiObjectiveStudy])— Target study object.

e trial (Union[optuna.trial._frozen.FrozenTrial, optuna.
multi_objective.trial.FrozenMultiObjectiveTriall]) - Target
trial object. Take a copy before modifying this object.

* param_name (str)— Name of the sampled parameter.
e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such

as Gaussian Process and CMA-ES.

126 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters

* study (Union[optuna.study.Study, optuna.multi_objective.
study.MultiObjectiveStudy])— Target study object.

* trial (Union[optuna.trial._frozen.FrozenTrial, optuna.
multi_objective.trial.FrozenMultiObjectiveTrial]) - Target
trial object. Take a copy before modifying this object.

* search_space

BaseDistribution])

(Dict[str, optuna.distributions.
The search space returned by

infer _relative_search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.multi_objective.study

optuna.multi_objective.study.

MultiObjectiveStudy

A study corresponds to a multi-objective optimization
task, i.e., a set of trials.

optuna.multi_objective.study.

create_study

Create anew MultiObjectiveStudy.

optuna.multi_objective.study.

load_study

Load the existing MultiOb jectiveStudy that has
the specified name.

optuna.multi_objective.study.MultiObjectiveStudy

class optuna.multi_objective.study.MultiObjectiveStudy (study)
A study corresponds to a multi-objective optimization task, i.e., a set of trials.

This object provides interfaces to run a new Trial, access trials’ history, set/get user-defined attributes of the

study itself.

Note that the direct use of this constructor is not recommended. To create and load a study, please refer to the
documentation of create_study () and 1oad_study () respectively.

releases/tag/v2.4.0.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/

6.3. API Reference

127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

Methods

enqueue_trial(params)

Enqueue a trial with given parameter values.

get_pareto_front_trials()

Return trials located at the pareto front in the study.

get_ trials([deepcopy, states])

Return all trials in the study.

opt imize(objective[, timeout, n_trials, ...])

Optimize an objective function.

set_system_attr(key, value)

Set a system attribute to the study.

set_user_attr(key, value)

Set a user attribute to the study.

Attributes

directions

Return the optimization direction list.

n_objectives

Return the number of objectives.

sampler

Return the sampler.

system _attrs

Return system attributes.

trials

Return all trials in the study.

user_attrs

Return user attributes.

property directions
Return the optimization direction list.

Returns A list that contains the optimization direction for each objective value.

enqueue_trial (params)
Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your objective function.
Please refer to the documentation of optuna. study. Study.enqueue_trial () for further details.

Parameters params (Dict[str, Any]) — Parameter values to pass your objective func-
tion.

Return type None

get_pareto_front_trials()
Return trials located at the pareto front in the study.

A trial is located at the pareto front if there are no trials that dominate the trial. It’s called that a
trial t O dominates another trial t1ifall (vO <= v1) for v0, vl in zip(tO.values, tl.
values) and any (vO < v1) for v0, vl in zip(tO.values, tl.values) are held.

Returns A list of FrozenMultiObjectiveTrial objects.
Return type List[optuna.multi_objective.trial. FrozenMultiObjectiveTrial]

get_trials (deepcopy=True, states=None)
Return all trials in the study.

The returned trials are ordered by trial number.
Parameters

* deepcopy (bool)—Flag to control whether to apply copy . deepcopy () to the trials.
Note that if you set the flag to False, you shouldn’t mutate any fields of the returned
trial. Otherwise the internal state of the study may corrupt and unexpected behavior may
happen.

128 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False

Optuna Documentation, Release 2.8.0.dev0

* states (Optional [Tuple[optuna.trial._state.TrialState, ..]])-
Trial states to filter on. If None, include all states.

Returns A list of FrozenMultiObjectiveTrial objects.
Return type List[optuna.multi_objective.trial. FrozenMultiObjectiveTrial]

property n_objectives
Return the number of objectives.

Returns Number of objectives.

optimize (objective, timeout=None, n_trials=None, n_jobs=1, catch=(), callbacks=None,

gc_after_trial=True, show_progress_bar=False)
Optimize an objective function.

This method is the same as optuna. study. Study.optimize () except for taking an objective func-
tion that returns multi-objective values as the argument.

Please refer to the documentation of optuna. study. Study.optimize () for further details.

Example

import optuna

def objective(trial):
Binh and Korn function.
x = trial.suggest_float ("x", 0, 5)
y = trial.suggest_float ("y", 0, 3)

vO = 4 x X *x%x 2 + 4 x y x% 2
vl = (x — 5) %% 2 + (y — 5) *% 2
return v0, vl

study = optuna.multi_objective.create_study(["minimize", "minimize"])
study.optimize (objective, n_trials=3)

Parameters

* objective (Callable[[optuna.multi_objective.trial.
MultiObjectiveTrial], Sequence[float]])-

* timeout (Optional[int])—

e n_trials (Optional[int])—

* n_jobs (int)-—

* catch (Tuple[Type [Exception], ..])-

* callbacks (Optional[List[Callable[[optuna.multi_objective.
study.MultiObjectiveStudy, optuna.multi_objective.trial.
FrozenMultiObjectiveTrial], None]]])-

* gc_after trial (bool)-—
* show_progress_bar (bool)—

Return type None

6.3. API Reference 129

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

property sampler
Return the sampler.

Returns A BaseMultiObjectiveSampler object.

set_system_attr (key, value)
Set a system attribute to the study.

Note that Optuna internally uses this method to save system messages. Please use set_user._attr()
to set users’ attributes.

Parameters

* key (str)— A key string of the attribute.

e value (Any) — A value of the attribute. The value should be JSON serializable.
Return type None

set_user_attr (key, value)
Set a user attribute to the study.

Parameters

* key (str)— A key string of the attribute.

e value (Any) — A value of the attribute. The value should be JSON serializable.
Return type None

property system attrs
Return system attributes.

Returns A dictionary containing all system attributes.

property trials
Return all trials in the study.

The returned trials are ordered by trial number.
This is a short form of self.get_trials (deepcopy=True, states=None).
Returns A list of FrozenMultiObjectiveTrial objects.

property user_attrs
Return user attributes.

Returns A dictionary containing all user attributes.

optuna.multi_objective.study.create_study

optuna.multi_objective.study.create_study (directions, study_name=None, storage=None,

sampler=None, load_if _exists=False)
Create anew MultiObjectiveStudy.

130 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Example

import optuna

def objective(trial):
Binh and Korn function.
x = trial.suggest_float ("x", 0, 5)
y = trial.suggest_£float ("y", 0, 3)

vO = 4 % x *x%x 2 + 4 x y x%x 2
vl = (x — 5) %% 2 + (y — 5) %% 2
return v0, vl

study = optuna.multi_objective.create_study(["minimize", "minimize"])
study.optimize (objective, n_trials=3)

Parameters

* directions (List [str]) — Optimization direction for each objective value. Set
minimize for minimization and maximize for maximization.

* study_name (Optional[str]) — Study’s name. If this argument is set to None, a
unique name is generated automatically.

* storage (Optional [Union[str, optuna.storages._base.
BaseStorage]]) — Database URL. If this argument is set to None, in-memory
storage is used, and the St udy will not be persistent.

Note:

When a database URL is passed, Optuna internally uses SQLAlchemy to handle
the database. Please refer to SQLAlchemy’s document for further details. If you
want to specify non-default options to SQLAlchemy Engine, you can instantiate
RDBStorage with your desired options and pass it to the storage argument in-
stead of a URL.

* sampler (Optional [optuna.multi_objective.samplers._base.
BaseMultiObjectiveSampler])— A sampler object that implements background al-
gorithm for value suggestion. If None is specified, NSGATTMultiOb ject iveSampler
is used as the default. See also samplers.

* load_if_ exists (bool) — Flag to control the behavior to handle a conflict of study
names. In the case where a study named study_name already exists in the storage, a
DuplicatedStudyErrorisraisedif load_if_ existsissettoFalse. Otherwise,
the creation of the study is skipped, and the existing one is returned.

Returns A MultiObjectiveStudy object.

Return type optuna.multi_objective.study.MultiObjectiveStudy

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.4.0.

6.3. API Reference 131

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
https://docs.sqlalchemy.org/en/latest/core/engines.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

optuna.multi_objective.study.load_study

optuna.multi_objective.study.load_study (study_name, storage, sampler=None)

Load the existing MultiObjectiveStudy that has the specified name.

Example

import optuna

def objective(trial):
Binh and Korn function.
x = trial.suggest_float ("x", 0, 5)
y = trial.suggest_float("y", 0, 3)

vO = 4 x x x%x 2 + 4 x y x%x 2
vl (x = 5) *% 2 + (y — 5) »x 2
return v0, vl

study = optuna.multi_objective.create_study (
directions=["minimize", "minimize"],
study_name="my_study",
storage="sqglite:///example.db",

)

study.optimize (objective, n_trials=3)

loaded_study = optuna.multi_objective.study.load_study (
study_name="my_study", storage="sglite:///example.db"
)

assert len(loaded_study.trials) == len(study.trials)

Parameters
* study_name (str)— Study’s name. Each study has a unique name as an identifier.

* storage (Union[str, optuna.storages._base.BaseStorage]) -
Database URL such as sglite:///example.db. Please see also the documen-
tation of create_study () for further details.

* sampler (Optional [optuna.multi_objective.samplers._base.
BaseMultiObjectiveSampler])— A sampler object that implements background al-
gorithm for value suggestion. If None is specified, RandomMultiOb ject iveSampler
is used as the default. See also samplers.

Returns A MultiObjectiveStudy object.

Return type optuna.multi_objective.study.MultiObjectiveStudy

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.4.0.

132

Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

optuna.multi_objective.trial

optuna.multi_objective.trial.
MultiObjectiveTlrial

A trial is a process of evaluating an objective function.

optuna.multi_objective.trial.
FrozenMultiObjectiveTrial

Status and results of a MultiObjectiveTrial.

optuna.multi_objective.trial.MultiObjectiveTrial

class optuna.multi_objective.trial .MultiObjectiveTrial (trial)
A trial is a process of evaluating an objective function.

This object is passed to an objective function and provides interfaces to get parameter suggestion, manage the
trial’s state, and set/get user-defined attributes of the trial.

Note that the direct use of this constructor is not recommended. This object is seamlessly instantiated and passed
to the objective function behind the optuna.multi_objective.study.MultiObjectiveStudy.
optimize () method; hence library users do not care about instantiation of this object.

Parameters trial — A Trial object.

releases/tag/v2.4.0.

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/

Methods

report(values, step)

Report intermediate objective function values for a
given step.

set_system_attr(key, value)

Set system attributes to the trial.

set_user_attr(key, value)

Set user attributes to the trial.

suggest_categorical(name, choices)

Suggest a value for the categorical parameter.

suggest_discrete_uniform(name, low,

high, q)

Suggest a value for the discrete parameter.

suggest_ float(name, low, high, *[, step, log])

Suggest a value for the floating point parameter.

suggest_int(name, low, high[, step, log])

Suggest a value for the integer parameter.

suggest_loguniform(name, low, high)

Suggest a value for the continuous parameter.

suggest_uniform(name, low, high)

Suggest a value for the continuous parameter.

Attributes

datetime_start

Return start datetime.

distributions Return distributions of parameters to be optimized.

number Return trial’s number which is consecutive and
unique in a study.

params Return parameters to be optimized.

system_attrs

Return system attributes.

continues on next page

6.3. API Reference

133

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

Table 63 — continued from previous page
user_attrs Return user attributes.

property datetime_start
Return start datetime.

Returns Datetime where the Tr1a] started.

property distributions
Return distributions of parameters to be optimized.

Returns A dictionary containing all distributions.

property number
Return trial’s number which is consecutive and unique in a study.

Returns A trial number.

property params
Return parameters to be optimized.

Returns A dictionary containing all parameters.

report (values, step)
Report intermediate objective function values for a given step.

The reported values are used by the pruners to determine whether this trial should be pruned.
See also:

Please refer to BasePruner.

Note: The reported values are converted to £1oat type by applying £1oat () function internally. Thus,
it accepts all float-like types (e.g., numpy . f1oat 32). If the conversion fails, a TypeError is raised.

Parameters

* values (Sequence[float]) — Intermediate objective function values for a given
step.

* step (int) — Step of the trial (e.g., Epoch of neural network training).
Return type None
set_system_attr (key, value)
Set system attributes to the trial.

Please refer to the documentation of optuna.trial.Trial.set_system attr () for further de-
tails.

Parameters

* key (str)—

* value (Any) —
Return type None

set_user_attr (key, value)
Set user attributes to the trial.

Please refer to the documentation of optuna.trial.Trial.set_user attr () for further details.

134 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Parameters

* key (str)—

e value (Any) -
Return type None

suggest_categorical (name, choices)
Suggest a value for the categorical parameter.

Please refer to the documentation of optuna.trial.Trial.suggest_categorical () for fur-
ther details.

Parameters

e name (str)—

e choices (Sequence [Optional [Union[str, float, int, bool]]])-—
Return type Union[None, bool, int, float, str]

suggest_discrete_uniform (name, low, high, q)
Suggest a value for the discrete parameter.

Please refer to the documentation of optuna.trial.Trial.suggest_discrete uniform()
for further details.

Parameters
e name (str)—
* low (float) -
* high (float)-
e q(float)-
Return type float

suggest_float (name, low, high, *, step=None, log=False)
Suggest a value for the floating point parameter.

Please refer to the documentation of optuna.trial.Trial.suggest_float () for further details.
Parameters
* name (str)—
e low(float)—
* high (float)-
* step (Optional[float])—
* log (bool) -
Return type float

suggest_int (name, low, high, step=1, log=False)
Suggest a value for the integer parameter.

Please refer to the documentation of optuna.trial.Trial.suggest_int () for further details.
Parameters
* name (str)—

e low (int) -

6.3.

API Reference 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

e high (int)-

e step (int)—

* log (bool)—
Return type int

suggest_loguniform (name, low, high)
Suggest a value for the continuous parameter.

Please refer to the documentation of optuna.trial.Trial.suggest_loguniform () for further
details.

Parameters

e name (str)—

e low (float) -

* high (float)-
Return type float

suggest_uniform (name, low, high)
Suggest a value for the continuous parameter.

Please refer to the documentation of optuna.trial.Trial.suggest_uniform/() for further de-
tails.

Parameters

* name (str)—

e low (float)—

e high(float)-—
Return type float

property system_ attrs
Return system attributes.

Returns A dictionary containing all system attributes.

property user_attrs
Return user attributes.

Returns A dictionary containing all user attributes.

optuna.multi_objective.trial.FrozenMultiObjectiveTrial

class optuna.multi_objective.trial.FrozenMultiObjectiveTrial (n_objectives, trial)
Status and results of a MultiObjectiveTrial.

number
Unique and consecutive number of MultiObjectiveTrial for each MultiObjectiveStudy.
Note that this field uses zero-based numbering.

state
TrialStateofthe MultiObjectiveTrial.

values
Objective values of the MultiObjectiveTrial.

136 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

datetime_start
Datetime where the MultiObjectiveTrial started.

datetime_complete
Datetime where the Multi0bjectiveTrial finished.

params
Dictionary that contains suggested parameters.

distributions
Dictionary that contains the distributions of params.

user_attrs
Dictionary that contains the attributes of the MultiObjectiveTrial set with optuna.
multi_objective.trial.MultiObjectiveTrial.set_user_attr().

intermediate_values
Intermediate objective values set with optuna.multi_objective.trial.
MultiObjectiveTlrial.report ().

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.4.0.

Attributes

datetime_complete

datetime_start

distributions

last_step

number

params

state

system_attrs

user_attrs

6.3. API Reference 137

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

optuna.multi_objective.visualization

Note: optuna.multi_objective.visualization module uses plotly to create figures, but JupyterLab
cannot render them by default. Please follow this installation guide to show figures in JupyterLab.

optuna.multi_objective.visualization. Plotthe pareto front of a study.
plot_pareto_front

optuna.multi_objective.visualization.plot_pareto_front

optuna.multi_objective.visualization.plot_pareto_£front (study, names=None, in-
clude_dominated_trials=False,

axis_order=None)
Plot the pareto front of a study.

Example

The following code snippet shows how to plot the pareto front of a study.

import optuna

def objective(trial):
x = trial.suggest_float ("x", 0, 5)
y = trial.suggest_float("y", 0, 3)

vO = 4 x x x%x 2 + 4 x y x%x 2
vl (x = 5) *% 2 + (y — 5) »x 2
return v0, vl

study = optuna.multi_objective.create_study(["minimize", "minimize"])
study.optimize (objective, n_trials=50)

fig = optuna.multi_objective.visualization.plot_pareto_front (study)
fig.show ()

Parameters

* study (optuna.multi_objective.study.MultiObjectiveStudy) - A
MultiObjectiveStudy object whose trials are plotted for their objective values.

* names (Optional [List [str]])— Objective name list used as the axis titles. If None
is specified, “Objective {objective_index}” is used instead.

* include_dominated_trials (bool)— A flag to include all dominated trial’s objec-
tive values.

* axis_order (Optional [List [int]])— Alistof indices indicating the axis order. If
None is specified, default order is used.

Returns A plotly.graph_objs.Figure object.

Raises ValueError — If the number of objectives of study isn’t 2 or 3.

138 Chapter 6. Reference

https://github.com/jupyterlab/jupyterlab
https://github.com/plotly/plotly.py#jupyterlab-support-python-35
https://github.com/jupyterlab/jupyterlab
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Return type plotly.graph_objs._figure.Figure

Warning: Deprecated in v2.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v2.4.0.

6.3.9 optuna.pruners

The pruners module defines a BasePruner class characterized by an abstract prune () method, which, for a
given trial and its associated study, returns a boolean value representing whether the trial should be pruned. This
determination is made based on stored intermediate values of the objective function, as previously reported for the
trial using optuna.trial.Trial.report (). The remaining classes in this module represent child classes,
inheriting from BasePruner, which implement different pruning strategies.

optuna.pruners.BasePruner Base class for pruners.
optuna.pruners.MedianPruner Pruner using the median stopping rule.
optuna.pruners.NopPruner Pruner which never prunes trials.
optuna.pruners.PercentilePruner Pruner to keep the specified percentile of the trials.
optuna.pruners.SuccessiveHalvingPruner Pruner using Asynchronous Successive Halving Algo-
rithm.
optuna.pruners.HyperbandPruner Pruner using Hyperband.
optuna.pruners.ThresholdPruner Pruner to detect outlying metrics of the trials.
optuna.pruners.BasePruner
class optuna.pruners.BasePruner
Base class for pruners.
Methods
prune(study, trial) Judge whether the trial should be pruned based on

the reported values.

abstract prune (study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report () and optuna.trial.Trial.should prune () provide user interfaces to implement
pruning mechanism in an objective function.

Parameters
* study (optuna.study.Study)— Study object of the target study.

e trial (optuna.trial._frozen.FrozenTrial)— FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

6.3.

API Reference 139

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 2.8.0.dev0

optuna.pruners.MedianPruner

class optuna.pruners.MedianPruner (n_startup_trials=5, n_warmup_steps=0, interval_steps=1)
Pruner using the median stopping rule.

Prune if the trial’s best intermediate result is worse than median of intermediate results of previous trials at the
same step.

Example

We minimize an objective function with the median stopping rule.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear_model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, V)
classes = np.unique (y)

def objective(trial):
alpha = trial.suggest_float ("alpha", 0.0, 1.0)
clf = SGDClassifier (alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report (intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study (
direction="maximize",
pruner=optuna.pruners.MedianPruner (
n_startup_trials=5, n_warmup_steps=30, interval_steps=10
) r
)

study.optimize (objective, n_trials=20)

Parameters

* n_startup_trials - Pruning is disabled until the given number of trials finish in the
same study.

* n_warmup_steps — Pruning is disabled until the trial exceeds the given number of step.
Note that this feature assumes that st ep starts at zero.

140 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

* interval_steps — Interval in number of steps between the pruning checks, offset by the
warmup steps. If no value has been reported at the time of a pruning check, that particular
check will be postponed until a value is reported.

Methods

prune(study, trial) Judge whether the trial should be pruned based on
the reported values.

prune (study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report () and optuna.trial.Trial.should _prune () provide user interfaces to implement
pruning mechanism in an objective function.

Parameters
e study (optuna.study.Study) — Study object of the target study.

* trial (optuna.trial._frozen.FrozenTrial)— FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.
Return type bool

optuna.pruners.NopPruner

class optuna.pruners.NopPruner
Pruner which never prunes trials.

Example

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna

X, yv = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, vy)
classes = np.unique (y)

def objective(trial):
alpha = trial.suggest_float ("alpha", 0.0, 1.0)
clf = SGDClassifier (alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

(continues on next page)

6.3. API Reference 141

https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

intermediate_value = clf.score(X_valid, y_valid)
trial.report (intermediate_value, step)

if trial.should_prune():
assert False, "should_prune() should always return False with this_

—pruner."”
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize", pruner=optuna.pruners.

—NopPruner ())
study.optimize (objective, n_trials=20)

Methods

Judge whether the trial should be pruned based on

prune(study, trial)
the reported values.

prune (study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report () and optuna.trial.Trial.should _prune () provide user interfaces to implement

pruning mechanism in an objective function.
Parameters
e study (optuna.study.Study) — Study object of the target study.

* trial (optuna.trial._frozen.FrozenTrial)— FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

optuna.pruners.PercentilePruner

class optuna.pruners.PercentilePruner (percentile, n_startup_trials=5, n_warmup_steps=0,
interval_steps=1)
Pruner to keep the specified percentile of the trials.

Prune if the best intermediate value is in the bottom percentile among trials at the same step.

142 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 2.8.0.dev0

Example

import numpy as np
from sklearn.datasets import load_iris

import optuna

X, v = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid =
classes = np.unique (y)

def objective(trial):
alpha = trial.suggest_float ("alpha",
clf = SGDClassifier (alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):
clf.partial_fit (X_train,

intermediate_value
trial.report (intermediate_value,

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study (
direction="maximize",
25.0, n_startup_trials=5,
)
)

study.optimize (objective, n_trials=20)

y_train,

n_warmup_steps=30,

from sklearn.linear model import SGDClassifier
from sklearn.model_selection import train_test_split

train_test_split (X, y)

0.0, 1.0)

classes=classes)

clf.score(X_valid, y_valid)

step)

pruner=optuna.pruners.PercentilePruner (

interval_steps=10

Parameters

* percentile — Percentile which must be between 0 and 100 inclusive (e.g., When given
25.0, top of 25th percentile trials are kept).

* n_startup_trials - Pruning is disabled until the given number of trials finish in the

same study.

* n_warmup_steps — Pruning is disabled until the trial exceeds the given number of step.
Note that this feature assumes that step starts at zero.

* interval_steps - Interval in number of steps between the pruning checks, offset by the
warmup steps. If no value has been reported at the time of a pruning check, that particular
check will be postponed until a value is reported. Value must be at least 1.

6.3. API Reference

143

Optuna Documentation, Release 2.8.0.dev0

Methods

prune(study, trial) Judge whether the trial should be pruned based on
the reported values.

prune (study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report () and optuna.trial.Trial.should prune () provide user interfaces to implement
pruning mechanism in an objective function.

Parameters
e study (optuna.study.Study)— Study object of the target study.

* trial (optuna.trial._frozen.FrozenTrial)— FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

optuna.pruners.SuccessiveHalvingPruner

class optuna.pruners.SuccessiveHalvingPruner (min_resource='auto', reduction_factor=4,

min_early_stopping_rate=0, boot-
strap_count=0)
Pruner using Asynchronous Successive Halving Algorithm.

Successive Halving is a bandit-based algorithm to identify the best one among multiple configurations. This
class implements an asynchronous version of Successive Halving. Please refer to the paper of Asynchronous
Successive Halving for detailed descriptions.

Note that, this class does not take care of the parameter for the maximum resource, referred to as R in the paper.
The maximum resource allocated to a trial is typically limited inside the objective function (e.g., st ep number
in simple_pruning.py, EPOCH number in chainer_integration.py).

See also:
Please refer to report ().

Example

We minimize an objective function with SuccessiveHalvingPruner.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna
X, v = load_iris(return_X_y=True)

X_train, X_valid, y_train, y_valid = train_test_split (X, vy)
classes = np.unique (y)

(continues on next page)

144

Chapter 6. Reference

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1502.07943
http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1810.05934
https://github.com/optuna/optuna/blob/master/examples/simple_pruning.py#L35
https://github.com/optuna/optuna/blob/master/examples/chainer/chainer_integration.py#L77

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

def objective(trial):
alpha = trial.suggest_float ("alpha",
clf = SGDClassifier (alpha=alpha)
n_train_iter = 100

for step in range(n_train_iter):

clf.partial_fit(X_train, y_train,

0.0, 1.0)

classes=classes)

intermediate_value = clf.score(X_valid, y_valid)

trial.report (intermediate_value,

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study (

step)

direction="maximize", pruner=optuna.pruners.SuccessiveHalvingPruner ()

)

study.optimize (objective, n_trials=20)

Parameters

* min_resource — A parameter for specifying the minimum resource allocated to a trial

(in the paper this parameter is referred to as r). This parameter defaults to ‘auto’ where the
value is determined based on a heuristic that looks at the number of required steps for the
first trial to complete.

A trial is never pruned until it executes min_resource x reduction_factor™'"-52"v-stopping_rate

steps (i.e., the completion point of the first rung). When the trial completes the first rung,
it will be promoted to the next rung only if the value of the trial is placed in the top
m fraction of the all trials that already have reached the point (otherwise it will
be pruned there). If the trial won the competition, it runs until the next completion point
(i.e., min_resource X red uction_factor(min-early_stopping rate-trung) steps) and repeats the same
procedure.

Note: If the step of the last intermediate value may change with each trial, please manually
specify the minimum possible step to min_resource.

reduction_factor — A parameter for specifying reduction factor of promotable trials
(in the paper this parameter is referred to as 7). At the completion point of each rung, about

Teduction_factor trials will be promoted.

min_early stopping rate — A parameter for specifying the minimum early-
stopping rate (in the paper this parameter is referred to as s).

bootstrap_count — Minimum number of trials that need to complete a rung before any
trial is considered for promotion into the next rung.

6.3.

API Reference

145

http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1810.05934
http://arxiv.org/abs/1810.05934

Optuna Documentation, Release 2.8.0.dev0

Methods

prune(study, trial) Judge whether the trial should be pruned based on
the reported values.

prune (study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report () and optuna.trial.Trial.should prune () provide user interfaces to implement
pruning mechanism in an objective function.

Parameters
e study (optuna.study.Study)— Study object of the target study.

* trial (optuna.trial._frozen.FrozenTrial)— FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

optuna.pruners.HyperbandPruner

class optuna.pruners.HyperbandPruner (min_resource=1, max_resource="auto', reduc-

tion_factor=3, bootstrap_count=0)
Pruner using Hyperband.
As SuccessiveHalving (SHA) requires the number of configurations n as its hyperparameter. For a given finite
budget B, all the configurations have the resources of g on average. As you can see, there will be a trade-off of
B and % Hyperband attacks this trade-off by trying different n values for a fixed budget.

Note:
* In the Hyperband paper, the counterpart of RandomSampler is used.
* Optuna uses TPESampler by default.

* The benchmark result shows that optuna.pruners. HyperbandPruner supports both samplers.

Note: If you use HyperbandPruner with TPESampler, it’s recommended to consider to set larger
n_trials or timeout to make full use of the characteristics of TPESampler because TPESampler uses
some (by default, 10) Trials for its startup.

As Hyperband runs multiple SuccessiveHalvingPruner and collect trials based on the current Trial‘s
bracket ID, each bracket needs to observe more than 10 Trials for TPESampler to adapt its search space.

Thus, for example, if HyperbandPruner has 4 pruners in it, at least 4 x 10 trials are consumed for startup.

Note: Hyperband has several SuccessiveHalvingPruner. Bach SuccessiveHalvingPruner
is referred as “bracket” in the original paper. The number of brackets is an important factor to control the
early stopping behavior of Hyperband and is automatically determined by min_resource, max_resource
and reduction_factor as The number of brackets = floor(log_{reduction_factor}(max_resource /

146

Chapter 6. Reference

https://docs.python.org/3/library/functions.html#bool
http://www.jmlr.org/papers/volume18/16-558/16-558.pdf
https://github.com/optuna/optuna/pull/828#issuecomment-575457360

Optuna Documentation, Release 2.8.0.dev0

min_resource)) + 1. Please set reduction_factor so that the number of brackets is not too large (about 4
~ 6 in most use cases). Please see Section 3.6 of the original paper for the detail.

See also:

Please refer to report ().

Example

We minimize an objective function with Hyperband pruning algorithm.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear_model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna

X, v = load_iris(return_X_y=True)

X_train, X_valid, y_train, y_valid = train_test_split (X, vy)
classes = np.unique (y)

n_train_iter = 100

def objective(trial):
alpha = trial.suggest_float ("alpha", 0.0, 1.0)
clf = SGDClassifier (alpha=alpha)

for step in range(n_train_iter):
clf.partial_fit(X_train, y_train, classes=classes)

intermediate_value = clf.score(X_valid, y_valid)
trial.report (intermediate_value, step)

if trial.should_prune():
raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study (
direction="maximize",
pruner=optuna.pruners.HyperbandPruner (
min_resource=1, max_resource=n_train_iter, reduction_factor=3
)
)

study.optimize (objective, n_trials=20)

Parameters

* min_resource — A parameter for specifying the minimum resource allocated to a
trial noted as r in the paper. A smaller » will give a result faster, but a larger r will
give a better guarantee of successful judging between configurations. See the details for
SuccessiveHalvingPruner.

* max_resource — A parameter for specifying the maximum resource allocated to a trial.
R in the paper corresponds to max_resource / min_resource. This value repre-

6.3. API Reference 147

http://www.jmlr.org/papers/volume18/16-558/16-558.pdf

Optuna Documentation, Release 2.8.0.dev0

sents and should match the maximum iteration steps (e.g., the number of epochs for neural
networks). When this argument is “auto”, the maximum resource is estimated according to
the completed trials. The default value of this argument is “auto”.

Note: With “auto”, the maximum resource will be the largest step reported by report ()
in the first, or one of the first if trained in parallel, completed trial. No trials will be pruned
until the maximum resource is determined.

Note: If the step of the last intermediate value may change with each trial, please manually
specify the maximum possible step to max_resource.

* reduction_factor — A parameter for specifying reduction factor of promotable trials
noted as 7 in the paper. See the details for SuccessiveHalvingPruner.

* bootstrap_count — Parameter specifying the number of trials required in a rung before
any trial can be promoted. Incompatible with max_resouce is "auto". See the details
for SuccessiveHalvingPruner.

Methods

prune(study, trial) Judge whether the trial should be pruned based on
the reported values.

prune (study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report () and optuna.trial.Trial.should _prune () provide user interfaces to implement
pruning mechanism in an objective function.

Parameters
e study (optuna.study.Study) — Study object of the target study.

* trial (optuna.trial._frozen.FrozenTrial)— FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

optuna.pruners.ThresholdPruner

class optuna.pruners.ThresholdPruner (lower=None, upper=None, n_warmup_steps=0, inter-
val_steps=1)
Pruner to detect outlying metrics of the trials.

Prune if a metric exceeds upper threshold, falls behind lower threshold or reaches nan.

148 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 2.8.0.dev0

Example

from optuna import create_study
from optuna.pruners import ThresholdPruner
from optuna import TrialPruned

def objective_for_upper (trial):
for step, y in enumerate(ys_for_upper) :
trial.report(y, step)

if trial.should_prune():
raise TrialPruned()
return ys_for_upper[-1]

def objective_for_lower (trial):
for step, y in enumerate (ys_for_lower) :
trial.report(y, step)

if trial.should_prune():
raise TrialPruned()
return ys_for_lower[-1]

ys_for_upper = [0.0, 0.1, 0.2, 0.5, 1.2]
ys_for_lower = [100.0, 90.0, 0.1, 0.0, -1]

study = create_study (pruner=ThresholdPruner (upper=1.0))
study.optimize (objective_for_upper, n_trials=10)

study = create_study (pruner=ThresholdPruner (lower=0.0))
study.optimize (objective_for_lower, n_trials=10)

Args

lower: A minimum value which determines whether pruner prunes or not. If an intermediate value is

smaller than lower, it prunes.

upper: A maximum value which determines whether pruner prunes or not. If an intermediate value is

larger than upper, it prunes.

n_warmup_steps: Pruning is disabled if the step is less than the given number of warmup steps.

interval_steps: Interval in number of steps between the pruning checks, offset by the warmup steps. If no
value has been reported at the time of a pruning check, that particular check will be postponed until a

value is reported. Value must be at least 1.

6.3. API Reference

149

Optuna Documentation, Release 2.8.0.dev0

Methods

prune(study, trial)

Judge whether the trial should be pruned based on
the reported values.

prune (study, trial)
Judge whether the trial should be pruned based on the reported values.

Note that this method is not supposed to be called by library users. Instead, optuna.trial.Trial.
report () and optuna.trial.Trial.should prune () provide user interfaces to implement

pruning mechanism in an objective function.

Parameters

e study (optuna.study.Study)— Study object of the target study.

* trial (optuna.trial._frozen.FrozenTrial)— FrozenTrial object of the tar-
get trial. Take a copy before modifying this object.

Returns A boolean value representing whether the trial should be pruned.

Return type bool

6.3.10 optuna.samplers

The samplers module defines a base class for parameter sampling as described extensively in BaseSampler. The
remaining classes in this module represent child classes, deriving from BaseSampler, which implement different
sampling strategies.

optuna.samplers.BaseSampler Base class for samplers.
optuna.samplers.GridSampler Sampler using grid search.
optuna.samplers.RandomSampler Sampler using random sampling.
optuna.samplers.TPESampler Sampler using TPE (Tree-structured Parzen Estimator)
algorithm.
optuna.samplers.CmaEsSampler A sampler using cmaes as the backend.
optuna.samplers.PartialFixedSampler Sampler with partially fixed parameters.
optuna.samplers.NSGAIISampler Multi-objective sampler using the NSGA-II algorithm.
optuna.samplers.MOTPESampler Multi-objective sampler using the MOTPE algorithm.
optuna.samplers. A class to calculate the intersection search space of a

IntersectionSearchSpace

BaseStudy.

optuna.samplers.

intersection_search space

Return the intersection search space of the
BaseStudy.

optuna.samplers.BaseSampler

class optuna.samplers.BaseSampler
Base class for samplers.

Optuna combines two types of sampling strategies, which are called relative sampling and independent sam-
pling.

The relative sampling determines values of multiple parameters simultaneously so that sampling algorithms can
use relationship between parameters (e.g., correlation). Target parameters of the relative sampling are described
in a relative search space, which is determined by infer relative search space ().

150

Chapter 6. Reference

https://docs.python.org/3/library/functions.html#bool
https://github.com/CyberAgent/cmaes

Optuna Documentation, Release 2.8.0.dev0

The independent sampling determines a value of a single parameter without considering any relationship be-
tween parameters. Target parameters of the independent sampling are the parameters not described in the relative
search space.

More specifically, parameters are sampled by the following procedure. At the beginning of a trial,
infer_relative_search space () is called to determine the relative search space for the trial. Then,
sample_relative () isinvoked to sample parameters from the relative search space. During the execution
of the objective function, sample independent () is used to sample parameters that don’t belong to the
relative search space.

The following figure depicts the lifetime of a trial and how the above three methods are called in the trial.

6.3. API Reference 151

Optuna Documentation, Release 2.8.0.dev0

Study Object

Sampler Object

Objective Function Trial Object
T T H '
' create trial object o ;
"] i '’
E E infer_relative_search_space() _ !
1 H return relative search space
: 1 -
H ' sample_relative() L
E i v
' 1 return parameters
: ! - e L
i return trial object :
e e e - :
: : : :
E i = :
E call objective function - i i 1
| v ! i
' loop : :
: i H
' alt call suggest API . : ;
" i '’
E :
! return parameter sampled by 1
5 &-.....sample relative()
: i H
' [IF target parameter exists in the relative search space] : E
; i E
E call suggest API L '
1 sample_independent() o :
E »>
: return parametsr samplad by P retum parameter
H < sample_independent() H
i i i
E [ELSE] E :
E E E
1 return objective value 1 1
SRR e AT = : :
E E E E
.: report objef:tive value > E
i i

152

Chapter 6.

Reference

Optuna Documentation, Release 2.8.0.dev0

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer _relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
abstract infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
e study (optuna.study.Study)— Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]

See also:

Please refer to intersection_search space () as an implementation of
infer_relative_search_space ().

reseed_rng ()
Reseed sampler’s random number generator.

6.3. API Reference 153

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

abstract sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study)— Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

e param_name (str)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
abstract sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

154 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

optuna.samplers.GridSampler

class optuna.samplers.GridSampler (search_space)
Sampler using grid search.

With GridSampler, the trials suggest all combinations of parameters in the given search space during the
study.

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_int ("y", -100, 100)
return x *x 2 + y x*x 2

search_space = {"x": [-50, O, 501, "y": [-99, 0, 99]}
study = optuna.create_study (sampler=optuna.samplers.GridSampler (search_space))
study.optimize (objective)

Note: GridSampler automatically stops the optimization if all combinations in the passed search_space
have already been evaluated, internally invoking the st op () method.

Note: GridSampler does not take care of a parameter’s quantization specified by discrete suggest methods
but just samples one of values specified in the search space. E.g., in the following code snippet, either of —0.5
or 0.5 is sampled as x instead of an integer point.

import optuna

def objective(trial):
The following suggest method specifies integer points between -5 and 5.
x = trial.suggest_float ("x", -5, 5, step=1)
return x xx 2

Non—-int points are specified in the grid.

search_space = {"x": [-0.5, 0.5]}

study = optuna.create_study (sampler=optuna.samplers.GridSampler (search_space))
study.optimize (objective, n_trials=2)

Note: A parameter configuration in the grid is not considered finished until its trial is finished. Therefore,
during distributed optimization where trials run concurrently, different workers will occasionally suggest the
same parameter configuration. The total number of actual trials may therefore exceed the size of the grid.

Note: The grid is randomly shuffled and the order in which parameter configurations are suggested may vary.

6.3. API Reference 155

Optuna Documentation, Release 2.8.0.dev0

This is to reduce duplicate suggestions during distributed optimization.

Parameters search_space — A dictionary whose key and value are a parameter name and the
corresponding candidates of values, respectively.

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer _relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
* study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

156 Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

See also:

Please refer to intersection_search space () as an implementation of
infer_relative_search_space ().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

e param_name (str)— Name of the sampled parameter.

* param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

6.3.

API Reference 157

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_search _space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.samplers.RandomSampler

class optuna.samplers.RandomSampler (seed=None)
Sampler using random sampling.

This sampler is based on independent sampling. See also BaseSampler for more details of ‘independent
sampling’.

Example

import optuna
from optuna.samplers import RandomSampler

def objective(trial):
x = trial.suggest_float ("x", -5, 5)
return x ** 2

study = optuna.create_study (sampler=RandomSampler ())
study.optimize (objective, n_trials=10)

Parameters seed — Seed for random number generator.

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer_relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_ trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

158 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
* study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search space () as an implementation of
infer_relative_search_space ().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters

* study (optuna.study.Study) — Target study object.

6.3.

API Reference 159

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* param_name (str)— Name of the sampled parameter.

* param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_search_space ().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.samplers.TPESampler

class optuna.samplers.TPESampler (consider_prior=True, prior_weight=1.0, con-
sider_magic_clip=True, consider_endpoints=False,
n_startup_trials=10, n_ei_candidates=24,

gamma=<function default_gamma>, weights=<function
default_weights>, seed=None, *, multivariate=False,
warn_independent_sampling=True)

Sampler using TPE (Tree-structured Parzen Estimator) algorithm.

This sampler is based on independent sampling. See also BaseSampler for more details of ‘independent
sampling’.

On each trial, for each parameter, TPE fits one Gaussian Mixture Model (GMM) 1 (x) to the set of parameter
values associated with the best objective values, and another GMM g (x) to the remaining parameter values. It
chooses the parameter value x that maximizes the ratio 1 (x) /g (x) .

For further information about TPE algorithm, please refer to the following papers:

¢ Algorithms for Hyper-Parameter Optimization

160 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

Optuna Documentation, Release 2.8.0.dev0

* Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures

Example

import optuna
from optuna.samplers import TPESampler

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return x ** 2

study = optuna.create_study (sampler=TPESampler ())
study.optimize (objective, n_trials=10)

Parameters

* consider_prior - Enhance the stability of Parzen estimator by imposing a
Gaussian prior when True. The prior is only effective if the sampling distribu-
tion is either UniformDistribution, DiscreteUniformDistribution,
LogUniformDistribution, IntUniformDistribution, or
IntLogUniformDistribution.

* prior_weight - The weight of the prior. This argument is used
in UniformDistribution, DiscreteUniformDistribution,
LogUniformDistribution, IntUniformDistribution,

IntLogUniformDistribution,and CategoricalDistribution.

* consider_magic_clip - Enable a heuristic to limit the smallest variances of Gaussians
used in the Parzen estimator.

* consider_endpoints — Take endpoints of domains into account when calculating vari-
ances of Gaussians in Parzen estimator. See the original paper for details on the heuristics
to calculate the variances.

* n_startup_trials - The random sampling is used instead of the TPE algorithm until
the given number of trials finish in the same study.

* n_ei_candidates — Number of candidate samples used to calculate the expected im-
provement.

* gamma — A function that takes the number of finished trials and returns the number of trials
to form a density function for samples with low grains. See the original paper for more
details.

* weights — A function that takes the number of finished trials and returns a weight for
them. See Making a Science of Model Search: Hyperparameter Optimization in Hundreds
of Dimensions for Vision Architectures for more details.

* seed - Seed for random number generator.

* multivariate — If this is True, the multivariate TPE is used when suggesting param-
eters. The multivariate TPE is reported to outperform the independent TPE. See BOHB:
Robust and Efficient Hyperparameter Optimization at Scale for more details.

6.3. API Reference 161

http://proceedings.mlr.press/v28/bergstra13.pdf
http://proceedings.mlr.press/v28/bergstra13.pdf
https://docs.python.org/3/library/constants.html#True
http://proceedings.mlr.press/v28/bergstra13.pdf
http://proceedings.mlr.press/v28/bergstra13.pdf
https://docs.python.org/3/library/constants.html#True
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html

Optuna Documentation, Release 2.8.0.dev0

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

* warn_independent_sampling — If this is True and multivariate=True, a
warning message is emitted when the value of a parameter is sampled by using an inde-
pendent sampler. If multivariate=False, this flag has no effect.

Methods
after_trial(study, trial, state, values) Trial post-processing.
hyperopt_parameters() Return the the default parameters of hyperopt

(v0.1.2).

infer relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
static hyperopt_parameters ()
Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned by this method.

162 Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v2.2.0
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Example

Create a TPESampler instance with the default parameters of hyperopt.

import optuna
from optuna.samplers import TPESampler

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return x *x 2

sampler = TPESampler (x+*TPESampler.hyperopt_parameters())
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

Returns A dictionary containing the default parameters of hyperopt.
Return type Dict[str, Any]
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search_ space () as an implementation of
infer_relative_ search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

6.3.

API Reference 163

https://github.com/hyperopt/hyperopt/tree/0.1.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* param_name (str)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_ search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.samplers.CmaEsSampler

class optuna.samplers.CmaEsSampler (xO=None, sigmaO=None, n_startup_trials=1, indepen-
dent_sampler=None, warn_independent_sampling=True,
seed=None, * consider_pruned_trials=False,
restart_strategy=None, inc_popsize=2,
use_separable_cma=False, source_trials=None)
A sampler using cmaes as the backend.

164 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/CyberAgent/cmaes

Optuna Documentation, Release 2.8.0.dev0

Example

Optimize a simple quadratic function by using CmaEsSampler.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -1, 1)
y = trial.suggest_int ("y", -1, 1)
return x *x 2 + y

sampler = optuna.samplers.CmaEsSampler ()
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=20)

Please note that this sampler does not support CategoricalDistribution. If your search space contains categorical
parameters, [recommend you to use TPESampler instead. Furthermore, there is room for performance im-
provements in parallel optimization settings. This sampler cannot use some trials for updating the parameters of
multivariate normal distribution.

For further information about CMA-ES algorithm, please refer to the following papers:
¢ N. Hansen, The CMA Evolution Strategy: A Tutorial. arXiv:1604.00772, 2016.

¢ A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population size. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC 2005), pages 1769-1776. IEEE Press, 2005.

* Raymond Ros, Nikolaus Hansen. A Simple Modification in CMA-ES Achieving Linear Time and Space
Complexity. 10th International Conference on Parallel Problem Solving From Nature, Sep 2008, Dort-
mund, Germany. inria-00287367.

¢ Masahiro Nomura, Shuhei Watanabe, Youhei Akimoto, Yoshihiko Ozaki, Masaki Onishi. Warm Starting
CMA-ES for Hyperparameter Optimization, AAAI 2021.

See also:

You can also use optuna.integration.PyCmaSampler which is a sampler using cma library as the
backend.

Parameters

* x0 — A dictionary of an initial parameter values for CMA-ES. By default, the mean of 1ow
and high for each distribution is used. Note that x0 is sampled uniformly within the search
space domain for each restart if you specify restart_strategy argument.

* sigma0 - Initial standard deviation of CMA-ES. By default, sigma0 is set to
min_range / 6, where min_range denotes the minimum range of the distributions
in the search space.

* seed - A random seed for CMA-ES.

* n_startup_trials — The independent sampling is used instead of the CMA-ES algo-
rithm until the given number of trials finish in the same study.

* independent_sampler - A BaseSampler instance that is used for indepen-
dent sampling. The parameters not contained in the relative search space are sam-
pled by this sampler. The search space for CmaEsSampler is determined by
intersection_search space().

If None is specified, RandomSampler is used as the default.

6.3. API Reference 165

https://arxiv.org/abs/1604.00772
http://www.cmap.polytechnique.fr/~nikolaus.hansen/cec2005ipopcmaes.pdf
http://www.cmap.polytechnique.fr/~nikolaus.hansen/cec2005ipopcmaes.pdf
https://hal.inria.fr/inria-00287367/document
https://hal.inria.fr/inria-00287367/document
https://hal.inria.fr/inria-00287367/document
https://arxiv.org/abs/2012.06932
https://arxiv.org/abs/2012.06932
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

See also:

optuna.samplers module provides built-in independent samplers such as
RandomSampler and TPESampler.

* warn_independent_sampling - If this is True, a warning message is emitted when
the value of a parameter is sampled by using an independent sampler.

Note that the parameters of the first trial in a study are always sampled via an independent
sampler, so no warning messages are emitted in this case.

* restart_strategy — Strategy for restarting CMA-ES optimization when converges to
a local minimum. If given None, CMA-ES will not restart (default). If given ‘ipop’, CMA-
ES will restart with increasing population size. Please see also inc_popsize parameter.

Note: Added in v2.1.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.1.0.

* inc_popsize — Multiplier for increasing population size before each restart. This argu-
ment will be used when setting restart_strategy = 'ipop'.

* consider_pruned_trials - If this is True, the PRUNED trials are considered for
sampling.

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

Note: It is suggested to set this flag False when the MedianPruner is used. On the
other hand, it is suggested to set this flag True when the HyperbandPruner is used.
Please see the benchmark result for the details.

* use_separable_cma - If this is True, the covariance matrix is constrained to be di-
agonal. Due to reduce the model complexity, the learning rate for the covariance matrix is
increased. Consequently, this algorithm outperforms CMA-ES on separable functions.

Note: Added in v2.6.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.6.0.

* source_trials — This option is for Warm Starting CMA-ES, a method to transfer prior
knowledge on similar HPO tasks through the initialization of CMA-ES. This method es-
timates a promising distribution from source_trials and generates the parameter of
multivariate gaussian distribution. Please note that it is prohibited to use x0, sigmaO0, or
use_separable_cma argument together.

Note: Added in v2.6.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.6.0.

Raises ValueError —If restart_strategy is not ‘ipop’ or None.

166 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.1.0
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/pull/1229
https://docs.python.org/3/library/constants.html#True
https://github.com/optuna/optuna/releases/tag/v2.6.0
https://github.com/optuna/optuna/releases/tag/v2.6.0
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer _relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence [float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
e study (optuna.study.Study)— Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]

See also:

Please refer to intersection_search space () as an implementation of
infer_relative_search_space ().

reseed_rng ()
Reseed sampler’s random number generator.

6.3. API Reference 167

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study)— Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

e param_name (str)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

168 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

optuna.samplers.PartialFixedSampler

class optuna.samplers.PartialFixedSampler (fixed_params, base_sampler)
Sampler with partially fixed parameters.

New in version 2.4.0.

Example

After several steps of optimization, you can fix the value of y and re-optimize it.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -1, 1)
y = trial.suggest_int ("y", -1, 1)
return x *x 2 + y

study = optuna.create_study ()
study.optimize (objective, n_trials=10)

best_params = study.best_params

fixed_params = {"y": best_params["y"]}

partial_sampler = optuna.samplers.PartialFixedSampler (fixed_params, study.
—sampler)

study.sampler = partial_sampler
study.optimize (objective, n_trials=10)

Parameters
* fixed_params — A dictionary of parameters to be fixed.

* base_sampler — A sampler which samples unfixed parameters.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer_relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

6.3. API Reference 169

https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence[float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search_space () as an implementation of
infer _relative_search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

170 Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* param_name (str)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_ search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.samplers.NSGAIllISampler

class optuna.samplers.NSGAIISampler (%, population_size=50, mutation_prob=None,
crossover_prob=0.9, swapping_prob=0.5, seed=None,

constraints_func=None)
Multi-objective sampler using the NSGA-II algorithm.

NSGA-II stands for “Nondominated Sorting Genetic Algorithm II”, which is a well known, fast and elitist
multi-objective genetic algorithm.

For further information about NSGA-II, please refer to the following paper:

¢ A fast and elitist multiobjective genetic algorithm: NSGA-II

6.3. API Reference 171

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://ieeexplore.ieee.org/document/996017

Optuna Documentation, Release 2.8.0.dev0

Parameters
* population_size — Number of individuals (trials) in a generation.

* mutation_ prob - Probability of mutating each parameter when creating a new individ-
val. If None is specified, the value 1.0 / len(parent_trial.params) is used
where parent_trial is the parent trial of the target individual.

* crossover_prob — Probability that a crossover (parameters swapping between parents)
will occur when creating a new individual.

* swapping prob - Probability of swapping each parameter of the parents during
Crossover.

* seed - Seed for random number generator.

* constraints_func — An optional function that computes the objective constraints. It
must take a FrozenTrial and return the constraints. The return value must be a sequence
of f1loat s. A value strictly larger than 0 means that a constraints is violated. A value equal
to or smaller than O is considered feasible. If constraints_func returns more than one value
for a trial, that trial is considered feasible if and only if all values are equal to O or smaller.

The constraints are handled by the constrained domination. A trial x is said to constrained-
dominate a trial y, if any of the following conditions is true:

1. Trial x is feasible and trial y is not.
2. Trial x and y are both infeasible, but trial x has a smaller overall violation.

3. Trial x and y are feasible and trial x dominates trial y.

Note: Added in v2.5.0 as an experimental feature. The interface may change in newer
versions without prior notice. See https://github.com/optuna/optuna/releases/tag/v2.5.0.

Methods
after_trial(study, trial, state, values) Trial post-processing.
infer_relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters

172

Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://github.com/optuna/optuna/releases/tag/v2.5.0
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

* study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence[float]])— Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search_ space () as an implementation of
infer._relative_ search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

6.3.

API Reference 173

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

* param_name (st r)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.
Return type Any
sample_relative (study, trial, search_space)
Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.samplers.MOTPESampler

class optuna.samplers.MOTPESampler (¥, consider_prior=True, prior_weight=1.0, con-

sider_magic_clip=True, consider_endpoints=True,
n_startup_trials=10, n_ehvi_candidates=24,
gamma=<function default_gamma>,
weights_above=<function _default_weights_above>,
seed=None)

Multi-objective sampler using the MOTPE algorithm.
This sampler is a multiobjective version of TPESampler.
For further information about MOTPE algorithm, please refer to the following paper:

» Multiobjective tree-structured parzen estimator for computationally expensive optimization problems

Parameters

* consider prior - Enhance the stability of Parzen estimator by imposing a
Gaussian prior when True. The prior is only effective if the sampling distribu-
tion is either UniformDistribution, DiscreteUniformDistribution,
LogUniformDistribution, IntUniformDistribution, or
IntLogUniformDistribution.

174 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://dl.acm.org/doi/abs/10.1145/3377930.3389817
https://docs.python.org/3/library/constants.html#True

Optuna Documentation, Release 2.8.0.dev0

* prior_weight - The weight of the prior. This argument is wused
in UniformDistribution, DiscreteUniformDistribution
LogUniformDistribution, IntUniformDistribution,

IntLogUniformDistribution,and CategoricalDistribution.

* consider_magic_clip - Enable aheuristic to limit the smallest variances of Gaussians
used in the Parzen estimator.

* consider_endpoints — Take endpoints of domains into account when calculating vari-
ances of Gaussians in Parzen estimator. See the original paper for details on the heuristics
to calculate the variances.

* n_startup_trials — The random sampling is used instead of the MOTPE algorithm
until the given number of trials finish in the same study. 11 * number of variables - 1 is
recommended in the original paper.

* n_ehvi_candidates — Number of candidate samples used to calculate the expected
hypervolume improvement.

* gamma — A function that takes the number of finished trials and returns the number of trials
to form a density function for samples with low grains. See the original paper for more
details.

* weights_above — A function that takes the number of finished trials and returns a weight
for them. As default, weights are automatically calculated by the MOTPE’s default strategy.

* seed — Seed for random number generator.

Note: Initialization with Latin hypercube sampling may improve optimization performance. However, the
current implementation only supports initialization with random sampling.

Example

import optuna

seed = 128
num_variables = 2
n_startup_trials = 11 » num_variables - 1

def objective(trial):
x = []
for i in range(l, num_variables + 1):
x.append(trial.suggest_float (f"x/i/}", 0.0, 2.0 x 1i))
return x

sampler = optuna.samplers.MOTPESampler (
n_startup_trials=n_startup_trials, n_ehvi_candidates=24, seed=seed

)

study = optuna.create_study(directions=["minimize"] = num_variables,

—sampler=sampler)

study.optimize (objective, n_trials=n_startup_trials + 10)

6.3. API Reference 175

Optuna Documentation, Release 2.8.0.dev0

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Methods
after_trial(study, trial, state, values) Trial post-processing.
hyperopt_parameters() Return the the default parameters of hyperopt

(v0.1.2).

infer_relative_search_space(study, Infer the search space that will be used by relative
trial) sampling in the target trial.
reseed_rng() Reseed sampler’s random number generator.
sample_independent(study, trial, Sample a parameter for a given distribution.
param_name, ...)
sample_relative(study, trial, search_space) Sample parameters in a given search space.

after_trial (study, trial, state, values)
Trial post-processing.

This method is called after the objective function returns and right before the trials is finished and its state
is stored.

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* state (optuna.trial._state.TrialState)— Resulting trial state.

* values (Optional [Sequence[float]]) — Resulting trial values. Guaranteed to
not be None if trial succeeded.

Return type None
static hyperopt_parameters ()
Return the the default parameters of hyperopt (v0.1.2).

TPESampler can be instantiated with the parameters returned by this method.

176 Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v2.4.0
https://github.com/optuna/optuna/releases/tag/v2.4.0
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Example

Create a TPESampler instance with the default parameters of hyperopt.

import optuna
from optuna.samplers import TPESampler

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return x *x 2

sampler = TPESampler (x+*TPESampler.hyperopt_parameters())
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

Returns A dictionary containing the default parameters of hyperopt.
Return type Dict[str, Any]
infer relative_search_space (study, trial)
Infer the search space that will be used by relative sampling in the target trial.

This method is called right before sample relative () method, and the search space returned by
this method is passed to it. The parameters not contained in the search space will be sampled by using
sample_independent () method.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._ frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

Returns A dictionary containing the parameter names and parameter’s distributions.
Return type Dict[str, optuna.distributions.BaseDistribution]
See also:

Please refer to intersection_search_ space () as an implementation of
infer_relative_ search_space().

reseed_rng ()
Reseed sampler’s random number generator.

This method is called by the St udy instance if trials are executed in parallel with the option n_ jobs>1.
In that case, the sampler instance will be replicated including the state of the random number generator,
and they may suggest the same values. To prevent this issue, this method assigns a different seed to each
random number generator.

Return type None

sample_independent (study, trial, param_name, param_distribution)
Sample a parameter for a given distribution.

This method is called only for the parameters not contained in the search space returned by
sample_relative () method. This method is suitable for sampling algorithms that do not use re-
lationship between parameters such as random sampling and TPE.

6.3.

API Reference 177

https://github.com/hyperopt/hyperopt/tree/0.1.2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

* trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* param_name (str)— Name of the sampled parameter.

e param_distribution (optuna.distributions.BaseDistribution) -
Distribution object that specifies a prior and/or scale of the sampling algorithm.

Returns A parameter value.

Return type Any

sample_relative (study, trial, search_space)

Sample parameters in a given search space.

This method is called once at the beginning of each trial, i.e., right before the evaluation of the objective
function. This method is suitable for sampling algorithms that use relationship between parameters such
as Gaussian Process and CMA-ES.

Note: The failed trials are ignored by any build-in samplers when they sample new parameters. Thus,
failed trials are regarded as deleted in the samplers’ perspective.

Parameters
e study (optuna.study.Study) — Target study object.

e trial (optuna.trial._frozen.FrozenTrial) — Target trial object. Take a
copy before modifying this object.

* search_space (Dict[str, optuna.distributions.
BaseDistribution]) - The search space returned by
infer_relative_ search_space().

Returns A dictionary containing the parameter names and the values.

Return type Dict[str, Any]

optuna.samplers.IntersectionSearchSpace

class optuna.samplers.IntersectionSearchSpace (include_pruned=False)

A class to calculate the intersection search space of a BaseStudy.

Intersection search space contains the intersection of parameter distributions that have been suggested in the
completed trials of the study so far. If there are multiple parameters that have the same name but different
distributions, neither is included in the resulting search space (i.e., the parameters with dynamic value ranges
are excluded).

Note that an instance of this class is supposed to be used for only one study. If different studies are passed to
calculate(),aValueError israised.

178

Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Parameters include_pruned — Whether pruned trials should be included in the search space.

Methods

calculate(study[, ordered_dict]) Returns the intersection search space of the
BaseStudy.

calculate (study, ordered_dict=False)
Returns the intersection search space of the BaseStudy.

Parameters
* study (optuna. study.BaseStudy)— A study with completed trials.

* ordered_dict (bool) — A boolean flag determining the return type. If False, the
returned object will be a dict. If True, the returned object will be an collections.
OrderedDict sorted by keys, i.e. parameter names.

Returns A dictionary containing the parameter names and parameter’s distributions.
Raises ValueError - If different studies are passed into this method.

Return type Dict[str, optuna.distributions.BaseDistribution]

optuna.samplers.intersection_search_space

optuna.samplers.intersection_search_space (study, ordered_dict=False, in-

clude_pruned=False)
Return the intersection search space of the BaseStudy.

Intersection search space contains the intersection of parameter distributions that have been suggested in the
completed trials of the study so far. If there are multiple parameters that have the same name but different
distributions, neither is included in the resulting search space (i.e., the parameters with dynamic value ranges
are excluded).

Note: IntersectionSearchSpace provides the same functionality with a much faster way. Please
consider using it if you want to reduce execution time as much as possible.

Parameters
* study (optuna. study.BaseStudy) — A study with completed trials.

* ordered_dict (bool) — A boolean flag determining the return type. If False, the
returned object will be a dict. If True, the returned object will be an collections.
OrderedDict sorted by keys, i.e. parameter names.

* include_pruned (bool) — Whether pruned trials should be included in the search
space.

Returns A dictionary containing the parameter names and parameter’s distributions.

Return type Dict[str, optuna.distributions.BaseDistribution]

6.3. API Reference 179

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

6.3.11 optuna.storages

The storages module defines a BaseStorage class which abstracts a backend database and provides library-
internal interfaces to the read/write histories of the studies and trials. Library users who wish to use storage solutions
other than the default in-memory storage should use one of the child classes of BaseStorage documented below.

optuna.storages.RDBStorage Storage class for RDB backend.
optuna.storages.RedisStorage Storage class for Redis backend.

optuna.storages.RDBStorage

class optuna.storages.RDBStorage (url, engine_kwargs=None, skip_compatibility_check=False,
* heartbeat_interval=None, grace_period=None,

failed_trial_callback=None)
Storage class for RDB backend.

Note that library users can instantiate this class, but the attributes provided by this class are not supposed to be
directly accessed by them.

Example

Create an RDBStorage instance with customized pool_size and timeout settings.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
return x *x* 2

storage = optuna.storages.RDBStorage (
url="sqglite:///:memory:",
engine_kwargs={"pool_size": 20, "connect_args": {"timeout": 10}},

study = optuna.create_study (storage=storage)
study.optimize (objective, n_trials=10)

Parameters
* url — URL of the storage.

* engine_kwargs - A dictionary of keyword arguments that is passed to
sqlalchemy.engine.create_engine function.

* skip_compatibility_check - Flag to skip schema compatibility check if set to True.

* heartbeat_interval - Interval to record the heartbeat. It is recorded every
interval seconds.

* grace_period — Grace period before a running trial is failed from the last heartbeat. If
it is None, the grace period will be 2 * heartbeat_interval.

 failed trial_callback — A callback function that is invoked after failing each stale
trial. The function must accept two parameters with the following types in this order:
Study and FrozenTrial.

180 Chapter 6. Reference

https://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Note: The procedure to fail existing stale trials is called just before asking the study for a

new trial.

Note: If you use MySQL, pool_pre_ping will be set to True by default to prevent connection timeout. You can
turn it off with engine_kwargs|['pool_pre_ping']=False, butitis recommended to keep the setting
if execution time of your objective function is longer than the wait_timeout of your MySQL configuration.

Raises

* ValueError — If the given heartbeat_interval or grace_period is not a positive integer.

* RuntimeError — If the a process that was failed by heartbeat but was actually running.

Methods

check_trial_is_ updatable(trial_id,
trial_state)

Check whether a trial state is updatable.

create_new_study([study_name])

Create a new study from a name.

create_new_trial(study_id[, template_trial])

Create and add a new trial to a study.

delete_study(study_id)

Delete a study.

fail_ stale_ trials(study_id)

Fail stale trials.

get_all study_summaries()

Read a list of St udySummazry objects.

get_all_trials(study_id[, deepcopy, states])

Read all trials in a study.

get_all_versions()

Return the schema version list.

get_best_trial(study_id)

Return the trial with the best value in a study.

get_current_version()

Return the schema version currently used by this
storage.

get_failed trial_ callback()

Get the failed trial callback function.

get_head version()

Return the latest schema version.

get_heartbeat_interval()

Get the heartbeat interval if it is set.

get_n_trials(study_id[, state])

Count the number of trials in a study.

get_study_directions(study_id)

Read whether a study maximizes or minimizes an
objective.

get_study_id_from_name(study_name)

Read the ID of a study.

get_study_id from trial_ id(trial_id)

Read the ID of a study to which a trial belongs.

get_study_name_from_id(study_id)

Read the study name of a study.

get_study_system_attrs(study_id)

Read the optuna-internal attributes of a study.

get_study_user_attrs(study_id)

Read the user-defined attributes of a study.

get_trial(trial_id)

Read a trial.

get_trial_id from study id trial_numbRedd.the trial id of a trial.

get_trial_number from_id(trial_id)

Read the trial number of a trial.

get_trial_param(trial_id, param_name)

Read the parameter of a trial.

get_trial_params(trial_id)

Read the parameter dictionary of a trial.

get_trial_system attrs(trial_id)

Read the optuna-internal attributes of a trial.

get_trial_user attrs(trial_id)

Read the user-defined attributes of a trial.

is_heartbeat_enabled()

Check whether the storage enables the heartbeat.

read_trials_from remote_storage(study_idylake an internal cache of trials up-to-date.

continues on next page

6.3. API Reference

181

https://docs.sqlalchemy.org/en/13/core/engines.html#sqlalchemy.create_engine.params.pool_pre_ping
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 2.8.0.dev0

Table 85 — continued from previous page

record_heartbeat(trial_id) Record the heartbeat of the trial.
remove_session() Removes the current session.
set_study_directions(study_id, directions) Register optimization problem directions to a study.
set_study_system_attr(study_id, key, Register an optuna-internal attribute to a study.
value)

set_study_user_attr(study_id, key, value) Register a user-defined attribute to a study.
set_trial_intermediate value(trial_id, Report an intermediate value of an objective func-
step, ...) tion.

set_trial_param(trial_id, param_name, ...) Set a parameter to a trial.
set_trial_state(trial_id, state) Update the state of a trial.

set_trial_ system_attr(trial_id, key, value) Set an optuna-internal attribute to a trial.
set_trial_user_attr(trial_id, key, value) Set a user-defined attribute to a trial.
set_trial_values(trial_id, values) Set return values of an objective function.
upgrade() Upgrade the storage schema.

check_trial_ is_updatable (trial_id, trial_state)
Check whether a trial state is updatable.

Parameters

e trial_id (int)—-1ID of the trial. Only used for an error message.

e trial_state (optuna.trial._state.TrialState) - Trial state to check.
Raises RuntimeError — If the trial is already finished.
Return type None

create_new_study (study_name=None)
Create a new study from a name.

If no name is specified, the storage class generates a name. The returned study ID is unique among all
current and deleted studies.

Parameters study_name (Optional [str])— Name of the new study to create.
Returns ID of the created study.

Raises optuna.exceptions.DuplicatedStudyError — If a study with the same
study_name already exists.

Return type int

create_new_trial (study_id, template_trial=None)
Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.
Parameters
e study_id (int)—ID of the study.

* template_trial (Optional [optuna.trial._frozen.FrozenTrial]) —
Template FronzenTrial with default user-attributes, system-attributes, intermediate-
values, and a state.

Returns ID of the created trial.
Raises KeyError — If no study with the matching study_ id exists.

Return type int

182 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

delete_study (study_id)
Delete a study.

Parameters study_id (int)—ID of the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type None

fail stale_trials (study_id)
Fail stale trials.

The running trials whose heartbeat has not been updated for a long time will be failed, that is, those states
will be changed to FATTI. The grace periodis 2 * heartbeat_interval.

Parameters study_id (int) —ID of the related study.
Returns List of trial IDs of the failed trials.
Return type List[int]

get_all_study_summaries ()
Read a list of St udySummary objects.

Returns A list of StudySummazry objects.
Return type List[optuna._study_summary.StudySummary]

get_all_trials (study_id, deepcopy=True, states=None)
Read all trials in a study.

Parameters
e study_id (int)—ID of the study.

* deepcopy (bool) — Whether to copy the list of trials before returning. Set to True if
you intend to update the list or elements of the list.

* states (Optional [Tuple[optuna.trial._state.TrialState, ..]])—
Trial states to filter on. If None, include all states.

Returns List of trials in the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type List[optuna.trial._frozen.FrozenTrial]

get_all_versions ()
Return the schema version list.

Return type List[str]

get_best_trial (study_id)
Return the trial with the best value in a study.

This method is valid only during single-objective optimization.
Parameters study_id (int)—ID of the study.
Returns The trial with the best objective value among all finished trials in the study.
Raises
* KeyError — If no study with the matching study_ id exists.
* RuntimeError — If the study has more than one direction.

e ValueError — If no trials have been completed.

6.3. API Reference 183

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Return type optuna.trial._frozen.FrozenTrial

get_current_version /()
Return the schema version currently used by this storage.

Return type str

get_failed_trial_callback ()
Get the failed trial callback function.

Returns The failed trial callback function if it is set, otherwise None.
Return type Optional[Callable[[opfuna.study.Study, optuna.trial._frozen.FrozenTrial], None]]

get_head_version /()
Return the latest schema version.

Return type str

get_heartbeat_interval ()
Get the heartbeat interval if it is set.

Returns The heartbeat interval if it is set, otherwise None.
Return type Optional[int]

get_n_trials (study_id, state=None)
Count the number of trials in a study.

Parameters
e study_id (int)—ID of the study.

e state (Optional[Union[Tuple[optuna.trial._state.TrialState,
..], optuna.trial._state.TrialState]]) — Trial states to filter on. If
None, include all states.

Returns Number of trials in the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type int

get_study_directions (study_id)
Read whether a study maximizes or minimizes an objective.

Parameters study_id (int)—ID of a study.

Returns Optimization directions list of the study.

Raises KeyError — If no study with the matching study_ id exists.
Return type List[optuna._study_direction.StudyDirection]

get_study_id_from_name (study_name)
Read the ID of a study.

Parameters study_name (st r)— Name of the study.

Returns ID of the study.

Raises KeyError — If no study with the matching study_name exists.
Return type int

get_study_id_from_ trial_id (trial_id)
Read the ID of a study to which a trial belongs.

184 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

Parameters trial_id (int)—ID of the trial.

Returns ID of the study.

Raises KeyError — If no trial with the matching trial_id exists.
Return type int

get_study name_from_id (study_id)
Read the study name of a study.

Parameters study_id (int)—ID of the study.

Returns Name of the study.

Raises KeyError — If no study with the matching study_ id exists.
Return type str

get_study_system_attrs (study_id)
Read the optuna-internal attributes of a study.

Parameters study_id (int)— ID of the study.

Returns Dictionary with the optuna-internal attributes of the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type Dict[str, Any]

get_study_user_ attrs (study_id)
Read the user-defined attributes of a study.

Parameters study_id (int)—ID of the study.

Returns Dictionary with the user attributes of the study.

Raises KeyError — If no study with the matching study_ id exists.
Return type Dict[str, Any]

get_trial (trial_id)
Read a trial.

Parameters trial_ id (int)-ID of the trial.

Returns Trial with a matching trial ID.

Raises KeyError — If no trial with the matching trial_id exists.
Return type optuna.trial._frozen.FrozenTrial

get_trial_id_ from study_id_trial_ number (study_id, trial_number)
Read the trial id of a trial.

Parameters
e study_id (int)—ID of the study.
e trial number (int)— Number of the trial.
Returns ID of the trial.
Raises KeyError — If no trial with the matching study_id and trial_number exists.

Return type int

6.3. API Reference 185

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

get_trial_ number_from_id (trial_id)
Read the trial number of a trial.

Note: The trial number is only unique within a study, and is sequential.

Parameters trial_id (int) - ID of the trial.
Returns Number of the trial.
Raises KeyError — If no trial with the matching trial_id exists.
Return type int
get_trial param (trial_id, param_name)
Read the parameter of a trial.
Parameters
e trial_ id (int)-ID of the trial.
e param_name (st r)— Name of the parameter.
Returns Internal representation of the parameter.

Raises KeyError — If no trial with the matching trial_id exists. If no such parameter
exists.

Return type float

get_trial_ params (trial_id)
Read the parameter dictionary of a trial.

Parameters trial_id (int) - ID of the trial.

Returns Dictionary of a parameters. Keys are parameter names and values are internal repre-
sentations of the parameter values.

Raises KeyError — If no trial with the matching trial_id exists.
Return type Dict[str, Any]

get_trial_system_attrs (frial_id)
Read the optuna-internal attributes of a trial.

Parameters trial_id (int)—ID of the trial.

Returns Dictionary with the optuna-internal attributes of the trial.
Raises KeyError — If no trial with the matching trial_id exists.
Return type Dict[str, Any]

get_trial_ user_ attrs (trial_id)
Read the user-defined attributes of a trial.

Parameters trial_id (int)—ID of the trial.

Returns Dictionary with the user-defined attributes of the trial.
Raises KeyError — If no trial with the matching trial_id exists.
Return type Dict[str, Any]

is_heartbeat_enabled()
Check whether the storage enables the heartbeat.

186 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

Returns True if the storage supports the heartbeat and the return value of
get_heartbeat_interval () is an integer, otherwise False.

Return type bool

read_trials_from remote_storage (study_id)
Make an internal cache of trials up-to-date.

Parameters study_id (int)—ID of the study.
Raises KeyError — If no study with the matching study_id exists.
Return type None

record heartbeat (trial_id)
Record the heartbeat of the trial.

Parameters trial_id (int)—ID of the trial.
Return type None

remove_session ()
Removes the current session.

A session is stored in SQLAlchemy’s ThreadLocalRegistry for each thread. This method closes and re-
moves the session which is associated to the current thread. Particularly, under multi-thread use cases, it
is important to call this method from each thread. Otherwise, all sessions and their associated DB connec-
tions are destructed by a thread that occasionally invoked the garbage collector. By default, it is not allowed
to touch a SQLite connection from threads other than the thread that created the connection. Therefore,
we need to explicitly close the connection from each thread.

Return type None

set_study_directions (study_id, directions)
Register optimization problem directions to a study.

Parameters
e study_id (int)—ID of the study.

* directions (Sequence[optuna._study_direction.StudyDirection])
— A sequence of direction whose element is either MAXTMIZE or MINIMIZE.

Raises
* KeyError — If no study with the matching study_ id exists.

e ValueError — If the directions are already set and the each coordinate of passed
directions is the opposite direction or NOT _SET.

Return type None

set_study_system_attr (study_id, key, value)
Register an optuna-internal attribute to a study.

This method overwrites any existing attribute.
Parameters
e study_id (int)—ID of the study.
* key (str)— Attribute key.
¢ value (Any) — Attribute value. It should be JSON serializable.

Raises KeyError — If no study with the matching study_ id exists.

6.3.

API Reference 187

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError

Optuna Documentation, Release 2.8.0.dev0

Return type None

set_study_user_attr (study_id, key, value)
Register a user-defined attribute to a study.

This method overwrites any existing attribute.
Parameters
e study_id (int)—ID of the study.
* key (str)— Attribute key.
e value (Any) — Attribute value. It should be JSON serializable.
Raises KeyError — If no study with the matching study_ id exists.
Return type None

set_trial_ intermediate_value (trial_id, step, intermediate_value)
Report an intermediate value of an objective function.

This method overwrites any existing intermediate value associated with the given step.

Parameters

e trial_id (int)-ID of the trial.

* step (int) — Step of the trial (e.g., the epoch when training a neural network).

* intermediate_value (float)— Intermediate value corresponding to the step.
Raises

* KeyError — If no trial with the matching trial_id exists.

* RuntimeError — If the trial is already finished.
Return type None

set_trial_param (trial_id, param_name, param_value_internal, distribution)
Set a parameter to a trial.

Parameters
e trial_ id (int)-ID of the trial.
* param_name (st r)— Name of the parameter.
* param_value_internal (float) — Internal representation of the parameter value.

e distribution (optuna.distributions.BaseDistribution) — Sampled
distribution of the parameter.

Raises
* KeyError — If no trial with the matching trial_id exists.
* RuntimeError — If the trial is already finished.

Return type None

set_trial state (frial_id, state)
Update the state of a trial.

Parameters
e trial_ id (int)-ID of the trial.

e state (optuna.trial._state.TrialState)— New state of the trial.

188 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

Returns True if the state is successfully updated. False if the state is kept the same. The
latter happens when this method tries to update the state of RUNNTNG trial to RUNNING.

Raises
* KeyError — If no trial with the matching trial_id exists.
* RuntimeError — If the trial is already finished.

Return type bool

set_trial_ system_attr (trial_id, key, value)
Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.
Parameters
e trial_ id (int)-ID of the trial.
* key (str)— Attribute key.
e value (Any) — Attribute value. It should be JSON serializable.
Raises
* KeyError — If no trial with the matching trial_id exists.
* RuntimeError — If the trial is already finished.
Return type None

set_trial_ user_attr (trial_id, key, value)
Set a user-defined attribute to a trial.

This method overwrites any existing attribute.
Parameters
e trial_ id (int)-ID of the trial.
* key (str)— Attribute key.
e value (Any) — Attribute value. It should be JSON serializable.
Raises
* KeyError — If no trial with the matching trial_id exists.
* RuntimeError — If the trial is already finished.
Return type None

set_trial_ wvalues (trial_id, values)
Set return values of an objective function.

This method overwrites any existing trial values.
Parameters

e trial_ id (int)-ID of the trial.

* values (Sequence [float])— Values of the objective function.

Raises
* KeyError — If no trial with the matching trial_id exists.

e RuntimeError — If the trial is already finished.

6.3.

API Reference

189

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 2.8.0.dev0

Return type None

upgrade ()
Upgrade the storage schema.

Return type None
optuna.storages.RedisStorage

class optuna.storages.RedisStorage (url)
Storage class for Redis backend.

Note that library users can instantiate this class, but the attributes provided by this class are not supposed to be
directly accessed by them.

Example

We create an RedisStorage instance using the given redis database URL.

import optuna

def objective(trial):

storage = optuna.storages.RedisStorage (
url="redis://passwd@localhost:port/db",
)

study = optuna.create_study(storage=storage)
study.optimize (objective)

Parameters url — URL of the redis storage, password and db are optional. (ie: re-
dis://localhost:6379)

Note: If you use plan to use Redis as a storage mechanism for optuna, make sure Redis in installed and running.
Please execute $ pip install -U redis to install redis python library.

Note: Added in v1.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v1.4.0.

190 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v1.4.0

Optuna Documentation, Release 2.8.0.dev0

Methods

check_trial_is_ updatable(trial_id,
trial_state)

Check whether a trial state is updatable.

create_new_study([study_name])

Create a new study from a name.

create_new_trial(study_id[, template_trial])

Create and add a new trial to a study.

delete_study(study_id)

Delete a study.

fail_stale_ trials(study_id)

Fail stale trials.

get_all_ study_summaries()

Read a list of St udySummary objects.

get_all_ trials(study_id[, deepcopy, states])

Read all trials in a study.

get_best_trial(study_id)

Return the trial with the best value in a study.

get_failed trial_callback()

Get the failed trial callback function.

get_heartbeat_interval()

Get the heartbeat interval if it is set.

get_n_trials(study_id][, state])

Count the number of trials in a study.

get_study_directions(study_id)

Read whether a study maximizes or minimizes an
objective.

get_study_id_from_ name(study_name)

Read the ID of a study.

get_study_id from trial_ id(trial_id)

Read the ID of a study to which a trial belongs.

get_study_name_from_id(study_id)

Read the study name of a study.

get_study_system_attrs(study_id)

Read the optuna-internal attributes of a study.

get_study_user_attrs(study_id)

Read the user-defined attributes of a study.

get_ trial(trial_id)

Read a trial.

get_trial_id from study id trial_numbRedd.the trial id of a trial.

get_trial_number_ from_id(trial_id)

Read the trial number of a trial.

get_trial_ param(trial_id, param_name)

Read the parameter of a trial.

get_trial_params(trial_id)

Read the parameter dictionary of a trial.

get_trial_system attrs(trial_id)

Read the optuna-internal attributes of a trial.

get_trial_user_attrs(trial_id)

Read the user-defined attributes of a trial.

is_heartbeat_enabled()

Check whether the storage enables the heartbeat.

read _trials_from remote_storage(study_idylake an internal cache of trials up-to-date.

record_heartbeat(trial_id)

Record the heartbeat of the trial.

remove_session()

Clean up all connections to a database.

set_study_directions(study_id, directions)

Register optimization problem directions to a study.

set_study_system_attr(study_id, key,
value)

Register an optuna-internal attribute to a study.

set_study_user_attr(study_id, key, value)

Register a user-defined attribute to a study.

set_trial_intermediate value(trial_id,

step, ...)

Report an intermediate value of an objective func-
tion.

set_trial_param(trial_id, param_name, ...)

Set a parameter to a trial.

set_trial_state(trial_id, state)

Update the state of a trial.

set_trial_system attr(trial_id, key, value)

Set an optuna-internal attribute to a trial.

set_trial_user_attr(trial_id, key, value)

Set a user-defined attribute to a trial.

set_trial_values(trial_id, values)

Set return values of an objective function.

check_trial_ is_updatable (trial_id, trial_state)

Check whether a trial state is updatable.

Parameters

e trial_id (int)—-ID of the trial. Only used for an error message.

e trial_ state (optuna.trial._state.TrialState) - Trial state to check.

Raises RuntimeError — If the trial is already finished.

6.3.

API Reference

191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 2.8.0.dev0

Return type None

create_new_study (study_name=None)
Create a new study from a name.

If no name is specified, the storage class generates a name. The returned study ID is unique among all
current and deleted studies.

Parameters study_name (Optional [str])—Name of the new study to create.
Returns ID of the created study.

Raises optuna.exceptions.DuplicatedStudyError — If a study with the same
study_name already exists.

Return type int

create_new_trial (study_id, template_trial=None)
Create and add a new trial to a study.

The returned trial ID is unique among all current and deleted trials.
Parameters
* study_id (int)—1ID of the study.

* template_trial (Optional[optuna.trial._frozen.FrozenTrial]) —
Template FronzenTrial with default user-attributes, system-attributes, intermediate-
values, and a state.

Returns ID of the created trial.
Raises KeyError — If no study with the matching study_ id exists.
Return type int

delete_study (study_id)
Delete a study.

Parameters study_id (int)—ID of the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type None

fail stale_trials (study_id)
Fail stale trials.

The running trials whose heartbeat has not been updated for a long time will be failed, that is, those states
will be changed to FATL. The grace periodis 2 * heartbeat_interval.

Parameters study_id (int) —ID of the related study.
Returns List of trial IDs of the failed trials.
Return type List[int]

get_all_ study_ summaries ()
Read a list of St udySummary objects.

Returns A list of StudySummary objects.
Return type List[optuna._study_summary.StudySummary]

get_all_trials (study_id, deepcopy=True, states=None)
Read all trials in a study.

Parameters

192 Chapter 6. Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

e study_id (int)—ID of the study.

* deepcopy (bool) — Whether to copy the list of trials before returning. Set to True if
you intend to update the list or elements of the list.

* states (Optional [Tuple[optuna.trial._state.TrialState, ..]])—
Trial states to filter on. If None, include all states.

Returns List of trials in the study.
Raises KeyError — If no study with the matching study_id exists.
Return type List[optuna.trial._frozen.FrozenTrial]

get_best_trial (study_id)
Return the trial with the best value in a study.

This method is valid only during single-objective optimization.
Parameters study_id (int)—ID of the study.
Returns The trial with the best objective value among all finished trials in the study.
Raises
* KeyError — If no study with the matching study_ id exists.
* RuntimeError — If the study has more than one direction.
e ValueError - If no trials have been completed.
Return type optuna.trial._frozen.FrozenTrial

get_failed_trial_ callback ()
Get the failed trial callback function.

Returns The failed trial callback function if it is set, otherwise None.

Return type Optional[Callable[[optuna.study.Study, optuna.trial._frozen.FrozenTrial], None]]

get_heartbeat_interval ()
Get the heartbeat interval if it is set.

Returns The heartbeat interval if it is set, otherwise None.
Return type Optional[int]

get_n_trials (study_id, state=None)
Count the number of trials in a study.

Parameters
* study_id (int)—1ID of the study.

e state (Optional[Union[Tuple[optuna.trial._state.TrialState,
..], optuna.trial._state.TrialState]]) — Trial states to filter on. If
None, include all states.

Returns Number of trials in the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type int

get_study_directions (study_id)
Read whether a study maximizes or minimizes an objective.

Parameters study_id (int)—ID of a study.

6.3. API Reference 193

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

Returns Optimization directions list of the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type List[optuna._study_direction.StudyDirection]

get_study_ id_from_ name (study_name)
Read the ID of a study.

Parameters study_name (st r)— Name of the study.

Returns ID of the study.

Raises KeyError — If no study with the matching study_name exists.
Return type int

get_study_id_from_ trial_id (trial_id)
Read the ID of a study to which a trial belongs.

Parameters trial_id (int) - ID of the trial.

Returns ID of the study.

Raises KeyError — If no trial with the matching trial_id exists.
Return type int

get_study name_from_id (study_id)
Read the study name of a study.

Parameters study_id (int)—ID of the study.

Returns Name of the study.

Raises KeyError — If no study with the matching study_ id exists.
Return type str

get_study_system_ attrs (study_id)
Read the optuna-internal attributes of a study.

Parameters study_id (int)—ID of the study.

Returns Dictionary with the optuna-internal attributes of the study.
Raises KeyError — If no study with the matching study_id exists.
Return type Dict[str, Any]

get_study_user_attrs (study_id)
Read the user-defined attributes of a study.

Parameters study_id (int)—ID of the study.

Returns Dictionary with the user attributes of the study.

Raises KeyError — If no study with the matching study_ id exists.
Return type Dict[str, Any]

get_trial (trial_id)
Read a trial.

Parameters trial_id (int) - ID of the trial.
Returns Trial with a matching trial ID.

Raises KeyError — If no trial with the matching trial_id exists.

194 Chapter 6.

Reference

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError

Optuna Documentation, Release 2.8.0.dev0

Return type optuna.trial._frozen.FrozenTrial

get_trial_ id_ from study_ id_trial_ number (study_id, trial_number)
Read the trial id of a trial.

Parameters
e study_id (int)—ID of the study.
e trial number (int)— Number of the trial.
Returns ID of the trial.
Raises KeyError — If no trial with the matching study_id and trial_number exists.
Return type int

get_trial_ number_from_id (trial_id)
Read the trial number of a trial.

Note: The trial number is only unique within a study, and is sequential.

Parameters trial_ id (int)—ID of the trial.
Returns Number of the trial.
Raises KeyError — If no trial with the matching trial_id exists.
Return type int
get_trial_ param (trial_id, param_name)
Read the parameter of a trial.
Parameters
e trial_ id (int)-ID of the trial.
* param_name (st r)— Name of the parameter.
Returns Internal representation of the parameter.

Raises KeyError — If no trial with the matching trial_id exists. If no such parameter
exists.

Return type float

get_trial_ params (trial_id)
Read the parameter dictionary of a trial.

Parameters trial_ id (int)—ID of the trial.

Returns Dictionary of a parameters. Keys are parameter names and values are internal repre-
sentations of the parameter values.

Raises KeyError — If no trial with the matching trial_id exists.
Return type Dict[str, Any]

get_trial_system_attrs (frial_id)
Read the optuna-internal attributes of a trial.

Parameters trial_id (int)—ID of the trial.

Returns Dictionary with the optuna-internal attributes of the trial.

6.3.

API Reference 195

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

Raises KeyError —If no trial with the matching trial_id exists.
Return type Dict[str, Any]

get_trial_user_attrs (trial_id)
Read the user-defined attributes of a trial.

Parameters trial_id (int) - ID of the trial.

Returns Dictionary with the user-defined attributes of the trial.
Raises KeyError — If no trial with the matching trial_id exists.
Return type Dict[str, Any]

is _heartbeat_enabled()
Check whether the storage enables the heartbeat.

Returns True if the storage supports the heartbeat and the return value of
get_heartbeat_interval () is an integer, otherwise False.

Return type bool

read_trials_from remote_storage (study_id)
Make an internal cache of trials up-to-date.

Parameters study_id (int) - ID of the study.
Raises KeyError — If no study with the matching study_ id exists.
Return type None

record_heartbeat (trial_id)
Record the heartbeat of the trial.

Parameters trial_id (int)—ID of the trial.
Return type None

remove_session ()
Clean up all connections to a database.

Return type None

set_study_directions (study_id, directions)
Register optimization problem directions to a study.

Parameters
e study_id (int)—ID of the study.

e directions (Sequence[optuna._study_direction.StudyDirection])
— A sequence of direction whose element is either MAXTMTZE or MINIMIZE.

Raises
* KeyError — If no study with the matching study_ id exists.

* ValueError — If the directions are already set and the each coordinate of passed
directions is the opposite direction or NOT SET.

Return type None

set_study_system_attr (study_id, key, value)
Register an optuna-internal attribute to a study.

This method overwrites any existing attribute.

196 Chapter 6. Reference

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Parameters

e study_id (int)—ID of the study.

* key (str)— Attribute key.

¢ value (Any) — Attribute value. It should be JSON serializable.
Raises KeyError — If no study with the matching study_ id exists.
Return type None

set_study_user_attr (study_id, key, value)
Register a user-defined attribute to a study.

This method overwrites any existing attribute.
Parameters
e study_id (int)—ID of the study.
* key (str)— Attribute key.
e value (Any) — Attribute value. It should be JSON serializable.
Raises KeyError — If no study with the matching study_id exists.
Return type None

set_trial_intermediate_value (trial_id, step, intermediate_value)
Report an intermediate value of an objective function.

This method overwrites any existing intermediate value associated with the given step.

Parameters

e trial_id (int)-ID of the trial.

* step (int)— Step of the trial (e.g., the epoch when training a neural network).

* intermediate_value (float) - Intermediate value corresponding to the step.
Raises

* KeyError — If no trial with the matching trial_id exists.

* RuntimeError — If the trial is already finished.
Return type None

set_trial_param (trial_id, param_name, param_value_internal, distribution)
Set a parameter to a trial.

Parameters
e trial_id (int)-ID of the trial.
e param_name (st r)— Name of the parameter.
* param_value_internal (f1oat) — Internal representation of the parameter value.

* distribution (optuna.distributions.BaseDistribution) — Sampled
distribution of the parameter.

Raises
* KeyError — If no trial with the matching trial_id exists.

e RuntimeError — If the trial is already finished.

6.3.

API Reference 197

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 2.8.0.dev0

Return type None

set_trial state (trial_id, state)
Update the state of a trial.

Parameters
e trial_id (int)-ID of the trial.

e state (optuna.trial._state.TrialState)— New state of the trial.

Returns True if the state is successfully updated. False if the state is kept the same. The
latter happens when this method tries to update the state of RUNNING trial to RUNNING.

Raises
* KeyError — If no trial with the matching trial_id exists.
* RuntimeError — If the trial is already finished.

Return type bool

set_trial_system_attr (frial_id, key, value)
Set an optuna-internal attribute to a trial.

This method overwrites any existing attribute.
Parameters
e trial_ id (int)—ID of the trial.
* key (str)— Attribute key.
¢ value (Any) — Attribute value. It should be JSON serializable.
Raises
* KeyError — If no trial with the matching trial_id exists.
* RuntimeError — If the trial is already finished.
Return type None

set_trial_user_attr (trial_id, key, value)
Set a user-defined attribute to a trial.

This method overwrites any existing attribute.
Parameters
e trial_id (int)—ID of the trial.
* key (str)— Attribute key.
¢ value (Any) — Attribute value. It should be JSON serializable.
Raises
* KeyError — If no trial with the matching trial_id exists.
* RuntimeError — If the trial is already finished.
Return type None

set_trial wvalues (trial_id, values)
Set return values of an objective function.

This method overwrites any existing trial values.

Parameters

198 Chapter 6.

Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

e trial_id (int)-ID of the trial.

* values (Sequence[float])— Values of the objective function.
Raises

* KeyError — If no trial with the matching trial_id exists.

* RuntimeError — If the trial is already finished.

Return type None

6.3.12 optuna.structs

This module is deprecated, with former functionality moved to optuna.trial and optuna. study.

class optuna.structs.TrialState (value)
Stateof a Trial.

RUNNING
The Trial is running.

COMPLETE
The Trial has been finished without any error.

PRUNED
The Trial has been pruned with TrialPruned.

FAIL
The Trial has failed due to an uncaught error.

Deprecated since version 1.4.0: This class is deprecated. Please use TrialState instead.

class optuna.structs.StudyDirection (value)
Direction of a St udy.

NOT_SET
Direction has not been set.

MINIMIZE
Study minimizes the objective function.

MAXIMIZE
Study maximizes the objective function.

Deprecated since version 1.4.0: This class is deprecated. Please use St udyDirection instead.

class optuna.structs.FrozenTrial (number, state, value, datetime_start, datetime_complete,
params, distributions, user_attrs, system_attrs, intermedi-
ate_values, trial_id, *, values=None)

Warning: Deprecated in v1.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v3.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v1.4.0.

This class was moved to t rial. Please use FrozenTrial instead.

property distributions
Dictionary that contains the distributions of params.

6.3. API Reference 199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v1.4.0
https://github.com/optuna/optuna/releases/tag/v1.4.0

Optuna Documentation, Release 2.8.0.dev0

property duration
Return the elapsed time taken to complete the trial.

Returns The duration.

property last_step
Return the maximum step of intermediate_values in the trial.

Returns The maximum step of intermediates.

report (value, step)
Interface of report function.

Since FrozenTrial is not pruned, this report function does nothing.
See also:

Please refer to should prune ().

Parameters
e value (float)— A value returned from the objective function.

* step (int)— Step of the trial (e.g., Epoch of neural network training). Note that pruners
assume that step starts at zero. For example, MedianPruner simply checks if step
is less than n_warmup_steps as the warmup mechanism.

Return type None
should_prune ()
Suggest whether the trial should be pruned or not.

The suggestion is always Fa 1 se regardless of a pruning algorithm.

Note: FrozenTrial only samples one combination of parameters.

Returns False.

Return type bool

class optuna.structs.StudySummary (study_name, direction, best_trial, user_attrs, system_attrs,
n_trials, datetime_start, study_id, *, directions=None)

Warning: Deprecated in v1.4.0. This feature will be removed in the future. The removal of this feature is
currently scheduled for v3.0.0, but this schedule is subject to change. See https://github.com/optuna/optuna/
releases/tag/v1.4.0.

This class was moved to st udy. Please use St udy Summary instead.

200 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://github.com/optuna/optuna/releases/tag/v1.4.0
https://github.com/optuna/optuna/releases/tag/v1.4.0

Optuna Documentation, Release 2.8.0.dev0

6.3.13 optuna.study

The study module implements the Study object and related functions. A public constructor is available for the
Study class, but direct use of this constructor is not recommended. Instead, library users should create and load a
Study using create_study () and load_study () respectively.

optuna.study.Study A study corresponds to an optimization task, i.e., a set
of trials.

optuna.study.create_study Create a new Study.

optuna.study.load study Load the existing St udy that has the specified name.

optuna.study.delete_study Delete a St udy object.

optuna.study.get_all_study_ summaries Get all history of studies stored in a specified storage.

optuna.study.StudyDirection Direction of a St udy.

optuna.study.StudySummary Basic attributes and aggregated results of a St udy.
optuna.study.Study

class optuna.study.Study (study_name, storage, sampler=None, pruner=None)
A study corresponds to an optimization task, i.e., a set of trials.

This object provides interfaces to run a new Trial, access trials’ history, set/get user-defined attributes of the
study itself.

Note that the direct use of this constructor is not recommended. To create and load a study, please refer to the
documentation of create_study () and load_study () respectively.

Methods

add_trial(trial)

Add trial to study.

add_trials(trials)

Add trials to study.

ask([fixed_distributions])

Create a new trial from which hyperparameters can
be suggested.

enqueue_trial(params)

Enqueue a trial with given parameter values.

get_trials([deepcopy, states])

Return all trials in the study.

opt imize(func[, n_trials, timeout, n_jobs, ...])

Optimize an objective function.

set_system_attr(key, value)

Set a system attribute to the study.

set_user._attr(key, value)

Set a user attribute to the study.

stop()

Exit from the current optimization loop after the run-
ning trials finish.

tell(trial[, values, state])

Finish a trial created with ask ().

trials dataframe([attrs, multi_index])

Export trials as a pandas DataFrame.

6.3. API Reference

201

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Optuna Documentation, Release 2.8.0.dev0

Attributes
best_params Return parameters of the best trial in the study.
best_trial Return the best trial in the study.
best_trials Return trials located at the Pareto front in the study.
best_value Return the best objective value in the study.
direction Return the direction of the study.
directions Return the directions of the study.
system_attrs Return system attributes.
trials Return all trials in the study.
user_attrs Return user attributes.

add_trial (trial)
Add trial to study.

The trial is validated before being added.

Example

import optuna
from optuna.distributions import UniformDistribution

def objective(trial):
x = trial.suggest_float ("x", 0, 10)
return x xx 2

study = optuna.create_study ()
assert len(study.trials) ==

trial = optuna.trial.create_trial(
params={"x": 2.0},
distributions={"x": UniformDistribution (0, 10)},
value=4.0,

study.add_trial(trial)
assert len(study.trials) == 1

study.optimize (objective, n_trials=3)
assert len(study.trials) ==

other_study = optuna.create_study ()

for trial in study.trials:
other_study.add_trial(trial)

assert len(other_study.trials) == len(study.trials)

other_study.optimize (objective, n_trials=2)

assert len(other_study.trials) == len(study.trials) + 2

See also:

This method should in general be used to add already evaluated trials (trial.state.

202

Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

is_finished() == True). To queue trials for evaluation, please refer to enqueue_trial ().
See also:

See create _trial () for how to create trials.

Parameters trial (optuna.trial._frozen.FrozenTrial)— Trial to add.
Raises ValueError — If trial is an invalid state.

Return type None

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

add_trials (trials)
Add trials to study.

The trials are validated before being added.

Example

import optuna
from optuna.distributions import UniformDistribution

def objective(trial):
x = trial.suggest_float ("x", 0, 10)
return x ** 2

study = optuna.create_study ()
study.optimize (objective, n_trials=3)
assert len(study.trials) ==

other_study = optuna.create_study ()
other_study.add_trials(study.trials)
assert len(other_study.trials) == len(study.trials)

other_study.optimize (objective, n_trials=2)
assert len(other_study.trials) == len(study.trials) + 2

See also:
See add _trial () for addition of each trial.
Parameters trials (Iterable[optuna.trial._frozen.FrozenTrial]) — Trials
to add.
Raises ValueError —If trials include invalid trial.

Return type None

Note: Added in v2.5.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v2.5.0.

6.3. API Reference 203

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.5.0

Optuna Documentation, Release 2.8.0.dev0

ask (fixed_distributions=None)
Create a new trial from which hyperparameters can be suggested.

This method is part of an alternative to opt imize () that allows controlling the lifetime of a trial outside
the scope of func. Each call to this method should be followed by a call to te11 () to finish the created
trial.

See also:
The Ask-and-Tell Interface tutorial provides use-cases with examples.

Example

Getting the trial object with the ask () method.

import optuna

study = optuna.create_study ()
trial = study.ask()

x = trial.suggest_float ("x", -1, 1)

study.tell (trial, x *x 2)

Example

Passing previously defined distributions to the ask () method.

import optuna

study = optuna.create_study ()

distributions = {
"optimizer": optuna.distributions.CategoricalDistribution(["adam", "sgd
="1),

"lr": optuna.distributions.LogUniformDistribution(0.0001, 0.1),

You can pass the distributions previously defined.
trial = study.ask(fixed_distributions=distributions)

“optimizer® and ‘lr are already suggested and accessible with “trial.
—params .

assert "optimizer" in trial.params

assert "lr" in trial.params

Parameters fixed distributions (Optional[Dict[str, optuna.
distributions.BaseDistribution]]) — A dictionary containing the parameter
names and parameter’s distributions. Each parameter in this dictionary is automatically
suggested for the returned trial, even when the suggest method is not explicitly invoked by
the user. If this argument is set to None, no parameter is automatically suggested.

Returns A Trial.

204 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Return type optuna.trial._trial. Trial
property best_params
Return parameters of the best trial in the study.
Returns A dictionary containing parameters of the best trial.
Raises RuntimeError — If the study has more than one direction.

property best_trial
Return the best trial in the study.

Returns A FrozenTrial object of the best trial.
Raises RuntimeError — If the study has more than one direction.

property best_trials
Return trials located at the Pareto front in the study.

A trial is located at the Pareto front if there are no trials that dominate the trial. It’s called that a
trial t 0 dominates another trial t 1 ifall (v0 <= v1) for v0, vl in zip(t0O.values, tl.
values) and any (vO < v1) for v0, vl in zip(tO.values, tl.values) are held.

Returns A list of FrozenTrial objects.

property best_value
Return the best objective value in the study.

Returns A float representing the best objective value.
Raises RuntimeError — If the study has more than one direction.

property direction
Return the direction of the study.

Returns A StudyDirection object.
Raises RuntimeError — If the study has more than one direction.

property directions
Return the directions of the study.

Returns A list of StudyDirection objects.

enqueue_trial (params)
Enqueue a trial with given parameter values.

You can fix the next sampling parameters which will be evaluated in your objective function.

Example

import optuna

def objective (trial):
x = trial.suggest_float ("x", 0, 10)
return x **x 2

study = optuna.create_study ()
study.enqueue_trial ({"x": 5})
study.enqueue_trial ({"x": 0})

(continues on next page)

6.3. API Reference 205

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

study.optimize (objective, n_trials=2)

assert study.trials[0].params == {"x": 5}
assert study.trials[l].params == {"x": 0}

Parameters params (Dict[str, Any])— Parameter values to pass your objective func-
tion.

Return type None

Note: Added in v1.2.0 as an experimental feature. The interface may change in newer versions without
prior notice. See https://github.com/optuna/optuna/releases/tag/v1.2.0.

get_trials (deepcopy=True, states=None)
Return all trials in the study.

The returned trials are ordered by trial number.

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", -1, 1)
return x **x 2

study = optuna.create_study ()
study.optimize (objective, n_trials=3)

trials = study.get_trials()
assert len(trials) ==

Parameters

* deepcopy (bool)-Flag to control whether to apply copy . deepcopy () to the trials.
Note that if you set the flag to False, you shouldn’t mutate any fields of the returned
trial. Otherwise the internal state of the study may corrupt and unexpected behavior may
happen.

* states (Optional [Tuple[optuna.trial._state.TrialState, ..]])-—
Trial states to filter on. If None, include all states.

Returns A listof FrozenTrial objects.
Return type List[optuna.trial._frozen.FrozenTrial]
optimize (func, n_trials=None, timeout=None, n_jobs=1, catch=(), callbacks=None,

gc_after_trial=False, show_progress_bar=False)
Optimize an objective function.

Optimization is done by choosing a suitable set of hyperparameter values from a given range. Uses a
sampler which implements the task of value suggestion based on a specified distribution. The sampler is

206 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v1.2.0
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

specified in create_study () and the default choice for the sampler is TPE. See also TPESampler
for more details on ‘TPE’.

Example

import optuna

def objective(trial):

X =

trial.suggest_float ("x", -1, 1)

return x **x 2

study =

optuna.create_study ()

study.optimize (objective, n_trials=3)

Parameters

e func (Callable[[optuna.trial._trial.Trial], Union[float,

Sequence [float]]])— A callable that implements objective function.

n_trials (Optional [int])— The number of trials. If this argument is set to None,
there is no limitation on the number of trials. If t imeout is also set to None, the study
continues to create trials until it receives a termination signal such as Ctrl+C or SIGTERM.

timeout (Optional [float]) — Stop study after the given number of second(s). If
this argument is set to None, the study is executed without time limitation. If n_trials
is also set to None, the study continues to create trials until it receives a termination signal
such as Ctrl+C or SIGTERM.

n_jobs (int)— The number of parallel jobs. If this argument is set to —1, the number is
set to CPU count.

Note: n_jobs allows parallelization using threading and may suffer from Python’s
GIL. It is recommended to use process-based parallelization if func is CPU bound.

Warning: Deprecated in v2.7.0. This feature will be removed in the future. It is
recommended to use process-based parallelization. The removal of this feature is
currently scheduled for v4.0.0, but this schedule is subject to change. See https://
github.com/optuna/optuna/releases/tag/v2.7.0.

catch (Tuple[Type[Exception], ..])— A study continues to run even when a
trial raises one of the exceptions specified in this argument. Default is an empty tuple, i.e.
the study will stop for any exception except for TrialPruned.

callbacks (Optional[List([Callable[[optuna.study.Study,
optuna.trial._frozen.FrozenTrial], None]]]) - List of callback
functions that are invoked at the end of each trial. Each function must accept two
parameters with the following types in this order: St udy and FrozenTrial.

gc_after_trial (bool) — Flag to determine whether to automatically run garbage
collection after each trial. Set to True to run the garbage collection, False otherwise.

6.3. API Reference

207

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/threading.html#module-threading
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://github.com/optuna/optuna/releases/tag/v2.7.0
https://github.com/optuna/optuna/releases/tag/v2.7.0
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False

Optuna Documentation, Release 2.8.0.dev0

When it runs, it runs a full collection by internally calling gc.collect (). If you see
an increase in memory consumption over several trials, try setting this flag to True.

See also:

How do I avoid running out of memory (OOM) when optimizing studies?

* show_progress_bar (bool)— Flag to show progress bars or not. To disable progress
bar, set this False. Currently, progress bar is experimental feature and disabled when

n_jobs # 1.
Raises RuntimeError — If nested invocation of this method occurs.

Return type None

set_system_attr (key, value)

Set a system attribute to the study.

Note that Optuna internally uses this method to save system messages. Please use set_user_attr ()

to set users’ attributes.
Parameters
* key (str)— A key string of the attribute.
e value (Any) — A value of the attribute. The value should be JSON serializable.

Return type None

set_user_attr (key, value)

Set a user attribute to the study.
See also:

See user_attrs for related attribute.

Example

import optuna

def objective (trial):
x = trial.suggest_float ("x", 0, 1)
y = trial.suggest_£float ("y", 0, 1)
return x *x 2 + y x*x 2

study = optuna.create_study ()
study.set_user_attr ("objective function", "quadratic function™)

study.set_user_attr("dimensions", 2)
study.set_user_attr ("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
"objective function": "quadratic function",
"dimensions": 2,
"contributors": ["Akiba", "Sano"],
}
Parameters

208

Chapter 6. Reference

https://docs.python.org/3/library/gc.html#gc.collect
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

* key (str)— A key string of the attribute.
e value (Any) — A value of the attribute. The value should be JSON serializable.
Return type None
stop ()
Exit from the current optimization loop after the running trials finish.

This method lets the running optimize () method return immediately after all trials which the
optimize () method spawned finishes. This method does not affect any behaviors of parallel or succes-
sive study processes.

Example

import optuna

def objective(trial):
if trial.number ==
trial.study.stop()
x = trial.suggest_£float ("x", 0, 10)
return x *x 2

study = optuna.create_study ()
study.optimize (objective, n_trials=10)
assert len(study.trials) ==

Raises RuntimeError — If this method is called outside an objective function or callback.
Return type None
property system_ attrs
Return system attributes.
Returns A dictionary containing all system attributes.

tell (trial, values=None, state=TrialState. COMPLETE)
Finish a trial created with ask ().

See also:

The Ask-and-Tell Interface tutorial provides use-cases with examples.

Example

import optuna
from optuna.trial import TrialState

def f(x):
return (x - 2) *% 2

def df (x):

(continues on next page)

6.3.

API Reference 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

return 2 « x — 4

study = optuna.create_study ()
n_trials = 30

for _ in range(n_trials):
trial = study.ask()

lr = trial.suggest_float("1lr", le-5, le-1, log=True)

Iterative gradient descent objective function.

x = 3 # Initial value.
for step in range(128):
y = £(x)

trial.report (y, step=step)

if trial.should_prune():
Finish the trial with the pruned state.
study.tell (trial, state=TrialState.PRUNED)

break
gy = df (x)
x —= gy » 1lr

else:
Finish the trial with the final value after all iterations.
study.tell (trial, v)

Parameters

* trial (Union[optuna.trial._trial.Trial, int])— A Trial objector a
trial number.

* values (Optional [Union[float, Sequence[float]]]) — Optional objec-
tive value or a sequence of such values in case the study is used for multi-objective op-
timization. Argument must be provided if state is COMPLETE and should be None if
stateis FAIL or PRUNED.

* state (optuna.trial._state.TrialState) — State to be reported. Must be
COMPLETE, FAIL or PRUNED.

Raises
e TypeError —Iftrialisnota Trialoran int.

* ValueError — If any of the following. values is a sequence but its length does
not match the number of objectives for its associated study. state is COMPLETE but
values is None. state is FATL or PRUNED but values is not None. state is
not COMPLETE, FAIL or PRUNED. trial is a trial number but no trial exists with that
number.

Return type None
property trials
Return all trials in the study.

The returned trials are ordered by trial number.

210

Chapter 6. Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

This is a short form of self.get_trials (deepcopy=True, states=None).
Returns A list of FrozenTrial objects.

trials_dataframe (attrs=('number', 'value', ‘datetime_start, 'datetime_complete', ‘'duration’,

'params’, 'user_attrs', 'system_attrs', 'state’), multi_index=False)
Export trials as a pandas DataFrame.

The DataFrame provides various features to analyze studies. It is also useful to draw a histogram of
objective values and to export trials as a CSV file. If there are no trials, an empty DataFrame is returned.

Example

import optuna
import pandas

def objective(trial):
x = trial.suggest_float ("x", -1, 1)
return x *x 2

study = optuna.create_study ()
study.optimize (objective, n_trials=3)

Create a dataframe from the study.
df = study.trials_dataframe ()
assert isinstance (df, pandas.DataFrame)

assert df.shape[0] == # n_trials.
Parameters
* attrs (Tuple[str, ..])—Specifiesfield namesof FrozenTrial toinclude them

to a DataFrame of trials.

* multi_index (bool) - Specifies whether the returned DataFrame employs Multilndex
or not. Columns that are hierarchical by nature such as (params, x) will be flattened
to params_x when setto False.

Returns A pandas DataFrame of trials in the St udy.

Return type pandas.core.frame.DataFrame

Note: If value isin attrs during multi-objective optimization, it is implicitly replaced with values.

property user_attrs
Return user attributes.

See also:

See set_user_attr () for related method.

6.3.

API Reference 211

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/advanced.html
https://docs.python.org/3/library/constants.html#False
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Optuna Documentation, Release 2.8.0.dev0

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", 0, 1)
y = trial.suggest_float("y", 0, 1)
return x *x 2 + y x*x 2

study = optuna.create_study ()
study.set_user_attr ("objective function", "quadratic function™)

study.set_user_attr("dimensions", 2)
study.set_user_attr ("contributors", ["Akiba", "Sano"])

assert study.user_attrs == {
"objective function": "quadratic function",
"dimensions": 2,
"contributors": ["Akiba", "Sano"],

Returns A dictionary containing all user attributes.

optuna.study.create_study

optuna.study.create_study (storage=None, sampler=None, pruner=None, study_name=None, di-

rection=None, load_if _exists=False, *, directions=None)
Create anew Study.

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", 0, 10)
return x *»* 2

study = optuna.create_study ()
study.optimize (objective, n_trials=3)

Parameters

* storage (Optional [Union[str, optuna.storages._base.
BaseStorage]]) — Database URL. If this argument is set to None, in-memory
storage is used, and the St udy will not be persistent.

Note:

When a database URL is passed, Optuna internally uses SQLAlchemy to handle
the database. Please refer to SQLAlchemy’s document for further details. If you

212 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://www.sqlalchemy.org/
https://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls

Optuna Documentation, Release 2.8.0.dev0

want to specify non-default options to SQLAlchemy Engine, you can instantiate
RDBStorage with your desired options and pass it to the storage argument in-
stead of a URL.

* sampler (Optional [optuna.samplers._base.BaseSampler]) — A sampler
object that implements background algorithm for value suggestion. If None is specified,
TPESampler is used during single-objective optimization and NSGAT T Sampler during
multi-objective optimization. See also samplers.

* pruner (Optional [optuna.pruners._base.BasePruner])— A pruner object
that decides early stopping of unpromising trials. If None is specified, MedianPruner is
used as the default. See also pruners.

* study_name (Optional[str]) — Study’s name. If this argument is set to None, a
unique name is generated automatically.

e direction (Optional [Union[str, optuna._study direction.
StudyDirection]])— Direction of optimization. Set minimi ze for minimization and
maximize for maximization. You can also pass the corresponding StudyDirection
object.

Note: If none of direction and directions are specified, the direction of the study is set to
“minimize”.

* load_if_ exists (bool) — Flag to control the behavior to handle a conflict of study
names. In the case where a study named study_name already exists in the storage, a
DuplicatedStudyErrorisraisedif load_if_ existsissettoFalse. Otherwise,
the creation of the study is skipped, and the existing one is returned.

* directions (Optional [Sequence[Union[str, optuna.
_study_direction.StudyDirection]]]) — A sequence of directions during
multi-objective optimization.

Returns A Study object.

Raises ValueError —If the length of directions is zero. Or, if direct ion is neither ‘mini-
mize’ nor ‘maximize’ when it is a string. Or, if the element of direct ions is neither minimize
nor maximize. Or, if both direction and directions are specified.

Return type optuna.study.Study

See also:
optuna.create_study () is an alias of optuna.study.create_study ().
optuna.study.load_study

optuna.study.load_study (study_name, storage, sampler=None, pruner=None)
Load the existing St udy that has the specified name.

6.3. API Reference 213

https://docs.sqlalchemy.org/en/latest/core/engines.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", 0, 10)
return x *x*x 2

study = optuna.create_study (storage="sqglite:///example.db", study_name="my_study")
study.optimize (objective, n_trials=3)

loaded_study = optuna.load_study (study_name="my_study", storage="sglite:///
—example.db")
assert len(loaded_study.trials) == len(study.trials)

Parameters
* study_name (st r)— Study’s name. Each study has a unique name as an identifier.

* storage (Union[str, optuna.storages._base.BaseStorage]) -
Database URL such as sglite:///example.db. Please see also the documen-
tation of create_study () for further details.

* sampler (Optional [optuna.samplers._base.BaseSampler])— A sampler
object that implements background algorithm for value suggestion. If None is specified,
TPESampler is used as the default. See also samplers.

* pruner (Optional [optuna.pruners._base.BasePruner])— A pruner object
that decides early stopping of unpromising trials. If None is specified, MedianPruner is
used as the default. See also pruners.

Return type optuna.study.Study
See also:
optuna.load study () is analias of optuna.study. load study ().
optuna.study.delete_study

optuna.study.delete_study (study_name, storage)
Delete a St udy object.

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x — 2) #*x 2

study = optuna.create_study (study_name="example-study", storage="sqglite:///

—example.db")

(continues on next page)

214 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

study.optimize (objective, n_trials=3)

optuna.delete_study (study_name="example-study", storage="sqglite:///example.db")

Parameters
* study_name (str) - Study’s name.

* storage (Union[str, optuna.storages._base.BaseStorage]) -
Database URL such as sglite:///example.db. Please see also the documen-
tation of create_study () for further details.

Return type None
See also:
optuna.delete_study () is an alias of optuna.study.delete_study ().
optuna.study.get_all_study summaries

optuna.study.get_all_study_ summaries (sforage)
Get all history of studies stored in a specified storage.

Example

import optuna

def objective(trial):
x = trial.suggest_float ("x", -10, 10)
return (x — 2) #*x 2

study = optuna.create_study (study_name="example-study", storage="sqglite:///
—example.db")
study.optimize (objective, n_trials=3)

study_summaries = optuna.study.get_all_study_summaries (storage="sqglite:///example.
—db")

assert len(study_summaries) == 1

study_summary = study_summaries[0]

assert study_summary.study_name == "example-study"

Parameters storage (Union[str, optuna.storages._base.BaseStorage]) -
Database URL such as sglite:///example.db. Please see also the documentation of
create_study () for further details.

Returns List of study history summarized as St udySummary objects.

Return type List[optuna._study_summary.StudySummary]

6.3. API Reference 215

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

See also:

optuna.get_all_study summaries () is an alias
get_all_study_summaries ().

optuna.study.StudyDirection

class optuna.study.StudyDirection (value)
Direction of a Study.

NOT_SET
Direction has not been set.

MINIMIZE
Study minimizes the objective function.

MAXIMIZE
Study maximizes the objective function.

Attributes

of

optuna.study.

MAXIMIZE

MINIMIZE

NOT_SET

optuna.study.StudySummary

class optuna.study.StudySummary (study_name, direction, best _trial, user_attrs, system_attrs,
n_trials, datetime_start, study_id, *, directions=None)

Basic attributes and aggregated results of a St udy.
See also optuna.study.get_all_study summaries().

study_name
Name of the Study.

direction
StudyDirection of the Study.

Note: This attribute is only available during single-objective optimization.

directions
A sequence of StudyDirection objects.

best_trial
FrozenTrial with best objective value in the St udy.

user_attrs
Dictionary that contains the attributes of the Study set with
set_user_attr().

optuna.study.Study.

216

Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

system_attrs
Dictionary that contains the attributes of the St udy internally set by Optuna.

n_trials
The number of trials ran in the St udy.

datetime_start
Datetime where the St udy started.

Attributes

direction

directions

6.3.14 optuna.trial

The t rial module contains Trial related classes and functions.

A Trial instance represents a process of evaluating an objective function. This instance is passed to an objective
function and provides interfaces to get parameter suggestion, manage the trial’s state, and set/get user-defined attributes
of the trial, so that Optuna users can define a custom objective function through the interfaces. Basically, Optuna users
only use it in their custom objective functions.

optuna.trial.Trial A trial is a process of evaluating an objective function.

optuna.trial.FixedTrial A trial class which suggests a fixed value for each pa-
rameter.

optuna.trial.FrozenTrial Status and results of a Trial.

optuna.trial.TrialState State of a Trial.

optuna.trial.create trial Create anew FrozenTrial.

optuna.trial.Trial

class optuna.trial.Trial (study, trial_id)

A trial is a process of evaluating an objective function.

This object is passed to an objective function and provides interfaces to get parameter suggestion, manage the
trial’s state, and set/get user-defined attributes of the trial.

Note that the direct use of this constructor is not recommended. This object is seamlessly instantiated and passed
to the objective function behind the optuna. study. Study.optimize () method; hence library users do
not care about instantiation of this object.

Parameters
* study — A Study object.

* trial_id - A trial ID that is automatically generated.

6.3.

API Reference 217

Optuna Documentation, Release 2.8.0.dev0

Methods

report(value, step)

Report an objective function value for a given step.

set_system_attr(key, value)

Set system attributes to the trial.

set_user._attr(key, value)

Set user attributes to the trial.

should_prune()

Suggest whether the trial should be pruned or not.

suggest_categorical(name, choices)

Suggest a value for the categorical parameter.

suggest_discrete_uniform(name, low,

high, q)

Suggest a value for the discrete parameter.

suggest_ float(name, low, high, *[, step, log])

Suggest a value for the floating point parameter.

suggest_int(name, low, high[, step, log])

Suggest a value for the integer parameter.

suggest_loguniform(name, low, high)

Suggest a value for the continuous parameter.

suggest_uniform(name, low, high)

Suggest a value for the continuous parameter.

Attributes

datetime_ start

Return start datetime.

distributions Return distributions of parameters to be optimized.

number Return trial’s number which is consecutive and
unique in a study.

params Return parameters to be optimized.

system _attrs

Return system attributes.

user_attrs

Return user attributes.

property datetime_start
Return start datetime.

Returns Datetime where the Tr1a] started.

property distributions

Return distributions of parameters to be optimized.

Returns A dictionary containing all distributions.

property number

Return trial’s number which is consecutive and unique in a study.

Returns A trial number.

property params
Return parameters to be optimized.

Returns A dictionary containing all parameters.

report (value, step)

Report an objective function value for a given step.

The reported values are used by the pruners to determine whether this trial should be pruned.

See also:

Please refer to BasePruner.

Note: The reported value is converted to £1oat type by applying £1oat () function internally. Thus, it
accepts all float-like types (e.g., numpy . f£1oat 32). If the conversion fails, a TypeError is raised.

218

Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

Example

Report intermediate scores of SGDClassifier training.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.linear model import SGDClassifier

from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris (return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, vy)

def objective(trial):

clf = SGDClassifier (random_state=0)

for step in range(100) :
clf.partial_fit(X_train, y_train, np.unique(y))
intermediate_value = clf.score(X_valid, y_valid)
trial.report (intermediate_value, step=step)
if trial.should_prune():

raise optuna.TrialPruned()

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize (objective, n_trials=3)

Parameters
* value (float)— A value returned from the objective function.

* step (int) — Step of the trial (e.g., Epoch of neural network training). Note that pruners
assume that step starts at zero. For example, MedianPruner simply checks if step
is less than n_warmup_steps as the warmup mechanism.

Raises NotImplementedError — If trial is being used for multi-objective optimization.
Return type None
set_system_attr (key, value)
Set system attributes to the trial.

Note that Optuna internally uses this method to save system messages such as failure reason of trials.
Please use set_user._attr () tosetusers’ attributes.

Parameters

* key (str)— A key string of the attribute.

* value (Any) — A value of the attribute. The value should be JSON serializable.
Return type None

set_user_attr (key, value)
Set user attributes to the trial.

The user attributes in the trial can be access via optuna.trial.Trial.user_attrs().

. API Reference 219

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Example

Save fixed hyperparameters of neural network training.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.neural network import MLPClassifier

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, y, random_state=0)

def objective(trial):
trial.set_user_attr ("BATCHSIZE", 128)
momentum = trial.suggest_uniform ("momentum", 0, 1.0)
clf = MLPClassifier(
hidden_layer_sizes=(100, 50),
batch_size=trial.user_attrs["BATCHSIZE"],
momentum=momentum,
solver="sgd",
random_state=0,
)
clf.fit (X_train, y_train)

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize (objective, n_trials=3)

assert "BATCHSIZE" in study.best_trial.user_attrs.keys/()
assert study.best_trial.user_attrs["BATCHSIZE"] == 128

Parameters
* key (str)— A key string of the attribute.
e value (Any) — A value of the attribute. The value should be JSON serializable.

Return type None

should_prune ()

Suggest whether the trial should be pruned or not.

The suggestion is made by a pruning algorithm associated with the trial and is based on previously reported
values. The algorithm can be specified when constructing a St udy.

Note: If no values have been reported, the algorithm cannot make meaningful suggestions. Similarly, if
this method is called multiple times with the exact same set of reported values, the suggestions will be the
same.

See also:

Please refer to the example code in optuna.trial.Trial.report ().

220

Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Returns A boolean value. If True, the trial should be pruned according to the configured
pruning algorithm. Otherwise, the trial should continue.

Raises NotImplementedError — If trial is being used for multi-objective optimization.

Return type bool

suggest_categorical (name, choices)
Suggest a value for the categorical parameter.

The value is sampled from choices.

Example

Suggest a kernel function of SVC.

import numpy as np
from sklearn.datasets import load_iris

from sklearn.svm import SVC
import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid =

def objective(trial):
kernel =
clf = SVC(kernel=kernel,
clf.fit (X_train, y_train)
return clf.score(X_valid, y_valid)

study =
study.optimize (objective,

n_trials=3)

trial.suggest_categorical ("kernel",
gamma="scale",

from sklearn.model_selection import train_test_split

train_test_split (X, y)

[Hlinear", "pOly", "rbf"])

random_state=0)

optuna.create_study (direction="maximize")

Parameters
* name (str)— A parameter name.

e choices (Sequence [Union[None,
ter value candidates.

Return type Union[None, bool, int, float, str]

See also:

CategoricalDistribution.

Returns A suggested value.
Parameters
* name (str)—
* choices (Sequence [Union[None,

Return type Union[None, bool, int, float, str]

bool, int, float, str]])-—Parame-

bool, int, float, str]])-

6.3.

API Reference

221

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#bool
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

suggest_discrete_uniform (name, low, high, q)
Suggest a value for the discrete parameter.

The value is sampled from the range [low, high], and the step of discretization is gq. More specifically, this
method returns one of the values in the sequence low, low + g, low + 2q, ..., low + kg < high, where k
denotes an integer. Note that high may be changed due to round-off errors if g is not an integer. Please
check warning messages to find the changed values.

Example

Suggest a fraction of samples used for fitting the individual learners of GradientBoostingClassifier.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split

import optuna

X, v = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, vy)

def objective (trial):
subsample = trial.suggest_discrete_uniform("subsample", 0.1, 1.0, 0.1)
clf = GradientBoostingClassifier (subsample=subsample, random_state=0)
clf.fit(X_train, y_train)
return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize™)
study.optimize (objective, n_trials=3)

Parameters
* name (str)— A parameter name.

* low (float)— Lower endpoint of the range of suggested values. 1ow is included in the
range.

* high (fl1oat)— Upper endpoint of the range of suggested values. high is included in
the range.

e g(float)— A step of discretization.
Returns A suggested float value.
Return type float
suggest_float (name, low, high, *, step=None, log=False)
Suggest a value for the floating point parameter.

Note that this is a wrapper method for suggest_uniform(), suggest_loguniform() and
suggest_discrete_uniform().

New in version 1.3.0.

222 Chapter 6. Reference

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

See also:

Please see also suggest_uniform(), suggest_loguniform/() and
suggest_discrete_uniform().

Example

Suggest a momentum, learning rate and scaling factor of learning rate for neural network training.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.neural_ network import MLPClassifier

import optuna
X, y = load_iris(return_X_y=True)

X_train, X_valid, y_train, y_valid = train_test_split (X, y, random_state=0)

def objective(trial):

momentum = trial.suggest_float ("momentum”, 0.0, 1.0)
learning_rate_init = trial.suggest_float (
"learning_rate_init", le-5, le-3, log=True

)

power_t = trial.suggest_float ("power_t", 0.2, 0.8, step=0.1)

clf = MLPClassifier(
hidden_layer_sizes= (100, 50),
momentum=momentum,
learning_rate_init=learning_rate_init,
solver="sgd",
random_state=0,
power_t=power_t,

)

clf.fit (X_train, y_train)

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize (objective, n_trials=3)

Parameters
* name (str)— A parameter name.

* low (float)— Lower endpoint of the range of suggested values. 1ow is included in the
range.

* high (float) — Upper endpoint of the range of suggested values. high is excluded
from the range.

Note: If step is specified, high is included as well as 1ow because this method falls
back to suggest_discrete_uniform().

* step (Optional [float])— A step of discretization.

6.3. API Reference 223

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

Note: The step and 1og arguments cannot be used at the same time. To set the step
argument to a float number, set the 1og argument to False.

* log (bool) — A flag to sample the value from the log domain or not. If log is
true, the value is sampled from the range in the log domain. Otherwise, the value is
sampled from the range in the linear domain. See also suggest_uniform() and
suggest_loguniform().

Note: The step and log arguments cannot be used at the same time. To set the Log
argument to True, set the step argument to None.

Raises ValueError —If step is not None and log = True are specified.
Returns A suggested float value.

Return type float

suggest_int (name, low, high, step=1, log=False)
Suggest a value for the integer parameter.

The value is sampled from the integers in [low, high].

Example

Suggest the number of trees in RandomForestClassifier.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

import optuna

X, y = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, vy)

def objective(trial):
n_estimators = trial.suggest_int ("n_estimators”, 50, 400)
clf = RandomForestClassifier (n_estimators=n_estimators, random_state=0)
clf.fit(X_train, y_train)
return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize™)
study.optimize (objective, n_trials=3)

Parameters
* name (str)— A parameter name.

* low (int) — Lower endpoint of the range of suggested values. low is included in the
range.

224 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Optuna Documentation, Release 2.8.0.dev0

* high (int) — Upper endpoint of the range of suggested values. high is included in the
range.

step (int)— A step of discretization.

Note: Note that high is modified if the range is not divisible by step. Please check the
warning messages to find the changed values.

Note: The method returns one of the values in the sequence low, low + step, low + 2 *
step, ..., low + k * step < high, where k denotes an integer.

Note: The step != 1 and log arguments cannot be used at the same time. To set the
step argument step > 2, set the 1og argument to False.

log (bool)— A flag to sample the value from the log domain or not.

Note: If 1og is true, at first, the range of suggested values is divided into grid points of
width 1. The range of suggested values is then converted to a log domain, from which a
value is sampled. The uniformly sampled value is re-converted to the original domain and
rounded to the nearest grid point that we just split, and the suggested value is determined.
For example, if low = 2 and high = 8, then the range of suggested values is [2, 3, 4, 5, 6,
7, 8] and lower values tend to be more sampled than higher values.

Note: The step != 1 and log arguments cannot be used at the same time. To set the

log argument to True, set the step argument to 1.

Raises ValueError —If step != 1and log = True are specified.

Return type int

suggest_loguniform (name, low, high)
Suggest a value for the continuous parameter.

The value is sampled from the range [low, high) in the log domain. When low = high, the value of low

will be returned.

Example

Suggest penalty parameter C of SVC.

import numpy

from sklearn

from sklearn.
from sklearn.

as np
datasets import load_iris
model_selection import train_test_split

.svm import SVC
import optuna

X, v = load_iris(return_X_y=True)

(continues on next page)

6.3. API Reference

225

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

X_train, X_valid, y_train, y_valid = train_test_split (X, vy)

def objective(trial):
c = trial.suggest_loguniform("c", le-5, 1le2)
clf = SVC(C=c, gamma="scale", random_state=0)
clf.fit(X_train, y_train)
return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize™)
study.optimize (objective, n_trials=3)

Parameters
* name (str)— A parameter name.

* low (float)— Lower endpoint of the range of suggested values. 1ow is included in the
range.

* high (float) — Upper endpoint of the range of suggested values. high is excluded
from the range.

Returns A suggested float value.

Return type float

suggest_uniform (name, low, high)

Suggest a value for the continuous parameter.

The value is sampled from the range [low, high) in the linear domain. When low = high, the value of low
will be returned.

Example

Suggest a momentum for neural network training.

import numpy as np

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.neural network import MLPClassifier

import optuna

X, v = load_iris(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split (X, vy)

def objective(trial):
momentum = trial.suggest_uniform("momentum", 0.0, 1.0)
clf = MLPClassifier(
hidden_layer_sizes= (100, 50),
momentum=momentum,
solver="sgd",
random_state=0,

(continues on next page)

226

Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

clf.fit(X_train, y_train)

return clf.score(X_valid, y_valid)

study = optuna.create_study(direction="maximize")
study.optimize (objective, n_trials=3)

Parameters
* name (str)— A parameter name.

* low (float)— Lower endpoint of the range of suggested values. 1ow is included in the
range.

* high (float) — Upper endpoint of the range of suggested values. high is excluded
from the range.

Returns A suggested float value.
Return type float
property system_attrs
Return system attributes.
Returns A dictionary containing all system attributes.

property user_attrs
Return user attributes.

Returns A dictionary containing all user attributes.

optuna.trial.FixedTrial

class optuna.trial.FixedTrial (params, number=0)

A trial class which suggests a fixed value for each parameter.

This object has the same methods as Tria, and it suggests pre-defined parameter values. The parameter values
can be determined at the construction of the FixedTrial object. In contrastto Trial, FixedTrial does
not depend on St udy, and it is useful for deploying optimization results.

Example

Evaluate an objective function with parameter values given by a user.

import optuna

def objective(trial):
x = trial.suggest_uniform("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 11])
return x *x 2 + y

assert objective (optuna.trial.FixedTrial ({"x": 1, "y": 0})) == 1

6.3. API Reference 227

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Optuna Documentation, Release 2.8.0.dev0

Note: Please refer to Trial for details of methods and properties.

Parameters

Methods

* params — A dictionary containing all parameters.

e number — A trial number. Defaults to 0.

report(value, step)

set_system_attr(key, value)

set_user_attr(key, value)

should_prune()

suggest_categorical(name, choices)

suggest_discrete_uniform(name, low,

high, q)

suggest_float(name, low, high, *[, step, log])

suggest_int(name, low, highl, step, log])

suggest_loguniform(name, low, high)

suggest_uniform(name, low, high)

Attributes

datetime_start

distributions

number

params

system_attrs

user_attrs

228

Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

optuna.trial.FrozenTrial

class optuna.trial.FrozenTrial (number, state, value, datetime_start, datetime_complete,
params, distributions, user_attrs, system_attrs, intermedi-

ate_values, trial_id, *, values=None)
Status and resultsof a Trial.

This object has the same methods as Trial, and it suggests best parameter values among performed trials. In
contrast to Trial, FrozenTrial does not depend on Study, and it is useful for deploying optimization
results.

Example

Re-evaluate an objective function with parameter values optimized study.

import optuna

def objective(trial):
x = trial.suggest_uniform("x", -1, 1)
return x ** 2

study = optuna.create_study ()
study.optimize (objective, n_trials=3)

assert objective (study.best_trial) == study.best_value

Note: Attributes are set in optuna.Study.optimize (), but several attributes can be updated after the
optimization. That means such attributes are overwritten by the re-evaluation if your objective updates attributes
of Trial.

Example:

Overwritten attributes.

import copy
import datetime

import optuna
def objective(trial):
x = trial.suggest_uniform("x", -1, 1)

this user attribute always differs
trial.set_user_attr ("evaluation time", datetime.datetime.now())

return x xx 2
study = optuna.create_study ()
study.optimize (objective, n_trials=3)

best_trial = study.best_trial
best_trial_copy = copy.deepcopy (best_trial)

(continues on next page)

6.3. API Reference 229

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

re—evaluate
objective (best_trial)

the user attribute is overwritten by re-evaluation
assert best_trial.user_attrs != best_trial_copy.user_attrs

Note: Please refer to Trial for details of methods and properties.

number
Unique and consecutive number of Trial for each Study. Note that this field uses zero-based number-
ing.

state
TrialStateofthe Trial.

value
Objective value of the Trial.

values
Sequence of objective values of the Trial. The length is greater than 1 if the problem is multi-objective
optimization.

datetime_start
Datetime where the Trial started.

datetime_complete
Datetime where the Trial finished.

params
Dictionary that contains suggested parameters.

user_attrs
Dictionary that contains the attributes of the Trial set with optuna.trial.Trial.
set_user_attr().

intermediate_values
Intermediate objective values set with optuna.trial.Trial.report ().

Raises ValueError —If both value and values are specified.

Methods

report(value, step) Interface of report function.
set_system_attr(key, value)

set_user_attr(key, value)

should_prune() Suggest whether the trial should be pruned or not.
suggest_categorical(name, choices)

continues on next page

230 Chapter 6. Reference

https://docs.python.org/3/library/exceptions.html#ValueError

Optuna Documentation, Release 2.8.0.dev0

Table 97 — continued from previous page
suggest_discrete_uniform(name, low,
high, q)
suggest_float(name, low, high, *[, step, log])

suggest_int(name, low, highl[, step, log])

suggest_loguniform(name, low, high)

suggest_uniform(name, low, high)

Attributes

datetime_start

distributions Dictionary that contains the distributions of
params.

duration Return the elapsed time taken to complete the trial.

last_step Return the maximum step of intermediate_values in
the trial.

number

params

system_attrs

user_attrs

value

values

property distributions
Dictionary that contains the distributions of params.

property duration
Return the elapsed time taken to complete the trial.

Returns The duration.

property last_step
Return the maximum step of intermediate_values in the trial.

Returns The maximum step of intermediates.

report (value, step)
Interface of report function.

Since FrozenTrial is not pruned, this report function does nothing.
See also:

Please refer to should prune ().

6.3. API Reference 231

Optuna Documentation, Release 2.8.0.dev0

Parameters
* value (float)— A value returned from the objective function.

* step (int)— Step of the trial (e.g., Epoch of neural network training). Note that pruners
assume that step starts at zero. For example, MedianPruner simply checks if step
is less than n_warmup_steps as the warmup mechanism.

Return type None
should_prune ()
Suggest whether the trial should be pruned or not.

The suggestion is always False regardless of a pruning algorithm.

Note: FrozenTrial only samples one combination of parameters.

Returns False.

Return type bool

optuna.trial.TrialState

class optuna.trial.TrialState (value)
Stateof a Trial.

RUNNING
The Trial is running.

COMPLETE
The Trial has been finished without any error.

PRUNED
The Trial has been pruned with TrialPruned.

FAIL
The Trial has failed due to an uncaught error.

Attributes

COMPLETE

FATL

PRUNED

RUNNING

WAITING

232 Chapter 6. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 2.8.0.dev0

optuna.trial.create _trial

optuna.trial.create_trial (%, state=TrialState. COMPLETE, value=None, values=None,
params=None, distributions=None, user_attrs=None, Sys-

tem_attrs=None, intermediate_values=None)
Create anew FrozenTrial.

Example

import optuna
from optuna.distributions import CategoricalDistribution
from optuna.distributions import UniformDistribution

trial = optuna.trial.create_trial(
params={"x": 1.0, "y": 0},
distributions={
"x": UniformDistribution (0, 10),
"y": CategoricalDistribution([-1, O, 11),
}I

value=5.0,

assert isinstance(trial, optuna.trial.FrozenTrial)
assert trial.value == 5.0
assert trial.params == {"x": 1.0, "y": 0}

See also:

See add_trial () for how this function can be used to create a study from existing trials.

Note: Please note that this is a low-level API. In general, trials that are passed to objective functions are created
inside optimize ().

Note: When state is TrialState.COMPLETE, the following parameters are required: * params *
distributions * value orvalues

Parameters
e state (optuna.trial._state.TrialState) - Trial state.

* value (Optional[float]) — Trial objective value. Must be specified if state is
None or TrialState.COMPLETE.

* values (Optional [Sequence[float]]) — Sequence of the trial objective values.
The length is greater than 1 if the problem is multi-objective optimization. Must be specified
if stateisNoneor TrialState.COMPLETE.

* params (Optional [Dict[str, Any]])— Dictionary with suggested parameters of
the trial.

* distributions (Optional[Dict[str, optuna.distributions.
BaseDistribution]]) - Dictionary with parameter distributions of the trial.

* user_attrs (Optional [Dict[str, Any]])- Dictionary with user attributes.

6.3. API Reference 233

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

* system_attrs (Optional[Dict[str, Any]]) — Dictionary with system at-
tributes. Should not have to be used for most users.

* intermediate_values (Optional [Dict[int, float]])- Dictionary with in-

termediate objective values of the trial.

Returns Created trial.

Raises ValueError —If both value and values are specified.

Return type optuna.trial._frozen.FrozenTrial

Note: Added in v2.0.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.0.0.

6.3.15 optuna.visualization

The visualization module provides utility functions for plotting the optimization process using plotly and mat-
plotlib. Plotting functions generally take a St udy object and optional parameters are passed as a list to the params

argument.

Note: Inthe optuna.visualization module, the following functions use plotly to create figures, but Jupyter-
Lab cannot render them by default. Please follow this installation guide to show figures in JupyterLab.

optuna.visualization.plot_contour

Plot the parameter relationship as contour plot in a
study.

optuna.visualization.plot_edf

Plot the objective value EDF (empirical distribution
function) of a study.

optuna.visualization.
plot_intermediate values

Plot intermediate values of all trials in a study.

optuna.visualization.
plot_optimization history

Plot optimization history of all trials in a study.

optuna.visualization.
plot_parallel_coordinate

Plot the high-dimensional parameter relationships in a
study.

optuna.visualization.
plot_param importances

Plot hyperparameter importances.

optuna.visualization.
plot_pareto_front

Plot the Pareto front of a study.

optuna.visualization.plot_slice

Plot the parameter relationship as slice plot in a study.

optuna.visualization.is_available

Returns whether visualization with plotly is available or
not.

234

Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/optuna/optuna/releases/tag/v2.0.0
https://github.com/jupyterlab/jupyterlab
https://github.com/jupyterlab/jupyterlab
https://github.com/plotly/plotly.py#jupyterlab-support-python-35
https://github.com/jupyterlab/jupyterlab

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.plot_contour

optuna.visualization.plot_contour (study, params=None, * target=None, tar-

get_name='0Objective Value')
Plot the parameter relationship as contour plot in a study.

Note that, If a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the parameter relationship as contour plot.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x *x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=30)

fig = optuna.visualization.plot_contour (study, params=["x", "y"])
fig.show ()

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* params (Optional [List [str]])— Parameter list to visualize. The default is all pa-
rameters.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (str)— Target’s name to display on the color bar.
Returns A plotly.graph_objs.Figure object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type plotly.graph_objs._figure.Figure

6.3. API Reference 235

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.plot_edf

optuna.visualization.plot_edf (study, *, target=None, target_name='0Objective Value')
Plot the objective value EDF (empirical distribution function) of a study.

Note that only the complete trials are considered when plotting the EDF.

Note: EDF is useful to analyze and improve search spaces. For instance, you can see a practical use case of
EDF in the paper Designing Network Design Spaces.

Note: The plotted EDF assumes that the value of the objective function is in accordance with the uniform
distribution over the objective space.

Example

The following code snippet shows how to plot EDF.

import math

import optuna

def ackley(x, y):
a = 20 » math.exp(-0.2 * math.sqgqrt (0.5 x (x *%x 2 + y xx 2)))
b = math.exp (0.5 » (math.cos (2 * math.pi » x) + math.cos(2 % math.pi * y)))
return -a - b + math.e + 20

def objective(trial, low, high):
x = trial.suggest_float ("x", low, high)
y = trial.suggest_float ("y", low, high)
return ackley(x, vy)

sampler = optuna.samplers.RandomSampler (seed=10)

Widest search space.
study0 = optuna.create_study (study_name="x=[0,5), y=[0,5)", sampler=sampler)
studyO.optimize (lambda t: objective(t, 0, 5), n_trials=500)

Narrower search space.
studyl = optuna.create_study (study_name="x=[0,4), y=[0,4)", sampler=sampler)
studyl.optimize (lambda t: objective(t, 0, 4), n_trials=500)

Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study (study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize (lambda t: objective(t, 1, 3), n_trials=500)

fig = optuna.visualization.plot_edf ([study0O, studyl, study2])
fig.show ()

Parameters

236 Chapter 6. Reference

https://arxiv.org/abs/2003.13678

Optuna Documentation, Release 2.8.0.dev0

* study (Union[optuna.study.Study, Sequence[optuna.study.
Study]J]) — A target Study object. You can pass multiple studies if you want to
compare those EDFs.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (st r)— Target’s name to display on the axis label.
Returns A plotly.graph_objs.Figure object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type plotly.graph_objs._figure.Figure
optuna.visualization.plot_intermediate_values

optuna.visualization.plot_intermediate_values (study)
Plot intermediate values of all trials in a study.

Example

The following code snippet shows how to plot intermediate values.

import optuna

def f(x):

return (x — 2) *xx 2
def df (x):

return 2 « x - 4

def objective(trial):
lr = trial.suggest_float ("1r", le-5, le-1, log=True)

x = 3
for step in range (128):
y = £(x)

trial.report (y, step=step)
if trial.should_prune():
raise optuna.TrialPruned()

gy = df(x)
X —= gy * 1lr
return y

(continues on next page)

6.3. API Reference 237

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=16)

fig = optuna.visualization.plot_intermediate_values (study)
fig.show ()

Parameters study (optuna.study.Study) — A Study object whose trials are plotted for
their intermediate values.

Returns A plotly.graph_objs.Figure object.

Return type plotly.graph_objs._figure.Figure

optuna.visualization.plot_optimization_history

optuna.visualization.plot_optimization_history (study, * target=None, tar-

get_name='Objective Value')
Plot optimization history of all trials in a study.

Example

The following code snippet shows how to plot optimization history.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x *x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

fig = optuna.visualization.plot_optimization_history (study)
fig.show ()

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (st r)— Target’s name to display on the axis label and the legend.

238

Chapter 6. Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Optuna Documentation, Release 2.8.0.dev0

Returns A plotly.graph_objs.Figure object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type plotly.graph_objs._figure.Figure
optuna.visualization.plot_parallel_coordinate

optuna.visualization.plot_parallel_coordinate (study, params=None, *, target=None, tar-

get_name="0Objective Value')
Plot the high-dimensional parameter relationships in a study.

Note that, If a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the high-dimensional parameter relationships.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x *x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

fig = optuna.visualization.plot_parallel_coordinate (study, params=["x", "y"])
fig.show ()

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* params (Optional [List [str]])— Parameter list to visualize. The default is all pa-
rameters.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (st r)— Target’s name to display on the axis label and the legend.
Returns A plotly.graph_objs.Figure object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type plotly.graph_objs._figure.Figure

6.3. API Reference 239

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.plot_param_importances

optuna.visualization.plot_param_importances (study,

evaluator=None, params=None,
* target=None, target_name='Objective

Value')
Plot hyperparameter importances.

Example

The following code snippet shows how to plot hyperparameter importances.

import optuna

def objective(trial):

x = trial.suggest_int ("x", 0, 2)

y = trial.suggest_float("y", -1.0, 1.0)

z = trial.suggest_float ("z", 0.0, 1.5)
-z

* 4

o~

return x *x 2 + y x*x 3

sampler = optuna.samplers.RandomSampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=100)

fig = optuna.visualization.plot_param_importances (study)
fig.show ()

See also:

This function visualizes the results of optuna. importance.get_param importances ().

Parameters
* study (optuna.study.Study)— An optimized study.

* evaluator (Optional [optuna.importance._base.
BaseImportanceEvaluator]) — An importance evaluator object that spec-
ifies which algorithm to base the importance assessment on. Defaults to
FanovalmportanceEvaluator.

* params (Optional [List [str]])— Alist of names of parameters to assess. If None,
all parameters that are present in all of the completed trials are assessed.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (str)— Target’s name to display on the axis label.
Returns A plotly.graph_objs.Figure object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type plotly.graph_objs._figure.Figure

240

Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.plot_pareto_front

optuna.visualization.plot_pareto_£front (study, * target_names=None, in-
clude_dominated_trials=True, axis_order=None)
Plot the Pareto front of a study.

Example

The following code snippet shows how to plot the Pareto front of a study.

import optuna

def objective(trial):
x = trial.suggest_float ("x", 0, 5)
y = trial.suggest_float("y", 0, 3)

vl = 4 &« X xx 2 + 4 %y x*x 2
vl = (x — 5) *%x 2 + (y — 5) *x 2
return v0, vl

study = optuna.create_study(directions=["minimize", "minimize"])
study.optimize (objective, n_trials=50)

fig = optuna.visualization.plot_pareto_front (study)
fig.show ()

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
objective values.

* target_names (Optional [List [str]])— Objective name list used as the axis ti-
tles. If None is specified, “Objective {objective_index}” is used instead.

* include_dominated_trials (bool)— A flag to include all dominated trial’s objec-
tive values.

* axis_order (Optional[List [int]])— Alistof indices indicating the axis order. If
None is specified, default order is used.

Returns A plotly.graph_objs.Figure object.
Raises ValueError — If the number of objectives of study isn’t 2 or 3.

Return type plotly.graph_objs._figure.Figure

Note: Added in v2.4.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.4.0.

6.3. API Reference 241

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/optuna/optuna/releases/tag/v2.4.0

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.plot_slice

optuna.visualization.plot_slice (study, params=None, *, target=None, target_name='0Objective

Value')
Plot the parameter relationship as slice plot in a study.

Note that, If a parameter contains missing values, a trial with missing values is not plotted.

Example

The following code snippet shows how to plot the parameter relationship as slice plot.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical ("y", [-1, 0, 11)
return x *x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

fig = optuna.visualization.plot_slice(study, params=["x", "y"])
fig.show ()

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* params (Optional [List [str]])— Parameter list to visualize. The default is all pa-
rameters.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (str)— Target’s name to display on the axis label.
Returns A plotly.graph_objs.Figure object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type plotly.graph_objs._figure.Figure

242 Chapter 6. Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.is_available

optuna.visualization.is_available ()

Returns whether visualization with plotly is available or not.

Note: visualization module depends on plotly version 4.0.0 or higher. If a supported version of plotly
isn’t installed in your environment, this function will return False. In such case, please execute $ pip

install -U plotly>=4.0.0 toinstall plotly.

Returns True if visualization with plotly is available, False otherwise.

Return type bool

Note: The following optuna.visualization.matplotlib module uses Matplotlib as a backend.

optuna.visualization.matplotlib

Note: The following functions use Matplotlib as a backend.

optuna.visualization.matplotlib.

plot__contour

Plot the parameter relationship as contour plot in a study
with Matplotlib.

optuna.visualization.matplotlib.

plot_edf

Plot the objective value EDF (empirical distribution
function) of a study with Matplotlib.

optuna.visualization.matplotlib.

plot_intermediate values

Plot intermediate values of all trials in a study with Mat-
plotlib.

optuna.visualization.matplotlib.

plot_optimization history

Plot optimization history of all trials in a study with
Matplotlib.

optuna.visualization.matplotlib.

plot_parallel_coordinate

Plot the high-dimensional parameter relationships in a
study with Matplotlib.

optuna.visualization.matplotlib.

plot_param importances

Plot hyperparameter importances with Matplotlib.

optuna.visualization.matplotlib.

plot_slice

Plot the parameter relationship as slice plot in a study
with Matplotlib.

optuna.visualization.matplotlib.

is_available

Returns whether visualization with Matplotlib is avail-
able or not.

optuna.visualization.matplotlib.plot_contour

optuna.visualization.matplotlib.plot_contour (study, params=None, *, target=None, tar-

get_name='0Objective Value')

Plot the parameter relationship as contour plot in a study with Matplotlib.

Note that, if a parameter contains missing values, a trial with missing values is not plotted.

See also:

Please refer to optuna.visualization.plot_contour () for an example.

6.3. API Reference

243

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool

Optuna Documentation, Release 2.8.0.dev0

Warning: Output figures of this Matplotlib-based plot_contour () function would be different from
those of the Plotly-based plot_contour ().

Example

The following code snippet shows how to plot the parameter relationship as contour plot.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 1])
return x *x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=30)

optuna.visualization.matplotlib.plot_contour (study, params=["x", "y"])

Contour Plot

1 -
- 9500
- 8000
@
- 6400 %
=
-~ 0- S
4800 J‘..j
€
£
o
3200
1600
-1 = 1 1] 1]] T D
—75 =50 —25 0 25 50 753
X
Parameters

244

Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* params (Optional [List [str]])— Parameter list to visualize. The default is all pa-
rameters.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (str)— Target’s name to display on the color bar.
Returns A matplotlib.axes.Axes object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type matplotlib.axes._axes.Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_edf

optuna.visualization.matplotlib.plot_edf (study, *, target=None, target_name='Objective

Value')
Plot the objective value EDF (empirical distribution function) of a study with Matplotlib.

See also:

Please refer to optuna.visualization.plot_edf () for an example, where this function can be re-
placed with it.

Example

The following code snippet shows how to plot EDF.

import math

import optuna

def ackley(x, Vy):
a = 20 » math.exp(-0.2 * math.sqgqrt (0.5 » (x *%x 2 + y %% 2)))
b = math.exp (0.5 * (math.cos (2 % math.pi % x) + math.cos(2 %« math.pi * y)))
return -a - b + math.e + 20

def objective(trial, low, high):
x = trial.suggest_float ("x", low, high)
y = trial.suggest_float ("y", low, high)
return ackley(x, y)

(continues on next page)

6.3. API Reference 245

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

sampler = optuna.samplers.RandomSampler (seed=10)

Widest search space.
studyO0 = optuna.create_study (study_name="x=[0,5), y=[0,5)", sampler=sampler)
studyO.optimize (lambda t: objective(t, 0, 5), n_trials=500)

Narrower search space.
studyl = optuna.create_study (study_name="x=[0,4), y=[0,4)", sampler=sampler)
studyl.optimize (lambda t: objective(t, 0, 4), n_trials=500)

Narrowest search space but it doesn't include the global optimum point.
study2 = optuna.create_study (study_name="x=[1,3), y=[1,3)", sampler=sampler)
study2.optimize (lambda t: objective(t, 1, 3), n_trials=500)

optuna.visualization.matplotlib.plot_edf ([study0O, studyl, study2])

Empirical Distribution Function Plot

1.0 -

0.8 -
-
=
=
E 0.6
o
[
Q
-
=
m 04 -
=
=
=3
o

0.2 -

D.D - I])] 1 1 I 1 [

0 2 4 & 2 10 12 14
Objective Value
Parameters
* study (Union[optuna.study.Study, Sequence[optuna.study.
Study]J) — A target Study object. You can pass multiple studies if you want to
compare those EDFs.

246 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (str) — Target’s name to display on the axis label.
Returns A matplotlib.axes.Axes object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type matplotlib.axes._axes.Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_intermediate_values

optuna.visualization.matplotlib.plot_intermediate_values (study)
Plot intermediate values of all trials in a study with Matplotlib.

Example

The following code snippet shows how to plot intermediate values.

import optuna

def f (x):

return (x - 2) %% 2
def df (x):

return 2 * x - 4

def objective(trial):
lr = trial.suggest_float ("1r", le-5, le-1, log=True)

x = 3
for step in range (128):
y = £(x)

trial.report(y, step=step)
if trial.should_prune():
raise optuna.TrialPruned()

gy = df(x)
X —= gy * 1lr

(continues on next page)

6.3. API Reference 247

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

return y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=16)

optuna.visualization.matplotlib.plot_intermediate_values (study)

Intermediate Values Plot

\N

]
E \
i
-~ 06- |
] |
= |
o
=
La}]
= 04-
D
+
£

0.2 -

0.0 - -

0 20 40 a0 a0 100 120
Step

See also:

Please refer to optuna.visualization.plot_intermediate_values () for an example.
Parameters study (optuna.study.Study) — A Study object whose trials are plotted for
their intermediate values.
Returns A matplotlib.axes.Axes object.

Return type matplotlib.axes._axes.Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

248

Chapter 6. Reference

https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.matplotlib.plot_optimization_history

optuna.visualization.matplotlib.plot_optimization_history (study, * tar-
get=None, tar-
get_name='Objective
Value')

Plot optimization history of all trials in a study with Matplotlib.
See also:
Please refer to optuna.visualization.plot _optimization_history () for an example.

Example

The following code snippet shows how to plot optimization history.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 11)
return x *x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

optuna.visualization.matplotlib.plot_optimization_history (study)

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (str)— Target’s name to display on the axis label and the legend.
Returns A matplotlib.axes.Axes object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type matplotlib.axes._axes.Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

6.3. API Reference 249

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 2.8.0.dev0

Optimization History Plot

10000 - ™ #— Best Value
e Objective Value
8000 -
o L]
S
o 6000 - L
e
&
=
el
»
@ 4000 -
o
o ™
2000 - L
o - '™ o & = L] s @ ®
0 2 4 i 8
#Trials

250 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.matplotlib.plot_parallel_coordinate

optuna.visualization.matplotlib.plot_parallel_coordinate (study, params=None,
* target=None, tar-
get_name='Objective

Value')
Plot the high-dimensional parameter relationships in a study with Matplotlib.

See also:
Please refer to optuna.visualization.plot_parallel coordinate () for an example.

Example

The following code snippet shows how to plot the high-dimensional parameter relationships.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical("y", [-1, 0, 11)
return x **x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

optuna.visualization.matplotlib.plot_parallel_coordinate (study, params=["x", "y"])

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* params (Optional [List [str]])— Parameter list to visualize. The default is all pa-
rameters.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (st r)— Target’s name to display on the axis label and the legend.
Returns Amatplotlib.axes.Axes object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

Return type matplotlib.axes._axes.Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

6.3. API Reference 251

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 2.8.0.dev0

Parallel Coordinate Plot

- _1 —
- 75
8000 - - 8000
48]
6000 - - 6000 3
m
=
0 2
)
L]
4000 - 4000 &
o
2000 - 2000
-1 0
Qg + ¥
Y80y
é"'@ I

252 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

optuna.visualization.matplotlib.plot_param_importances

optuna.visualization.matplotlib.plot_param_ importances (study, evaluator=None,
params=None, *
target=None, tar-
get_name='Objective
Value')

Plot hyperparameter importances with Matplotlib.
See also:
Please refer to optuna.visualization.plot_param_importances () for an example.

Example

The following code snippet shows how to plot hyperparameter importances.

import optuna

def objective(trial):
x = trial.suggest_int ("x", 0, 2)
y = trial.suggest_float("y", -1.0, 1.0)
z = trial.suggest_float ("z", 0.0, 1.5)
return x xx 2 + y xx 3 - z xx 4

sampler = optuna.samplers.RandomSampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=100)

optuna.visualization.matplotlib.plot_param_importances (study)

Parameters

* study (optuna.study.Study)— An optimized study.

* evaluator (Optional [optuna.importance._base.
BaseImportanceEvaluator]) — An importance evaluator object that spec-
ifies which algorithm to base the importance assessment on. Defaults to

FanovalmportanceEvaluator.

* params (Optional [List [str]])— Alist of names of parameters to assess. If None,
all parameters that are present in all of the completed trials are assessed.

* target (Optional[Callable[[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (st r)— Target’s name to display on the axis label.
Returns A matplotlib.axes.Axes object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

6.3. API Reference 253

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Hyperparameter Importances

Distributions
Uniform Distribution

Log Uniform Distribution
Discrete Uniform Distribution
Int Uniform Distribution

Int Log Uniform Distribution
Categorical Distribution

Hyperparameter

0.0 0.1 0.2 0.3 0.4 0.5
Importance for Objective Value

254 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

Return type matplotlib.axes._axes.Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.plot_slice

optuna.visualization.matplotlib.plot_slice (study, params=None, *, target=None, tar-

get_name='Objective Value')
Plot the parameter relationship as slice plot in a study with Matplotlib.

See also:
Please refer to optuna.visualization.plot_slice () for an example.

Example

The following code snippet shows how to plot the parameter relationship as slice plot.

import optuna

def objective(trial):
x = trial.suggest_float ("x", -100, 100)
y = trial.suggest_categorical ("y", [-1, 0, 11])
return x *x 2 + y

sampler = optuna.samplers.TPESampler (seed=10)
study = optuna.create_study (sampler=sampler)
study.optimize (objective, n_trials=10)

optuna.visualization.matplotlib.plot_slice(study, params=["x", "y"])

Parameters

* study (optuna.study.Study) — A Study object whose trials are plotted for their
target values.

* params (Optional [List [str]])— Parameter list to visualize. The default is all pa-
rameters.

* target (Optional[Callable([[optuna.trial._frozen.FrozenTrial],
float]])— A function to specify the value to display. If it is None and study is be-
ing used for single-objective optimization, the objective values are plotted.

Note: Specify this argument if study is being used for multi-objective optimization.

* target_name (str)— Target’s name to display on the axis label.
Returns A matplotlib.axes.Axes object.

Raises ValueError —If target is None and study is being used for multi-objective optimiza-
tion.

6.3. API Reference 255

https://github.com/optuna/optuna/releases/tag/v2.2.0
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None

Optuna Documentation, Release 2.8.0.dev0

Slice Plot
-0
10000 - 5 - @
- 8
000 - - -7
a] - b
>
o 6000 - = - L]
- -5
W
2 £
+ O Q -
@ 4000 - - 4 H
o
o -3
2000 - @ - ® -3
L] . 1
0- o -. .
L] I L] I L] I I - D
=100 -50 0 50 1 0 -1
X y
256 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

Return type matplotlib.axes._axes.Axes

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

optuna.visualization.matplotlib.is_available

optuna.visualization.matplotlib.is_available ()
Returns whether visualization with Matplotlib is available or not.

Note: matplotlib module depends on Matplotlib version 3.0.0 or higher. If a supported version of Mat-
plotlib isn’t installed in your environment, this function will return False. In such a case, please execute $
pip install -U matplotlib>=3.0.0 to install Matplotlib.

Returns True if visualization with Matplotlib is available, False otherwise.

Return type bool

Note: Added in v2.2.0 as an experimental feature. The interface may change in newer versions without prior
notice. See https://github.com/optuna/optuna/releases/tag/v2.2.0.

6.4 FAQ

e Can I use Optuna with X? (where X is your favorite ML library)

* How to define objective functions that have own arguments?

* Can I use Optuna without remote RDB servers?

* How can I save and resume studies?

* How to suppress log messages of Optuna?

* How to save machine learning models trained in objective functions?
* How can I obtain reproducible optimization results?

e How are exceptions from trials handled?

* How are NaNs returned by trials handled?

» What happens when I dynamically alter a search space?

* How can I use two GPUs for evaluating two trials simultaneously?

* How can I test my objective functions?

* How do I avoid running out of memory (OOM) when optimizing studies?

6.4. FAQ 257

https://github.com/optuna/optuna/releases/tag/v2.2.0
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://github.com/optuna/optuna/releases/tag/v2.2.0

Optuna Documentation, Release 2.8.0.dev0

6.4.1 Can | use Optuna with X? (where X is your favorite ML library)

Optuna is compatible with most ML libraries, and it’s easy to use Optuna with those. Please refer to examples.

6.4.2 How to define objective functions that have own arguments?

There are two ways to realize it.

First, callable classes can be used for that purpose as follows:

import optuna

class Objective (object):
def _ init_ (self, min_x, max_x):
Hold this implementation specific arguments as the fields of the class.
self.min_x = min_x
self.max_xX = max_x

def _ call_ (self, trial):
Calculate an objective value by using the extra arguments.
x = trial.suggest_float ("x", self.min_x, self.max_x)
return (x — 2) ** 2

Execute an optimization by using an ‘Objective instance.
study = optuna.create_study ()
study.optimize (Objective (=100, 100), n_trials=100)

Second, you can use lambda or functools.partial for creating functions (closures) that hold extra arguments.
Below is an example that uses 1ambda:

import optuna

Objective function that takes three arguments.
def objective(trial, min_x, max_x):
x = trial.suggest_float ("x", min_x, max_x)
return (x — 2) x% 2

Extra arguments.
min_x = —-100
max_x = 100

Execute an optimization by using the above objective function wrapped by "~ lambda’.
study = optuna.create_study ()
study.optimize (lambda trial: objective(trial, min_x, max_x), n_trials=100)

Please also refer to sklearn_addtitional_args.py example, which reuses the dataset instead of loading it in each trial
execution.

258 Chapter 6. Reference

https://github.com/optuna/optuna/tree/master/examples
https://github.com/optuna/optuna/blob/master/examples/sklearn/sklearn_additional_args.py

Optuna Documentation, Release 2.8.0.dev0

6.4.3 Can | use Optuna without remote RDB servers?

Yes, it’s possible.

In the simplest form, Optuna works with in-memory storage:

study = optuna.create_study ()
study.optimize (objective)

If you want to save and resume studies, it’s handy to use SQLite as the local storage:

study = optuna.create_study (study_name="foo_study", storage="sglite:///example.db")
study.optimize (objective) # The state of ‘study’ will be persisted to the local,
—SQLite file.

Please see Saving/Resuming Study with RDB Backend for more details.

6.4.4 How can | save and resume studies?

There are two ways of persisting studies, which depends if you are using in-memory storage (default) or remote
databases (RDB). In-memory studies can be saved and loaded like usual Python objects using pickle or joblib.
For example, using joblib:

study = optuna.create_study ()
joblib.dump (study, "study.pkl")

And to resume the study:

study = joblib.load("study.pkl")

print ("Best trial until now:")

print (" Value: ", study.best_trial.value)

print (" Params: ")

for key, value in study.best_trial.params.items():
print (£" key/: [value ")

If you are using RDBs, see Saving/Resuming Study with RDB Backend for more details.

6.4.5 How to suppress log messages of Optuna?

By default, Optuna shows log messages at the optuna.logging. INFO level. You can change logging levels by
using optuna.logging.set_verbosity ().

For instance, you can stop showing each trial result as follows:

optuna.logging.set_verbosity (optuna.logging.WARNING)

study = optuna.create_study ()

study.optimize (objective)

Logs like '[I 2020-07-21 13:41:45,627)] Trial 0 finished with value:...' are
—disabled.

Please refer to optuna. 1ogging for further details.

6.4. FAQ 259

Optuna Documentation, Release 2.8.0.dev0

6.4.6 How to save machine learning models trained in objective functions?

Optuna saves hyperparameter values with its corresponding objective value to storage, but it discards intermediate
objects such as machine learning models and neural network weights. To save models or weights, please use features
of the machine learning library you used.

We recommend saving optuna.trial.Trial.number with a model in order to identify its corresponding trial.
For example, you can save SVM models trained in the objective function as follows:

def objective(trial):
svc_c = trial.suggest_float ("svc_c", 1le-10, 1lel0, log=True)
clf = sklearn.svm.SVC (C=svc_c)
clf.fit(X_train, y_train)

Save a trained model to a file.

with open (" .pickle".format (trial.number), "wb") as fout:
pickle.dump (clf, fout)
return 1.0 - accuracy_score(y_valid, clf.predict(X_valid))

study = optuna.create_study ()
study.optimize (objective, n_trials=100)

Load the best model.

with open (" .pickle".format (study.best_trial.number), "rb") as fin:
best_clf = pickle.load(fin)

print (accuracy_score(y_valid, best_clf.predict (X_valid)))

6.4.7 How can | obtain reproducible optimization results?

To make the parameters suggested by Optuna reproducible, you can specify a fixed random seed via seed argument
of RandomSampler or TPESampler as follows:

sampler = TPESampler (seed=10) # Make the sampler behave in a deterministic way.
study = optuna.create_study (sampler=sampler)
study.optimize (objective)

However, there are two caveats.

First, when optimizing a study in distributed or parallel mode, there is inherent non-determinism. Thus it is very
difficult to reproduce the same results in such condition. We recommend executing optimization of a study sequentially
if you would like to reproduce the result.

Second, if your objective function behaves in a non-deterministic way (i.e., it does not return the same value even if
the same parameters were suggested), you cannot reproduce an optimization. To deal with this problem, please set an
option (e.g., random seed) to make the behavior deterministic if your optimization target (e.g., an ML library) provides
it.

260 Chapter 6. Reference

Optuna Documentation, Release 2.8.0.dev0

6.4.8 How are exceptions from trials handled?

Trials that raise exceptions without catching them will be treated as failures, i.e. with the FATL status.

By default, all exceptions except TrialPruned raised in objective functions are propagated to the caller of
optimize (). In other words, studies are aborted when such exceptions are raised. It might be desirable to con-
tinue a study with the remaining trials. To do so, you can specify in optimize () which exception types to catch
using the cat ch argument. Exceptions of these types are caught inside the study and will not propagate further.

You can find the failed trials in log messages.

[W 2018-12-07 16:38:36,889] Setting status of trial#0 as TrialState.FAIL because of \
the following error: ValueError ('A sample error in objective.')

You can also find the failed trials by checking the trial states as follows:

study.trials_dataframe ()

num- | state valug ... | paramssystem_attrs
ber
0 Trial- .10 Setting status of trial#0 as TrialState.FAIL because of the following
State.FAIL error: ValueError(‘A test error in objective.’)
1 Trial- 1269 ... | 1
State. COMPLETE
See also:

The catch argument in optimize ().

6.4.9 How are NaNs returned by trials handled?

Trials that return NaN (float ('nan')) are treated as failures, but they will not abort studies.

Trials which return NaN are shown as follows:

[W 2018-12-07 16:41:59,000] Setting status of trial#2 as TrialState.FAIL because the \
objective function returned nan.

6.4.10 What happens when | dynamically alter a search space?

Since parameters search spaces are specified in each call to the suggestion API, e.g. suggest_float () and
suggest_int (), it is possible to, in a single study, alter the range by sampling parameters from different search
spaces in different trials. The behavior when altered is defined by each sampler individually.

Note: Discussion about the TPE sampler. https://github.com/optuna/optuna/issues/822

6.4. FAQ 261

https://github.com/optuna/optuna/issues/822

Optuna Documentation, Release 2.8.0.dev0

6.4.11 How can | use two GPUs for evaluating two trials simultaneously?

If your optimization target supports GPU (CUDA) acceleration and you want to specify which GPU is used, the easiest
way is to set CUDA_VISIBLE_DEVICES environment variable:

On a terminal.

#

Specify to use the first GPU, and run an optimization.

$ export CUDA_VISIBLE_DEVICES=

$ optuna study optimize foo.py objective —--study-name foo --storage sglite:///example.
—db

On another terminal.

#

Specify to use the second GPU, and run another optimization.

$ export CUDA_VISIBLE_DEVICES=1

$ optuna study optimize bar.py objective —--study-name bar --storage sglite:///example.
—db

Please refer to CUDA C Programming Guide for further details.

6.4.12 How can | test my objective functions?

When you test objective functions, you may prefer fixed parameter values to sampled ones. In that case, you can use
FixedTrial, which suggests fixed parameter values based on a given dictionary of parameters. For instance, you
can input arbitrary values of = and y to the objective function x + y as follows:

def objective(trial):
x = trial.suggest_float ("x", -1.0, 1.0)
y = trial.suggest_int ("y", -5, 5)
return x + y

objective (FixedTrial ({"x": 1.0, "y": —-11})) # 0.0
objective (FixedTrial ({"x": -1.0, "y": —-4})) # -5.0

Using FixedTrial, you can write unit tests as follows:

A test function of pytest
def test_objective():

assert 1.0 == objective (FixedTrial ({"x": 1.0, "y": 0}))
assert -1.0 == objective (FixedTrial ({"x": 0.0, "y": -11}))
assert 0.0 == objective(FixedTrial ({"x": -1.0, "y": 1}))

6.4.13 How do | avoid running out of memory (OOM) when optimizing studies?

If the memory footprint increases as you run more trials, try to periodically run the garbage collector. Specify
gc_after_trial to True when calling optimize () orcall gc.collect () inside a callback.

def objective(trial):
x = trial.suggest_float ("x", -1.0, 1.0)
y = trial.suggest_int ("y", -5, 5)
return x + y

(continues on next page)

262 Chapter 6. Reference

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/gc.html#gc.collect

Optuna Documentation, Release 2.8.0.dev0

(continued from previous page)

study = optuna.create_study ()
study.optimize (objective, n_trials=10, gc_after_trial=True)

‘gc_after_trial=True 1s more or less identical to the following.
study.optimize (objective, n_trials=10, callbacks=[lambda study, trial: gc.collect()])

There is a performance trade-off for running the garbage collector, which could be non-negligible depending on
how fast your objective function otherwise is. Therefore, gc_after_trial is False by default. Note that the
above examples are similar to running the garbage collector inside the objective function, except for the fact that
gc.collect () is called even when errors, including TrialPruned are raised.

Note: ChainerMNStudy does currently not provide gc_after_trial nor callbacks for optimize (). When
using this class, you will have to call the garbage collector inside the objective function.

6.4. FAQ 263

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/gc.html#gc.collect

Optuna Documentation, Release 2.8.0.dev0

264 Chapter 6. Reference

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

265

Optuna Documentation, Release 2.8.0.dev0

266 Chapter 7. Indices and tables

o

optuna,
optuna.
.distributions, 61
optuna.
optuna.
optuna.
optuna.
optuna.
optuna.

optuna

optuna

optuna.
optuna.

optuna.
optuna.
optuna.
optuna.
optuna.
.trial, 217

optuna

optuna.
optuna.

53
cli, 57

exceptions, 69

importance, 71

integration, 75
logging, 113

multi_objective,
multi_objective.
.multi_objective.
multi_objective.
multi_objective.

137
pruners, 139
samplers, 150
storages, 179
structs, 199
study, 200

116
samplers, 116
study, 127
trial, 132
visualization,

visualization, 234
visualization.matplotlib, 243

PYTHON MODULE INDEX

267

Optuna Documentation, Release 2.8.0.dev0

268 Python Module Index

Symbols

-—allow-websocket-origin
<BOKEH_ALLOW_WEBSOCKET_ORIGINS>
optuna-dashboard command line
option, 59
——column COLUMN
optuna-studies command line option,
60
—-—debug
optuna command line option, 58
——direction <DIRECTION>
optuna-create-study command line
option, 58
——fit-width
optuna-studies command line option,
60
——format <FORMATTER>
optuna-studies command line option,
60
--key <KEY>
optuna-study—-set—-user—attr command
line option,6l
—-—log-file <LOG_FILE>
optuna command line option, 58
—-max-width <integer>
optuna-studies command line option,
60
—-—-n-jobs <N_JOBS>
optuna-study-optimize command line
option, 61
--n-trials <N_TRIALS>
optuna-study-optimize command line
option, 61
—-noindent
optuna-studies command line option,
60
—-—out <OUT>
optuna-dashboard command line
option, 59
——print-empty
optuna-studies command line option,

60

INDEX

—-—quiet
optuna command line option, 58
——quote <QUOTE_MODE>
optuna-studies command line option,
60
——skip-if-exists
optuna-create-study command line
option, 58
——sort—-ascending

optuna-studies command line option,
60
——sort-column SORT_COLUMN
optuna-studies command line option,
60
——sort—-descending
optuna-studies command line option,

60
—-—storage <STORAGE>
optuna command line option, 58
—-—-study <STUDY>
optuna-dashboard command line
option, 59
optuna-study-optimize command line
option, 61
optuna-study—-set—user—-attr command
line option,61
—-—-study—-name <STUDY_NAME>
optuna-create-study command line
option, 58
optuna-dashboard command line
option, 59
optuna-delete-study command line
option, 59
optuna-study-optimize command line
option, 61
optuna-study—-set—-user—-attr command
line option, 61
—-—timeout <TIMEOUT>
optuna-study-optimize command line
option, 61
—--value <VALUE>
optuna-study—-set—-user—-attr command

269

Optuna Documentation, Release 2.8.0.dev0

line option,61
—-—-verbose
optuna command line option, 58
—-—-version
optuna command line option, 58
COLUMN
optuna-studies
60
<FORMATTER>
optuna-studies
60
<KEY>
optuna-study-set-user—-attr command
line option,6l
<oUT>
optuna-dashboard command line
option, 59

command line option,

command line option,

optuna command line option, 58

optuna command line option, 58

<VALUE>

optuna-study-set-user—-attr command
line option, 6l

A

add_trial () (optuna.study.Study method), 202
add_trials () (optuna.study.Study method), 203
after_trial () (optuna.integration.BoTorchSampler

method), 79

after_trial () (optuna.integration.CmaEsSampler
method), 98

after_trial () (optuna.integration.PyCmaSampler
method), 96

after_trial () (optuna.integration.SkoptSampler
method), 109

after_trial () (op-

after_trial ()
method), 162

AllenNLPExecutor (class in optuna.integration), 75

AllenNLPPruningCallback (class in op-
tuna.integration), 77

ask () (optuna.study.Study method), 203

B

BaseMultiObjectiveSampler (class in
tuna.multi_objective.samplers), 117

BasePruner (class in optuna.pruners), 139

BaseSampler (class in optuna.samplers), 150

best_booster ()
tuna.integration.lightgbm.LightGBMTuner
property), 90

best_estimator_
tuna.integration.OptunaSearchCV
104

best_index_ () (op-
tuna.integration.OptunaSearchCV property),
105

(optuna.samplers. TPESampler

op-

(op-

(op-
attribute),

best_params () (op-
tuna.integration.lightgbm.LightGBMTuner
property), 90

best_params () (op-

tuna.integration.lightgbm.LightGBMTunerCV
property), 92

best_params () (optuna.study.Study property), 205

best_params_ () (op-
tuna.integration.OptunaSearchCV property),
105

best_score () (optuna.integration.lightgbm.LightGBMTuner
property), 90

best_score () (optuna.integration.lightgbm.LightGBMTunerCV
property), 92

best_score_ () (op-
tuna.integration.OptunaSearchCV property),

tuna.multi_objective.samplers. MOTPEMultiObjectiveSamplep6

method), 124
after_trial()
method), 153
after_trial ()
method), 167
after_trial ()
method), 156
after _trial () (optuna.samplers. MOTPESampler
method), 176
after_trial ()
method), 172
after_trial ()
tuna.samplers.PartialFixedSampler
169
after_trial () (optuna.samplers.RandomSampler
method), 158

(optuna.samplers.BaseSampler
(optuna.samplers.CmaEsSampler

(optuna.samplers.GridSampler

(optuna.samplers. NSGAIISampler

(op-
method),

best_trial (optuna.study.StudySummary attribute),
216

best_trial () (optuna.study.Study property), 205

best_trial () (op-
tuna.integration.OptunaSearchCV property),
106

best_trials () (optuna.study.Study property), 205

best_value () (optuna.study.Study property), 205

BoTorchSampler (class in optuna.integration), 78

C

calculate () (optuna.samplers.IntersectionSearchSpace
method), 179

CatalystPruningCallback
tuna.integration), 83

(class in op-

270

Index

Optuna Documentation, Release 2.8.0.dev0

CategoricalDistribution (class in
tuna.distributions), 67

ChainerMNStudy (class in optuna.integration), 84

op-

ChainerPruningExtension (class in op-
tuna.integration), 83
check_distribution_compatibility () (in
module optuna.distributions), 69
check_trial_is_updatable () (op-
tuna.storages.RDBStorage method), 182
check_trial_is_updatable () (op-

tuna.storages.RedisStorage method), 191

choices (optuna.distributions.CategoricalDistribution
attribute), 67

classes_ () (optuna.integration.OptunaSearchCV
property), 106

CLIUsageError, 71

CmaEsSampler (class in optuna.integration), 98

CmaEsSampler (class in optuna.samplers), 164

COMPLETE (optuna.structs.TrialState attribute), 199

COMPLETE (optuna.trial. TrialState attribute), 232

create_new_study () (optuna.storages.RDBStorage
method), 182

create_new_study ()
tuna.storages.RedisStorage method), 192

create_new_trial () (optuna.storages.RDBStorage
method), 182

(op-

create_new_trial () (op-
tuna.storages.RedisStorage method), 192

create_study () (in module optuna), 53

create_study () (in module op-

tuna.multi_objective.study), 130
create_study () (in module optuna.study), 212
create_trial () (in module optuna.trial), 233

D

datetime_complete (op-

tuna.multi_objective.trial. FrozenMultiObjectiveTriéirat ion ()

attribute), 137
datetime_complete (optuna.trial.FrozenTrial at-
tribute), 230

datetime_start (op-

tuna.multi_objective.trial. FrozenMultiObjectiveTrédable_default_handler ()

attribute), 136

datetime_start
attribute), 217

datetime_start (optuna.trial.FrozenTrial attribute),
230

datetime_start () (op-
tuna.multi_objective.trial. MultiObjectiveTrial
property), 134

datetime_start () (optuna.trial. Trial property), 218

decision_function () (op-
tuna.integration.OptunaSearchCV property),
106

(optuna.study.StudySummary

delete_study () (in module optuna), 55

delete_study () (in module optuna.study), 214

delete_study () (optuna.storages.RDBStorage
method), 182

delete_study () (optuna.storages.RedisStorage

method), 192
direction (optuna.study.StudySummary attribute),
216

direction () (optuna.study.Study property), 205
directions (optuna.study.StudySummary attribute),
216

directions () (optuna.multi_objective.study.MultiObjectiveStudy

property), 128
directions () (optuna.study.Study property), 205
disable_default_handler () (in module op-
tuna.logging), 115
disable_propagation ()
tuna.logging), 115
DiscreteUniformDistribution (class in op-
tuna.distributions), 64

(in module op-

distribution_to_Jjson() (in module op-
tuna.distributions), 68
distributions (op-

tuna.multi_objective.trial. FrozenMultiObjectiveTrial

attribute), 137
distributions () (op-
tuna.multi_objective.trial. MultiObjectiveTrial
property), 134
distributions () (optuna.structs.FrozenTrial prop-
erty), 199
distributions ()
erty), 231
distributions () (optuna.trial. Trial property), 218
dump_best_config() (in module op-
tuna.integration.allennlp), 76
DuplicatedStudyError, 71
(optuna.structs.FrozenTrial property),

(optuna.trial. FrozenTrial prop-

199
duration () (optuna.trial. FrozenTrial property), 231

E

(in module op-
tuna.logging), 115
enable_propagation () (in module op-
tuna.logging), 115
enqueue_trial () (op-

tuna.multi_objective.study.MultiObjectiveStudy
method), 128
enqueue_trial () (optuna.study.Study method), 205

evaluate () (optuna.importance.FanovalmportanceEvaluator

method), 73

evaluate () (optuna.importance.MeanDecreaselmpuritylmportanceEval

method), 74

Index

271

Optuna Documentation, Release 2.8.0.dev0

F

FATIL (optuna.structs.TrialState attribute), 199
FATIL (optuna.trial TrialState attribute), 232

fail_stale_trials{() (op-
tuna.storages.RDBStorage method), 183

fail stale_trials () (op-
tuna.storages.RedisStorage method), 192

FanovalmportanceEvaluator (class in op-
tuna.importance), 72

FastAIPruningCallback (in module op-
tuna.integration), 86

FastAIV1PruningCallback (class in op-
tuna.integration), 85

FastAIV2PruningCallback (class in op-
tuna.integration), 85

file

optuna-study-optimize command line

option, 61

fit () (optuna.integration.OptunaSearchCV method),
106

FixedTrial (class in optuna.trial), 227

FrozenMultiObjectiveTrial (class in op-

tuna.multi_objective.trial), 136
FrozenTrial (class in optuna.structs), 199
FrozenTrial (class in optuna.trial), 229

G

get_all_study_summaries () (in module optuna),
56

get_all_study_summaries ()
tuna.study), 215

(in module op-

get_all_study_summaries () (op-
tuna.storages.RDBStorage method), 183
get_all_study_summaries () (op-

tuna.storages.RedisStorage method), 192
get_all_trials () (optuna.storages.RDBStorage
method), 183
get_all_trials()
method), 192
get_all_versions () (optuna.storages.RDBStorage
method), 183
get_best_booster ()
tuna.integration.lightgbm.LightGBMTuner
method), 90
get_best_booster () (op-
tuna.integration.lightgbm.LightGBMTunerCV
method), 92
get_best_trial()
method), 183
get_best_trial ()
method), 193
get_current_version ()
tuna.storages.RDBStorage method), 184

(optuna.storages.RedisStorage

(op-

(optuna.storages.RDBStorage

(optuna.storages.RedisStorage

(op-

get_failed_trial_callback () (op-
tuna.storages.RDBStorage method), 184
get_failed_trial_callback() (op-

tuna.storages.RedisStorage method), 193
get_head_version () (optuna.storages.RDBStorage
method), 184

get_heartbeat_interval () (op-
tuna.storages.RDBStorage method), 184
get_heartbeat_interval () (op-

tuna.storages.RedisStorage method), 193
get_n_trials /() (optuna.storages.RDBStorage
method), 184
get_n_trials/()
method), 193
get_param_importances () (in
tuna.importance), 71
get_params () (optuna.integration.OptunaSearchCV
method), 106
get_pareto_front_trials() (op-
tuna.multi_objective.study.MultiObjectiveStudy
method), 128

(optuna.storages.RedisStorage

module op-

get_study_directions () (op-
tuna.storages.RDBStorage method), 184
get_study_directions () (op-
tuna.storages.RedisStorage method), 193
get_study_id_from_name () (op-
tuna.storages.RDBStorage method), 184
get_study_id_from_name () (op-
tuna.storages.RedisStorage method), 194
get_study_id_from_trial_id() (op-
tuna.storages.RDBStorage method), 184
get_study_1id_from_trial_id() (op-
tuna.storages.RedisStorage method), 194
get_study_name_from_id() (op-
tuna.storages.RDBStorage method), 185
get_study_name_from_id() (op-
tuna.storages.RedisStorage method), 194
get_study_system_attrs () (op-
tuna.storages.RDBStorage method), 185
get_study_system_attrs () (op-
tuna.storages.RedisStorage method), 194
get_study_user_attrs() (op-
tuna.storages.RDBStorage method), 185
get_study_user_attrs () (op-

tuna.storages.RedisStorage method), 194
get_trial () (optuna.storages.RDBStorage method),
185
get_trial () (optuna.storages.RedisStorage method),
194

get_trial_id_from_study_id_trial_number ()

(optuna.storages.RDBStorage method), 185

get_trial id from_ study_id_trial_number ()

(optuna.storages.RedisStorage method), 195
get_trial_number_from_id() (op-

272

Index

Optuna Documentation, Release 2.8.0.dev0

tuna.storages.RDBStorage method), 185
get_trial_number_from_id() (op-
tuna.storages.RedisStorage method), 195
get_trial_param() (optuna.storages.RDBStorage
method), 186
get_trial_param() (optuna.storages.RedisStorage
method), 195
get_trial_params () (optuna.storages.RDBStorage
method), 186

get_trial_params() (op-
tuna.storages.RedisStorage method), 195
get_trial_system_attrs () (op-
tuna.storages.RDBStorage method), 186
get_trial_system_attrs() (op-
tuna.storages.RedisStorage method), 195
get_trial_user_attrs() (op-
tuna.storages.RDBStorage method), 186
get_trial_user_attrs() (op-

tuna.storages.RedisStorage method), 196

infer_relative_search_space () (op-
tuna.integration.PyCmaSampler method),
96

infer_ relative_search_space () (op-
tuna.integration.SkoptSampler method),
109

infer_relative_search_space () (op-

tuna.multi_objective.samplers.BaseMultiObjectiveSampler
method), 117

infer_relative_search_space() (op-
tuna.multi_objective.samplers. MOTPEMultiObjectiveSampler
method), 125

infer_relative_search_space () (op-

tuna.multi_objective.samplers. NSGAIIMultiObjectiveSampler
method), 119

get_trials () (optuna.multi_objective.study.MultiObjectiveStudy tuna.samplers.BaseSampler method), 153

method), 128
get_trials () (optuna.study.Study method), 206
get_verbosity () (in module optuna.logging), 114
GridSampler (class in optuna.samplers), 155

H

high (optuna.distributions.Discrete UniformDistribution
attribute), 64

high (optuna.distributions.IntLogUniformDistribution
attribute), 66

high (optuna.distributions.IntUniformDistribution at-

tribute), 65

high (optuna.distributions.LogUniformDistribution at-
tribute), 63

high (optuna.distributions.UniformDistribution at-
tribute), 62

HyperbandPruner (class in optuna.pruners), 146

hyperopt_parameters () (op-

infer_relative_search_space () (op-
tuna.multi_objective.samplers.RandomMultiObjectiveSampler
method), 121

infer_relative_search_space () (op-

infer_ relative_search_space() (op-
tuna.samplers.CmaEsSampler method),
167

infer_relative_search_space () (op-
tuna.samplers.GridSampler method), 156

infer_ relative_search_space () (op-
tuna.samplers. MOTPESampler method),
177

infer_relative_search_space () (op-
tuna.samplers. NSGAIISampler method),
173

infer_ relative_search_space() (op-
tuna.samplers.PartialFixedSampler — method),
170

infer_relative_search_space () (op-
tuna.samplers.RandomSampler method),
159

infer_relative_search_space () (op-

tuna.multi_objective.samplers. MOTPEMultiObjectiveSamplétna.samplers. TPESampler method), 163

static method), 125

hyperopt_parameters () (op-
tuna.samplers. MOTPESampler static method),
176

hyperopt_parameters () (op-
tuna.samplers. TPESampler static method),
162

I

infer_ relative_search_space () (op-
tuna.integration.BoTorchSampler method),
80

infer_relative_search_space () (op-
tuna.integration.CmaEsSampler method),
99

intermediate_values (op-
tuna.multi_objective.trial. FrozenMultiObjectiveTrial
attribute), 137
intermediate_values (optuna.trial. FrozenTrial at-
tribute), 230
intersection_search_space () (in module op-
tuna.samplers), 179
IntersectionSearchSpace (class in op-
tuna.samplers), 178
IntLogUniformDistribution (class in op-
tuna.distributions), 66
IntUniformDistribution (class in op-
tuna.distributions), 65
inverse_transform() (op-
tuna.integration.OptunaSearchCV property),

Index

273

Optuna Documentation, Release 2.8.0.dev0

106

is_available () (in module optuna.visualization),
243

is_available () (in module op-
tuna.visualization.matplotlib), 257

is_heartbeat_enabled () (op-
tuna.storages.RDBStorage method), 186

is_heartbeat_enabled() (op-
tuna.storages.RedisStorage method), 196

J

json_to_distribution () (in module op-
tuna.distributions), 69

K

KerasPruningCallback (class in op-

tuna.integration), 86

L

last_step()
200
last_step () (optuna.trial. FrozenTrial property), 231

(optuna.structs.FrozenTrial property),

LightGBMPruningCallback (class in op-
tuna.integration), 87

LightGBMTuner (class in op-
tuna.integration.lightgbm), 88

LightGBMTunerCV (class in op-
tuna.integration.lightgbm), 91

load_study () (in module optuna), 54

load_study () (in module op-
tuna.multi_objective.study), 132

load_study () (in module optuna.study), 213

LogUniformDistribution (class in op-

tuna.distributions), 63
low (optuna.distributions.DiscreteUniformDistribution
attribute), 64
low (optuna.distributions.IntLog UniformDistribution at-
tribute), 66
low (optuna.distributions.IntUniformDistribution at-
tribute), 65
low (optuna.distributions.LogUniformDistribution at-
tribute), 63
(optuna.distributions. UniformDistribution
tribute), 62

low at-

M

MAXIMIZE (optuna.structs.StudyDirection attribute),
199

MAXIMIZE (optuna.study.StudyDirection attribute), 216

MeanDecreaseImpurityImportanceEvaluator
(class in optuna.importance), 74

MedianPruner (class in optuna.pruners), 140

method

optuna-study-optimize command line
option, 61
MINIMIZE (optuna.structs.StudyDirection attribute),
199
MINIMIZE (optuna.study.StudyDirection attribute), 216
MLflowCallback (class in optuna.integration), 93
module
optuna, 53
optuna.cli, 57
optuna.distributions, 61
optuna.exceptions, 69
optuna.importance, 71
optuna.integration, 75
optuna.logging, 113
optuna.multi_objective, 116
optuna.multi_objective.samplers, 116

optuna.multi_objective.study, 127
optuna.multi_objective.trial, 132
optuna.multi_objective.visualization,

137
optuna.pruners, 139
optuna.samplers, 150
optuna.storages, 179
optuna.structs, 199
optuna.study, 200
optuna.trial, 217
optuna.visualization, 234
optuna.visualization.matplotlib, 243
MOTPEMultiObjectiveSampler (class in op-
tuna.multi_objective.samplers), 123
MOTPESampler (class in optuna.samplers), 174

MultiObjectiveStudy (class in op-
tuna.multi_objective.study), 127

MultiObjectiveTrial (class in op-
tuna.multi_objective.trial), 133

MXNetPruningCallback (class in op-
tuna.integration), 94

N

n_objectives () (op-

tuna.multi_objective.study.MultiObjectiveStudy
property), 129
n_splits_ (optuna.integration.OptunaSearchCV at-
tribute), 104
n_trials (optuna.study.StudySummary attribute), 217
n_trials_ () (optuna.integration.OptunaSearchCV
property), 106
NopPruner (class in optuna.pruners), 141
NOT__SET (optuna.structs.StudyDirection attribute), 199
NOT__SET (optuna.study.StudyDirection attribute), 216
NSGAIIMultiObjectiveSampler (class in op-
tuna.multi_objective.samplers), 118
NSGAIISampler (class in optuna.samplers), 171

274

Index

Optuna Documentation, Release 2.8.0.dev0

number (optuna.multi_objective.trial. FrozenMultiObjectivedpfwhna . st ruct s

attribute), 136
number (optuna.trial. FrozenTrial attribute), 230

property), 134
number () (optuna.trial. Trial property), 218

O

module, 199

optuna.study
number () (optuna.multi_objective.trial. MultiObjectiveTrial
optuna.trial

module, 200

module, 217

optuna.visualization

module, 234

on_epoch () (optuna.integration.AllenNLPPruningCallbgePtuna.visualization.matplotlib

method), 77
optimize ()
method), 84

(optuna.integration. ChainerMNStudy

module, 243

optuna-create-study command line

option

optimize () (optuna.multi_objective.study.MultiObjectiveStudy —direction <DIRECTION>,58

method), 129
optimize () (optuna.study.Study method), 206
optuna
module, 53
optuna command line option
——debug, 58
-—-log-file <LOG_FILE>,58
-—quiet, 58
—--storage <STORAGE>, 58
——verbose, 58
—-—version, 58

—--skip-if-exists, 58
—--study—-name <STUDY_NAME>, 58

optuna-dashboard command line option

—-—allow-websocket-origin
<BOKEH_ALLOW_WEBSOCKET_ORIGINS>,
59

——out <OUT>, 59

—-—study <STUDY>, 59

—-study-name <STUDY_NAME>, 59

-0 <0UT>, 59

optuna-delete-study command line

-q, 58 option

-v, 58 --study-name <STUDY_NAME>, 59
optuna.cli optuna-studies command line option

module, 57 ——column COLUMN, 60
optuna.distributions --fit-width, 60

module, 61 ——format <FORMATTER>, 60
optuna.exceptions -—-max-width <integer>, 60

module, 69 —--noindent, 60
optuna.importance —-—print-empty, 60

module, 71 ——quote <QUOTE_MODE>, 60
optuna.integration —--sort-ascending, 60

module, 75 ——-sort-column SORT_COLUMN, 60
optuna.logging -—-sort-descending, 60

module, 113 —c COLUMN, 60
optuna.multi_objective —-f <FORMATTER>, 60

module, 116 optuna-study-optimize command line
optuna.multi_objective.samplers option

module, 116 --n—-jobs <N_JOBS>, 61
optuna.multi_objective.study --n—-trials <N_TRIALS>, 6l

module, 127 ——-study <STUDY>, 61
optuna.multi_objective.trial ——-study-name <STUDY_NAME>, 6]

module, 132 ——timeout <TIMEOUT>, 61
optuna.multi_objective.visualization file, 6l

module, 137 method, 61
optuna.pruners optuna-study-set-user—attr command

module, 139 line option
optuna.samplers —-—key <KEY>, 61

module, 150 —--study <STUDY>, 61
optuna.storages —--study-name <STUDY_NAME>, 61

module, 179 ——value <VALUE>, 61
Index 275

Optuna Documentation, Release 2.8.0.dev0

-k <KEY>, 61
-v <VALUE>, 61
OptunaError, 70
OptunaSearchCV (class in optuna.integration), 103

P

params (optuna.multi_objective.trial. FrozenMultiObjectivé¥Fidne ()

attribute), 137
params (optuna.trial. FrozenTrial attribute), 230

params () (optuna.multi_objective.trial. MultiObjectiveTrial

property), 134
paramns () (optuna.trial. Trial property), 218
PartialFixedSampler (class in optuna.samplers),
169
PercentilePruner (class in optuna.pruners), 142
plot_contour () (in module optuna.visualization),

235
plot_contour () (in module op-
tuna.visualization.matplotlib), 243
plot_edf () (in module optuna.visualization), 236
plot_edf () (in module op-
tuna.visualization.matplotlib), 245
plot_intermediate_values () (in module op-
tuna.visualization), 237
plot_intermediate_values () (in module op-

tuna.visualization.matplotlib), 247
plot_optimization_history () (in module op-

tuna.visualization), 238
plot_optimization_history () (in module op-

tuna.visualization.matplotlib), 249

plot_parallel_coordinate () (in module op-
tuna.visualization), 239
plot_parallel_coordinate () (in module op-
tuna.visualization.matplotlib), 251
plot_param_importances () (in module op-
tuna.visualization), 240
plot_param_importances () (in module op-
tuna.visualization.matplotlib), 253
plot_pareto_front () (in module op-
tuna.multi_objective.visualization), 138
plot_pareto_front () (in module op-

tuna.visualization), 241

plot_slice () (in module optuna.visualization), 242

plot_slice () (in module op-
tuna.visualization.matplotlib), 255

predict () (optuna.integration.OptunaSearchCV prop-
erty), 106

predict_log_proba () (op-
tuna.integration.OptunaSearchCV property),
106

predict_proba () (op-
tuna.integration.OptunaSearchCV property),
107

prune () (optuna.pruners.BasePruner method), 139

(optuna.pruners.HyperbandPruner method),
148
prune () (optuna.pruners.MedianPruner method), 141
prune () (optuna.pruners.NopPruner method), 142
prune () (optuna.pruners.PercentilePruner method),
144

(optuna.pruners.SuccessiveHalving Pruner

method), 146

(optuna.pruners.ThresholdPruner method),
150
PRUNED (optuna.structs.TrialState attribute), 199
PRUNED (optuna.trial. TrialState attribute), 232
PyCmaSampler (class in optuna.integration), 94
PyTorchIgnitePruningHandler (class in op-

tuna.integration), 100

PyTorchLightningPruningCallback (class in
optuna.integration), 101

prune ()

prune ()

Q

q (optuna.distributions.DiscreteUniformDistribution at-
tribute), 64

gehvi_candidates_func () (in module op-
tuna.integration.botorch), 82
gei_candidates_func () (in module op-

tuna.integration.botorch), 81
gparego_candidates_func ()
tuna.integration.botorch), 82

(in module op-

R

RandomMultiObjectiveSampler (class in op-
tuna.multi_objective.samplers), 120

RandomSampler (class in optuna.samplers), 158

RDBStorage (class in optuna.storages), 180

read_trials_from_remote_storage () (op-
tuna.storages.RDBStorage method), 187
read_trials_from_remote_storage () (op-

tuna.storages.RedisStorage method), 196

record_heartbeat () (optuna.storages.RDBStorage
method), 187

record_heartbeat ()
tuna.storages.RedisStorage method), 196

RedisStorage (class in optuna.storages), 190

refit_time_ (optuna.integration.OptunaSearchCV
attribute), 104

register () (optuna.integration.AllenNLPPruningCallback
class method), 77

remove_session ()
method), 187

remove_session ()
method), 196

report () (optuna.multi_objective.trial. MultiObjectiveTrial
method), 134

report () (optuna.structs.FrozenTrial method), 200

report () (optuna.trial.FrozenTrial method), 231

(op-

(optuna.storages.RDBStorage

(optuna.storages.RedisStorage

276

Index

Optuna Documentation, Release 2.8.0.dev0

report () (optuna.trial. Trial method), 218

reseed_rng () (optuna.integration.BoTorchSampler
method), 80

reseed_rng () (optuna.integration.CmaEsSampler
method), 99

reseed_rng () (optuna.integration.PyCmaSampler
method), 97

reseed_rng ()
method), 110

(optuna.integration.SkoptSampler

110

sample_independent () (op-

tuna.multi_objective.samplers.BaseMultiObjectiveSampler
method), 117

sample_independent () (op-

tuna.multi_objective.samplers. MOTPEMultiObjectiveSampler
method), 126

sample_independent () (op-

tuna.multi_objective.samplers. NSGAIIMultiObjectiveSampler

reseed_rng () (optuna.multi_objective.samplers.BaseMultiObjectinaShoghler20

method), 117

sample_independent () (op-

reseed_rng () (optuna.multi_objective.samplers. MOTPEMultiObjeatioveSultipldrjective.samplers. RandomMultiObjectiveSampler

method), 126 method), 122
reseed_rng () (optuna.multi_objective.samplers.NSGAII3ults QbjettiveSpmplbent () (op-
method), 119 tuna.samplers.BaseSampler method), 154
reseed_rng () (optuna.multi_objective.samplers. RandongMmitiObjectideSompdant () (op-
method), 122 tuna.samplers.CmaEsSampler method),
reseed_rng () (optuna.samplers.BaseSampler 168
method), 153 sample_independent () (op-
reseed_rng () (optuna.samplers.CmaEsSampler tuna.samplers.GridSampler method), 157
method), 167 sample_independent () (op-
reseed_rng () (optuna.samplers.GridSampler tuna.samplers. MOTPESampler method),
method), 157 177
reseed_rng () (optuna.samplers. MOTPESampler sample_independent () (op-
method), 177 tuna.samplers. NSGAIISampler method),
reseed_rng () (optuna.samplers.NSGAIISampler 173
method), 173 sample_independent () (op-
reseed_rng () (optuna.samplers.PartialFixedSampler tuna.samplers.PartialFixedSampler — method),
method), 170 170
reseed_rng() (optuna.samplers.RandomSampler sample_independent () (op-
method), 159 tuna.samplers.RandomSampler method),
reseed_rng () (optuna.samplers. TPESampler 159
method), 163 sample_independent () (op-
run () (optuna.integration.AllenNLPExecutor method), tuna.samplers. TPESampler method), 163
76 sample_indices_ (op-
run () (optuna.integration.lightgbm.LightGBMTuner tuna.integration.OptunaSearchCV attribute),
method), 90 104
run () (optuna.integration.lightgbm.LightGBMTunerCV sample_relative () (op-
method), 92 tuna.integration.BoTorchSampler method),
RUNNING (optuna.structs.TrialState attribute), 199 80
RUNNING (optuna.trial. TrialState attribute), 232 sample_relative () (op-
tuna.integration.CmaEsSampler method),
S 99
sample_independent () (op- sample relative() (op-
tuna.integration.BoTorchSampler ~ method), t9u7na. integration.PyCmaSampler method),
80
sample_independent () (op- sample_relative () (op-
tuna.integration.CmaEsSampler method), tuna.integration.SkoptSampler method),
99 110
sample_independent () (op- sample_relative () (op-
tuna.integration. PyCmaSampler method), tuna.multi_objective.samplers.BaseMultiObjectiveSampler
97 method), 118
sample_independent () (op- sample_relative() (op-
tuna.integration.SkoptSampler method), tuna.multi_objective.samplers. MOTPEMultiObjectiveSampler

Index 277

Optuna Documentation, Release 2.8.0.dev0

method), 126

sample_relative () (op-

tuna.storages.RDBStorage method), 188

set_study_user_attr () (op-

tuna.multi_objective.samplers. NSGAIIMultiObjectiveSamplemna.storages.RedisStorage method), 197

method), 120

sample_relative () (op-

set_system_attr () (op-
tuna.multi_objective.study.MultiObjectiveStudy

tuna.multi_objective.samplers.RandomMultiObjectiveSamplerethod), 130

method), 122

sample_relative () (optuna.samplers.BaseSampler
method), 154

sample_relative ()
tuna.samplers.CmaEsSampler
168

sample_relative () (optuna.samplers.GridSampler
method), 157

(op-
method),

sample_relative () (op-
tuna.samplers. MOTPESampler method),
178

sample_relative () (op-
tuna.samplers. NSGAIlSampler method),
174

sample_relative () (op-
tuna.samplers.PartialFixedSampler — method),
171

sample_relative () (op-
tuna.samplers.RandomSampler method),
160

sample_relative () (optuna.samplers. TPESampler
method), 164

sample_train_set () (op-

tuna.integration.lightgbm.LightGBMTuner
method), 90

sample_train_set () (op-
tuna.integration.lightgbm.LightGBMTunerCV
method), 93

sampler () (optuna.multi_objective.study.MultiObjectiveStudy

property), 129
(optuna.integration.OptunaSearchCV

method), 107

score_samples () (op-
tuna.integration.OptunaSearchCV property),
107

scorer_ (optuna.integration.OptunaSearchCV
tribute), 104

set_params () (optuna.integration.OptunaSearchCV
method), 107

score ()

at-

set_study_directions () (op-
tuna.storages.RDBStorage method), 187
set_study_directions () (op-
tuna.storages.RedisStorage method), 196
set_study_system_attr () (op-
tuna.storages.RDBStorage method), 187
set_study_system_attr () (op-
tuna.storages.RedisStorage method), 196
set_study_user_attr () (op-

set_system_attr () (op-
tuna.multi_objective.trial. MultiObjectiveTrial
method), 134

set_system_attr () (optuna.study.Study method),

208

set_system_attr () (optuna.trial.Trial method),
219

set_trial intermediate_value () (op-
tuna.storages.RDBStorage method), 188

set_trial_ intermediate_value () (op-

tuna.storages.RedisStorage method), 197
set_trial_param() (optuna.storages.RDBStorage
method), 188
set_trial param() (optuna.storages.RedisStorage
method), 197
set_trial_state()
method), 188
set_trial_state () (optuna.storages.RedisStorage
method), 198

(optuna.storages.RDBStorage

set_trial_ system_attr () (op-
tuna.storages.RDBStorage method), 189
set_trial_system_attr () (op-
tuna.storages.RedisStorage method), 198
set_trial_user_attr () (op-
tuna.storages.RDBStorage method), 189
set_trial user_attr () (op-

tuna.storages.RedisStorage method), 198
set_trial_values () (optuna.storages.RDBStorage
method), 189

set_trial values () (op-
tuna.storages.RedisStorage method), 198
set_user_attr () (op-

tuna.integration.OptunaSearchCV property),
107

set_user_attr () (op-
tuna.multi_objective.study.MultiObjectiveStudy
method), 130

set_user_attr () (op-
tuna.multi_objective.trial. MultiObjectiveTrial
method), 134

set_user_attr () (optuna.study.Study method), 208

set_user_attr () (optuna.trial. Trial method), 219

set_verbosity () (in module optuna.logging), 114

should_prune () (optuna.structs.FrozenTrial
method), 200

should_prune () (optuna.trial.FrozenTrial method),
232

should_prune () (optuna.trial. Trial method), 220

278

Index

Optuna Documentation, Release 2.8.0.dev0

single () (optuna.distributions.CategoricalDistribution

method), 68

single () (optuna.distributions.DiscreteUniformDistributipaggest_loguniform ()

method), 65

single () (optuna.distributions.IntLogUniformDistributioauggest_uniform ()

method), 67
single () (optuna.distributions.IntUniformDistribution
method), 66

single () (optuna.distributions.LogUniformDistribution

method), 64

single () (optuna.distributions.UniformDistribution
method), 63

SkoptSampler (class in optuna.integration), 108

SkorchPruningCallback (class in
tuna.integration), 111

op-

state (optuna.multi_objective.trial. FrozenMultiObjectiveTrial

attribute), 136

state (optuna.trial. FrozenTrial attribute), 230

step (optuna.distributions.IntLogUniformDistribution
attribute), 66

step (optuna.distributions.IntUniformDistribution at-
tribute), 65

stop () (optuna.study.Study method), 209

StorageInternalError, 71

Study (class in optuna.study), 201

study_ (optuna.integration.OptunaSearchCV
tribute), 104

study_name (optuna.study.StudySummary attribute),
216

StudyDirection (class in optuna.structs), 199

StudyDirection (class in optuna.study), 216

StudySummary (class in optuna.structs), 200

StudySummary (class in optuna.study), 216

at-

SuccessiveHalvingPruner (class in op-
tuna.pruners), 144
suggest_categorical () (op-

tuna.multi_objective.trial. MultiObjectiveTrial
method), 135
suggest_categorical ()
method), 221
suggest_discrete_uniform() (op-
tuna.multi_objective.trial. MultiObjectiveTrial
method), 135

(optuna.trial. Trial

suggest_discrete_uniform() (op-
tuna.trial. Trial method), 221
suggest_float () (op-

tuna.multi_objective.trial. MultiObjectiveTrial
method), 135

suggest_float () (optuna.trial. Trial method), 222

suggest_int () (op-
tuna.multi_objective.trial. MultiObjectiveTrial
method), 135

suggest_int () (optuna.trial. Trial method), 224

suggest_loguniform() (op-

tuna.multi_objective.trial. MultiObjectiveTrial

method), 136

(optuna.trial. Trial

method), 225

(op-
tuna.multi_objective.trial. MultiObjectiveTrial
method), 136

suggest_uniform/()
226

(optuna.trial. Trial method),

system_attrs (optuna.study.StudySummary at-
tribute), 216
system_attrs () (op-

tuna.multi_objective.study.MultiObjectiveStudy
property), 130
system_attrs () (op-
tuna.multi_objective.trial. MultiObjectiveTrial
property), 136
system_attrs () (optuna.study.Study property), 209

system_attrs () (optuna.trial. Trial property), 227

T

tell () (optuna.study.Study method), 209

TensorBoardCallback (class in op-
tuna.integration), 112

TensorFlowPruningHook (class in op-
tuna.integration), 112

TFKerasPruningCallback (class in op-

tuna.integration), 113
ThresholdPruner (class in optuna.pruners), 148

to_external_repr() (op-
tuna.distributions. CategoricalDistribution
method), 68

to_external_repr () (op-

tuna.distributions.DiscreteUniformDistribution
method), 65

to_external_repr () (op-
tuna.distributions.IntLog UniformDistribution
method), 67

to_external_repr()
tuna.distributions.IntUniformDistribution
method), 66

to_external_repr()
tuna.distributions.Log UniformDistribution
method), 64

to_external_repr()
tuna.distributions. UniformDistribution
method), 63

to_internal_repr ()
tuna.distributions.CategoricalDistribution
method), 68

to_internal_repr () (op-
tuna.distributions.DiscreteUniformDistribution

method), 65

(op-

(op-

(op-

(op-

Index

279

Optuna Documentation, Release 2.8.0.dev0

to_internal_repr () (op-
tuna.distributions.IntLog UniformDistribution
method), 67

to_internal_repr () (op-
tuna.distributions.IntUniformDistribution
method), 66

to_internal_repr () (op-

tuna.distributions.LogUniformDistribution
method), 64

to_internal_repr () (op-
tuna.distributions. UniformDistribution
method), 63

TorchDistributedTrial (class in op-

tuna.integration), 101
TPESampler (class in optuna.samplers), 160
train () (in module optuna.integration.lightgbm), 88
transform() (optuna.integration.OptunaSearchCV
property), 107
Trial (class in optuna.trial), 217
TrialPruned, 57,70

V

value (optuna.trial. FrozenTrial attribute), 230

values (optuna.multi_objective.trial. FrozenMultiObjectiveTrial
attribute), 136

values (optuna.trial. FrozenTrial attribute), 230

X

XGBoostPruningCallback (class in op-
tuna.integration), 113

trials () (optuna.multi_objective.study.MultiObjectiveStudy

property), 130
trials () (optuna.study.Study property), 210
trials_ () (optuna.integration.OptunaSearchCV prop-

erty), 107

trials_dataframe () (op-
tuna.integration.OptunaSearchCV property),
107

trials_dataframe () (optuna.study.Study method),
211

TrialState (class in optuna.structs), 199
TrialState (class in optuna.trial), 232

U

UniformDistribution (class in op-
tuna.distributions), 62

upgrade () (optuna.storages.RDBStorage method),
190

user_attrs (optuna.multi_objective.trial. FrozenMultiObjectiveTrial

attribute), 137

user_attrs (optuna.study.StudySummary attribute),
216

user_attrs (optuna.trial. FrozenTrial attribute), 230

user_attrs () (optuna.multi_objective.study.MultiObjectiveStudy

property), 130

user_attrs () (optuna.multi_objective.trial. MultiObjectiveTrial

property), 136
user_attrs () (optuna.study.Study property), 211
user_attrs () (optuna.trial Trial property), 227

user_attrs_ () (op-
tuna.integration.OptunaSearchCV property),
107

280

Index

	Key Features
	Basic Concepts
	Communication
	Contribution
	License
	Reference
	Installation
	Tutorial
	API Reference
	FAQ

	Indices and tables
	Python Module Index
	Index

