diff --git a/labs/.DS_Store b/labs/.DS_Store new file mode 100644 index 00000000..65356943 Binary files /dev/null and b/labs/.DS_Store differ diff --git a/labs/xray-diagnostics/.DS_Store b/labs/xray-diagnostics/.DS_Store new file mode 100644 index 00000000..7de7e53e Binary files /dev/null and b/labs/xray-diagnostics/.DS_Store differ diff --git a/labs/xray-diagnostics/notebooks/.DS_Store b/labs/xray-diagnostics/notebooks/.DS_Store new file mode 100644 index 00000000..5008ddfc Binary files /dev/null and b/labs/xray-diagnostics/notebooks/.DS_Store differ diff --git a/labs/xray-diagnostics/notebooks/ChestXrays_Train.ipynb b/labs/xray-diagnostics/notebooks/ChestXrays_Train.ipynb index e6efe812..88fba2e7 100644 --- a/labs/xray-diagnostics/notebooks/ChestXrays_Train.ipynb +++ b/labs/xray-diagnostics/notebooks/ChestXrays_Train.ipynb @@ -6,7 +6,7 @@ "source": [ "Oracle Cloud Infrastructure Data Science Demo Notebook\n", "\n", - "Copyright (c) 2021 Oracle, Inc.
\n", + "Copyright (c) 2022 Oracle, Inc.
\n", "Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl.\n", "
" ] @@ -40,13 +40,15 @@ "source": [ "# Introduction \n", "\n", - "We're going to see how the Oracle Cloud Infrastructure Data Science service lets us tackle real-world artificial intelligence problems from end to end. To do that we're going to build a complete AI pipeline to detect pneumonia based on a patient's X-ray image. Pneumonia affects about a million Americans a year and causes about 50,000 deaths, making it top ten leading cause of death. It's estimated the US will have a shortage of more than 100,000 physicians by the year 2030. AI will help fill this gap by assisting diagnosis, letting us detect pneumonia earlier, with less reliance on medical specialists.\n", + "We're going to see how the Oracle Cloud Infrastructure Data Science service lets us tackle real-world artificial intelligence problems from end to end. To do that we're going to build a complete AI pipeline to detect pneumonia based on a patient's X-ray image. Pneumonia affects about a million Americans per year and causes about 50,000 deaths, making it a top-ten leading cause of death. It's estimated the US will have a shortage of more than 100,000 physicians by the year 2030. AI may help fill this gap by assisting diagnosis, letting us detect pneumonia earlier, with less reliance on medical specialists.\n", "\n", - "In this notebook demo we are going to use a convolutional neural network (CNN) to classify chest Xray images of healthy and sick patients (patients with pneumonia). \n", + "In this notebook demo, we are going to use a convolutional neural network (CNN) to classify chest X-ray images of patients with and without pneumonia. \n", + "\n", + "**This notebook is inspired from this [notebook](https://www.kaggle.com/code/superlogick/cnn-transfer-learning-pneumonia) on Kaggle.**\n", "\n", "## Dataset\n", "\n", - "We are leveraging the [Labeled Optical Coherence Tomography (OCT) and chest X-ray images](https://data.mendeley.com/datasets/rscbjbr9sj/2) dataset. of patients for a supervised binary classification task. \n", + "We are leveraging the [Labeled Optical Coherence Tomography (OCT) and chest X-ray images](https://data.mendeley.com/datasets/rscbjbr9sj/2) dataset of patients for a supervised binary classification task. Supervised learning is a machine learning task where the training data has labels that the machine learning model is trying to classify or predict. \n", "\n", "First thing we are going to do is import all the relevant libraries we are going to need, including Keras. " ] @@ -57,7 +59,26 @@ "metadata": {}, "outputs": [], "source": [ - "#!pip install -r requirements.txt > .install_logs" + "!python3 -m pip install oracle-ads --upgrade " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "!pip install scikit-image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import ads \n", + "print(ads.__version__)" ] }, { @@ -69,55 +90,20 @@ "%load_ext autoreload\n", "%autoreload 2\n", "\n", - "from IPython.display import Image\n", - "\n", - "import keras \n", - "from keras.models import Sequential, load_model\n", - "from keras.layers import Dense, Dropout, Flatten\n", - "from keras.layers import Conv2D, MaxPooling2D\n", - "from keras import backend as K\n", - "from keras.utils import plot_model, to_categorical \n", - "from keras.utils import plot_model\n", - "\n", - "from matplotlib import pyplot as plt \n", - "import numpy as np \n", - "import json \n", - "import urllib\n", - "from zipfile import ZipFile \n", - "import skimage as ski\n", "import os \n", - "import pandas as pd \n", - "import glob\n", - "from numpy import random as random\n", - "import urllib \n", - "import tensorflow as tf\n", - "from utilities import display_xray_image, display_rows_images, create_df\n", - "\n", - "from skimage import transform \n", - "from IPython.display import Image\n", - "\n", + "import ocifs\n", + "from ocifs import OCIFileSystem\n", + "from zipfile import ZipFile \n", + "import random\n", + "import shutil\n", "import ads\n", "from ads.dataset.factory import DatasetFactory\n", - "from ads.common.model import prepare_generic_model\n", - "from ads.evaluations.evaluator import ADSEvaluator\n", - "from ads.common.data import MLData\n", - "\n", - "# using resource principal: \n", - "ads.set_auth(auth='resource_principal')\n", - "ads.set_debug_mode(mode=False)\n", "\n", - "import logging \n", - "logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)\n", + "import tensorflow as tf\n", + "from tensorflow import keras\n", + "import matplotlib.pyplot as plt\n", "\n", - "import warnings\n", - "warnings.filterwarnings('ignore')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we're going to install scikit-image which is a library that is not installed in the notebook environment: " + "from utilities import display_xray_image, display_rows_images, create_df" ] }, { @@ -135,24 +121,21 @@ "metadata": {}, "outputs": [], "source": [ - "# unzip the file:\n", + "%%time\n", + "# Using resource principal for authenticating with OCI Object Storage\n", + "fs = OCIFileSystem(region=\"us-ashburn-1\")\n", + "\n", + "# Creating the local directory \n", "dirpath = f\"./data/\"\n", "if not os.path.exists(dirpath):\n", - " os.makedirs(dirpath)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ + " os.makedirs(dirpath)\n", + "\n", + "# Downloading the data from Object Storage using OCIFS (https://github.com/oracle/ocifs)\n", "if os.path.exists(os.path.join(dirpath, \"chest_xrays.zip\")):\n", " with ZipFile(os.path.join(dirpath, \"chest_xrays.zip\"), 'r') as zipf:\n", " zipf.extractall(dirpath)\n", "else:\n", - " data_url = \"https://objectstorage.us-ashburn-1.oraclecloud.com/n/bigdatadatasciencelarge/b/hosted-ds-datasets/o/chest-xrays%2FChestXRay2017.zip\"\n", - " urllib.request.urlretrieve(data_url,filename=os.path.join(dirpath, \"chest_xrays.zip\"))\n", + " fs.download('oci://hosted-ds-datasets@bigdatadatasciencelarge/chest-xrays/ChestXRay2017.zip',os.path.join(dirpath, \"chest_xrays.zip\"))\n", " with ZipFile(os.path.join(dirpath, \"chest_xrays.zip\"), 'r') as zipf:\n", " zipf.extractall(dirpath)" ] @@ -163,45 +146,47 @@ "source": [ "The data is divided into a `train/` and a `test/` folder. Each folder has images further separated into the `NORMAL/` and `PNEUMONIA/` medical diagnoses. These folders will serve as labels for our binary classification use case. \n", "\n", - "The train set contains 3883 xrays of patients with pneumonia while there are 1349 xray images of patients who do not have the illness. This dataset is considered to be imbalanced for machine learning purposes. " + "The train set contains 3,883 X-rays of patients with pneumonia while there are 1,349 X-ray images of patients who are not diagnosed with the illness. This dataset is considered to be imbalanced for machine learning purposes. " ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "# Building and Exploring the dataset with ADS DatasetFactory\n", + "train_dir = \"./data/chest_xray/train/\"\n", + "test_dir = \"./data/chest_xray/test/\"\n", + "valid_dir = f\"./data/chest_xray/validation/\"\n", + "if not os.path.exists(valid_dir):\n", + " os.makedirs(valid_dir)\n", + " \n", + "normal_train = \"./data/chest_xray/train/NORMAL/\"\n", + "pneumonia_train = \"./data/chest_xray/train/PNEUMONIA/\"\n", "\n", - "The first step in the process of training a machine learning model is to build a dataset format that will be understood by the model library. \n", + "normal_images = os.listdir(normal_train)\n", + "pneumonia_images = os.listdir(pneumonia_train)\n", "\n", - "We are going to first build a dataframe for both the training and test dataset. The dataset will include metadata about each image. We included the following features: \n", + "valid_dir_normal = os.path.join(valid_dir,\"NORMAL\")\n", + "if not os.path.exists(valid_dir_normal):\n", + " os.makedirs(valid_dir_normal)\n", "\n", + "valid_dir_pneumonia = os.path.join(valid_dir,\"PNEUMONIA\")\n", + "if not os.path.exists(valid_dir_pneumonia):\n", + " os.makedirs(valid_dir_pneumonia) \n", + " \n", + "# validation sample: \n", + "nb_validation_normal = 8 \n", + "nb_validation_pneumonia = 8 \n", "\n", - "* image path\n", - "* class(0:normal, 1:pneumonia)\n", - "* image dimensions (both x and y) \n", - "* image extension(.jpeg, .png, etc.) \n", - "* number of channels for each image \n", - "* axis ratio (y size / x size ) " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "train_df2 = create_df(dirpath)\n", - "ads_df = DatasetFactory.open(train_df2.drop([\"resized_image\", \"original_dims\", \"dims\"], axis=1)).set_target(\"class\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data Profiling \n", + "validation_normal_files = random.sample(normal_images, k=nb_validation_normal)\n", + "validation_pneumonia_files = random.sample(pneumonia_images, k=nb_validation_pneumonia) \n", + "\n", + "for x in validation_normal_files: \n", + " shutil.move(os.path.join(normal_train,x),os.path.join(valid_dir_normal,x))\n", "\n", - "You can visualize the dataste overall by using our show_in_notebook method. It gives you a comprehensive preview of all the basic information about this dataset, including the type of the dataset (whether it’s a regression, binary classification or multi-class classification dataset), the number of columns and rows, feature types of each columns, visualization of each column, the correlation map as well as a short dataset header.\n" + "for x in validation_pneumonia_files: \n", + " shutil.move(os.path.join(pneumonia_train,x),os.path.join(valid_dir_pneumonia,x))" ] }, { @@ -210,32 +195,24 @@ "metadata": {}, "outputs": [], "source": [ - "ads_df.show_in_notebook()" + "f_pneumonia_training = len(os.listdir(pneumonia_train)) / (len(os.listdir(pneumonia_train)) + len(os.listdir(normal_train)))\n", + "f_normal_training = 1.0 - f_pneumonia_training\n", + "print(f'fraction pneumonia in training dataset : {f_pneumonia_training}')\n", + "print(f'fraction normal in training dataset : {f_normal_training}')" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "ads_df.plot(x=\"class\", y=\"original_axis_ratio\", verbose=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ads_df.plot(x=\"original_xsize\", y=\"original_ysize\")" + "# Pneumonia " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "In the chart below, we leverage ADS to look at the distribution of axis ratios in the orginal images. Axis ratio here is being defined as the y-axis image length divided by the x-axis image length. This information will help us resize these images to a common size without introducing too many distortions. " + "Let's plot some of the images in our training dataset where patients have pneumonia." ] }, { @@ -244,16 +221,40 @@ "metadata": {}, "outputs": [], "source": [ - "ads_df.plot(x=\"original_axis_ratio\")" + "plt.figure(figsize=(15, 8))\n", + "\n", + "for i in range(9):\n", + " plt.subplot(3, 3, i + 1)\n", + " img = plt.imread(os.path.join(pneumonia_train, pneumonia_images[i]))\n", + " plt.imshow(img, cmap='gray', origin='upper')\n", + " plt.axis('off')\n", + " \n", + "plt.tight_layout()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## X-ray Images\n", "\n", - "Let's now take a look at some of the x-ray images in the sample. We pick 8 random xray images from the original sample. " + "\n", + "# Building and Exploring the dataset with ADS DatasetFactory\n", + "\n", + "The first step in the process of training a machine learning model is to build a dataset format that will be understood by the model library. \n", + "\n", + "We are going to first build a dataframe for both the training and test dataset. The dataset will include metadata about each image. We included the following features: \n", + "\n", + "\n", + "* image path\n", + "* class(0:normal, 1:pneumonia)\n", + "* image dimensions (both x and y) \n", + "* image extension(.jpeg, .png, etc.) \n", + "* number of channels for each image \n", + "* axis ratio (y size / x size ) \n", + "\n", + "We are going to use the [Oracle Accelerated Data Science (ADS) SDK](https://docs.cloud.oracle.com/iaas/tools/ads-sdk/latest/index.html) to open and explore the dataset. The ADS SDK is a Python library that is included as part of the Oracle Cloud Infrastructure (OCI) Data Science service. ADS offers a friendly user interface, with objects and methods that cover all the steps involved in the lifecycle of machine learning models, from data acquisition to model evaluation and interpretation.\n", + "\n", + "We are going to use the ADS `DatasetFactory` class to load the dataset into a dataframe." ] }, { @@ -262,14 +263,17 @@ "metadata": {}, "outputs": [], "source": [ - "display_rows_images(train_df2)" + "train_df2 = create_df(dirpath)\n", + "ads_df = DatasetFactory.open(train_df2.drop([\"resized_image\", \"original_dims\", \"dims\"], axis=1)).set_target(\"class\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We are going to apply simple transformations to the data before training the model. " + "## Data Profiling \n", + "\n", + "You can visualize the dataset overall by using the ADS `show_in_notebook` method. It gives you a comprehensive preview of all the basic information about this dataset, including the type of the dataset (whether it’s a regression, binary classification, or multi-class classification dataset), the number of columns and rows, feature types of each columns, visualization of each column, the correlation map, and a short dataset header.\n" ] }, { @@ -278,7 +282,7 @@ "metadata": {}, "outputs": [], "source": [ - "ads_df.head()" + "ads_df.show_in_notebook()" ] }, { @@ -287,24 +291,14 @@ "metadata": {}, "outputs": [], "source": [ - "train_filter = (ads_df['valid']==False).compute()\n", - "valid_filter = (ads_df['valid']).compute()" + "ads_df.plot(x=\"original_xsize\", y=\"original_ysize\")" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "Xtrain = train_df2[train_filter]['resized_image'].values \n", - "Ytrain = to_categorical(train_df2[train_filter]['class'].values)\n", - "\n", - "Xvalid = train_df2[valid_filter]['resized_image'].values\n", - "Yvalid = to_categorical(train_df2[valid_filter]['class'].values)\n", - "\n", - "Xtrain = np.asarray([i.reshape(200,300,1) for i in Xtrain])\n", - "Xvalid = np.asarray([i.reshape(200,300,1) for i in Xvalid])" + "In the chart below, we leverage ADS to look at the distribution of axis ratios in the orginal images. Axis ratio here is being defined as the y-axis image length divided by the x-axis image length. This information will help us resize these images to a common size without introducing too many distortions. " ] }, { @@ -313,56 +307,22 @@ "metadata": {}, "outputs": [], "source": [ - "print(\"Xtrain shape: {}, Ytrain shape: {}, Xvalid shape: {}, Yvalid shape: {}\".format(Xtrain.shape,\n", - " Ytrain.shape,\n", - " Xvalid.shape,\n", - " Yvalid.shape))" + "ads_df.plot(x=\"original_axis_ratio\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Training a Convolutional Neural Network (CNN) Model with Keras\n", - "\n", - "In the cell below we are defining the CNN model. It is a very simple model with two convolutional layers, \n", - "each followed by a max pooling layers and a dropout layer. \n", + "# Image Preprocessing\n", "\n", - "This simple architecture achieves resonable performance on a holdout/testing dataset as we will see below. \n", + "We're going to use the `ImageDataGenerator()` function in Keras to standardize and augment the data. Images will have : \n", + "* size of (180, 180) pixels\n", + "* mean pixel value of 0 \n", + "* standard deviation of 1 \n", + "* three channels (RGB) - Images with a single channel will have those channel values replicated for all three channels. The pre-trained models expect images with three channels.\n", "\n", - "As an exercise, you may want to explore how transfer learning could be leveraged in this scenario. A different \n", - "network architecture could also be explored. " - ] - }, - { - "attachments": { - "keras-logo-2018-large-1200.jpeg": { - "image/jpeg": "/9j/4AAQSkZJRgABAQAASABIAAD/4QD8RXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUA\nAAABAAAAYgEbAAUAAAABAAAAagEoAAMAAAABAAIAAAExAAIAAAAkAAAAcgEyAAIAAAAUAAAAlodp\nAAQAAAABAAAAqgAAAAAAAABIAAAAAQAAAEgAAAABQWRvYmUgUGhvdG9zaG9wIENDIDIwMTUgKE1h\nY2ludG9zaCkAMjAxNzoxMTowNSAxMjo1Mjo1MAAABJAEAAIAAAAUAAAA4KABAAMAAAABAAEAAKAC\nAAQAAAABAAAEsKADAAQAAAABAAABXAAAAAAyMDE3OjExOjA1IDEyOjQ0OjM2AP/hEItodHRwOi8v\nbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2Vo\naUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6\neG1wdGs9IlhNUCBDb3JlIDUuNC4wIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3Lncz\nLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJv\ndXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczpkYz0i\naHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iIHhtbG5zOnhtcE1NPSJodHRwOi8vbnMu\nYWRvYmUuY29tL3hhcC8xLjAvbW0vIiB4bWxuczpzdEV2dD0iaHR0cDovL25zLmFkb2JlLmNvbS94\nYXAvMS4wL3NUeXBlL1Jlc291cmNlRXZlbnQjIiB4bWxuczpzdFJlZj0iaHR0cDovL25zLmFkb2Jl\nLmNvbS94YXAvMS4wL3NUeXBlL1Jlc291cmNlUmVmIyIgeG1sbnM6cGhvdG9zaG9wPSJodHRwOi8v\nbnMuYWRvYmUuY29tL3Bob3Rvc2hvcC8xLjAvIiB4bXA6TWV0YWRhdGFEYXRlPSIyMDE3LTExLTA1\nVDEyOjUyOjUwLTA4OjAwIiB4bXA6Q3JlYXRlRGF0ZT0iMjAxNy0xMS0wNVQxMjo0NDozNi0wODow\nMCIgeG1wOk1vZGlmeURhdGU9IjIwMTctMTEtMDVUMTI6NTI6NTAtMDg6MDAiIHhtcDpDcmVhdG9y\nVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENDIDIwMTUgKE1hY2ludG9zaCkiIGRjOmZvcm1hdD0iaW1h\nZ2UvcG5nIiB4bXBNTTpPcmlnaW5hbERvY3VtZW50SUQ9InhtcC5kaWQ6ZmNiZDU4MWUtNzk2Yi00\nN2I1LWEyYjQtNzA2MTFjMGJmZTgyIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOjMzMGRiM2U5\nLTUyZmUtNDFlOC1iNzYxLTQwNjdkMDdlMTBkYSIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDoz\nMzBkYjNlOS01MmZlLTQxZTgtYjc2MS00MDY3ZDA3ZTEwZGEiIHBob3Rvc2hvcDpDb2xvck1vZGU9\nIjMiPiA8eG1wTU06SGlzdG9yeT4gPHJkZjpTZXE+IDxyZGY6bGkgc3RFdnQ6c29mdHdhcmVBZ2Vu\ndD0iQWRvYmUgUGhvdG9zaG9wIENDIDIwMTUgKE1hY2ludG9zaCkiIHN0RXZ0OndoZW49IjIwMTct\nMTEtMDVUMTI6NDQ6MzYtMDg6MDAiIHN0RXZ0Omluc3RhbmNlSUQ9InhtcC5paWQ6ZmNiZDU4MWUt\nNzk2Yi00N2I1LWEyYjQtNzA2MTFjMGJmZTgyIiBzdEV2dDphY3Rpb249ImNyZWF0ZWQiLz4gPHJk\nZjpsaSBzdEV2dDpzb2Z0d2FyZUFnZW50PSJBZG9iZSBQaG90b3Nob3AgQ0MgMjAxNSAoTWFjaW50\nb3NoKSIgc3RFdnQ6Y2hhbmdlZD0iLyIgc3RFdnQ6d2hlbj0iMjAxNy0xMS0wNVQxMjo1MDoxMi0w\nODowMCIgc3RFdnQ6aW5zdGFuY2VJRD0ieG1wLmlpZDplMDNlYWI1Ni1lM2YyLTQ4OTktYjMzNS1j\nZjAwZjU1OWU4YWYiIHN0RXZ0OmFjdGlvbj0ic2F2ZWQiLz4gPHJkZjpsaSBzdEV2dDphY3Rpb249\nImRlcml2ZWQiIHN0RXZ0OnBhcmFtZXRlcnM9ImNvbnZlcnRlZCBmcm9tIGFwcGxpY2F0aW9uL3Zu\nZC5hZG9iZS5waG90b3Nob3AgdG8gaW1hZ2UvcG5nIi8+IDxyZGY6bGkgc3RFdnQ6c29mdHdhcmVB\nZ2VudD0iQWRvYmUgUGhvdG9zaG9wIENDIDIwMTUgKE1hY2ludG9zaCkiIHN0RXZ0OmNoYW5nZWQ9\nIi8iIHN0RXZ0OndoZW49IjIwMTctMTEtMDVUMTI6NTI6NTAtMDg6MDAiIHN0RXZ0Omluc3RhbmNl\nSUQ9InhtcC5paWQ6MzMwZGIzZTktNTJmZS00MWU4LWI3NjEtNDA2N2QwN2UxMGRhIiBzdEV2dDph\nY3Rpb249InNhdmVkIi8+IDwvcmRmOlNlcT4gPC94bXBNTTpIaXN0b3J5PiA8eG1wTU06RGVyaXZl\nZEZyb20gc3RSZWY6b3JpZ2luYWxEb2N1bWVudElEPSJ4bXAuZGlkOmZjYmQ1ODFlLTc5NmItNDdi\nNS1hMmI0LTcwNjExYzBiZmU4MiIgc3RSZWY6aW5zdGFuY2VJRD0ieG1wLmlpZDplMDNlYWI1Ni1l\nM2YyLTQ4OTktYjMzNS1jZjAwZjU1OWU4YWYiIHN0UmVmOmRvY3VtZW50SUQ9InhtcC5kaWQ6ZmNi\nZDU4MWUtNzk2Yi00N2I1LWEyYjQtNzA2MTFjMGJmZTgyIi8+IDxwaG90b3Nob3A6RG9jdW1lbnRB\nbmNlc3RvcnM+IDxyZGY6QmFnPiA8cmRmOmxpPnhtcC5kaWQ6NjkxM0YzMzMzODIyNjgxMTgwODNC\nMTU3NzY3RjFDREM8L3JkZjpsaT4gPC9yZGY6QmFnPiA8L3Bob3Rvc2hvcDpEb2N1bWVudEFuY2Vz\ndG9ycz4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVu\nZD0idyI/PgD/7QBkUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAACwcAVoAAxslRxwCAAACAAIcAj4A\nCDIwMTcxMTA1HAI/AAsxMjQ0MzYtMDgwMDhCSU0EJQAAAAAAEGRTRXAw8xBXRI+VI7Ztpbf/wAAR\nCAFcBLADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgED\nAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRol\nJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWW\nl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3\n+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3\nAAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5\nOkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaan\nqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9sAQwACAgIC\nAgIDAgIDBAMDAwQFBAQEBAUHBQUFBQUHCAcHBwcHBwgICAgICAgICgoKCgoKCwsLCwsNDQ0NDQ0N\nDQ0N/9sAQwECAgIDAwMGAwMGDQkHCQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0N\nDQ0NDQ0NDQ0NDQ0NDQ0N/90ABABL/9oADAMBAAIRAxEAPwD9vfiX8TfB3wj8KzeNPHd41jpNvLFD\nJMkMk5DzNtQbI1Zjk+1fNn/DwP8AZb/6Ge4/8Fl5/wDGqy/+Cif/ACbHq/8A2EtN/wDRwr+eGvhe\nI+JcVgMUqFFRasnqn5+a7H9WeCvgjkPFuQSzTM6lSNRVJQ9yUUrJRa3hJ31fU/oy/wCHgf7Lf/Qz\n3H/gsvP/AI1R/wAPA/2W/wDoZ7j/AMFl5/8AGq/nNorwf9ecf/LH7n/mfrv/ABKrwh/z+r/+Bw/+\nVn9GX/DwP9lv/oZ7j/wWXn/xqj/h4H+y3/0M9x/4LLz/AONV/ObRR/rzj/5Y/c/8w/4lV4Q/5/V/\n/A4f/Kz+jL/h4H+y3/0M9x/4LLz/AONUf8PA/wBlv/oZ7j/wWXn/AMar+c2ij/XnH/yx+5/5h/xK\nrwh/z+r/APgcP/lZ/Rl/w8D/AGW/+hnuP/BZef8Axqj/AIeB/st/9DPcf+Cy8/8AjVfzm0Uf684/\n+WP3P/MP+JVeEP8An9X/APA4f/Kz+jL/AIeB/st/9DPcf+Cy8/8AjVH/AA8D/Zb/AOhnuP8AwWXn\n/wAar+c2ij/XnH/yx+5/5h/xKrwh/wA/q/8A4HD/AOVn9GX/AA8D/Zb/AOhnuP8AwWXn/wAao/4e\nB/st/wDQz3H/AILLz/41X85tFH+vOP8A5Y/c/wDMP+JVeEP+f1f/AMDh/wDKz+jL/h4H+y3/ANDP\ncf8AgsvP/jVH/DwP9lv/AKGe4/8ABZef/Gq/nNoo/wBecf8Ayx+5/wCYf8Sq8If8/q//AIHD/wCV\nn9GX/DwP9lv/AKGe4/8ABZef/GqP+Hgf7Lf/AEM9x/4LLz/41X85tFH+vOP/AJY/c/8AMP8AiVXh\nD/n9X/8AA4f/ACs/oy/4eB/st/8AQz3H/gsvP/jVH/DwP9lv/oZ7j/wWXn/xqv5zaKP9ecf/ACx+\n5/5h/wASq8If8/q//gcP/lZ/Rl/w8D/Zb/6Ge4/8Fl5/8ao/4eB/st/9DPcf+Cy8/wDjVfzm0Uf6\n84/+WP3P/MP+JVeEP+f1f/wOH/ys/oy/4eB/st/9DPcf+Cy8/wDjVH/DwP8AZb/6Ge4/8Fl5/wDG\nq/nNoo/15x/8sfuf+Yf8Sq8If8/q/wD4HD/5Wf0Zf8PA/wBlv/oZ7j/wWXn/AMao/wCHgf7Lf/Qz\n3H/gsvP/AI1X85tFH+vOP/lj9z/zD/iVXhD/AJ/V/wDwOH/ys/oy/wCHgf7Lf/Qz3H/gsvP/AI1R\n/wAPA/2W/wDoZ7j/AMFl5/8AGq/nNoo/15x/8sfuf+Yf8Sq8If8AP6v/AOBw/wDlZ/Rl/wAPA/2W\n/wDoZ7j/AMFl5/8AGqP+Hgf7Lf8A0M9x/wCCy8/+NV/ObRR/rzj/AOWP3P8AzD/iVXhD/n9X/wDA\n4f8Ays/oy/4eB/st/wDQz3H/AILLz/41R/w8D/Zb/wChnuP/AAWXn/xqv5zaKP8AXnH/AMsfuf8A\nmH/EqvCH/P6v/wCBw/8AlZ/Rl/w8D/Zb/wChnuP/AAWXn/xqj/h4H+y3/wBDPcf+Cy8/+NV/ObRR\n/rzj/wCWP3P/ADD/AIlV4Q/5/V//AAOH/wArP6Mv+Hgf7Lf/AEM9x/4LLz/41R/w8D/Zb/6Ge4/8\nFl5/8ar+c2ij/XnH/wAsfuf+Yf8AEqvCH/P6v/4HD/5Wf0Zf8PA/2W/+hnuP/BZef/GqP+Hgf7Lf\n/Qz3H/gsvP8A41X85tFH+vOP/lj9z/zD/iVXhD/n9X/8Dh/8rP6Mv+Hgf7Lf/Qz3H/gsvP8A41R/\nw8D/AGW/+hnuP/BZef8Axqv5zaKP9ecf/LH7n/mH/EqvCH/P6v8A+Bw/+Vn9GX/DwP8AZb/6Ge4/\n8Fl5/wDGqP8Ah4H+y3/0M9x/4LLz/wCNV/ObRR/rzj/5Y/c/8w/4lV4Q/wCf1f8A8Dh/8rP6Mv8A\nh4H+y3/0M9x/4LLz/wCNV7T8If2gfhb8c/7U/wCFbapJqX9j+R9r8y2mt9n2jf5ePNRd2fLbpnGK\n/lkr9g/+CU/T4kfXR/8A27r1sj4rxeMxsMNVjGzvsnfRN9z898VPADhzhvhfE5zgKlV1KfJZSlFx\n96cYu6UE9m+u5+wNFFFfoR/HAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB\nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/\n0P0W/wCCif8AybHq/wD2EtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8ACvzZ\n/of9Fn/kjqn/AF+n/wCkwCiiivjj+kQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/YP/glP0+JH10f/ANu6\n/Hyv2D/4JT9PiR9dH/8AbuvpOEv+RrS+f/pLPxf6Qn/JA4//ALh/+nYH7A0UUV+0H+Y4UUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/R/Rb/AIKJ/wDJser/APYS03/0cK/nhr+h\n7/gon/ybHq//AGEtN/8ARwr+eGvyTjj/AJGK/wAK/Nn+h/0Wf+SOqf8AX6f/AKTAKKKK+OP6RCii\nigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAr9g/+CU/T4kfXR/8A27r8fK/YP/glP0+JH10f/wBu6+k4S/5GtL5/\n+ks/F/pCf8kDj/8AuH/6dgfsDRRRX7Qf5jhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQB/9L9Fv8Agon/AMmx6v8A9hLTf/Rwr+eGv6Hv+Cif/Jser/8AYS03/wBHCv54a/JOOP8A\nkYr/AAr82f6H/RZ/5I6p/wBfp/8ApMAooor44/pEKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv2D/4JT9Pi\nR9dH/wDbuvx8r9g/+CU/T4kfXR//AG7r6ThL/ka0vn/6Sz8X+kJ/yQOP/wC4f/p2B+wNFFFftB/m\nOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0/0W/wCCif8AybHq/wD2EtN/\n9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8ACvzZ/of9Fn/kjqn/AF+n/wCkwCii\nivjj+kQooooAKKKKACiiigAooooAKKK+pPh5+xr+0D8TvC9t4w8L+HlOl3mTby3d1DatKg/jVJWV\nih7NjB7V0YfC1sRLkoQcn5K55OcZ9luU0ViMzrwpQbsnOSim+121qfLdFfbn/DvT9qH/AKF+y/8A\nBnbf/HKZJ/wT3/ahjjaT/hHbRtoJ2rqVqScdgPM612f2HmH/AD4l9zPml4n8If8AQzof+DYf5nxN\nRWpreiav4b1a70HXrSWx1CxlaC4t51KSRyIcFWBrLrzGmnZn3FOpGpFTg7p6prZoKKKKRYUUUUAF\nFFFABRRRQAUUV778JP2ZPjL8btPutX+H+h/arC0cRPdXE0dtC0h6qjSsu8gdducd+tbUMPVrT9nR\ni5PstTzs0zfA5bh3i8wrRpU1vKTUVrtq9NTwKivtz/h3p+1D/wBC/Zf+DO2/+OUf8O9P2of+hfsv\n/Bnbf/HK7/7DzD/nxL7mfK/8RQ4Q/wChnQ/8GQ/zPiOivtv/AId6ftQ/9C/Zf+DO2/8AjlfHviLw\n/q/hTXtQ8M69bta6jpdzJa3ULclJYmKsMjg8jgjgjkVy4nAYnDpOvTcU+6aPayXi3Jc3nKnlWLp1\npRV2oTjJpd3ZmNRRRXIfQhRRRQAUUUUAFFFFABRRRQAV+wf/AASn6fEj66P/AO3dfj5X7B/8Ep+n\nxI+uj/8At3X0nCX/ACNaXz/9JZ+L/SE/5IHH/wDcP/07A/YGiiiv2g/zHCiiigAooooAKKKKACii\nigAoorzD4rfGP4dfBPw4PFPxI1ePSrF5BDFlWlmmkb+GOKMM7kDk4HA5NAHp9FfDH/Dxv9lD/oZr\nv/wV3n/xqj/h43+yh/0M13/4K7z/AONUAfc9FeI/B39on4R/HmC9l+GeuLqMmnMBc28kUlvcRhuj\n+VKqsUPTcARnjrXt1ABRRRQAUUUUAFFFFABRRRQAUUVzvizxZ4d8DeHb/wAV+K76LTdK02Fp7m5m\nOFRF/Uk9ABkk8AZoA6Kivhg/8FG/2UP+hmu//BXef/GqP+Hjf7KH/QzXf/grvP8A41QB9z0V8Mf8\nPG/2UP8AoZrv/wAFd5/8ar234M/tLfB/4+XGp2nwy1h9Qn0hIpLqOW2mtmVJiwVgJVXcMqQcZx36\n0Ae9UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1P0W/wCCif8AybHq/wD2\nEtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8ACvzZ/of9Fn/kjqn/AF+n/wCk\nwCiiivjj+kQooooAKKKKACiiigAooooAv6UqvqlmjgFWuIgQeQQWFf1y6TBDbaXZ29vGsUUcEaoi\nAKqqFAAAHAAr+RzSP+QtZf8AXxF/6GK/rosP+PG2/wCuSf8AoIr9G4A/5f8A/bv6n8XfS6bvla/6\n+/8AuMt0UUV+jH8YH89f/BRqCCH9pW+aGNUMulae7lQBubYRk46nAAzXwfX3r/wUf/5OUuv+wRp/\n/oDV8FV+E59/yMa3+Jn+r/hQ2+Dcsv8A8+Yf+koKKKK8k/QQooooAKKKKACiivrz9lH9lbxD+0J4\noS61BJ9P8HafIDqGoBceaRz9ngJ4aRu5GQg5POAenCYSriaqo0VeTPG4g4gwGSYCpmeZVFClBXbf\n4JLq3sktWx/7KP7KPiD9ojxA19etJpvhHTZVF/fhfnmfg+RBnguR1bogOTk4B/og8IeEfD3gPw3Y\neEvCtnHYaXpsKwW8EYwAqjqT1ZieWY8k8mk8HeDfDXgDw5ZeE/CFhFpul2EYjgt4RgAdyT1ZmPLM\ncknk101fsuRZFSy6lZaze7/ReR/mh4reK2P4yzDmleGFg/3dPt/el3k/uWy6tlFFZWua5o/hrSbr\nXtfvIbDT7KJpri5ncJHGijJJY8f417raSuz8qp05VJKEFdvRJbtjde17R/C+jXniHxBdxWGnafC0\n9zczsFjjjQZJJP8Akmv5lf2oviV4R+Lfxp17xx4KsHsdOvWjQNIcNdPCoQ3BTA2eYADt5Pc8k17F\n+13+2Br3x11ifwp4Wll0/wAD2cu2KAHa+oOh4nn/ANnPKJ0HU89PhqvyfiriGGNl9WofBF7935eX\n5n+g/gF4PYjhmk87zVtYmrGygnpCDs7S7ybSuto7b3CiiivjD+lgooooAKKKKACiiigAooooAK/Y\nP/glP0+JH10f/wBu6/Hyv2D/AOCU/T4kfXR//buvpOEv+RrS+f8A6Sz8X+kJ/wAkDj/+4f8A6dgf\nsDRRRX7Qf5jhRRRQAUUUUAFFFFABRRRQAV+D3/BWW4nPxT8GWpkcwroMkix7jsDtcyAsB0yQACfY\nV+8Nfgx/wVk/5K34O/7F5v8A0qloA/KaiiigD7j/AOCdN1c2/wC1b4XigleNLi21KOVVYgSILSVg\nrAdRuAOD3ANf0u1/M3/wTu/5Ox8Jf9cdS/8ASOav6ZKACiiigAooooAKKKKACiiue8VeK/Dvgjw9\nfeKvFd/DpuladE01zczttREX+ZJ4AHJPA5oAXxV4q8P+CPD194q8VX0WnaVpsLT3NzM21ERf5k9A\nBkk8Dmv5uv2wf2wvEf7RfiF9F0ZpdN8EabMfsNlkq92y8C4uADgsf4U5CD1OTT/2w/2wvEH7RfiJ\ntE0J5tN8D6bKfsVlna926nAuLgDqx/gTog98mviGgAooooAK/X7/AIJffBb4k2viy7+M8zvpXhWa\nym09I5UOdVLkHMYJGEhdQfMwcn5R3x5H+xJ+xLqXxm1S2+I3xItJLTwPZyB4YJAUfV5FP3V6EQA/\nfcfe+6vcj+g/S9L07RNOttI0i2is7KziWG3t4VCRxRoMKqqOAAOlAF+iiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooA//V/Rb/AIKJ/wDJser/APYS03/0cK/nhr+h7/gon/ybHq//\nAGEtN/8ARwr+eGvyTjj/AJGK/wAK/Nn+h/0Wf+SOqf8AX6f/AKTAKKKK+OP6RCiiigAooooAKKKK\nACiiigDR0j/kLWX/AF8Rf+hiv66LD/jxtv8Arkn/AKCK/kX0j/kLWX/XxF/6GK/rosP+PG2/65J/\n6CK/R+AP+X//AG7+p/F30ut8r/7i/wDuMt0UUV+in8YH8+H/AAUf/wCTlLr/ALBGn/8AoDV8FV96\n/wDBR/8A5OUuv+wRp/8A6A1fBVfhWff8jGt/iZ/q/wCE/wDyRuWf9eYfkFFFFeQfoIUUUUAFFFfX\nH7KX7LGv/tE+JzPdmXTvCWmSL/aWoBcNIevkQEggyMOp5CDk9QD0YTCVcTVVGiryZ43EGf4DJcBU\nzPMqihSgrtv8El1beiS3Yv7LH7KPin9obxAt7OH03whp8yjUNRYEGQjkwW+eGkI6nogOTzgH+ijw\nj4R8O+BfDtj4U8KWUWn6Xp0Sw28EQwqqO57lieWY8k8mofBfgzw18PfDFh4P8I2Uen6VpsQiggjH\nQdSzHqzMclmPJJya6mv2bIsipZdSstZvd/ovI/zR8V/FbH8ZY/mleGFg37OH/t0u8n9y2XVsoorI\n1/X9H8LaLe+IvEF3FY6dp8L3FzcTNtSONBkkn+nU17raSuz8pp051JqnTV29Elu32Q3xD4h0Xwpo\nt54i8RXkWn6bYRNPc3M7BUjRRkkk/oOpPAr+fb9r/wDa71b49a23hnwrLPY+CLCT9zA3ySX8q/8A\nLecA/d/uIeg5PJ4Z+11+1/rfx81V/C/hsyaf4JsJy1vDyst86cCafnp3ROi9Tk9PiCvyvibiZ4lv\nC4V+51ff/gfmf334G+BsMjjDPs+hfFvWEHqqafV/3/8A0n12KKKK+IP6iCiiigAooooAKKKKACii\nigAooooAK/YP/glP0+JH10f/ANu6/Hyv2D/4JT9PiR9dH/8AbuvpOEv+RrS+f/pLPxf6Qn/JA4//\nALh/+nYH7A0UUV+0H+Y4UUUUAFFFFABRRRQAUUUUAFfgx/wVk/5K34O/7F5v/SqWv3nr8GP+Csn/\nACVvwd/2Lzf+lUtAH5TUUUUAfbn/AATu/wCTsfCX/XHUv/SOav6ZK/mb/wCCd3/J2PhL/rjqX/pH\nNX9MlABRRRQAUUUUAFFFYPifxPoHgzQL7xR4ovodO0vToWnubmdtqRovX6k9AByTwOaAE8U+KfD/\nAIK8P33inxTfQ6bpWmwtPc3M7bURF/mT0AHJPA5r+b39sP8AbE1/9ozXzoWhGbTfA+myk2dkTtku\n3XgXFwBwWP8AAnIQe+TTv2xf2w/EH7RPiGTQNAkl0/wLpsx+xWfKPeOvH2i4APJP8CdEB9cmvh6g\nAooooAK/ST9iX9iK/wDjTeW3xK+I8L2ngi1mzBbNlJdWkjI+VemLcHhnH3uVXuQ/9iH9iS7+M99D\n8SPiZazWvgm1fda25zHJq0qEcDjItxjDsMbjwp6kf0Gabpun6Pp9vpWlW8VpZ2kawwQQqEjjjQYV\nVUcAAdAKADTtOsNI0+20rS7eO1s7SJIIIIlCRxRxjaqqo4AAGAKu0UUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9b9Fv8Agon/AMmx6v8A9hLTf/Rwr+eGv6Hv+Cif/Jse\nr/8AYS03/wBHCv54a/JOOP8AkYr/AAr82f6H/RZ/5I6p/wBfp/8ApMAooor44/pEKKKKACiiigAo\noooAKKKKANHSP+QtZf8AXxF/6GK/rosP+PG2/wCuSf8AoIr+RfSP+QtZf9fEX/oYr+uiw/48bb/r\nkn/oIr9H4A/5f/8Abv6n8XfS63yv/uL/AO4y3RRRX6Kfxgfz4f8ABR//AJOUuv8AsEaf/wCgNXwV\nX3r/AMFH/wDk5S6/7BGn/wDoDV8FV+FZ9/yMa3+Jn+r/AIT/APJG5Z/15h+QUUUV5B+ghRRX1r+y\nz+yp4o/aJ8QG5kL6Z4T06VRqGpFeXIwTBBnhpSOp6IDk9gejC4Wriaqo0VeTPHz/AD/AZLgKmZZn\nUUKUFdt/gkt23sktWxf2Vv2WPE37QniiO4uo5rDwfYSj+0tSxt37efIgJGGlbueiDk9gf6J/B3g3\nwz4A8OWXhPwhYQ6bpdhGI4YIV2gY6sx6szHlmOSTyaTwZ4N8OfD/AMM2HhHwnZR2Gl6bEsMEMYxw\nOrMf4mY8sx5JOTXUV+zZFkVLLqXeb3f6LyP80fFfxXx/GWPu7wwsH7kL/wDk0u8n9yWi6tlFFYni\nTxJofhDQ73xL4lvItP0zT4mmubiZtqIi9ST69gByTwK92UlFXex+U0qU6s1TppuTdklq23skh3iH\nxDonhTRbvxF4jvYdO02wiaa4uZ2CRxovUkn9B1J6V/Pl+13+11r3x316bw14ZnmsPBFhKVt7dSUa\n/ZDxPOO4PVEPCjk81H+13+11rHx+1r/hHvDZn07wXp8h8i2LbXvZFPE84H/jifwjnrXxLX5VxNxM\n8S3hcK/3fV/zf8D8z+/PA7wNhkUIZ7nsL4tq8YPVUl3f9/8A9J2WuoUUUV8Sf1AFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFfsH/AMEp+nxI+uj/APt3X4+V+wf/AASn6fEj66P/AO3dfScJf8jWl8//\nAEln4v8ASE/5IHH/APcP/wBOwP2Booor9oP8xwooooAKKKKACiiigAooooAK/Bj/AIKyf8lb8Hf9\ni83/AKVS1+89fgx/wVk/5K34O/7F5v8A0qloA/KaiiigD7c/4J3f8nY+Ev8ArjqX/pHNX9MlfzN/\n8E7v+TsfCX/XHUv/AEjmr+mSgAooooAKKKwvE3ibQfBug33ifxPfQ6dpenQtPc3M7bUjRRySfXsA\nOSeBzQAnijxRoHgvw/feKfFF9Fp2labC091czttSONRkk+pPQAck8Dmv5wP2xv2xNe/aJ8QNoHh9\n5tO8DabMfsdpkq9668C4uAOpP8CchB75NP8A2xf2x/EH7RGvP4d8PNLpvgbTpj9ktMlXvnQkC4uA\nMdRyidEHqea+GaACiiigAr9K/wBiP9iHUfjBqFp8TfiXayWngm1kEtrbSAq+ruh6DuLcEfM38f3R\n3Id+xD+xDd/GO7t/ib8TIJLXwZayhrW0cFJNXdD2PBFupGGb+PoO5H9A+n6fY6TY2+maZbx2tpax\nrDBBCoSOONBhVVRwABwAKADT9PsdKsYNM0y3itLS1jWKCCFBHHHGgwqqq4AAHAAq5RRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//X/Rb/AIKJ/wDJser/APYS03/0\ncK/nhr+h7/gon/ybHq//AGEtN/8ARwr+eGvyTjj/AJGK/wAK/Nn+h/0Wf+SOqf8AX6f/AKTAKKKK\n+OP6RCiiigAooooAKKKKACiiigDR0j/kLWX/AF8Rf+hiv66LD/jxtv8Arkn/AKCK/kX0j/kLWX/X\nxF/6GK/rosP+PG2/65J/6CK/R+AP+X//AG7+p/F30ut8r/7i/wDuMt0UUV+in8YH8+H/AAUf/wCT\nlLr/ALBGn/8AoDV8FV96/wDBR/8A5OUuv+wRp/8A6A1fBVfhWff8jGt/iZ/q/wCE/wDyRuWf9eYf\nkFFFfWP7Lf7LHiv9oXxNHO0clh4SsJl/tPUiMbgOTBBn70rDjjhAcnsDwYXC1cTVVGiryZ9Tn2fY\nDJcDUzLMqihSgrtv8l3b2SWrYv7Kv7LniH9ojxXuuBLp/hPTXVtT1ELjf0P2eEkYMrjv0QcnsD/R\nN4I8D+F/hz4YsfB/g6wj07StPj8uGGMfmzE8s7HlmOST1qXwb4N8NfD/AMN2PhLwjYxadpenRCKC\nCIYAA6sx6szHlmPJPJrp6/ZciyKll1LvN7v9F5fmf5peLHixj+Msfd3hhYP3Kd//ACaXeT+6K0XV\nsoorC8TeJtB8HaFe+JvE17Fp+mafE01xczNtREX+ZPQAck8DmvelJRXNLY/KKVKdWap0k3JuyS1b\nb2SRL4g8QaN4V0W88Q+IbyKw06wiae4uJmCpGiDJJJ/QdSa/nr/a1/a88QfH3WJfDmgPLp3giymz\nbWn3ZLx0PE9xjrnqqdF+vNM/a6/a11r4++IZNB8PSzWPgjTpf9EteUe8dePtE4zzn+BDwo9818VV\n+VcTcTPEt4XCv3Or/m/4H5n9++B3gbTyKEM9z2CeLavGL2pf/b/+k7LW7CiiiviT+nwooooAKKKK\nACiiigAooooAKKKKACiiigAooooAK/YP/glP0+JH10f/ANu6/Hyv2D/4JT9PiR9dH/8AbuvpOEv+\nRrS+f/pLPxf6Qn/JA4//ALh/+nYH7A0UUV+0H+Y4UUUUAFFFFABRRRQAUUUUAFfgx/wVk/5K34O/\n7F5v/SqWv3nr8GP+Csn/ACVvwd/2Lzf+lUtAH5TUUUUAfbn/AATu/wCTsfCX/XHUv/SOav6ZK/mb\n/wCCd3/J2PhL/rjqX/pHNX9MlABRRWH4k8SaF4P0K+8TeJb2LT9M06Fp7m5nYKkcaDJJJ/QDkngU\nAHiXxLoPg7Qr3xN4nvodO0vToWnubmdgkcaKMkknv6Ack8Cv5w/2yP2xtd/aH19/DnhuSbT/AAJp\n0v8Aotofle+kQkC4uAPX+BDwo5+9ml/bJ/bG1v8AaI15vDfhp5tP8C6bMTaWx+SS+kXgXFwP/QE6\nKOvNfC1ABRRRQAV+mP7D37EV58Xr+2+J3xQs3g8FWr77Szk3Rvq0i9PQi3U/eb+MjaOMmn/sRfsP\nXvxcu7T4o/E+2e28FwSeZZ2b/LJqzoe46rbgjlv4+g4ya/oDs7O10+1hsbGFLe3t0WOKKNQqIiDC\nqqjgADgAUAM0/T7HSrGDTNMgjtbS1jWKGCFQkccaDCqqjAAAGABVyiigAooooAKKKKACiiigAooo\noAKKK83+KfxZ8B/BnwpceMviDqcem6fD8qA/NNPKekcMY+Z3PoOnU4HNAHo7MqKXchVAySeABXx1\n8Zv26PgF8GpZdMvNXPiHWYiVbTtG23Low7Sy7hFGc8EFtw9K/HL9pn9u74mfHS5u/D3h2aXwz4OL\nMiWNs5W4u4weDdSrgnI58tcIOh3da+EySTk8k0Afq349/wCCrXxN1SWWD4eeGNM0O3OQk18z31xj\nscAxRg+xVhXznq3/AAUE/au1bIPjP7IpOdtpY2kWPoREW/Wvi+igD6j/AOG1f2pC+/8A4WHqufTM\nePy2Yrq9J/4KBftXaSVC+NDdqP4buxtJc/UmHd+tfGNFAH6seAf+CrPxS0mWOH4h+GtL162GA0tk\nXsLn3P8Ay0jJ9tq1+kHwY/bq+AXxlkh0y21c+HdamIVdO1nbbs7ntHLkxSZPQBgx9K/mHpQSDkcE\nUAf2fKysoZSCDyCOQRS1/Nz+y/8At5fEX4I3tp4b8YXE/ibwXuWN7Wd/Mu7JOm62kY5wv/PNjtI4\nG3rX9BXw3+Jfgr4teFLTxp4C1OLU9Lux8sicPG4+9HIh+ZHXurAH8KAO8ooooAKKKKACiiigD4U/\naQ/bz+G/7PniWHwYlhN4o1tV331tZzpElkCMqsjsrDzG67AMgcnGRn5t/wCHtvhL/onmo/8Agxi/\n+NV+an7Y/wDyc98Rf+wzJ/6AtfM9AH7iD/grb4SJA/4V7qHP/URi/wDjVfrJ4d1mDxHoGm+ILVSs\nOp2kF5GpOSEnQOBnvgNX8a9f1n/s06uNb/Z8+HuqFs7/AA5p6lj/ANMoVjP/AKDQB7jXz/8AGv8A\nac+D3wEsWm8d61GNQZN0GlWmJ7+b0xED8oP95yq+9fCH7Y//AAUIi8Hz3nwx+Bd1Fc6xHug1HXVx\nJFZuMhorbPyvKO78qvQZPT8P9W1fVNe1K41jWrua+vruRpZ7i4cySyOxyWZmJJJNAH6qfE3/AIKs\nfEDVZpLT4V+HLLQrXJCXWpE3t0R2OwbIkPsd/wBa+W9Y/b1/as1py0vjme1U9Es7W2twP++IgfzN\nfH1FAH1Rb/ttftTWzB0+IWpsR2kETj8mjNdvpX/BRL9q7TCvmeKoL9VP3brTrRs+xKRI3618QUUA\nf0W/sK/tX/Er9pO48SWPjnTNMgj8PW9qwu7BJImlluWcBXRndR8qMeMfSv0Tr8qv+CUPhv7D8JfF\nnih0w2qa4tsreqWcCnH4NKa/VWgAooooAKK+dPj7+1F8K/2c7CCTx3dzvqN9E8tjptpEZLi4CHBI\nPCIueNzsPbNfi18bP+CkHxr+JEtxpngaRfBOiPlVWyO+/dOnz3JAKk/9MwuOmT3AP3v8dfFb4bfD\nOxOoePfEmm6JCBkC7uESR8dkjzvY+yg18K+P/wDgqH8BvDTyW3g+y1XxXOmQskMQs7ZiP+mk+JMe\n4jNfz86lqmp6xdyX+rXc97czMWkmuJGlkdj1LMxJJ+tUKAP1g8U/8FYfides6eD/AAfo2lxnIVr2\nSa8kA7H5TCufwIrxXUP+Ck37VF65a31rTbJT0WDTICB+Mgc/rXwTRQB9t/8ADxD9rLOf+Euh+n9m\nWWP/AETWzp//AAUl/aospFefW9OvVHVJ9MgAP4xqh/WvguigD9ZvB/8AwVi+I1i6R+OPB+k6rEMB\nn0+WWykx9HM65/IV91fCj/gol+zz8SpYNN1W/n8I6nMQoh1hQkBc8YW5QmP/AL7KV/NfRQB/Zxa3\ndrfW8d3ZTR3EEqho5YmDoynoQwyCD7VYr+WX9nX9rf4o/s8azEdGvJNU8Ou4+16HdyM1u6k8tFnP\nkyY6MvHqCK/o3+B/xz8CfH7wVD408DXJeMMIry0lG24s7jALRSr688MMqw5BoA9jooooAKKKKACi\niigArF1/xH4f8KaXNrXibUbXSrC3UtLc3kywxIB6s5Ar5I/as/bM8E/s46a2j2gj1vxncx7rXSlf\nCQKwOJrlhnYnov3n7YHI/nt+L3x0+Jvxx8QP4h+IWszXzZPkWikx2lshP3IYR8qgeuCx7k0Aft58\nU/8Agp18EPBks+neBrW98ZXsRKiW3H2Wx3Dj/XSDew91jIPY18OeMP8Agqb8ddZkdPCek6J4egJ+\nU+U97OB7tKwQ/wDfuvzJooA+zdT/AOCgP7V+pk7vGrWyn+G2sbSLH4iHd+tcq/7an7UjtvPxD1YH\n2MYH5BMV8uUUAfXOn/t2/tWacwaHx7dyY7T29tOP/IkTV6PoX/BS79qHSZUfUNR0rWEXql3p0aBv\nqYPKP5V+f9FAH7L+Cv8AgrTeK8cPxD8CRunAe40e6KsPUiGdSD9PMH1r7d+G37e37NXxIMdsniQe\nH76QgC11tPsnJ9JSWhP/AH3mv5i6KAP7NbK/sdSto73TriK6t5VDRywuJEZTyCGUkEGrdfyK/DX4\n3/Fb4Q6imo/D7xLfaSVYM0CSl7aXHaSB90bj6rX9R3wG+JQ+L3wh8LfERozFNrFhHJcIVKhbhMxz\nbQf4fMVtp7jFAHrlFFFABRRRQAUUUUAFFFFABRRRQB//0P0W/wCCif8AybHq/wD2EtN/9HCv54a/\noe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8ACvzZ/of9Fn/kjqn/AF+n/wCkwCiiivjj+kQo\noooAKKKKACiiigAooooA0dI/5C1l/wBfEX/oYr+uiw/48bb/AK5J/wCgiv5F9I/5C1l/18Rf+hiv\n66LD/jxtv+uSf+giv0fgD/l//wBu/qfxd9LrfK/+4v8A7jLdFFFfop/GB/Ph/wAFH/8Ak5S6/wCw\nRp//AKA1fBVfev8AwUf/AOTlLr/sEaf/AOgNXnH7LP7Lvib9obxWhljmsPCdhIDqep7cAgc+RCTw\n0rdOMhByewP4jmmFq4nNqtGirycmf6j8C59gcm8P8BmWZVFClChBtv8Aw7Lu3sktWx/7LH7LPiT9\norxKzu0mm+FdNdf7S1LbkknkQQZ4aVh+Cjk9gf6KPBHgnw18OvC2n+DvCNklhpemxCKGJBzx1Zj1\nZ2PLMeSTSeCPA3hb4c+GbPwj4N0+LTdLsU2RQxDGT3dj1Z2PLMeSa6yv0/IchpZdS7ze7/ReX5n8\nKeLPixjuMsf1hhYP93T/APbpd5P7orRdWyiiivfPyMwvE/ibQvBugX3ifxNeRWGmadC09zcTHCIi\n/wAyegA5J4Ffz1ftbftca7+0DrX9haIJdN8GadMxtbXcQ944OBPcAcZx9xOQoPrmv0B/4KU+CviP\nrfw60/xP4b1G4k8NaPIf7a0mLhDvI8u6bby6oflIOQuQw7mvwsr804zzfEKp9RiuWFrv+9/wD+4P\noz+HWTywK4prTVXEXcYrpSa7p/ba1vsk1be4UUUV+fH9gBRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFfsH/wAEp+nxI+uj/wDt3X4+V+wf/BKfp8SPro//ALd19Jwl/wAjWl8//SWfi/0h\nP+SBx/8A3D/9OwP2Booor9oP8xwooooAKKKKACiiigAooooAK/Bj/grJ/wAlb8Hf9i83/pVLX7z1\n+DH/AAVk/wCSt+Dv+xeb/wBKpaAPymooooA+3P8Agnd/ydj4S/646l/6RzV/TJX8zf8AwTu/5Ox8\nJf8AXHUv/SOav6SPEniTQfB+hXviXxNfQ6bpenxNNc3Vw4SONF7kn8gOpPA5oAd4j8R6H4S0O98S\neJL2HT9M06Fp7m5nYJHHGgySSf0HUngV/OL+2R+2Tr37QuuyeGPDUkuneBNOmP2W2yUkv3TgXFwP\n1ROijk/N0f8Atl/tk63+0Jrz+GPC0k2neBdOlIt7fJR9QkU8XFwB24/dofujk8nj4QoAKKKKACv0\n3/Ye/Yfufi5dW/xQ+KVrLbeDraQPY2bgo+rSIe/cWwI5I++eBxk1+e/gDWPD/h/xvoWt+K9MXWdG\nsb+3nv8AT3JAubdHBkj4I6rn2Pfiv64fAHiPwn4t8F6N4h8CywS6De2kUlgbYBYlh2gKgVeFKY2l\neNpGO1AHTWNjZ6ZZwadp0Edta20axQwxKEjjjQYVVUYAAHAAq1RRQAUUUUAFFFFABRRRQAUUUUAF\nFFISAMngCgDgfif8SvCvwi8Ean4+8ZXQttN0yIu39+WQ8JFGP4pHbhR/TNfzCftIftF+Mf2jfHUv\nijxCxtdNt8xaXpaOTDaQZ49mkbq74yTx0AA+jf8AgoR+0zN8X/iJJ8PPDF2W8I+FJ2iHltmO91BM\nrLMccMseSkfbGT/FX52UAFFFSwQT3U0dtbRtLLKwRI0BZmZjgAAckk9AKAIqK/Un9nf/AIJoeMvH\n9ha+K/jBey+FNKuAJItNijB1OVD0Lh/lgBHQMGb1UV+nnhH9hT9l3whbRwxeCrXVZUAzPqryXkjn\n1IdtnPsoFAH8vVFf1ln9mL9ncxeQfhv4Z2Yxj+zIP/ia8v8AGn7Bf7L/AIys5YP+EPh0WdwQtzpE\nj2siMe4UExnHoUI9qAP5hKK/Rn9pn/gnl48+DVlceMPAFxL4t8Mw5adUixqFnH13SRpkSRr3dMY6\nlQOa/ObpwaACvqr9lL9qDxN+zZ43GoQb77w1qbpHrGmbuJIwcCaLss0YJIPRh8p9R8q0UAf2PeEv\nFeg+OfDWm+LvC92l9pWrW6XNrPGch43GfwI6EHkEEGuir8Pv+CY37R0+m61N8APFV2TY6hvuvD7S\ntxFcjLTWy56CUZdR/eB7tX7g0AFFFFABRRRQB/Kv+2P/AMnPfEX/ALDMn/oK18z19Mftj/8AJz3x\nF/7DMn/oK18z0AFfpHrn7aN54Y/ZG8FfBT4fXbweIbiwuLfWr6MlXsrRbiZEhjPUSzRgEkfdQ8ct\nx+blFACkliWY5J5JPekorovCvhLxN431y28N+EdMudX1O7YJDa2kZlkY+uAOAO5OAByTQBztFfrt\n8Hf+CVviXWbaHV/jNr66GsgDf2XpYW4uhntJM37pD7KH+tfa2h/8E2/2WdJt1ivNF1DVpFHM15qM\nwY/hCYk/8doA/mzor+kzV/8Agm1+yxqcRjtdF1HTHIx5lrqU5Ye+JjKv6V5VB/wSn+Dlv4ms9T/4\nSTW59Hhk33GmzeVunUdE89FRlB/iwuSOhHWgD3X/AIJ8+G18OfsreEmK7ZNVa81Fz/e8+dwp/wC+\nFUfhX2pWF4Y8M6F4N8P2HhXwzZx2GlaXAltaW0WdkUSDAUZJP4k5NbtABRRRQB+bH/BTb4Qv45+C\n9t8QNNjL6h4JuDPIFGS1hdbUm9/kYI/sAa/nmr+yfxFoOmeKdB1Hw3rMK3FhqlrNaXMTch4plKMP\nyNfyQfF/4d6j8J/ib4j+HmqKwm0S/lt0ZhjzIc7oZB7PGVYfWgDzeitvQPDXiHxXqUej+GNMu9Wv\npfuW1lA9xK30RATX3r8Kv+Canx78epFqHi0WvgvT5MH/AImB828KnuLeInB9nZTQB+d9Ff0I+A/+\nCXPwI8PJFN4yv9W8UXKgb1eUWVsx74SH95j/ALaGvpfSP2OP2YdERUtPh1osu0feuoTdMfqZmegD\n+Veiv6y5f2Yv2d5o/Kk+HHhkr6f2ZAP/AGSvI/HP7AH7MPjWylgg8LL4fuXB2Xejyvbujeuwloj9\nClAH8yFFfcP7VP7EPjj9nT/ipNNnbxH4Pmk2DUY4istoxPypdIMhc5wrg7WPHBwK+HqACvpz9lP9\nonW/2dfidaeIYZJJdA1BktdbsgflmtmP+sA/56RZ3IfqOhNfMdFAH9mOlapYa3plprOlzLcWd9BH\nc28yHKyRSqGRge4KkEVfr8//APgnB8VZviH+z7beH9SnM2o+DbltKbccsbTAktj9AhMY/wByv0Ao\nAKKKKACvm79qj4+6b+zv8J7/AMYyBJtXuibLRrVj/rryQHaxH9yMZdvYY7ivpGv53P8Agpp8Urvx\nj8eP+EEgmJ0zwbaR26xA/Kby6VZpnI9dpRP+A0AfAHijxPr3jPxBf+KfE95LqGqanO9xc3EzbneR\nzk/QDoAOAOBxWDRRQAUV6P8ACz4UeOPjL4vtfBXgHTnv9QuTlj0ht4s/NLM+MJGvcn6DJIFftP8A\nCX/glp8MdAtIb34s6rd+JtRIDSWlm5s7FG7rlf30mPXcmfSgD8EaK/qo0j9jj9mHRYlitfh1osu0\nY3XUJumP1MxcmumP7Mv7PLJ5Z+HHhkr6f2ZB/wDEUAfyY0V/VHrH7GX7L+txtHdfDvR4dw+9aRta\nsPoYWSvnDxv/AMEufgJr6yy+Er7WPDM7A7FjmF5bqe3yTAuR/wBtKAP566K/Sr4m/wDBMH44+EY5\nb7wPeWHjG0TJEcDfY7wr6+VKdhPsshPpXwJ4w+H/AI4+H+oHS/G+g6hod0CcR31u8BbHGVLABh7r\nkUAX/hZ4B1P4pfETw/8AD7R+LnXb+G0DYyI0Y5kkPsiBmPsK/re8HeFdJ8D+FNJ8H6FEIdP0azhs\nrdAMfJCoUE+5xknuTX4w/wDBLD4Kf2lr+t/G/WrbMGlqdL0dnXg3MoBuJF90jITP+2a/cKgAoooo\nAKKKKACiiigAooooAKKKKAP/0f0W/wCCif8AybHq/wD2EtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/\nAEcK/nhr8k44/wCRiv8ACvzZ/of9Fn/kjqn/AF+n/wCkwCiiivjj+kQooooAKKKKACiiigAooooA\n0dI/5C1l/wBfEX/oYr+uiw/48bb/AK5J/wCgiv5F9I/5C1l/18Rf+hiv66LD/jxtv+uSf+giv0fg\nD/l//wBu/qfxd9LrfK/+4v8A7jLdFFFfop/GB+Tfx+/ZZ8WftE/tbXTpu07wtp+maaNS1Nl/2STD\nBkYeVh+Cjk9gf068FeCvDPw88MWPhDwjYx6fpenRCKGGMY+rMerOx5ZjyTXU4AyR360tebg8ro4e\nrUrxV5zbbf6eh9txLx7mec4DB5VXlbD4aEYxitm0rOT7yf4LRdWyiisnXdd0jwzo954g1+7isdO0\n+F57m4mbakcaDLMSfb869FtJXZ8ZTpzqTUKau3okt2zWorD8M+JdD8Y6BYeKPDd3HfaZqUCXFrcR\nn5ZI3GQfUHsQeQeDW5RGSkrrYdWlOlN06iaknZp6NNbpruUNV0vT9b0260fVoEurK9heC4gkG5JI\npAVZWB6gg1/Nf+1l+zvqP7PvxHl06BWl8N6u0l1o1ycn91n5oHP/AD0hyAfUEHvX9L9eCftG/ArQ\nvj98N7zwhqYWHUIQ1zpV5j5ra8VTtOeux/uuO4PqBXz3EmSrH4b3F+8jqv8AL5/mfsHgr4mT4Rzp\nPESf1WraNRdu015xvr3jdb2P5dqK6DxV4X1vwV4j1Hwp4jtns9T0u4e2uYXGCrocH6g9QehBBrn6\n/F5RcW4y3R/pxRrU61ONWk04ySaa1TT2a9QoooqTQKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACv2D/4JT9PiR9dH/8Abuvx8r9g/wDglP0+JH10f/27r6ThL/ka0vn/AOks/F/pCf8AJA4//uH/\nAOnYH7A0UUV+0H+Y4UUUUAFFFFABRRRQAUUUUAFfgx/wVk/5K34O/wCxeb/0qlr956/Bj/grJ/yV\nvwd/2Lzf+lUtAH5TUUUUAfYf7CHiHRPCf7S3h7xH4jvYdP0zT7PVZ7m5nYJHHGllMSST/wDrJ6V1\n37ZX7Zmt/tC6y/hXws02m+BdPmzBbk7Zb+RDxPOB27onRep56fB4JHQ4zxSUAFFFFABRXe6j8MPH\nukeBNO+JepaLdW3hrVrqSzs9QkTEUssY3EDvgjO1sYYggE4NcFQAV+p//BN/9qBPAXic/BTxreFN\nB8QTBtIllPyWmouceWST8sc/T0D4/vE1+WFSRSyQSpNCxSSNgyMpwVYHIIPYg0Af2eUV8HfsHftN\nr8dvhuPD3ie6V/GPhhEgvQxw93a/diuQO5IG2TH8Qz/EK+8aACiiigAooooAKKKKACiiigAr5M/b\nU+NCfBT4Da5q9pL5es60h0fStpwwuLpWDSDuPKjDPn1Ar6zr8B/+CpnxPl8Q/FrR/hnaTbrLwtYC\n4nRTx9tvsMc+6xBMem40AflwzM7FmJJJySepJpKKKACv3H/4J2fsh2ujaTa/Hr4j2KTajfosvh6z\nnTP2WA5/0plPHmSf8s/7q/N1Ix+Xn7LPwnT40/HTwv4Fu42k06a5+1alt4xZ2oMkoJ7bwoT6tX9W\nlpa21jaw2VnGsMFvGsUUaDCoiDCqAOgAGBQBYooooAKKKKAGuiyKUcBlYEEEZBB7Gv56P+CiX7MV\nr8I/GsHxL8F2a23hbxRKyzQRDEdnqOCzqB0WOYZdAOAQw4GK/oZr55/aq+GNr8WvgL4u8JSxCS6F\nhJfWBxyt5ZgyxEHtuK7T7MaAP5RaKVlKsVYYIOCPpSUAdD4T8Sal4O8T6V4r0eRob3SLyC9gdTgi\nSBw4598YNf12fDrxrpnxG8CaD460dt1prlhBexjqV81AWU+6tlT7iv48q/oh/wCCYfj2XxR+z9N4\nWu5N83hTVZrSME8i2uAJ4/yZnA9hQB+j9FFFABRRRQB/Kv8Atj/8nPfEX/sMyf8AoK18z19Mftj/\nAPJz3xF/7DMn/oK18z0AFFFFAHoXwt+GHi74w+NtO8BeCbQ3Wpai+ATkRQxj78srYO2NByx/AckC\nv6Zv2av2YfAn7OPhKHTdFgjvPEF1En9q6w6AzXEuMsqE8pCp+6g+pya8Q/4J7/s52/wi+FUPjnXr\nUL4q8XxJdSs6/vLWwb5oIBnkFh+8fpyQD92v0HoAKKKKACiiigAooooAKKKKACvmv4xfsk/Av45X\n51rxzoAOrsEDanZSNbXTrGAFV2Q4cBRgbgSB0r6UooA81+G/wf8Ahp8I9KXR/h54estGhChXeCMG\neXHeSZsyOfdmNelUUUAFFFFABRRRQBh+JvDejeMPD+oeF/ENsl5puqW8lrdQSDKvHKCpH154PY81\n/Jl8cvhnc/B74teJ/hxcuZBot88UEh6yW7gSQMfdomUn3r+umv55f+Co/hmHRv2hbLW4E2/27oNr\ncSEfxSQPJAT9dqLQB+bNFFFAH6v/APBJ/wAWyWPxO8X+DHc+Tq2jx3qL282ylC/qkx/Kv3hr+bn/\nAIJq6g9l+1JpUCnAvNL1GBvcCLzP5pX9I1ABRRRQAV/Jz+1Hqkus/tFfES/mJLN4hvo+fSGQxgfg\nFFf1jV/J/wDtVaRJof7R3xF0+UEFfEF5KM91nfzQfxD0AfP9FFFAH9AX/BLHwTpGlfBPVvG8cSHU\n9c1ia3lmx84t7NUEceeoG5mbHvX6fV+Jv/BL79oHQtEXUvgT4nuUtJtRvDqOiSSttWaZ0VJrfJ4D\nkIrIO/zDrjP7ZUAFFFFABRRRQAVzfijwd4U8baXJovi/SLLWbGUYaC9gSdDn0Dg4PuOa6SigDjfA\nXw/8IfDHwzb+D/A2mx6VpFq8skVtESVVpnLucsSxyzHqTxx0FdlRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFAH//0v0W/wCCif8AybHq/wD2EtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCR\niv8ACvzZ/of9Fn/kjqn/AF+n/wCkwCiiivjj+kQooooAKKKKACiiigAooooA0dI/5C1l/wBfEX/o\nYr+uiw/48bb/AK5J/wCgiv5F9I/5C1l/18Rf+hiv66LD/jxtv+uSf+giv0fgD/l//wBu/qfxd9Lr\nfK/+4v8A7jLdFFFfop/GAUUVg+J/E+g+DNAvfE/ie9i0/TNOiaa4uJm2oiL/ADJ6ADkngc0pSUVz\nS2NKNGdWcaVKLcm7JLVtvZJdyTxF4j0Pwlol54j8S3sOnabYRNNcXM7bY40XqSf5DqTwK/n0/a7/\nAGu9c+O+uzeGfDE0th4IsJSLeBSUe/ZTxPOPQ9UQ8KOTzVb9rj9rnWv2gNZ/sHw/52m+DNOkP2e1\nLEPeuDxPOBx0+4nIUepr4pr8q4m4neKbwuFf7vq/5v8Agfmf354HeBkMihDPc+hfFvWMHqqS7+c/\n/SdlrqfqT/wTs/aR/wCEW19vgp4xvdmkau5k0WSZvlt75iMwAngLP1UdN4/2q/buv5Aba4ns7iK7\ntZGimhdZI5EO1kdTkEEcgg9K/o5/Yw/aKj+PHw1SDWpUHirw8EtNTTPzToBiO5A9JACG9HB9RXr8\nGZ3zx+oVnqvh9O3y6eXofnn0l/C/6tX/ANbMuh7k2lVS6S2U/SW0v71n9o+xaKKK+/P5CPy2/wCC\nhf7MjeLtHb42eCbPfrGlRBdaghX5rmzjHE+B1eEcN3Kf7tfiJX9f80MVzDJb3CLJFKpR0YZVlYYI\nI7giv50f20f2arj4D+PjquhRM3hHxDJJNpzgcWsudz2rH/YzlPVPcGvzTjLI+SX1+itH8Xr3+fXz\nP7h+jT4pfWaK4TzOfvwV6LfWK1cPWO8f7t10R8XUUUV+fH9fhRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAV+wf8AwSn6fEj66P8A+3dfj5X7B/8ABKfp8SPro/8A7d19Jwl/yNaXz/8ASWfi/wBI\nT/kgcf8A9w//AE7A/YGiiiv2g/zHCiiigAooooAKKKKACiiigAr8GP8AgrJ/yVvwd/2Lzf8ApVLX\n7z1+DH/BWT/krfg7/sXm/wDSqWgD8pqKKKACiiigAr9K/wBiX9h/UvjDfWfxM+JdtJZ+CbeQS2ts\n/wAsmrujdB3W3BHzN/F0XuRZ/Yi/Ydu/i9cW3xP+KFvLa+DraVXs7J1KPq7KefQrbgjk/wAfQcZN\nf0A2FhZaVZQabpsEdraWsaxQwwqEjjjQYVVUcAAcACgDzP4n/BzwX8UfhfqHwq1eyhg0i5tRBarB\nGqCzkiH7mSFRgKYmwRjtx0Nfyu/Fn4X+KPg54+1X4feLoDDfaZMVV8fJPCeY5oz3SRcEfkeRX9fN\nfnT/AMFBf2XT8ZvAw+InhKDd4t8K27t5aLlr6wXLvDx1ePl4/Xle4oA/nVopWVlYqwIIOCD1BFJQ\nB6h8G/ix4n+CnxC0r4heFJilzp8o82HJEdzbscSwyAdVdePY4I5Ar+rL4YfEjwx8WvA2lePvCNyt\nzp2qwLIuD80UnSSJx2eNsqw9RX8ftfor/wAE+v2oJPg94+X4deLLrZ4R8UzrHvlbCWF+3yxzDPAS\nQ4SToOjdjQB/RXRSAhgGU5B5BHeloAKKKKACiiigAooooAQkAZPQV/Jn+0x4s/4Tf4/ePfEqyGSK\n51y7SFs5/cwOYowPYIgr+qvxfqw0DwnrWuN007T7q6P/AGxiZ/6V/HXe3Ml7ez3kzFnnleVmPUs5\nJJ/M0AVaKKKAP2N/4JM+Bop9X8cfEa4iBa0htdItZCOhmJmmwfokefrX7Z1/IN4N+MHxS+HdhNpf\ngXxVq2g2lxL58sGn3Ulujy7Qu9ghALbQBn0Fdh/w1B+0T/0UbxL/AODKf/4qgD+smiv5Nv8AhqD9\non/oo3iX/wAGU/8A8VR/w1B+0T/0UbxL/wCDKf8A+KoA/rJor+Tb/hqD9on/AKKN4l/8GU//AMVR\n/wANQftE/wDRRvEv/gyn/wDiqAP6yaZLGk0TxSAMrqVIPQgjBFfyc/8ADUH7RP8A0UbxL/4Mp/8A\n4qj/AIag/aJ/6KN4l/8ABlP/APFUAeb/ABB0oaH498SaKBtFhq19bAegimdR+grkKuahqF9q1/ca\npqc8l1d3crzTzysWkkkkJZmZjySxOSap0AFfr3/wSV8QvD4v8e+FWc7LvT7O+Ve263laMkfhLz9K\n/ISv0x/4JXXTRftB6vag/LP4auif+AT2+P50Af0H0UUUAFFFFAH8q/7Y/wDyc98Rf+wzJ/6CtfM9\nfTH7Y/8Ayc98Rf8AsMyf+grXzPQAV9D/ALKfwwX4vfHvwl4NuYvNsHvReX69vsloPOkB9mC7P+BV\n88V+on/BKfw+L/42+IvELjI0rw+8a8dHup4gD/3yjD8aAP35ijjhjSGJQiIoVVUYAUcAAegFPooo\nAKKKKACiiigAooooAKKKKACiiigAorz7x38V/ht8MrI3/j7xJp2hxAZAu7hUkf8A3I873Psqmvh3\nx1/wVB/Z/wDDTvb+FbXVvFMy5w9vALW3JH/TScq/5RmgD9I6K/EXxH/wVs8QzBk8JfD+zteu19Qv\n3nP12xRxY/76NeKaz/wVC/aR1EkadFoGlqenk2LSMPxllcH8qAP6JaK/mYvP+Chv7V94xP8Awl0c\nAPaHTrRAP/IRNc9P+3X+1XcZz4+vEz/zzgtl/lFQB/URX4Uf8FaI1HxH8DSj7zaLcqfotxx/OvjO\n4/bO/aiuv9b8RdY/4A0af+goK8e8efE/4g/E+8ttQ+IOv3uvXNnG0UEl7KZWjRjuKrnoCeaAODoo\nooA+5P8AgnQT/wANW+GP+vbUv/SWSv6XK/mj/wCCdH/J1vhj/r21L/0lkr+lygAooooAK/nv/wCC\nnnwnvPCfxpt/iTawH+y/GFpGXlA+Vb60URSKT6tGEYevPpX9CFeFftGfA7Qv2gvhdqXgHVysNy4+\n0abeEZNrexg+XJ67Tkq47qTQB/JpRXafEH4f+Kvhf4u1HwR4zsZLDVdNlMcsbjhh/C6HoyOOVYcE\nVxdAE9tc3NlcR3dnK8E8Lh45Y2KOjqchlYYIIPQiv1L/AGcf+Cl/i3wNBbeFfjVbz+JtIiCxxarC\nR/aUCDj94GIW4AHclX92r8raKAP62fhZ+0J8HvjNarP8PfE1lqM5UM9kz+TeR+zQSbZBj1AI969n\nr+Muw1C/0u7jv9MuZbS5hYNHNA7RyIw6FWUgg/Q195/CD/go38fPht5Gn+JrmLxppMWFMWqZF2FH\n9y6Qb8+8gegD+kGivz1+Ef8AwUk+AvxDMVh4skn8E6nIQuzUf3lmzH+7cxjaB7yKlffGk6xpOv6f\nDquh3tvqFlcKHiuLaRZYnU9CrqSCPxoA0qKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/0/0W\n/wCCif8AybHq/wD2EtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8ACvzZ/of9\nFn/kjqn/AF+n/wCkwCiiivjj+kQooooAKKKKACiiigAooooA0dI/5C1l/wBfEX/oYr+uiw/48bb/\nAK5J/wCgiv5F9I/5C1l/18Rf+hiv66LD/jxtv+uSf+giv0fgD/l//wBu/qfxd9LrfK/+4v8A7jLd\nFFFfop/GBheJvE2g+DtCvPEvia9h0/TbCJpri4nYKiIo9+pPQAck8Cv55f2r/wBrnxL+0BrUmh6Q\n8um+CrKbNpY52vdMnSe4x1Y9VTOF+vNex/8ABSv4keL734rw/DN7508O6bY2t5HZx/KklxOGLSSY\n++QOFzwo6ck5/M+vyziziCpVqywNLSMXZ+b/AMvzP73+j74P4LAYGjxTmFqlerFSpq2lOL2fnNrr\n9nZdWFFFFfDH9UhXsfwI+MviL4F/EXTvHOguzRxMIr+1zhLuzcjzIm9yBlT2YA145RWtGtOlUVWm\n7Nao4syy7DZhhamCxkFKnNOMk9mnuf1veDfF2iePPC2l+MPDlwtzp2rW0dzBIpB+WQZ2nHRlPDDs\nQRXTV+GX/BPP9pQ+CPEw+DPi25I0PX586VLI3y2l+/8ABk9En6egfH941+5tfuOS5rDH4ZVo77Nd\nn/Wx/lf4ncA4nhHPKmW1bum/epy/mg9vmtpea7NBXk/xs+Efh742/DvU/APiJdqXab7W4A+e2uk5\nilX/AHT1HdSR3r1iivSq0oVYOnUV09GfEZfmGIwOJp4zCTcakGpRa3TWqZ/Jf8Q/AXiL4ZeMtU8D\n+Krc2+o6VO0MgI+V1H3ZEPdHXDKe4NcXX74/t9fs0S/FXwinxK8IW3meJvDcDefDGPnvbBcsyjHL\nSRcsg6kEjrivwPIKkqwwRwQa/EM9yieX4l0n8L1T7r/NdT/Urwq8Q8PxfkcMfGyrR92pFfZl3/wy\n3j926YlFFFeMfpQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+wf/AASn6fEj66P/AO3dfj5X7B/8\nEp+nxI+uj/8At3X0nCX/ACNaXz/9JZ+L/SE/5IHH/wDcP/07A/YGiiiv2g/zHCiiigAooooAKKKK\nACiiigAr8GP+Csn/ACVvwd/2Lzf+lUtfvPX4Mf8ABWT/AJK34O/7F5v/AEqloA/KaiiigAr9QP2H\nv2HLv4p3dp8U/ivZvB4PgbzLHT5QySaq69GI4It1PU/xkYHGTXzL+xf8PfC3xQ/aM8K+EfGdr9u0\nmZrm4mtixVZTawSTIr45KFkG4dxxX9SltbW9nbxWlpGsMEKLHHGgCoiKMBVA4AA4AoAZZWVpp1pD\nYWEMdtbW8axQwxKESNEGFVVGAABwAKs0UUAFIQCMHkGlooA/nc/4KFfswN8IvHjfErwlalfCfiqd\n5JEjX5LHUXy0kfHCpLy8fYfMo6Cvzir+wD4pfDjw98WvAOtfD7xPEJLHWLZ4C2AWhkIzHKmejxvh\nlPqK/lO+MXwo8UfBT4har8PfFkOy706U+XKB+7ubduYpoz3V159jkHkGgDzClBIORwRSUUAf0Lf8\nE7v2oJviz4Lk+F/jS8EvijwxCgtpZW/eX2nD5Vb/AGnh4Vz1IKk85r9Kq/j1+HXj/wASfC7xrpPj\nzwncm21PSLhZ4mH3XA4aNx3R1yrDuDX9VfwK+MXh346/DTSfiH4dYKt7Hsu7bdl7S7TiWF/dW6Hu\npB70Aev0UUUAFFFFABRRRQB45+0NeNp/wJ+IF4h2tF4b1NgR/wBe71/JFX9Z/wC0yjSfs9fEZF5J\n8M6nj/vw9fyYUAFFFFABRVmOzvJk3wwSSKf4lQkfmBUn9nah/wA+s3/ftv8ACgClRV3+ztQ/59Zv\n+/bf4Uf2dqH/AD6zf9+2/wAKAKVFXf7O1D/n1m/79t/hR/Z2of8APrN/37b/AAoApUVd/s7UP+fW\nb/v23+FH9nah/wA+s3/ftv8ACgClRV3+ztQ/59Zv+/bf4Uf2dqH/AD6zf9+2/wAKAKVfpN/wSz/5\nOPv/APsWL7/0fbV+c39nah/z6zf9+2/wr9Y/+CW/wk8dwfEPVPi3e6c9r4bTSrnSormfMZnuZZYX\nxEpGWVBGdzdAcDr0AP3QooooAKKKKAP5V/2x/wDk574i/wDYZk/9BWvmevpj9sf/AJOe+Iv/AGGZ\nP/QVr5noAK/YP/gkjGv/AAk3xElx8wsNOXPsZJTX4+V+w3/BJH/kYviJ/wBeWnf+jJqAP26ooooA\nKKKKACiiigAooooAKKK+e/2k/wBoTwv+zn8PLjxfrZW41GfdBpOnBsPeXWMgeojTq7Y4HuQCAdb8\nXfjZ8OPgd4afxP8AETVo7CA5Fvbj57q6kAzshiHzOfXsO5Ar8Qvjn/wUt+Lfju8udL+FmPBuhHci\nSoFl1KZDxueVgViJ6gRgEf3jXw78V/i145+NHjC78a+PdQe+vrhiI0yRDbRZ+WKFOiIvYDr1OTzX\nmtAGprGua14hv5dV1+/udRvJm3SXF1K80rk9yzkk1l0UUAFFFbuk+F/EuvOI9D0m+1BicAWtvJMc\n/wDAFNAGFRXt2mfs1/tAayofTvh54kkQ9GOmzop+hdFFdlafsXftR3uDD8O9WAP/AD0EUf8A6HIK\nAPl+ivsS1/YH/atusbfA80Wf+et3ap/OWvDfiz8GfiF8ENft/DHxI05dM1G6tVvIoVninzC7MgYt\nEzAcqeCc0AeW0UUUAfcn/BOj/k63wx/17al/6SyV/S5X80f/AATo/wCTrfDH/XtqX/pLJX9LlABR\nRRQAUUUUAfL37S37Knw+/aS8P/Z9cj/s7xDZxkadrMCAzQnrskHHmxE9VJ46qQa/nf8Ajp+zT8VP\n2ftcfTPG2mO1g7H7Jq1qrSWNymeCsmPlb1RsMPTHNf1g1nato+la9p8+k63ZwX9lcoUmt7mNZYpF\nPUMrAgj6igD+NCiv36+OX/BMX4b+M2udc+Ed63hHVJN0gsZAZtMkc84A/wBZCCf7pZR2Wvyd+Ln7\nIfx7+C++68WeGp7jTUJ/4mWm/wCmWmB3ZowWj/4Gq0AfM9FKQQcHg0lABXrPwy+OnxZ+Dt8L34d+\nJb7SBu3Pbo/mWsn+/BJuib8VzXk1FAH7gfAT/gqNpGqy2/h7486aulzNhBrenIzWxPTM9v8AM8fu\nyFh/sgV+sXhvxR4d8Y6Pb+IPCupW2q6bdKHhurSVZYnB9GUnn1HUd6/jdr3f4GftGfE79n7xCms+\nBtSYWkjg3mlzkvZXajqHjzw2OA64YevagD+smivnH9nH9pjwD+0h4U/tjwzL9l1azRBqmkzEefay\nMOo/vxE52uOD0ODxX0dQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9T9Fv8Agon/AMmx6v8A9hLTf/Rw\nr+eGv6Hv+Cif/Jser/8AYS03/wBHCv54a/JOOP8AkYr/AAr82f6H/RZ/5I6p/wBfp/8ApMAooor4\n4/pEKKKKACiiigAooooAKKKKANHSP+QtZf8AXxF/6GK/rosP+PG2/wCuSf8AoIr+RfSP+QtZf9fE\nX/oYr+uiw/48bb/rkn/oIr9H4A/5f/8Abv6n8XfS63yv/uL/AO4y3RRRX6Kfxgfz4f8ABR//AJOU\nuv8AsEaf/wCgNXwVX3r/AMFH/wDk5S6/7BGn/wDoDV8FV+FZ9/yMa3+Jn+r/AIT/APJG5Z/15h+Q\nUUUV5B+ghRRRQBLDNNbTR3Fu7RyxMHR1OGVlOQQR0INf0VfsT/tID46/D06T4glH/CV+Gkit7/J5\nuoSMRXIHq2CH9GGe4r+dCvWvgj8XvEfwR+IemeO/DsjE2zhLy23YS7tHI8yF/ZhyD2YA9q97h7OJ\nZfiVN/A9JL9fkfk/jD4b0uL8jlh6aSxNO8qUvPrFvtJaPs7Pof1VUVx/gDxz4e+JXg/S/G/ha4Fz\npurW6zwsOqk8MjDs6MCrDsQa7Cv2yE4zipRd0z/L3E4arh6sqFeLjOLaaejTWjT80xCAwKsMg8EG\nv5//ANvH9miT4SeNm+IXhe3P/CK+Jrh5CqLhLG+clnh4GAj8tH+I7Cv6Aa4X4lfD3w98U/BGreBP\nFECzWOq27wkkAtFIR8kqZ6PG2GU+orx89yiGYYZ0vtLWL8/8mfo/hR4iYjhDPIY5XdGfu1I9491/\nejuvmtmz+TWivTfi/wDCvxL8GfH2p+A/FERWexkPkzbSI7m3Yny5oz3Vx+RyDyDXmVfiNWlOnN05\nqzWjP9ScDjqGNw8MXhZqVOaUotbNPVMKKKKzOoKKKKACiiigAooooAKKKKACiiigAr9g/wDglP0+\nJH10f/27r8fK/YP/AIJT9PiR9dH/APbuvpOEv+RrS+f/AKSz8X+kJ/yQOP8A+4f/AKdgfsDRRRX7\nQf5jhRRRQAUUUUAFFFFABRRRQAV+DH/BWT/krfg7/sXm/wDSqWv3nr8GP+Csn/JW/B3/AGLzf+lU\ntAH5TUUUUAfbn/BO7/k7Hwl/1x1L/wBI5q/pkr+Zv/gnd/ydj4S/646l/wCkc1f0yUAFFFFABRRR\nQAV+fv7fv7Mn/C7fh1/wmXha2D+LvCkUk0Cov7y9sh80tvxyWXl4x/eyP4q/QKgjPBoA/jBdWRij\ngqykgg8EEdQabX6Y/wDBRb9mN/hj44PxY8H2Ij8LeJpc3aQJiOx1E8uCBwqT/fXoN24elfmdQAV9\nvfsPftO3nwA+JEek63MW8H+JZorbU42Py2shO2O7UdimcP6pnuBXxDRQB/Z3DNDcwx3Fu6yRSqHR\n1OVZWGQQR1BHSpa/Jr/gm3+1JJ4v0b/hRPji8Mmr6PCZNDuJny1zZJ963yeWeAcr3Mf+7X6y0AFF\nFFABRRRQB5t8ZNLOtfCXxnpKjc13oOpRKB1LNbvgfnX8hJBUlT1BxX9nF1bx3drNaygMk0bRsDyC\nGBBFfx7/ABD8OTeD/HviLwrcKUk0jVLyzIbr+4lZB+goA46iiigD+hb/AIJhXWm61+zpPYz28M02\nl69ewsXRWYLIkUqjJBP8Rr9Gf7I0n/nyt/8Av0n+Ffi7/wAEmfHccGreN/hvczANdw22r2sZPUwk\nwzED1w8efpX7Z0AZ39kaT/z5W/8A36T/AAo/sjSf+fK3/wC/Sf4Vo0UAZ39kaT/z5W//AH6T/Cj+\nyNJ/58rf/v0n+FaNFAGd/ZGk/wDPlb/9+k/wo/sjSf8Anyt/+/Sf4Vo0UAZ39kaT/wA+Vv8A9+k/\nwo/sjSf+fK3/AO/Sf4Vo0UAZ39kaT/z5W/8A36T/AAq7FDDBGIoEWNB0VAFA/AVJRQAUUUUAFFFF\nAH8q/wC2P/yc98Rf+wzJ/wCgrXzPX0x+2P8A8nPfEX/sMyf+grXzPQAV+w3/AASR/wCRi+In/Xlp\n3/oyavx5r9hv+CSP/IxfET/ry07/ANGTUAft1RRRQAUUUUAFFFFABRRRQA12VFLuQqqCST0AFfy4\n/tk/HjUfjt8Z9V1JZidB0SaXTNGgDZQW8LlWlx03TMN5Ppgdq/oD/a28ezfDb9nbxv4otJTDdrpr\n2dq6nDLPesLdCp9VMmfbFfymkkkk8k0AJRRRQBc0/T77Vb6DTdMt5Lq7upFihghQvJJI5wqqoySS\neABX6x/Ab/gl3r/ibTbfxF8btVm8PxThZI9HsAj3mw8/vpW3JET/AHQrEdyDxXpP/BMb9nLS49Dm\n+P8A4ptFnvrqWS00BZVyIIojsmuFB/jd8op7BTjrX7EUAfL3w/8A2NP2bvhxDENG8F2F7cxAf6Xq\nq/b52YfxEzblB/3VA9q+k7HS9M0yJYNNtILSJRgJBGsagDsAoAq9RQAUUUUAFfz7/wDBVQ/8X80P\n/sW7f/0onr+giv50/wDgp5rMWpftKmwiYN/Zeh2Nu4B+67mSXH5OD+NAH510UUUAfcn/AATo/wCT\nrfDH/XtqX/pLJX9LlfzR/wDBOj/k63wx/wBe2pf+kslf0uUAFFFFABRRRQAUUUUAFNdEkQxyKGVh\ngqwyCD6inUUAfI3xd/Yh/Z8+MBmvdT8PpourTZJ1LRsWkxY93QAxSH1LIT71+XHxn/4Jg/FLwZHP\nrHws1CLxjp8YLfZGUWuoqo7BCTHLgf3WBPZa/oAooA/jZ1/w5r/hXVJtE8TaddaXqFu22W2vImhl\nQj1VwDWLX9c/xS+Bvwr+M+mNpnxF8PWeq/IUiuWQJdwZ7xTriRPXg49Qa/Df9qf/AIJ8eMfg5Dee\nNvhxJN4l8Iw7pZo9ub/T4hyTKqjEsajrIoBA5ZQOaAPzgooooA9c+B/xh8TfAz4jaV8QfDEjeZZS\nBbq2LFY7u1fiWGQDqGHT0YA9q/qz+H3jjQviV4K0bx34al87TtatI7uA91DjlG9GRsqw7EGv48K/\nd7/glN8SLzW/h94o+Gt/K0g8OXkV7ZhjnZb34bei+wljLfV6AP1iooooAKKKKACiiigAooooAKKK\nKAP/1f0W/wCCif8AybHq/wD2EtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8A\nCvzZ/of9Fn/kjqn/AF+n/wCkwCiiivjj+kQooooAKKKKACiiigAooooA0dI/5C1l/wBfEX/oYr+u\niw/48bb/AK5J/wCgiv5F9I/5C1l/18Rf+hiv66LD/jxtv+uSf+giv0fgD/l//wBu/qfxd9LrfK/+\n4v8A7jLdFFFfop/GB/Ph/wAFH/8Ak5S6/wCwRp//AKA1fBVfev8AwUf/AOTlLr/sEaf/AOgNXwVX\n4Vn3/Ixrf4mf6v8AhP8A8kbln/XmH5BRRRXkH6CFFFFABRRRQB+kv/BP79pkfDnxQPhL4wuSvh3x\nDcD7BNI3yWV+/ABJPEc3APo2D3Nfu/X8f0cjxOssTFXQhlYHBBHIINf0O/sP/tKr8bvAX/CN+Jbh\nT4u8NxpFdbjhry1Hyx3IHc/wyf7XP8VfpPBmd8y+oVnqvh/Vf5H8TfSY8L/ZT/1ty2HuysqyXR7R\nqfPaXnZ9Wz7kooor9DP44PiD9t/9m4/HD4ejXfDcCHxZ4aV57QgfPd22CZbbI6k43R5/iGONxr+d\n6WKWCV4JkaOSNirowwysDggg9CDX9gFfhp/wUL/Zq/4QnxIfjL4PtNmh67Nt1WKJfltb98nzMDgJ\nP19A+f7wr894zyTmj9forVfF/n/mf2H9GjxR9hUXCWZT92V3Rb6S3cPR7x87rqj8xqKKK/NT+3Qo\noooAKKKKACiiigAooooAKKKKACv2D/4JT9PiR9dH/wDbuvx8r9g/+CU/T4kfXR//AG7r6ThL/ka0\nvn/6Sz8X+kJ/yQOP/wC4f/p2B+wNFFFftB/mOFFFFABRRRQAUUUUAFFFFABX4Mf8FZP+St+Dv+xe\nb/0qlr956/Bj/grJ/wAlb8Hf9i83/pVLQB+U1FFFAH25/wAE7v8Ak7Hwl/1x1L/0jmr+mSv5m/8A\ngnd/ydj4S/646l/6RzV/TJQAUUUUAFFFFABRRRQBxPxF8AeHPij4K1bwH4stxc6ZrFu0EqkfMhP3\nZEPZ0bDKexFfym/Gz4Q+Jvgd8RtV+HviiMiaxk3W84BEd1avzFMhPVWXr6HI6iv66K+Dv28v2Z4P\njl8M5fEvh208zxj4Xie4sDGMPd2w+aa2P94kAtGOzjA+8aAP5sKKfJG8TtFIpR0JVlYYII6gj1pl\nAHQ+E/FOu+CPEum+LfDN09lqmk3Ed1azocFJIzkfUHoR0I4r+pr9mX4+aJ+0R8LrHxrpwW31GEi0\n1azzzb3saguB32OCGQ+hx1Br+USvq/8AZD/aS1X9nP4mQapK7y+GdXaO11u0GSDDn5Z0H/PSEkke\noyvegD+pGis/SdV0/XdLtNa0mdLqxv4I7m3njOUkilUMjKfQgg1oUAFFFFABX8zn/BQj4ez+BP2m\nfEN5s22fiZYtatmA4PnjbMPqJUbP1Ff0x1+Y3/BTv4MP41+FFj8T9IgMmpeDZT9p2DLNp1yQJCfX\nypArewLGgD+fiiiigD6C/Zc+LC/Bb45eGPHd07pp0Fz9m1EJ3s7oGKU477Q2/Hqtf1bWl3bX9pDf\nWcizW9xGssUiHKujgFWBHUEHIr+Mev3G/wCCdX7XVtrOlW3wF+I1+kWo2CCPw7dztj7TAM/6KzHj\nzI/+Wf8AeX5eqjIB+vVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8q/7Y/8Ayc98Rf8AsMyf\n+grXzPX0x+2P/wAnPfEX/sMyf+grXzPQAV+w3/BJH/kYviJ/15ad/wCjJq/Hmv2G/wCCSP8AyMXx\nE/68tO/9GTUAft1RRRQAUUUUAFFFFABRRRQB+d3/AAU7vpbX9mZ7eMkC713T4391XzHx+aiv50K/\no8/4KY6VLqH7MF7dRqSNP1jTrlz6KXaL+cgr+cOgAooooA/rM/Zj0S28O/s+fD3SbVQqR+H7GQ47\nvNEJXb6szEn617pXzd+yF4utPGv7N3gHV7Vw7Q6RBYTgH7s9kPIcH05TP0Ir6RoAKKKKACiiigCO\nWWOCJ5pmCJGpZmJwAoGST9BX8nf7TnxEt/ip8efGfjixbdZ32pPHaN/etrZVgib/AIEkYP41+1H/\nAAUM/aet/hR4Bk+GPhW6U+K/FUDwzGNsvY6e42ySNg5V5QSkftubsK/nfoAKKKKAPuT/AIJ0f8nW\n+GP+vbUv/SWSv6XK/mj/AOCdH/J1vhj/AK9tS/8ASWSv6XKACiiigAoopCQOpxQAtFFFABRRRQAU\nUUUAFRzQxXETwToskcilHRhlWVhggg8EEdakooA/mA/bk+DGl/BP4+apovh+IQaNrMMesWEC/dhj\nuWYPEv8AspKjhR2XAr4+r9Gv+Cn3imx1/wDaMh0iydZG0DQ7SyuNpztmkeScqfcLKtfnLQAV+n//\nAASq1me1+OOv6IhIiv8Aw/JM47E208W3/wBGGvzAr9S/+CUugy3nxk8TeIVB8vTdC8hj2zdToR/6\nKNAH760UUUAFFFFABRRRQAUUUUAFFFFAH//W/Rb/AIKJ/wDJser/APYS03/0cK/nhr+h7/gon/yb\nHq//AGEtN/8ARwr+eGvyTjj/AJGK/wAK/Nn+h/0Wf+SOqf8AX6f/AKTAKKKK+OP6RCiiigAooooA\nKKKKACiiigDR0j/kLWX/AF8Rf+hiv66LD/jxtv8Arkn/AKCK/kX0j/kLWX/XxF/6GK/rosP+PG2/\n65J/6CK/R+AP+X//AG7+p/F30ut8r/7i/wDuMt0UUV+in8YH8+H/AAUf/wCTlLr/ALBGn/8AoDV8\nFV96/wDBR/8A5OUuv+wRp/8A6A1fBVfhWff8jGt/iZ/q/wCE/wDyRuWf9eYfkFFFFeQfoIUUUUAF\nFFFABXqHwb+KniD4MfEPSfH/AIdY+dYS4ngJwlzbPxLC3s6/kcHtXl9FaUqs6c1Ug7Nao5MfgaGN\nw1TCYqKlTmnGSezTVmj+sz4b/ELw38U/Bel+OvCdwLjTtUhEif3o36PG47OjZVh6iu4r8EP2Av2l\nU+F3jA/DHxZPs8N+JrhfImkbC2V+2FVueBHLwrehwfWv3vBBGRyDX7fkWbRzDCqqviWjXZ/8E/y0\n8VfD2vwhnk8BK7oy96nJ9Yvp6x2f37NBXPeLPCuh+N/Deo+E/Etql5pmqW721xC4yGRxjI9GHUHq\nCARXQ0V7EoqScZbH51RrVKNSNWlJqUWmmtGmtmj+Wj9oD4KeIPgR8R9Q8FayjNbBmn027x8l1Zux\n8twf7wHyuOzA+1eJV/Sr+17+zxZ/H34Zz2lhEi+J9GD3ejzkYLOB89ux/uTAY9A2D2r+bW/sLzS7\n6403UYXt7q1leGaKQbXjkjJVlYHkEEYNfivEeTPL8TaPwS1X+XyP9OvBjxLp8X5Ip12liqVo1F37\nTS7S/BprtepRRRXzx+whRRRQAUUUUAFFFFABRRRQAV+wf/BKfp8SPro//t3X4+V+wf8AwSn6fEj6\n6P8A+3dfScJf8jWl8/8A0ln4v9IT/kgcf/3D/wDTsD9gaKKK/aD/ADHCiiigAooooAKKKKACiiig\nAr8GP+Csn/JW/B3/AGLzf+lUtfvPX4Mf8FZP+St+Dv8AsXm/9KpaAPymooooA+3P+Cd3/J2PhL/r\njqX/AKRzV/TJX8zf/BO7/k7Hwl/1x1L/ANI5q/pkoAKKKKACiiigAooooAKKKKAPwF/4KP8A7MY+\nHvi5fjL4Msinh7xHMRqccK4js9RbndgfdS45PTAcH1Ar8ua/sQ8f+BvDvxK8Har4G8V2y3Wl6xbP\nbzoeo3D5XU9nRsMp7ECv5VPj58Gte+A/xP1f4ea5ulWzk8yyuipVbuzk5ilX6jhgDwwI7UAeNUUU\nUAfs9/wTX/anC+X+z347vDyWfw1cTMTz1ezJP4tFn3X+6K/aKv40NH1fUtA1Wz1zRriS0vrCeO5t\np4jteOWJgyspHQgiv6f/ANkH9pLTf2jfhlDqtw0cHibSAlprdop6TY+WdB/zzmAJHocr2oA+sKKK\nKACsrXdF03xJot/4e1mBbmw1K2ltLmF/uyQzKUdT9VJrVooA/k//AGlvgTrv7PvxT1LwVqUbvp7u\n1zpF2R8t1Yux8tgem5fuuOzD0xXz/X9Tf7WH7NOi/tJ/DxtCd47HxBpjNc6PqDLny5sYMUh6+VLw\nGx0IDc4wf5kPHHgfxR8OPFOoeDfGNhLp2rabKYp4JRjkdGU9GRhyrDgjkUAcnUsE81tMlxbSNFLE\nwdJEJVlZTkEEcgg9CKiooA/WT9mn/gpdrXgyws/BnxxtrjXdNtwIoNbtyGv4oxwBOjYE4UfxAh8d\ndxr9bfh7+0j8DfilEreCfGWl3szDP2aSYW90PrDNsk/TFfyXU5HeNg8bFWHIKnBFAH9niOjgMjBg\nehByKdX8fmjfFP4m+HYxFoHi3W9OjHRLXULiFfySQCugk+P/AMcpl2SfEDxMV6Y/tW6H8pKAP63p\nZ4YUMk0ixqvJZiAB+Jry3xZ8dfg14GjZ/FnjTRNNKDJjlvYjKfpGrFz+Ar+UHVfHnjjXudb8Q6rq\nH/X1ezTf+hua5ZmZyWcliepJyaAP6NvH3/BS39nDwnDIvhy6v/Fl2oO2PT7ZoYS3oZbgRgD3VWr8\n9fiv/wAFPfjR4yWXT/h9Z2ngyxfKiWP/AEy+Kn/prIoRT/ux596/NGigD7B+AH7Vvxz8F/FbTr6L\nxPe6tF4g1O1t9TtdUme7huFmlWMsQ7ZRwD8rIQR9OK/p+HIzX8e3w1/5KL4W/wCw1p//AKUJX9hI\n6CgBaKKKACiiigD+Vf8AbH/5Oe+Iv/YZk/8AQVr5nr6Y/bH/AOTnviL/ANhmT/0Fa+Z6ACv2G/4J\nI/8AIxfET/ry07/0ZNX481+w3/BJH/kYviJ/15ad/wCjJqAP26ooooAKKKKACiiigAooooA8L/aY\n8BS/Ez4DeNvBttH511e6VM9qndrm3xNEB7l0AFfyaujRu0bgqykgg9QR1Ff2ekAgg8g9a/mD/bc+\nA998D/jZqiW8Lf8ACP8AiSWXVdJmC4QJM5aWDPTdC5Ix/dKnvQB8eUUUUAfoz+wb+1/Z/AjWLnwD\n8QZ3XwZrM3nLcgNIdOuyApk2rkmKQABwBkEBgOtf0E+G/FHhzxjpEGv+FdStdW066UPFc2kqyxsD\n/tKTz6jqK/jdrvvBHxT+I/w2uTdeAvEup6E7EFxZXLxI5H95AdrfiDQB/YFRX8xmn/8ABQL9rDT4\nVgXxqZ1UYBuLCzlb8WMO4/iaztZ/bv8A2rNbiaG48d3Vurcf6HbW1sw+jRRK360Af02634g0Lw1Y\nSar4h1C10yzhBaS4u5kgiUD1ZyAK/Mb9pD/gpV4F8J6Zd+G/gdIviPX5FaIaqyEafaHoWXcAZ3H8\nOBs75PQ/iB4s+IXjvx5dfbfGniDUtbm7NfXUk+3/AHQ7ED8BXHUAb3ifxR4g8Z69eeJ/FN/Pqeqa\nhK01zc3Dl5JHb3PQDoAOAOBxWDRU8VrczRSzQxPJHAoaV1UlY1JCgsRwAWIGT3OKAIKKKKAPuT/g\nnR/ydb4Y/wCvbUv/AElkr+lyv5o/+CdH/J1vhj/r21L/ANJZK/pcoAKKKKACv5rv21f2gPi34g+O\n/ibwpN4jvLTR/C2ry22mWdlI1tHF5BG2Q+WQXkzzuYkjtiv6Ua/lJ/a3/wCTl/iR/wBjBd/+hUAf\nSPwX/wCClXxp+HiwaV48SLxtpMYC5u28nUEUelwoO/j/AJ6KxPrX6cfDj/gor+zZ47giTVtYm8J3\n7kKbbV4WVAx9J4g8WPdiv0r+ayigD+x3w74w8J+LrNNQ8LazYavbSAMstlcx3CEHvlGNdHX8auka\n9rmgXK3uhajdadcIcrLaTPC4PqGQgivevD/7Xv7S3hhVj0v4ha0yL0S6n+1r+U4egD+rCiv5lYP+\nChn7WUMYQ+MUkx3fTbIn8xAKytU/b1/au1WMxTeOp4FPH+jWlpAw+jRwhv1oA/p3uru1sYHur2aO\n3hjG55JWCIoHck4AFfn9+0d/wUF+FHwr0e/0X4fahB4r8XFXhhjsz5llaSkYEk04+Rgp52IWJIwc\nda/A/wAYfGD4p/EAn/hNfFmr6ypOfLu7yWSIE+iFtg/KvOKANvxL4j1rxfr+oeKPEV097qeqXEl1\ndXEhy0kshyx/wHQDgViUUUAFfvh/wSu+Gt14d+FviD4jX8RjfxTfJBaFhjda2AZdw9mlkce+2vxq\n+B/wh8Q/HH4laP8ADzw6jB7+YG6udpZLW1TmWZ8dlXpnGWwO9f1deBfBuifDzwfo/gjw5CINN0W0\nis7dR1KxrjcfVmOWY9yTQB1dFFFABRRRQAUUUUAFFFFABRRRQB//1/0W/wCCif8AybHq/wD2EtN/\n9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8ACvzZ/of9Fn/kjqn/AF+n/wCkwCii\nivjj+kQooooAKKKKACiiigAooooA0dI/5C1l/wBfEX/oYr+uiw/48bb/AK5J/wCgiv5DrSc2t1Dc\ngbjDIsmPXaQcfpX9Hfwr/bV+A3jXwXYaxrPiWw8M6gEWG607U51ililRRu2k43xn+Fh19jkV99wN\njKNKVWFWSTdrX02v/mfyP9Knh3M8wo5ficBQlUjB1FLlTlZy5LXSu9eV62t+B9g0V4H/AMNTfs6f\n9FE8P/8Agan+NRzftVfs5wxPM3xC0FgiliEu0ZiAM8AEkn0A5Nfof9oYX/n5H70fxyuEM9eiwVX/\nAMFz/wAj8cP+Cj//ACcpdf8AYI0//wBAavgqvpT9rL4x6J8cvjPqfjbw3bywaWIYLK1M3Eksdsu3\nzSv8O8kkL1AxnmvmuvxDOK0KuOq1KbunJ2P9SfDjLsTgOFsvweMg41IUoKSe6aSun5oKKKK80+1C\niiigAooooAKKKKAFVmVgykgg5BHUEV/Qd+wl+0jH8YPACeC/E10G8WeGIUhkMjfPe2a/LHOM8ll4\nWT3wf4q/nwr0X4T/ABK174R+P9H8feHZGW50u4WR4wxVZ4CcSwv6rImVP59RXt5Bm8svxKqfZekl\n5f5o/LvFvw6o8X5HPBqyrwvKlLtK2z/uy2fyfQ/q/or5n8Nftf8A7PHiHQLDW5fG2k6bJewJK9ne\n3KxXEDsPmjkQnIZTx6HqOK3P+Gpv2dP+iieH/wDwNT/Gv2WOY4Vq6qR+9H+atXgzP6c3Tngqt07P\n93Lp8j3yvxr/AOCi/wCzWlhcL8dvBVkRDcuIvEUUK8JKcCO62joH+7IemcHuTX6Mf8NTfs6f9FE8\nP/8Agan+NfPv7T/7Xnwe0/4L+ILDwV4i0nxNrOs276Zb2dtKlyF+0qVeWReRsRMnnq2BXkZ9LAYr\nBThVqLRXWqbTXb8j9E8J6PFmRcT4bE4DB1PfkoSTjKMZRk7NSbVkl8Sb2aTP5+aKKK/Fj/TcKKKK\nACiiigAooooAKKKKACv2D/4JT9PiR9dH/wDbuvx8r9g/+CU/T4kfXR//AG7r6ThL/ka0vn/6Sz8X\n+kJ/yQOP/wC4f/p2B+wNFFFftB/mOFFFFABRRRQAUUUUAFFFFABX4Mf8FZP+St+Dv+xeb/0qlr95\n6/Kz/goz+y78RvjBNofxI+HVudYn0SzbT7rSYh/pLxtKZFlhGfnwWIZeuORnmgD8EqK+i/8Ahkf9\npf8A6Jx4g/8AARqP+GR/2l/+iceIP/ARqAPUf+Cd3/J2PhL/AK46l/6RzV/TJX4k/sA/sf8AxZ8J\n/FOD4u/EPTpvDVnoaXMFtZXibbq7luIWiJCfwRork7j1IwB1I/bagAooooAKKKKACiiigAooooAK\n+If24/2ZrT4+fDObVtEt1/4TDw1FJdaZKo+e4iUbpbVvUSAZT0cD1Nfb1FAH8Yc0MtvM9vOjRyxs\nUdGGGVlOCCDyCD1qOv2E/bw/Ym8W3vj0fFD4LaDPq1v4hkJ1XTbCPfJb3uCTOqD/AJZzDlsdHz/e\nFfA3/DI/7S//AETjxB/4CNQB86V9C/szfH3X/wBnf4nWPjLTWeXTJyttrFkD8t1ZM3zDHTen3kPY\njHQmpv8Ahkf9pf8A6Jx4g/8AARqB+yN+0wTj/hXGv/8AgI1AH9SnhPxVoXjfw3p3i3wzdpe6Xqtu\nlzazxnIeOQZH0I6EHkEEGuhr5u/ZK+Eep/BP4EeHPA2uSu+qJHJeXyMxZYbi7YytEnOAI8heOCQT\n3r6RoAKKKKACvk79p39kf4f/ALSWimXUVGleKbSIpp+tQrl1AyRFMuR5sRJ6Hlc5UjnP1jRQB/JL\n8ZfgJ8TfgT4il0Dx9pMtsgci2v41L2d0gPDxSgbTkfwnDDuBXjNf2PeKvCPhjxxolz4b8X6Zbavp\nl2u2a1u4xLGw+h6EdiOR2r8sPjT/AMEsfC2tyzax8FNaOhTuS39lanuns8ntHMMyxj2YP9RQB+GF\nFfW3xB/Yd/aX+HbSSX/hC41a0TJ+1aMwv4yB32x/vQP95BXy9qeha3olw1prOn3VhOn3o7mF4XH1\nVwCKAMqiiigAopQCTgDJ9q6LRfB/izxJMLfw9ouoanKTjZaWss5z9EU0Ac5RX2B4F/YR/ae8dmOS\n38ITaPbP/wAvGsyLZKB67HPm/klfdfws/wCCUNpE8V/8YfFZnxgtp+iLsU+oa4lGf++Yx9aAPyR+\nFlpdXvxK8LQWcMk8h1mwOyJS7YE6EnABPFf2BDoK8g+F3wD+EfwasVs/h54astMcLte72ebdy/78\n8m6RvpnHtXsFABRRRQAUUUUAfyr/ALY//Jz3xF/7DMn/AKCtfM9fqj+2v+xh8Zrr4x6v8RfAWkXH\nirSvFVy13tsI99xZzbQGjlj67eMq44PQ4NfHP/DI/wC0v/0TjxB/4CNQB86V+w3/AASR/wCRi+In\n/Xlp3/oyavgT/hkf9pf/AKJx4g/8BGr9jP8Agnd+zJ46+B+ga54v+IKjT9R8UR20cWlEZmtobcuw\naY5wHcv9wfdA5OTgAH6U0UUUAFFFFABRRRQAUUUUAFeBftG/ADwt+0T8OrvwZryrBfR5n0rUNuZL\nO7AwrjoSjfddehX3AI99ooA/kO+LXwg8d/BTxfdeDfHunSWV3Ax8qXBMF1Fn5ZYZMYdGHpyOhAPF\neYV/Xd8Wfgz8Ovjb4afwt8RdJi1K25aCX7lxbSEY3wyj5kb6cHoQRX4xfGT/AIJc/Evw7e3Go/CD\nULfxNpXLx2d3ItrqEY/u5OIZPruUn0oA/K6ivRfGXwi+KHw9uHtvGvhbVtHZG2lrq0kSMn2k27G+\noJzXnZBU4YYPoaAEoop6RySttjVnPooyaAGUV7H4G/Z8+NnxIljj8GeDNX1BJCAJxbPFbjPczSBI\nwPctX6HfBn/glh4w1K9g1T42axb6Tp6kO+m6W/2i7lH91piPKj9yu8/zoA/Oj4O/BP4g/HPxZB4S\n8A6c93MzKbi5YFbW0iJ5kmkxhVHYdT0AJr9yNf8A2M/BHws/ZB8c+BdCgXUPEN3oz31/qzJia6u7\nH/SUVeSUiVk2qo7cnJJNfb3w2+FngL4ReG4fCnw90e30jT4sFliXMkz/AN+WQ5eRz/eYk12WqWMO\nqabd6ZcANFdwSQODyCsilT+hoA/jNor6i8Qfsd/tG6fruo2Fj8P9cura3u5ooZ4rVmSWNHIV1PcM\nACDWR/wyP+0v/wBE48Qf+AjUAes/8E6P+TrfDH/XtqX/AKSyV/S5X4n/APBP79kD4seD/ifF8Xvi\nJp8vhq00eK5t7WxvE23d3LcRGMtsz8kaBidx5Y8AYya/bCgAooooAK/lO/a8gng/aY+IwnjaMvr1\n067wVyrHIIz1B7Gv6sa8S+MH7O/wj+Oenmz+IegwXlwqFYdQiHk30Gf7ky4bA67WyvqDQB/JZRX6\n9fFL/glJ4qsppL34Q+J7bU7cklbHWAbadR6CaMNG/wCKpXxD42/Y2/aU8AyP/bPgXUrmFM/6RpqC\n/hIHfMBcj/gQFAHzHRWvqfh/XtFnNtrGm3djMvWO5geFxj1DqDWR04NABRRRQAUVp6doms6xOtrp\nNhc3sz/djt4Xlc/QKCTX0j4C/Yv/AGlPiI8baR4KvrK2kx/pWqgWEIB7/virMP8AdU0AfLderfCP\n4K/EX43eJofDHw+0ma+mdgJrgqVtbVD1eaUjaij8z0AJr9V/g3/wSqtbW4h1b43+IFu1QhjpOjFl\njYjtJcuAxHqEQH/ar9YfAvw98FfDPw/D4X8B6Pa6LpkH3YLVAoZu7O33nc92Ykn1oA8Q/Zf/AGXP\nBf7NnhIWGlqt/wCIr+NDq2rOvzzOOfLjB+5Cp+6o69Wyen1DRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFAH/0P0W/wCCif8AybHq/wD2EtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK/nhr8k44/wCRiv8A\nCvzZ/of9Fn/kjqn/AF+n/wCkwCiiivjj+kQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/YP/glP0+JH10f/\nANu6/Hyv2D/4JT9PiR9dH/8AbuvpOEv+RrS+f/pLPxf6Qn/JA4//ALh/+nYH7A0UUV+0H+Y4UUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAVk6noGha3EYNZ060v4z1S5gSZfycEVrUUAeSXvwE+COouXvvAXhyZjyS2mW/\n9I6ox/s4/AKJt0fw88NKfbTLf/4ivaaKAPOdP+D3wn0lg2m+DdBtmHQx6bbqR9DszXd2thY2MYhs\nbaK3ReFWJFRR9AoFW6KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKAIZ7e3uozFcxJKjDBV1DKQfUHivOdV+C/wh1xzJq/grQLt26tLptuzH6nZk16ZRQB4vH+\nzl8A4m3x/D3w2rdcjTLf/wCIrsdH+Gfw58POsmheF9G0916PbWEETD8VQGu3ooAaqKi7UAUDsBgU\n6iigAooooAKKKKACiiigAooooAKKKKACiiigDOvtI0nVIjDqVlb3cbdUniSRT9QwIrg7/wCCvwf1\nMltQ8E+H5yepfTLck/8AkOvTaKAPFW/Zv+ALtub4eeGifX+zLf8A+IrSsvgR8FNOYPY+BPDsLDoV\n0y3/APjdesUUAZGm+H9C0aPydH060sY/7ttAkS/kgArXoooAKKKKACiiigAooooAKKKKACiiigAo\noooAKKKKAP/R/Rb/AIKJ/wDJser/APYS03/0cK/nhr+h7/gon/ybHq//AGEtN/8ARwr+eGvyTjj/\nAJGK/wAK/Nn+h/0Wf+SOqf8AX6f/AKTAKKKK+OP6RCiiigAooooAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr9g/+CU/T\n4kfXR/8A27r8fK/YP/glP0+JH10f/wBu6+k4S/5GtL5/+ks/F/pCf8kDj/8AuH/6dgfsDRRRX7Qf\n5jhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L9Fv8Agon/AMmx6v8A9hLT\nf/Rwr+eGv6Hv+Cif/Jser/8AYS03/wBHCv54a/JOOP8AkYr/AAr82f6H/RZ/5I6p/wBfp/8ApMAo\noor44/pEKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACv2D/4JT9PiR9dH/wDbuvx8r9g/+CU/T4kfXR//AG7r\n6ThL/ka0vn/6Sz8X+kJ/yQOP/wC4f/p2B+wNFFFftB/mOFFFFABRRRQAUUUUAFFFFABRRRQAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFAH/0/0W/wCCif8AybHq/wD2EtN/9HCv54a/oe/4KJ/8mx6v/wBhLTf/AEcK\n/nhr8k44/wCRiv8ACvzZ/of9Fn/kjqn/AF+n/wCkwCiiivjj+kQooooAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\nK/YP/glP0+JH10f/ANu6/Hyv2D/4JT9PiR9dH/8AbuvpOEv+RrS+f/pLPxf6Qn/JA4//ALh/+nYH\n7A0UUV+0H+Y4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/U/Ur9tX4eeMfi\nh8BtR8I+BNObVdWnvrGWO2R44yyRShnO6RkXgc9a/F3/AIYe/ak/6EW4/wDAyz/+P1/SpRXzma8M\n4bMK3t60pJ2tpb9U+5+0+H/jlnXCGWPKsvo05wcnO81Ju7SXScVbRdD+av8A4Ye/ak/6EW4/8DLP\n/wCP0f8ADD37Un/Qi3H/AIGWf/x+v6VKK83/AFFwP88vvX/yJ9x/xNfxR/0C0P8AwGp/8sP5q/8A\nhh79qT/oRbj/AMDLP/4/R/ww9+1J/wBCLcf+Bln/APH6/pUoo/1FwP8APL71/wDIh/xNfxR/0C0P\n/Aan/wAsP5q/+GHv2pP+hFuP/Ayz/wDj9H/DD37Un/Qi3H/gZZ//AB+v6VKKP9RcD/PL71/8iH/E\n1/FH/QLQ/wDAan/yw/mr/wCGHv2pP+hFuP8AwMs//j9H/DD37Un/AEItx/4GWf8A8fr+lSij/UXA\n/wA8vvX/AMiH/E1/FH/QLQ/8Bqf/ACw/mr/4Ye/ak/6EW4/8DLP/AOP0f8MPftSf9CLcf+Bln/8A\nH6/pUoo/1FwP88vvX/yIf8TX8Uf9AtD/AMBqf/LD+av/AIYe/ak/6EW4/wDAyz/+P0f8MPftSf8A\nQi3H/gZZ/wDx+v6VKKP9RcD/ADy+9f8AyIf8TX8Uf9AtD/wGp/8ALD+av/hh79qT/oRbj/wMs/8A\n4/R/ww9+1J/0Itx/4GWf/wAfr+lSij/UXA/zy+9f/Ih/xNfxR/0C0P8AwGp/8sP5q/8Ahh79qT/o\nRbj/AMDLP/4/R/ww9+1J/wBCLcf+Bln/APH6/pUoo/1FwP8APL71/wDIh/xNfxR/0C0P/Aan/wAs\nP5q/+GHv2pP+hFuP/Ayz/wDj9H/DD37Un/Qi3H/gZZ//AB+v6VKKP9RcD/PL71/8iH/E1/FH/QLQ\n/wDAan/yw/mr/wCGHv2pP+hFuP8AwMs//j9H/DD37Un/AEItx/4GWf8A8fr+lSij/UXA/wA8vvX/\nAMiH/E1/FH/QLQ/8Bqf/ACw/mr/4Ye/ak/6EW4/8DLP/AOP0f8MPftSf9CLcf+Bln/8AH6/pUoo/\n1FwP88vvX/yIf8TX8Uf9AtD/AMBqf/LD+av/AIYe/ak/6EW4/wDAyz/+P0f8MPftSf8AQi3H/gZZ\n/wDx+v6VKKP9RcD/ADy+9f8AyIf8TX8Uf9AtD/wGp/8ALD+av/hh79qT/oRbj/wMs/8A4/R/ww9+\n1J/0Itx/4GWf/wAfr+lSij/UXA/zy+9f/Ih/xNfxR/0C0P8AwGp/8sP5q/8Ahh79qT/oRbj/AMDL\nP/4/R/ww9+1J/wBCLcf+Bln/APH6/pUoo/1FwP8APL71/wDIh/xNfxR/0C0P/Aan/wAsP5q/+GHv\n2pP+hFuP/Ayz/wDj9H/DD37Un/Qi3H/gZZ//AB+v6VKKP9RcD/PL71/8iH/E1/FH/QLQ/wDAan/y\nw/mr/wCGHv2pP+hFuP8AwMs//j9H/DD37Un/AEItx/4GWf8A8fr+lSij/UXA/wA8vvX/AMiH/E1/\nFH/QLQ/8Bqf/ACw/mr/4Ye/ak/6EW4/8DLP/AOP0f8MPftSf9CLcf+Bln/8AH6/pUoo/1FwP88vv\nX/yIf8TX8Uf9AtD/AMBqf/LD+av/AIYe/ak/6EW4/wDAyz/+P0f8MPftSf8AQi3H/gZZ/wDx+v6V\nKKP9RcD/ADy+9f8AyIf8TX8Uf9AtD/wGp/8ALD+av/hh79qT/oRbj/wMs/8A4/R/ww9+1J/0Itx/\n4GWf/wAfr+lSij/UXA/zy+9f/Ih/xNfxR/0C0P8AwGp/8sP5q/8Ahh79qT/oRbj/AMDLP/4/R/ww\n9+1J/wBCLcf+Bln/APH6/pUoo/1FwP8APL71/wDIh/xNfxR/0C0P/Aan/wAsP5q/+GHv2pP+hFuP\n/Ayz/wDj9fpX/wAE9fgf8Uvg2PHH/CydCk0X+1f7N+yeZNDL5vkfaPMx5TvjbvXrjrX6U0V25dwn\nhcHiI4mnKTavva2qt2Xc+X4z+kHn3EuT1slxtClGnU5buKnze7JSVrza3S6bBRRRX1B+DBRRRQAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=\n" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![keras-logo-2018-large-1200.jpeg](attachment:keras-logo-2018-large-1200.jpeg)" - ] - }, - { - "attachments": { - "network_structure.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAZYCAYAAABzTg2UAAAKIGlDQ1BJQ0MgUHJvZmlsZQAASImV\nlgdUU9kWhs+9N73QEkKHUEOvAgEEAqGDglRBVEICoQYIVezI4AiOBRERbCCDAgqODkVURESxMAhY\nsE+QQUR9DhZsqHk3MnXNeu+tt9faa39n33v22fecs9b9ASAn8TIz02AFANJFOeJQX0/m4ugYJv4R\nIAFVgAcOwIrHz870CAkJAqj9Hv9ub28BSBavW8hq/fP5fzVFQUI2HwAoBOUMQTY/HeUelL34meIc\nAGAMyvr5OZkyNkaZLkYbRHm+jIVzLJtLj59jwdd3wkO5KBcAQKDweGIhAKRiNM/M4wvROqR6lK1F\ngmQRyjdQduMn8dB5ZDrK5unpGTLmoGwc/5c6wr/VjP+jJo8n/IPnvuWrKXMz0jLEzCCuF5PLS0uO\nF/NyEgT/5978T0tPy/19PdkJUBJEEWGyvlHXBFyQAdJQFwMmCEJHXmjkAh6aSwbxaJYHckACEOQk\nFOTICnAzMleIk4VJOUwP9BQTmP4ivqU509bahg2A7E7MLfOa8XUliHHlz9yGNgBcu6VS6ak/c4Hb\nADjBQvdl6M8cazsA8hoAXKrl54rz5nKy4wVY9LbJAzpQA9pAH+3eAtiiN88FcIA3CADBIBxEg2WA\nD5JAOtp3PlgF1oMSUAa2gZ2gGuwHB8FhcBQcBx3gNDgHLoKrYAjcBPeABEyAZ2AavAWzEAThISpE\ng9QgHcgQMoNsITbkBnlDQVAoFA3FQUJIBOVCq6ANUBlUDlVDtVAj9AN0EjoHXYaGoTvQGDQFvYI+\nwghMgemwFmwEW8Fs2AMOhMPhpbAQzoIL4WJ4C1wF18FH4Hb4HHwVvglL4GfwDAIQMsJAdBELhI1w\nkWAkBklExMgapBSpROqQFqQL6UeuIxLkOfIBg8PQMEyMBcYF44eJwPAxWZg1mM2YasxhTDumD3Md\nM4aZxnzBUrGaWDOsM9YfuxgrxOZjS7CV2AZsG/YC9iZ2AvsWh8MxcCycI84PF41Lwa3EbcbtxbXi\nenDDuHHcDB6PV8Ob4V3xwXgePgdfgt+NP4I/ix/BT+DfE8gEHYItwYcQQxARigiVhCZCN2GEMEmY\nJSoQDYnOxGCigLiCuJVYT+wiXiNOEGdJiiQWyZUUTkohrSdVkVpIF0j3Sa/JZLIe2Ym8iJxMXkeu\nIh8jXyKPkT9QlCimFC4llpJL2UI5ROmh3KG8plKpRlQONYaaQ91CbaSepz6kvpejyVnK+csJ5NbK\n1ci1y43IvZAnyhvKe8gvky+Ur5Q/IX9N/rkCUcFIgavAU1ijUKNwUmFUYUaRpmijGKyYrrhZsUnx\nsuITJbySkZK3kkCpWOmg0nmlcRpC06dxaXzaBlo97QJtgo6js+j+9BR6Gf0ofZA+raykPE85UrlA\nuUb5jLKEgTCMGP6MNMZWxnHGLcZHFS0VD5UElU0qLSojKu9UNVQ5qgmqpaqtqjdVP6ox1bzVUtW2\nq3WoPVDHqJuqL1LPV9+nfkH9uQZdw0WDr1GqcVzjriasaaoZqrlS86DmgOaMlraWr1am1m6t81rP\ntRnaHO0U7Qrtbu0pHZqOm06yToXOWZ2nTGWmBzONWcXsY07raur66ebq1uoO6s7qsfQi9Ir0WvUe\n6JP02fqJ+hX6vfrTBjoGCwxWGTQb3DUkGrINkwx3GfYbvjNiGUUZbTTqMHrCUmX5swpZzaz7xlRj\nd+Ms4zrjGyY4E7ZJqslekyFT2NTeNMm0xvSaGWzmYJZsttds2Bxr7mQuMq8zH7WgWHhY5Fk0W4xZ\nMiyDLIssOyxfWBlYxVhtt+q3+mJtb51mXW99z0bJJsCmyKbL5pWtqS3ftsb2hh3VzsdurV2n3ct5\nZvMS5u2bd9ueZr/AfqN9r/1nB0cHsUOLw5SjgWOc4x7HUTadHcLezL7khHXydFrrdNrpg7ODc47z\ncedfXSxcUl2aXJ7MZ81PmF8/f9xVz5XnWusqcWO6xbkdcJO467rz3OvcH3H0OQJOA2fSw8QjxeOI\nxwtPa0+xZ5vnO64zdzW3xwvx8vUq9Rr0VvKO8K72fuij5yP0afaZ9rX3Xenb44f1C/Tb7jfqr+XP\n92/0nw5wDFgd0BdICQwLrA58FGQaJA7qWgAvCFiwY8H9hYYLRQs7gkGwf/CO4AchrJCskFOLcItC\nFtUsehxqE7oqtD+MFrY8rCnsbbhn+NbwexHGEbkRvZHykbGRjZHvoryiyqMki60Wr158NVo9Ojm6\nMwYfExnTEDOzxHvJziUTsfaxJbG3lrKWFiy9vEx9WdqyM8vll/OWn4jDxkXFNcV94gXz6ngz8f7x\ne+Kn+Vz+Lv4zAUdQIZhKcE0oT5hMdE0sT3widBXuEE4luSdVJj1P5iZXJ79M8UvZn/IuNTj1UKo0\nLSqtNZ2QHpd+UqQkShX1ZWhnFGQMZ5pllmRKspyzdmZNiwPFDdlQ9tLszhw6+vMdyDXO/SZ3LM8t\nrybvfX5k/okCxQJRwcAK0xWbVkwW+hR+vxKzkr+yd5XuqvWrxlZ7rK5dA62JX9O7Vn9t8dqJdb7r\nDq8nrU9d/1ORdVF50ZsNURu6irWK1xWPf+P7TXOJXIm4ZHSjy8b932K+Tf52cJPdpt2bvpQKSq+U\nWZdVln3azN985Tub76q+k25J3DK41WHrvm24baJtt7a7bz9crlheWD6+Y8GO9gpmRWnFm53Ld16u\nnFe5fxdpV+4uSVVQVedug93bdn+qTqq+WeNZ07pHc8+mPe/2CvaO7OPsa9mvtb9s/8cDyQdu1/rW\nttcZ1VUexB3MO/i4PrK+/3v2940N6g1lDZ8PiQ5JDoce7mt0bGxs0mza2gw35zZPHYk9MnTU62hn\ni0VLbSujtewYOJZ77OkPcT/cOh54vPcE+0TLj4Y/7mmjtZW2Q+0r2qc7kjokndGdwycDTvZ2uXS1\nnbI8dei07umaM8pntnaTuou7pWcLz870ZPY8Pyc8N967vPfe+cXnb/Qt6hu8EHjh0kWfi+f7PfrP\nXnK9dPqy8+WTV9hXOq46XG0fsB9o+8n+p7ZBh8H2a47XOoechrqG5w93j7iPnLvudf3iDf8bV28u\nvDl8K+LW7dHYUcltwe0nd9LuvLybd3f23rr72PulDxQeVD7UfFj3s8nPrRIHyZkxr7GBR2GP7o3z\nx5/9kv3Lp4nix9THlZM6k41PbJ+cnvKZGnq65OnEs8xns89L/qX4rz0vjF/8+Cvn14HpxdMTL8Uv\npa82v1Z7fejNvDe9MyEzD9+mv519V/pe7f3hD+wP/R+jPk7O5n/Cf6r6bPK560vgl/vSdKk0kyfm\nfZUCCOpwYiIArw4BQI0GgDaE6oclc5rtN40D/UXt/Aee03VfzQGAFjSEytRNDwDHUDfiACCHjmWS\nMZwDYDu7P/w3y060s52rRRGj0uS9VPpaCwB8FwCfxVLp7F6p9DOqH5E7APRkzWlFmeFQBX3AWkYj\nOif+odP+DZGEwkDv6eCWAAACC2lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4\nbWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRm\nOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1u\ncyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxu\nczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDx0aWZmOlJl\nc29sdXRpb25Vbml0PjI8L3RpZmY6UmVzb2x1dGlvblVuaXQ+CiAgICAgICAgIDx0aWZmOkNvbXBy\nZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8\nL3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZmOlBob3RvbWV0cmljSW50ZXJwcmV0YXRp\nb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPgogICAgICA8L3JkZjpEZXNjcmlw\ndGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KD0UqkwAAQABJREFUeAHsnQW8VNXah99D\nKGBio4IY2IVgYQB2YF3jqtcWwe686gW9duv9DLCx69odoKjXwu5WShFFVAQl5lv/xVnjnjxzzsw5\ns2fmWb/fsGP1s/ac+fOud61dl3DBCBCAAAQgAAEIQAAC1goGEIAABCAAAQhAAAKzCSCMeBIgAAEI\nQAACEIBAPQGEEY8CBCAAAQhAAAIQqCeAMOJRgAAEIAABCEAAAvUEEEY8ChCAAAQgAAEIQKCeAMKI\nRwECEIAABCAAAQjUE0AY8ShAAAIQgAAEIACBegIIIx4FCEAAAhCAAAQgUE8AYcSjAAEIQAACEIAA\nBOoJIIx4FCAAAQhAAAIQgEA9AYQRjwIEIAABCEAAAhCoJ4Aw4lGAAAQgAAEIQAAC9QQQRjwKEIAA\nBCAAAQhAoJ4AwohHAQIQgAAEIAABCNQTQBjxKEAAAhCAAAQgAIF6AggjHgUIQAACEIAABCBQTwBh\nxKMAAQhAAAIQgAAE6gkgjHgUIAABCEAAAhCAQD0BhBGPAgQgAAEIQAACEKgngDDiUYAABCAAAQhA\nAAL1BBBGPAoQgAAEIAABCECgngDCiEcBAhCAAAQgAAEI1BNAGPEoQAACEIAABCAAgXoCCCMeBQhA\nAAIQgAAEIFBPAGHEowABCEAAAhCAAATqCSCMeBQgAAEIQAACEIBAPQGEEY8CBCAAAQhAAAIQqCeA\nMOJRgAAEIAABCEAAAvUEEEY8ChCAAAQgAAEIQKCeAMKIRwECEIAABCAAAQjUE0AY8ShAAAIQgAAE\nIACBegIIIx4FCEAAAhCAAAQgUE8AYcSjAAEIQAACEIAABOoJIIx4FCAAAQhAAAIQgEA9AYQRjwIE\nIAABCEAAAhCoJ4Aw4lGAAAQgAAEIQAAC9QQQRjwKEIAABCAAAQhAoJ4AwohHAQIQgAAEIAABCNQT\nQBjxKEAAAhCAAAQgAIF6AggjHgUIQAACEIAABCBQTwBhxKMAAQhAAAIQgAAE6gkgjHgUIAABCEAA\nAhCAQD0BhBGPAgQgAAEIQAACEKgngDDiUYAABCAAAQhAAAL1BBBGPAoQgAAEIAABCECgngDCiEcB\nAhCAAAQgAAEI1BNAGPEoQAACEIAABCAAgXoCCCMeBQhAAAIQgAAEIFBPAGHEowABCEAAAhCAAATq\nCSCMeBQgAAEIQAACEIBAPQGEEY8CBCAAAQhAAAIQqCeAMOJRgAAEIAABCEAAAvUEEEY8ChCAAAQg\nAAEIQKCeAMKIRwECEIAABCAAAQjUE0AY8ShAAAIQgAAEIACBegIIIx4FCEAAAhCAAAQgUE8AYcSj\nAAEIQAACEIAABOoJIIx4FCAAAQhAAAIQgEA9AYQRjwIEIAABCEAAAhCoJ4Aw4lGAAAQgAAEIQAAC\n9QQQRjwKEIAABCAAAQhAoJ4AwohHAQIQgAAEIAABCNQTQBjxKEAAAhCAAAQgAIF6AggjHgUIQAAC\nEIAABCBQTwBhxKMAAQhAAAIQgAAE6gkgjHgUIAABCEAAAhCAQD0BhBGPAgQgAAEIQAACEKgngDDi\nUYAABCAAAQhAAAL1BBBGPAoQgAAEIAABCECgngDCiEcBAhCAAAQgAAEI1BNAGPEoQAACEIAABCAA\ngXoCCCMeBQhAAAIQgAAEIFBPAGHEowABCEAAAhCAAATqCSCMeBQgAAEIQAACEIBAPQGEEY8CBCAA\nAQhAAAIQqCeAMOJRgAAEIAABCEAAAvUEEEY8ChCAAAQgAAEIQKCeQBtIQAACEIgSGDVqVPSS8xwE\nevTokSOG2xCAQCUTQBhV8ujRdgiUgICE0NChQw1B1DSYEkj6DBgwoGkFkAsCEIgVgbqEC7FqEY2B\nAARahEAQQwii0uGWOEIglY4nJUGgHAQQRuWgTp0QKDMBiSJ9QlhjjTX86d577+2P4TrEc0wl8M47\n75g+Cu+++27yXNeyHg0ZMkSnBAhAoAIJIIwqcNBoMgSKITBw4MDktJkEkMQQQqgYouaF0S233JIi\nkCSO8EMqjiu5IVAOAgijclCnTgiUiUDUUiRBtM8++5SpJdVZ7bBhw0wCSQHLUXWOMb2qfgIIo+of\nY3oIAU8AUdQyD4Km2I4//nhfGeKoZZhTCwRKSYB9jEpJk7IgEFMCiKKWG5gwPaka5diOc3vLsacm\nCJSCAMKoFBQpAwIVRIDps+YfLDEOfltRJ/fmr5kaIACBYgkgjIolSH4IVACB8OMcVp1VQJMrvomB\nNVajih9KOlBjBBBGNTbgdLf2CARRpJ4HK0btUWj5HkdZR8eg5VtCjRCAQGMIIIwaQ4u0EKhwAtEf\n6wrvSkU0H94VMUw0EgIpBBBGKTi4gED1EuBHunrHlp5BAAKlI4AwKh1LSoJALAmEVVGrr756LNtX\nzY2K+hlVcz/pGwSqiQDCqJpGk75AAAIQgAAEIFAUAYRRUfjIDAEIQAACEIBANRFAGFXTaNIXCEAA\nAhCAAASKIoAwKgofmSFQOwQ++eQT++OPP2qnw/QUAhCoSQIIo5ocdjoNgcYROO+882z99de3Xr16\n2cyZMxuXmdQQgAAEKogAwqiCBoumQqBcBPRiVIXRo0fbpEmTytWMktf7448/2hdffGE//PBDycum\nQAhAoDIJIIwqc9xoNQRalMCgQYNs9913tyuuuMIWWmihFq27OSu79NJLbe2117YzzzyzOauhbAhA\noIIItKmgttJUCECgTARWXHFFu+qqq8pUO9VCAAIQaDkCWIxajjU1QQACEIAABCAQcwJYjGI+QDQP\nAnEg8MILL9jdd99tyy23nB199NEpTTrmmGNs+vTpdtZZZ1ldXZ099NBD9tJLL9mHH35oSy21lHfa\nPuigg6xt27Yp+XRx9dVX2wcffGD77bef9ezZ09577z174oknTPW1atXKunfvbjvttFPOl9+qzu++\n+84OPPBAnzajAndD04DyJRo4cKCtttpqPslll11mn3/+ub355pv++pVXXrHDDz/cn6sdag8BAhCo\nTQIIo9ocd3oNgUYR+Oyzz+z222/3IiddGN111102bdo0O+644+zQQw+1V199NVn2+++/b48++qjd\neeed/jjPPPMk43Ty3HPP2bPPPmu9e/e28ePHe4EzY8aMZJqRI0faNddcY+eff77tu+++yfvh5OGH\nHza1bYsttsgpjCTUvvnmG+vXr19SGD3zzDP28ssvh2K8A7acsBW0JQHCKImGEwjUHAGm0mpuyOkw\nBJqHwMEHH2wTJkyw6667zl577TUveGRNatOmjUkgXXDBBTkrfuSRR6x///5evMgy9frrr9uwYcP8\n9gB//vmnqZzHHnssZ/7GRlx++eU2fPhw23XXXX3Wrbfe2l/r3mmnndbY4kgPAQhUEQEsRlU0mHQF\nAuUk8O2333pr0bzzzptshqbCFLT664477rB///vfybjoiSw/msqKrg5bdtllbauttvKWoscff9zO\nPvtsf60ptmKDylZYeOGF/XGBBRbIOV3nE/APBCBQMwSK/wtTM6joKAQgkI+AhE1UFIW0Wuav8NNP\nP9nPP/8cbqcctQXAySefnHJPF7I2DR482PsbffTRR/biiy9mpOEGBCAAgVISQBiVkiZlQaCGCay8\n8spZe9+5c+fk/e+//z55Hj2RZahDhw7RW8nzbt262UorreSv5TBNgAAEINCcBBBGzUmXsiFQQwTm\nn3/+rL2dc845s96P3tTqtXyhS5cuPvqrr77Kl4w4CEAAAkUTQBgVjZACIACBYgnkshaFckP8lClT\nwi2OEIAABJqFAMKoWbBSKAQg0BgCegdbvjBmzBgf3bVr16zJZs2alfW+bmpVGwECEIBAoQQQRoWS\nIh0EINBsBLS8P1f4/fff7eOPP/bR6cJorrnm8ve1TUC2oP2VtAEkAQIQgEChBBBGhZIiHQQg0GwE\ntAO1NnvMFm644QabPHmyzT333LbBBhukJAlCadSoUSn3w8V9991niUQiXGYctepN4ZNPPsmI4wYE\nIFCbBBBGtTnu9BoCsSKgvYn0Wg/tSB2CBM3NN9/sXzWie9pVe8EFFwzR/rjuuuv64/3332/aJDIa\ntOO2XgeSz/k7OHW/9dZbflPJaH7OIQCB2iQw+79Ltdl3eg0BCMSEwAknnOD3KNptt938potLL720\nt+LIUqTQq1ev5LvMok3Wqzv0yhC98mOfffaxxRdf3Dp16uSvJ06c6DeMlGDKNVW36aabWrt27fwr\nTbbccktbcskl/bvZzjjjjGg1nEMAAjVEAItRDQ02XYVAXAlo1ZneubbHHnv4F9FKyEgUaePHww47\nzB544AE/lZbeflmDtCu2RI2sTuPGjTNNq3Xs2NFOP/30rGIqWoa2CZBVatVVV7XWrVubnLz1zjYC\nBCBQuwSwGNXu2NNzCBRMQNNc+mQLEiP5Ql1dnd/1Ol8axUkcXXnllT6Z9itq27att+A0lG+xxRbz\nrxuRo7VeBKvr6JTbE088kbeIzTff3PSZOXOmTZo0yXLtx5S3ECIhAIGqIYAwqpqhpCMQqB4Cmkpr\nbNCU2CqrrNLYbMn0shjJQkWAAARqmwBTabU9/vQeAhBoRgLvvPNOM5ZO0RCAQHMQQBg1B1XKhEAM\nCbz77rsxbBVNggAEIBAvAkylxWs8aA0ESk6gR48e3iE5jtaL7bff3lZccUXr3r17yfsdhwKDGNUY\nECAAgcoggDCqjHGilRAoCQGJozXWWKMkZZWikL333rsUxcS2jCBGEUaxHSIaBoEMAkylZSDhBgSq\niwA/ytU1nvQGAhBoXgIIo+blS+kQKDsBCaMgjm655Zayt6dWGjBs2LBkVwcMGJA85wQCEIg3AYRR\nvMeH1kGgJATCD7OmdqI/2CUpnEIyCIhxEKGBfUYibkAAArEkgDCK5bDQKAiUlkC61Sj4vpS2FkoL\nBIIo0jXCKFDhCIHKIIAwqoxxopUQKJrAkCFDklNqxx9/PJajoolmFiDBKbYhiDkBAhCoLAIIo8oa\nL1oLgaIIRK0XsmowrVYUzpTMYilRFKxxYh18u1IScgEBCMSaQF3ChVi3kMZBAAIlJaCXrA4dOtTv\nbRQKDsvmtZQ/Tsv5Q/vieAwCSEftVxSu1daodS6ObadNEIBAbgIIo9xsiIFAVROQONInW0AcZaPy\n172oCPrrrnkLEZaiKBHOIVB5BBBGlTdmtBgCJSWQTyCVtKIqLkxTZgiiKh5gulZTBBBGNTXcdBYC\nuQloik0hHHOnbNmYwYMH+wr79Olj+sQlBP+hcIxLu2gHBCBQHAGEUXH8yA0BCDQzgbq6Ol/D8OHD\nYyWMmrnbFA8BCJSJAKvSygSeaiEAAQhAAAIQiB8BhFH8xoQWQQACEIAABCBQJgIIozKBp1oIQAAC\nEIAABOJHAGEUvzGhRRCAAAQgAAEIlIkAwqhM4KkWAhCAAAQgAIH4EUAYxW9MaBEEIAABCEAAAmUi\ngDAqE3iqhQAEIAABCEAgfgQQRvEbE1oEAQhAAAIQgECZCCCMygSeaiEAAQhAAAIQiB8BhFH8xoQW\nQQACEIAABCBQJgIIozKBp1oIQAACEIAABOJHAGEUvzGhRRCAAAQgAAEIlIkAwqhM4KkWAhCAAAQg\nAIH4EUAYxW9MaBEEIAABCEAAAmUigDAqE3iqhQAEIAABCEAgfgQQRvEbE1oEAQhAAAIQgECZCCCM\nygSeaiEAAQhAAAIQiB8BhFH8xoQWQQACEIAABCBQJgIIozKBp1oIQAACEIAABOJHAGEUvzGhRRCA\nAAQgAAEIlIkAwqhM4KkWAhCAAAQgAIH4EUAYxW9MaBEEIAABCEAAAmUigDAqE3iqhQAEIAABCEAg\nfgQQRvEbE1oEAQhAAAIQgECZCCCMygSeaiEAAQhAAAIQiB8BhFH8xoQWQQACEIAABCBQJgIIozKB\np1oIQAACEIAABOJHAGEUvzGhRRCAAAQgAAEIlIkAwqhM4KkWAhCAAAQgAIH4EUAYxW9MaBEEIAAB\nCEAAAmUigDAqE3iqhQAEIAABCEAgfgQQRvEbE1oEAQhAAAIQgECZCCCMygSeaiEAAQhAAAIQiB8B\nhFH8xoQWQQACEIAABCBQJgIIozKBp1oIQAACEIAABOJHAGEUvzGhRRCAAAQgAAEIlIkAwqhM4KkW\nAhCAAAQgAIH4EUAYxW9MaBEEIAABCEAAAmUigDAqE3iqhQAEIAABCEAgfgQQRvEbE1oEAQg0A4Hx\n48fbJZdcYgMHDrR//OMfNnjwYHvzzTeboaa/ivzwww9tn332sTXXXNMWWmghW2eddey4446zn376\n6a9EOc5eeeUVO+yww3zepZZayvbYYw+7+eabc6ROvV1M3tSSGnc1depUO+ecc2yTTTaxJZdc0n82\n3XRTu/zyy23GjBkNFnbnnXfaXnvtZcsss4ytuuqqdvDBB9sLL7zQYD4lKCZvQRXkSaTn6IgjjvCf\nSZMm5UlJVEUQSBAgAAEIxJiA+0Oa0Gf48OFNbuVdd92VmG+++Xw5oTwd6+rqEoceemiTy82X8bLL\nLku0bdvW19m+fftE586dfX2qd8EFF0y8/vrrObPff//9iTnnnNPnVRnRth9++OGJWbNmNUvenIUW\nEPHZZ58lnIBLMp5//vkT+gTea621VuLXX3/NWdLJJ5+cTDvPPPMk+9+mTZvEbbfdljOfIorJm7fg\nBiI1DhdeeGFijjnmSLb9m2++aSAX0XEnYHFvIO2DAARqm0D4YW2qMPr0008TEiatWrVK7L333olH\nH300MXLkyIT7H36iQ4cO/gft4osvLinkF198MdG6devEvPPOm7jjjjsSM2fO9OVPmDAhseOOO/o6\nnVUkq1B46aWXfF71W+Lql19+SThrS+L5559PLLLIIj7v6aefnrW9xeTNWmCBN6dNm5ZYY401fNt2\n3nnnxHPPPZeYPn26zy3WQTD1798/a4nnn3++zysB+MQTT/i8U6ZMSVx33XWehQTs008/XfK8WQss\n8KazQCY233xz3+5FF100OWYIowIBxjgZwijGg0PTIACBhP/hkUhoqjA66qijfBk77LBDBs5jjjnG\nx6200koZccXc2GabbXy5Q4YMySjm999/T7hpJh//4IMPZsRLWKi/2cTPa6+95gVex44dEyonPRST\nN72sxlw/8sgjvs2yEE2ePDkj67PPPuvj55577qRIDIn+/PPPRKdOnXy80qUHiVbx2GqrrdKjEsXk\nzSisETfefvvtxMILL+zbpbGW4JWVS+1EGDUCZEyTIoxiOjA0CwIQmE1APzb6NFUYyTK08cYbJ/73\nv/9lIHW+Ib7sdu3a5Z2eysjYwI3wQ68fzGxhzz339PWeffbZKdGjR49OaOpI02c//vhjSly46NOn\nj88ra0o0FJM3Wk5Tzm+88cbElltumbjqqquyZpf1SBY7jePYsWNT0siipvuaassWZDmaa665/DSk\nrH/RUEzeaDmNPb/99tv99Nmll16azIowSqKo+BOcr903kgABCFQvgSuuuMLcNJStt956GZ384IMP\n/L3111/f3HRNSvwff/xh7ode/3lMuR8u5EDtBEG4TDmOGjXKxo0bZ86qkHI/XMgRXEEOxtHgpou8\nk/Jmm21mCyywQDQqeb7bbrv588cffzx5TyfF5A0F3XDDDfbzzz+Hy5Sj86exK6+80pzISbmvi/32\n28/cFJgdcsghGXG64USbKb+burTFFlssJU3ox9///veU++FCebbddls/Dk8++WS47Y/F5FUB3377\nrd1zzz0pZUYv5FTtBHn0lj93U4P26quv2tFHH50Rx43KJ4AwqvwxpAcQgEATCHzxxRd25pln+pz9\n+vXLKMFZc/yqMK1iSxdHEkUSLwcccIA5H5qMvM5iZPpkC85nyJwPkjmHXdOKrWhw1hR/ucoqq0Rv\np5yvvPLK/nrMmDEp94vJq4KcX5AdeOCB5vxmMsSRRI3zDzLn+G3nnXdeSr0NXUhIaSWegpu6NGc5\nSslSTLuLyatGOJ8z23333W3YsGEpbdKFRJHG2E1PmsYsGnr16uVXC0bvcV49BNpUT1foCQQgAIHC\nCLhpNdt+++1t4sSJ/gc/2//83UonL3quvfZaX6jzF/JWpSCK3nrrLTv11FNto402KqzS+lQnnHCC\nt7rIQuKmiFLyBrHjnKxT7kcvQlwQBSGumLwqQ0vsTzzxRLvgggu8OJIFyvkMeUuPRJGsYxIKxx9/\nfKgy69FNAXorjMSk2vTf//7XZCG75pprbMCAARl5iml3MXnVkOuvv97c1KTtv//+vl3aWkEhiCI3\njefb75zo/X3+qRECFT8ZSAcgAIGqJuD+FHsflKb6GKXD0VJ4+RSp3FNOOSU9OuVa/i29e/f2aQ86\n6KCEE1KJ7t27F5Q3paD6CzcV5fPK+VplpQcn1ny8m9JKj0pef//99z6NfJGioZi80XKccPPl9+zZ\n0/s5OdHgr511K6vDdzSvzt955x2fPoybjmL30UcfpSf112Ergi+//DJrvG5quwWVozZEQzF5Qzny\nW1p88cW9D5TbJyrhpkETcm7XEvyHH344JGvwiI9Rg4gqJgEWI/dtI0AAArVDQNYht7zcnPOynzrK\n13P5t7jl/eZWHpksR/JHkQ+OrEnayLAx4YEHHrAjjzzS3A+oudVo5vYyysgeLBOyVOQKbjWaj0q3\nNhWTN1qXLEaaOnOrwWzZZZf1/ZU1yYkEc9seRJNmPe/SpYvdcsstPu6HH34w+VvJ2iT/JTGTVSoa\nxMOtZLNC+uxWtUWzepZNzRsK6tatm/cjCpYj1aGNKu+77z7LNsUa8nGsXgKpk73V2096BgEIQMA+\n+eQTc8upvSiRf1AhQQLk1ltv9T5BEkVuv55Gi6IRI0b4navd3kbmLFbmVmBlrXqJJZbw9yUocoUQ\nF9KGdOE6xIf70WOIC2mjcdFziSP5Oam/zrrmhU4hokhlaPpNu1frI58isdNO3G7DSjvppJO8I3y0\nrtCW0LZoXDgPcSFtuB+uQ3y4Hz2GuJA2GhfOl19+eXMrzLwglD+RdtzebrvtQjTHGiOAMKqxAae7\nEKhlAvqh14qivn37ZqxCy8VFr3hwmzKa2zPH9OPqpor86is3L5ArS8p9WUzkz6RXYui1FekO19HE\nbkrHX2pFW64QVrSl/9AXkzdal/rlpr5MK/ZUh6xr6r8sM00NPXr0SPoXSShFQzHtLiZvtA3yF3M7\noJvbJsHkw6XVd+ntjKbnvLoJIIyqe3zpHQQgECGw7rrr2tdff513iXYkubeYaJWWnHE1BfTxxx+b\n2xPJ5IitH9KGxJEsVFtvvbWfJtL00k477RQtPuM8rEbT0vdcZYcl6m5TypT8xeQNBalOOUhr2kvi\n0fnf2LHHHmvu9SW2xRZb5BRHWmUnZ21NQeUKK6ywgo/S0v1oCO1+7LHHordTzhvqc1PyhgrcZo3e\nqdy9rsQ/F3o3m9vJ2vbdd19zryIJyTjWEgH3RSBAAAIQiC0B9/fYO96Wyvm60I46S1FCDsiq34mi\nZLbffvst4Vai+ftu357k/fQTbbjo/G38xoQ33XRTenTWa+fbk1huueV82XoFSHpweyslXwvy3nvv\npUQXk1cFKb+cpNVfJ4oScjwPwYkjf98Jy6w7W7t9hny8nKRzBTc95dOorGj46quvvOOzdsUW2/Sg\nXabVJm2aqZ2uo6GYvCpHZeu9ddpQ0/mAJYt2AtjXp9e6NPSetpAJ5+tAovKP+l8JAQIQgEBsCZRS\nGL3xxhsJtw9QYoMNNkhodVe+MHjwYP+DHBVFIX0QR3qHl94Flh6cX0tCrxlR290y9fTovNeXXHKJ\nz7f00ksnvvvuu2RaCZd//OMfPs45CifvR0+KySvhqf6ki6JQfhBH6bt1K147XquvelGuREV6cBYf\nv6O3ynf+VunRibCizvn1+PfChQQSp86i5MvWeGQLxeQVx3RRFOoI4kjCKdtrTkK6cEQYBRKVf0QY\nVf4Y0gMIVDWBUgojN/3lf2RV5tChQ/Ny04tb9cqJXEHiKGpliKYLFiUJAbeyK+dHlpb0IEuNXq+h\nNjofmoTbYDJx2mmnJa1XspykW4tCGcXkVRluz6EUS1EoNxyjL8QN93TUS3KDQFG73Y7e3somMeOm\nEpPM3Yaa0WzJ888//zzRtWtXn2711VdPuFV/CbeZZPLlsxtuuGFOcVJMXr2yxe2mnWxH+onEkZtG\nTL+d9RphlBVLRd5EGFXksNFoCNQOgVIKo4ceeijhVkcltP9NNstGqag6B96kGAjtz3aUCMgWNGW0\n7777emtGNN+aa66ZyLffj8oqJm+2thR6Ty+1lTVJL5KNtlnnmh6899578xblNqxMuNe2eKtVyK+9\nmnbZZZcG908qJm/eRjUiEmHUCFgxT1qn9rmHkAABCEAglgSc1cW3y031mPaaKTZo52otPS90+Xmx\n9RWTXyvC5PislXF611vY9bqQMovJW0j5udJonyU5neuVK1qiL6dr7YekrQoKCRof7UyuPaTWWWed\njN3B85VRTN585RJXWwQQRrU13vQWAhVHoNTCqOIA0GAIQKBFCbBcv0VxUxkEIAABCEAAAnEmgDCK\n8+jQNghAAAIQgAAEWpQAwqhFcVMZBCAAAQhAAAJxJoAwivPo0DYIQAACEIAABFqUAMKoRXFTGQQg\nAAEIQAACcSaAMIrz6NA2CEAAAhCAAARalADCqEVxUxkEIAABCEAAAnEmgDCK8+jQNghAAAIQgAAE\nWpQAwqhFcVMZBCAAAQhAAAJxJoAwivPo0DYIQAACEIAABFqUAMKoRXFTGQQgAAEIQAACcSaAMIrz\n6NA2CEAAAhCAAARalADCqEVxUxkEIAABCEAAAnEmgDCK8+jQNghAAAIQgAAEWpQAwqhFcVMZBCAA\nAQhAAAJxJoAwivPo0DYIQAACEIAABFqUAMKoRXFTGQQgAAEIQAACcSaAMIrz6NA2CEAAAhCAAARa\nlADCqEVxUxkEIAABCEAAAnEmgDCK8+jQNghAAAIQgAAEWpQAwqhFcVMZBCAAAQhAAAJxJoAwivPo\n0DYIQAACEIAABFqUAMKoRXFTGQQgAAEIQAACcSaAMIrz6NA2CEAAAhCAAARalADCqEVxUxkEIAAB\nCEAAAnEmgDCK8+jQNghAIC+BESNG5I0nEgIQgEBjCSCMGkuM9BCAQLMQkMg544wzCi5b6Z9//vmC\n05MQAhCAQCEEEEaFUCINBCDQ7AT69OljhYojCai+ffvaoEGDmr1dVAABCNQWAYRRbY03vYVArAlI\n6AwePNiLnlwNlShSGn0IEIAABEpNoC7hQqkLpTwIQAACTSUgS5AsRwpRAaRz3Q9x/OnyiPgHAhAo\nMQGEUYmBUhwEIFAcAQkfiaN8QSKJabR8hIiDAASaSgBh1FRy5IMABJqNQNRqlK0SrEXZqHAPAhAo\nBQF8jEpBkTIgAIGSEshnDZK1iAABCECguQhgMWouspQLAQgURSCX1QhrUVFYyQwBCDRAAItRA4CI\nhgAEykMgm9UIa1F5xoJaIVBLBLAY1dJo01cIVBiBdKsR1qIKG0CaC4EKJIDFqAIHjSZDoFYIRK1G\nWItqZdTpJwTKSwCLUXn5U3uJCIwaNcqGDh3qS9M5AQIQiDeBHj16+AbqOGDAgHg3ltbVFAGEUU0N\nd/V1duDAgYYQqr5xpUe1R0DiCIFUe+Mexx4jjOI4KrSpQQLBQhQVRa3aLeTz1bVfyFq1W7jBMkgA\nAQiUh8CsaT/4ihNTJ9qsaRNTGoFASsHBRRkIIIzKAJ0qiyOgKbMwbaaSJIhad1zJWjlBRIAABCqP\nwIxJH9nMSR8nG444SqLgpAwE2pShTqqEQJMJBEtRKKB1xxWtjRNFBAhAoHIJhO9wEEfhPz5MrVXu\nmFZyy7EYVfLo1WDbe/bsmex1204bYSVK0uAEAtVBYPq4kcnptSFDhlhw0q6O3tGLSiDAcv1KGCXa\n6AmE/0XqQpYips54MCBQfQQ0LR5C9Dsf7nGEQHMTQBg1N2HKLxmB8EeS6bOSIaUgCMSOgP7Do++4\ngqbOowssYtdYGlSVBBBGVTms1depIIrUs+CPUH29pEcQgIAI6DseVplGv/vQgUBLEEAYtQRl6iia\nQPjjGP4nWXSBFAABCMSaQJhSw2oU62GqysYhjKpyWOkUBCAAAQhAAAJNIYAwago18rQogaiPARs3\ntih6KoNA2QiwuKJs6Gu+YoRRzT8ClQWAP5aVNV60FgLFEAh+RtH/HBVTHnkhUAgBhFEhlEgDAQhA\nAAIQgEBNEEAY1cQw00kIQAACEIAABAohgDAqhBJpIAABCEAAAhCoCQIIo5oYZjoJAQhAAAIQgEAh\nBHiJbCGUSFOVBObuMKd1W3oxW77rorZMl0Xs519+t2/GTrT3Phljo8f/VJV9VqdWXm5xW3X5JW2p\nJRa0P6fPsK/HTLSXRn1uEyf9mrPPq3Rbwlq3qsuIn/bnDBs97keb+sf0jDhuQAACEKhEAgijShw1\n2lw0gR03X8uO3m8La9u2dUZZs2bNskeGv2PX3f2C/Tjpt4z4Sr2xwHxz2ZH7bW6bb7BKRhemTvvT\nbrhnpN3+8CsZcbpxyal7mIRktpBIJGz8D5Ptq9E/2F2Pvmaj3v86WzLuQQACEKgIAgijihgmGlkq\nAu3nbGsnHbxtUhxI+Lz/6Rj77OvvbZ6529sq3WZbU7bftLttsFY3O+jUG+37ib+UqvqyldO2TWu7\n6J+72wrOQvb71D/tgWfetC+//cHmm6e99V53RVt9hSXtsL03tekzZto9j7+es53fOQH02+/TkvFz\ndWhniy00ry2+yPz+02ut5ezBZ96yK2991teTTMgJBCAAgQohgDCqkIGimaUhcNDuvZOi6IGn37RL\nbnjSZs6clVL42qstbWccvaMt2HFuu+iU3W3gaTdV/I/8fjtv6EXRT5On2IEn32ATfvxL7N316Kt2\n0sBtbbtN1vTiaMSrH9sPP2WfVpPgee5/H6Xwat9uDlu2y8K2/y4b2XprLmuyxq26/BJ2gKsnnW1K\nRi4gAAEIxJAAztcxHBSa1DwEFnWWjb9t0dMXPuz+l+zCax/P+sP9+ntf2TFn3WHTp8+0ZTovbFtv\nvHrzNKgFS914nRV8bdfe+XyKKNJNNxNm/7n5Gc9CliWJmsYETcO9/+lYO+6cO+3i659w5SVsuaUW\ntZ23nM26MWWRFgIQgEC5CWAxKvcIUH+LEei/W2/vUzT5199t2H9fylvvJ199Z0+9+L5t23cN27TX\nynbfk29kTa+pqT7rregsJouYhNc3Y3+0z7+ZYI+OeCenf9KJA7YxCZArbn7anCaxvi5/95WX8laX\ncRN+tnc+Gm33uumsGRFLlsrfvd+6NtP5P1183RN+yitbg/q4abENenSzcd9Pshvve9EnadO6lc0z\nVzuTtejdT0Zny2ZTpv5h302cbEss2tE6d1owa5pCbv73yVHesXvLjVa1A3fb2J5+6QOb5OolQAAC\nEKgUAgijShkp2lk0gY3WXt6XIQfhQlZRXXP7cC+OZs2SfEkNrdwKrb137GUH7rqxtXbCIwRZSiSk\nJGLOH/KoPf/aJyEqedy692o2R9s2dpMTLqcdvr337wmRyr/x2iuY0hz6r1u8YFHcWCd0JHo6tJ/D\nXnBlvvzm5yFLylFtWnHZTnbtXc8n70tg7XjwFcnrbCdztZ/TCbv5fFSuabRs+bLdu+b256y3s1DJ\nWXuT9VbKKSqz5eUeBCAAgXIT+OsverlbQv0QaEYCspjoo/D2R98WVJMsLG+897W9+cE3GeklQAbs\n3seLIvkqHf3v2233o662Uy6816/KklPzOcfv4ixBXTLyhhv/OmJ7W3D+uWzQ5ffbHkdfY/1PudFu\nuf9lP6UlgbT/LhuGpDbNLYcf/sps355N1l8peT960sk5QEsUaSrriRfei0Y1eL7OGkubLEsSUa+/\n+1WD6fMlmPDjr/bh5+N8ks6LL5AvKXEQgAAEYkcAYRS7IaFBzUFgicU6JosdP2Fy8rwpJ3LKljBS\n0HSYfJXkl6S9j154/RM7+qzbnYPyhz7+yH03t1Z1mfv/KLLTwvPbASddb8+89KF96/YC+uiLcXbN\nHcPt9odmL5nfps8avozwz+PPv+tPN+q5vJ+KC/fDUVNyCm99+K1p9VihQc7TEnkKj7ptCvLtZ+QT\nFfDPmO9m7wPVuRPCqABcJIEABGJEAGEUo8GgKc1HQL4zClolNTHHiqtCa99hs+4mMaHprWxL2zX1\ndtVtw31dyzsfpLVWXSpr0Xc88opb+v5HRtzjL8wWQLI6BSuXEsnSpf2C5naWr55u5Vx6CJakxliL\nJNoGHbGDdVl8QS/s/jPsmfRim3Q95rtJPl+XIvyVmlQxmSAAAQgUSQBhVCRAslcGAe3wrCDfoKhP\nUFNav9TiC/lsL77xqWXzP1LkeOdErb2RFEJ6fxH55wu3j1C2ELX2yDoVglaPBdETRFCI67TwfLbS\nsounTLmFuHzHYw7Y0uR79duUaXbKRfeaVpiVIszhnMsV/viTHbFLwZMyIACBliOAMGo51tRURgJj\n6y0Ydc5CotVjxYTOnWZbn7774Ze8xYz/4Wcfv2R9+vTEv/7210aJ0bgg4qL3wvkTYTrNiRn5BIXQ\n1zk5K8gxWxs4FhK079DftuzhXwtywvl3+52rC8lXSJolFps9hfZtFb9apRAOpIEABCqPwF9/WSuv\n7bQYAgUT0DL4EOSkXEzo4FZwKUz9I78AmfbHbCuVpt1KFTRF9a57l5um2Hqu/td0Wt96h+zH6oVT\nQ/Vpj6H+bjm9phZPv/R+e/fj7Mv4GyonV3wQj9X8zrlcfec+BCBQ2QQQRpU9frS+QAJa1RWcirXs\nvZCgvYbmm6eD/0TTB8fisLw9Ghc9D5Yp+SKVMjw+YrYPkpbCKyzmptH0Ylgtsx/lVtE1FPSutGMO\n2MJNA86ywVc8YJoSLGWQX9XK7qWzCl+PyT5dWMr6KAsCEIBAKQkgjEpJk7JiTUDv8FLQpo0LLzBP\ng209dK9N7LHrj7FLT9sjJW2wgqzklsbnCtqnSK/JUBhT4ukkrXjTdJt2s9Z0WliN9uTI922WHJHy\nhPW6L+v3TlKqs696JOP1HnmyFhwVVuJJED7z8uzVeQVnJiEEIACBMhNAGJV5AKi+5Qjc8fCrfhdm\nWYKOP2hrm3OO3PubrrBMJ9OLZBWChSa0dOTrsy0sei9Yt66LhtspR713TNYmrTp784NvU+KKvVCZ\naoOfTnOr04J/UXo70+vRi2LPPnZna+0c0C8c+njSkTs9XVOvtUnkaYdtl9y76fKbnvavVWlqeeSD\nAAQgUA4CCKNyUKfOshDQiqsb7h3p697QvTbjqjP28cvUo41p27a1bbfpmnbFv/5h7eZs61/v8Vj9\n1FVIpw0fw/TTBSftZqvUTxuF+G36rG6H77Opv7zZ7W6tV5CUOgRfon3/toGfRtMeSF+PnZizmuWW\nWsQuPPnvvk/X3/2Cf1WHfJ+yffIJRsVF88jyts4ay9ge261rt1w8wO3YPfu9clo999Koz3K2hwgI\nQAACcSWQ+7/McW0x7YJAEQT0Li/NNh3lNl7ULtF3XHawtyJ96pbW6xUW2s8n7B2kqaBjz74j+VqO\naLWX3fiULe72RtJLZoeevZ/379Ey+6WXXMjvM6S0supk2+coWk5Tz19750v78effbPUVO/siHh+R\nf6fri07ZPdmu/n/vbfrkCl98O8H2Of7arNGnHba9swpljfI3f/ltql3q2DzlpvUIEIAABCqRAMKo\nEkeNNhdF4P6nRtmHn421EwZsbct3Xcw6zjeXreusHiFM/nWq2336f3bfE2/kfKeaNlo88OQb7OA9\n+9hmvVbxPkuynuh1HFo5pvzBpymUW8qj9k+S+Nhju/X8C2X1stZ8QX1sjvDHnzO8perrMRP9cn9Z\n1yTYCBCAAAQqlUCd+0Oe31uzUntGu6uGwKhRo2zgwIG+P3Mus1NJ+zXbSXoRW8Y5SsvaIVGjVWfT\np89sVD3yJ9IqtNHu1R6FvKC2UYWTGAI1SmD6uJE2a9pEGzBggP/UKAa63cIEsBi1MHCqixcBre6S\nf44+xQT5ETWHL1ExbSIvBCAAAQg0ngDO141nRg4IQAACEIAABKqUAMKoSgeWbkEAAhCAAAQg0HgC\nCKPGMyMHBCAAAQhAAAJVSgBhVKUDS7cgAAEIQAACEGg8AYRR45mRAwIQgAAEIACBKiWAMKrSgaVb\nEIAABCAAAQg0ngDCqPHMyAEBCEAAAhCAQJUSQBhV6cDSLQhAAAIQgAAEGk8AYdR4ZuSAAAQgAAEI\nQKBKCSCMqnRg6RYEIAABCEAAAo0ngDBqPDNyQAACEIAABCBQpQR4V1qVDmy1dksvlSRAAAK1QUAv\nkCVAoKUJIIxamjj1FUWAP5RF4SMzBCAAAQg0QABh1AAgouNFoEePHvFqEK2BAASajcCoUaOarWwK\nhkAuAgijXGS4H0sCQ4YMiWW7aBQEIFB6AgMHDjTEUem5UmJ+Ajhf5+dDLAQgAAEIQAACNUQAYVRD\ng01XIQABCEAAAhDITwBhlJ8PsRCAAAQgAAEI1BABhFENDTZdhQAEIAABCEAgPwGEUX4+xEIAAhCA\nAAQgUEMEEEY1NNh0FQIQgAAEIACB/AQQRvn5EAsBCEAAAhCAQA0RQBjV0GDTVQhAAAIQgAAE8hNA\nGOXnQywEIAABCEAAAjVEAGFUQ4NNVyEAAQhAAAIQyE8AYZSfD7EQgEAOAolEwv773//a9OnTc6Tg\ndiUTmDZtmj3wwAOV3AXaDoEmEUAYNQkbmSAAgaeeesp23nlne+aZZ4BRhQTuvfde22mnneyNN96o\nwt7RJQjkJoAwys2GmCoi8Nhjj9lmm23mP5dcckkV9azhruy+++7Jvk+cOLHhDAWmuPTSS22FFVaw\nrbbaKmeOWbNm2TfffGMvvfSSP+o6LmHMmDH28ssv2/jx4+PSpBZrx2effeYFz88//5yzzt12280W\nW2wxu+yyy3KmIQIC1UgAYVSNo0qfMgiMHTvWnn32Wf/58MMPM+Kr+cbIkSOTfdf0SCmCGD755JN2\n1FFHWV1dXdYib7jhBuvcubN17drVNtxwQ3/U9fXXX581fbE31bcjjzzSFl54Ydtoo41yFidLSJcu\nXXzbNthgA1t88cVtzTXX9CIpZ6YiIiS+VlllFd+uhx56qIiSsmcttN8zZ8604447zhZaaCFbfvnl\nbe2117aOHTvaDjvsYJ9//nlG4XPMMYcdeuihdvfdd5u+PwQI1AoBhFGtjDT9hEAJCciKsMACC9i+\n++6btVTFH3jggfbLL7+YLFbXXHONP+q6f//+Vmqr3QcffGDrrLOO/ec//zFZxX766aes7RoyZIjt\nuuuuJpEwePBgu/jii61nz572zjvvWN++fe3NN9/Mmq8pN1XHmWeeaRtvvLFJSKpdf/zxR1OKypmn\n0H5PnTrVCyBxlzg9+eSTbdCgQV4cSayp7+PGjcuo55BDDrHWrVvblVdemRHHDQhULQHnQEmAQKwJ\nOB+HRI8ePfynqQ0dOnRown2J/cf9YDe1mIrM5ywiyb6PHj266D788MMPifbt2ydOOeWUrGW5H+GE\nszYkFlxwwYSzNKSk0bXuK17pShHcj7Zvz9xzz524+uqrfV9XXnnljKInTJiQ6NChQ2KJJZZI/Pjj\njynx55xzjs/nLFsp95t64aYPE85q5cvcYostEnvvvbc/d9aXphaZka/QfiujE0S+fidSE3/++WdK\nWU7c+rjDDjss5X64OOiggxJOBCemTJkSbrXYccCAAf577wRti9VJRRBoU7WKj45BoEACr732mul/\n3grzzDOP7bLLLik55Yfx9NNP27vvvustIO5H10/V6JgeHn/8cfvuu+/8bTmutmrVyk85vf76695R\ned111/Vx6en0v/LnnnvOnn/+eZt33nltk0028ZaG9PLDtcp79dVX7eOPP7ZFF13UVl11Vdt2221N\n0x/NHWT9mTFjhrkf0qxVyTrifny975GmqaJB11tvvbXdeuutnrkTvNHoJp0fccQR1r17d7vzzju9\nNURWjmzTe2L2+++/24knnuitXdHKDjjgAPvXv/5lo0aN8tYkjUcx4eabb7ZXXnnFLrjgAjv++OPt\nn//8py8uW7uaWk+h/dZYyYI3//zz+2nMtm3bplR50UUX+Wk+TUFmC0cffbRde+21NmzYMDv44IOz\nJeEeBKqLANoQAnEn0JwWo7fffjshS4P7VifcD0bCrbRKweFWXCWWXHJJH6804dOmTZvEaaedlnBL\n1VPS9+7dO5nGiZxE1Fpz4YUXJtNG0zmBk1httdWS+UIdbrojmT6c/Prrrwk3FZWRVnmcOEq89dZb\nIWnyGG1DsRYjNxWU6NSpU+If//hHsvz0E7WxXbt2Cee7kh7lr3fcccfEnHPOmVC69KCxdtNt6bf9\ntROmCTcdlRHnhE7SCuL8bTwb59OTkU5WnEcffTSRjYHGcb755vPWpIyM7sbw4cOz3fb3NM5u2iwl\n/rbbbks4IZa8p7HUGN1zzz3Je9GT5uy3W3jg63b+YNEqG3W+5ZZbJlZcccWEc55vVL5iE2MxKpYg\n+ZtCwJqSiTwQaEkCzSWMnE9FUvS4/8knbrnllpRuOStSQgIoCBXnm5HQVEu41jEqdpQ5Kni6deuW\nM200naZ9VJbERLRstSld6Oy5557JNM6qkdh000391FTI51YRZQiLUgojZzXw9WtM8oW//e1vnp3b\nBycpGiQeHnzwQX9f4ig9TJo0KeGsGolevXpl9EEcNAW3zTbbpGdLuc4njFISpl288MILvl8SnenB\nWfJ8nHPsTo9K3HTTTQlnFUycf/75GXHRG/mEUXP3+4orrvDtv+OOO/x0mLOsJSQ43CrNhMTSiy++\nGG1q1vMnnnjClyFh2ZIBYdSStKkrEEAYBRIcY0ugOYSRm1JJOKdb/8deouLcc8/N6L98Q4LgUHyw\nCrz33nveuqQ4N/WWYsWICh4Jm8MPPzzhlqon5JejTwjRdG4qzAsGWS3clF3CTWkk643+4Kqc0B63\n0ivhlpv74iQG9ttvv2Scm7YJ1fhjKYWRm7LyvjMpFWS5EN9jjjnGiwZZmNzSb29pkojQfcVnC/rx\nluCLiqMgitSPTz/9NFu25L2mCCP53Ky33noJjZcEUrYg/xuxj4qjIIo0lg353+QTRqqvOft9wgkn\n+LbL+ikhrX5oTCQ0da5+K02+IEuRBPzmm2+eL1nJ4xBGJUdKgQUQQBgVAIkk5SVQamG0//77J9zG\nhP5HQT8M2ZxOf/vtt2S8W9Kc8UOuaSLl1Uf/mw4hKnjc/j7hdsYxms75cKTE77PPPsmynU9HMi78\nwKnO8847L3lfJxIPoT36kY+GUgkjOS/rR9SttIoWn/VcP6Q33nijn54K7dJR01W6n29KRtNQQRxJ\nqOgHXD/kn3zySda6ojebIoyC83G2qctQttrrlq57xhJH6oNEnltxltCz0lBoSBgpf3P1e4899vDt\ndlsSJJyPW8L5pSWbK2vR0ksv7eNlScoXZF3SFKgYt1RAGLUUaeqJEkAYRWlwHksCpRZGWhEVfqzd\nfjYJ55ya0e+o0NBKJk2LRT/hf9sqxy0RT+aPCp677roreT/9JJpOPiDRoNVGoX0ScSFExZj8nqLt\niU7bqW3RUCphpDL79euXWG655ZLWs2g94VyWMbdHjreqnX766YkvvvgiId8kHXUtXy7FRy1oIW84\nOudsLzzEQaIo+mMe0mQ7NlYYaWWd6nAO93n7pLokjiRUw9ho1Vkhokh5CxFGStcc/daqMrVZK8u+\n//57VZMS3OIDL3jd3kYp96MXWkG4yCKLeMtk9H5znyOMmpsw5WcjwD5G7i8GobYIaMVUCN9++61f\ncROuw9H9gIRTv5JJOwVHP265dzI+mjZ5053kWuUTTaNz51uUcsv5NaVch4toPdq1OdoenYegtmkP\nneYIbhrMbwb48MMP5yzeTTuaVoC5aUC/j88yyyzjV8vpqH19tFJL8W6JfM4ytMpOKwQVtBmjW2Kf\nM21TI7Snj9qqFYBaJacVhPmCs5ZZWFWodM5h3uaaa658WRod1xz9XmqppXw7tPO7EzcZbdJGj07s\n+udJq/ayBWfNMmcxNI0/AQLVTiD/X4Jq7z39q0kCWtLu9pVJ9v3YY4/1y96TN9yJm15IXq6xxhr+\nRal6WWq2zxlnnJFM25wn0Tbdd999WdsS2lfscvNc/ZCIEA+9DiRXcNNfPsqtXMuaxDmQ+/shXXoi\nbYvgfGHM7ZXkxZNElJb4O+tMetImXzv/IL+MXjtfa4NDN0XUYFnOOd9vWqldtZ0Vxq666qqSCoXm\n6ncQRtrlOldwVkbNHvjtKLKl0XJ/jf3qq6+eLZp7EKgqAtn/a1pVXaQzEEgl4HwuzPmI+P8B67UW\n2hVY97QvUNgHSCJE+71IaGhXZL0ywS1XThakXYLdsm9/veyyy/rXLCQjm+lE7yULQa9pcCu/wqU/\nSkC46R7/I69XXDRX0L42borP3HSj3z8ovZ4gMtxy/KwWiiBwQrpofufY7kWR2I8YMcK/i007NTs/\nIHMr0kz7PxVrpXEr4/zu27KU6B16hZQni5JzcDcJqZBHFiYJBlmSit3Juzn73adPH/9M6PnIFvT8\na+8piSO9Gy09aA+v999/3/JZCdPzcA2BSiaAxaiSR4+2N4mApqr0Yyargd4bpeD2M0puwqdr/TBH\nNzDUD7OsNJqmcs7WttZaa5lzcja3esokAFoi6FUa4UfcLYM35x9jzm/HnFOyf6eVXomhNl1++eXN\n2hyJSG0qmctqpPeiKeSaKjv77LN9fEjnL9w/2khTlqKoKFLcXnvtZdowUS+izWWFCmU0dJTY0itK\nNA2mcdRmmg0FWbaiosjte+WfH7fLtg0cONBzkEBqamjufjt/NG/h0utO9EqU9KANL/WqFm1Imi1o\nnPVuNW0gSoBATRDI5njEPQjEiUCpna+jrwTRvjrui+4/WnGl5fIhuB+s5IqdkCb9eOqpp4bk/hh1\nqtb+N7lCvnR6/UGoJ+p8rbKc6EnGhTTRo/Za+vLLL1OqLaXzdSjYTR96J2rtBZUetEFj2JtJDsru\npbEJZ5nzx/CajJVWWikxefLk9KwJt8NyTkfr22+/PeF2ps7IE72Rz/naWUUSTgh5ftqPSisTs33k\njBwNcs4/66yzsm5IKYdsbeWQ/oqRaH6dN+R83Zz9Vv0aJznN61nRXljuPwUJt4N5cvm+nPn1vKeH\njz76yDtma0FAOQLO1+WgTp2sSuMZiD2B5hRG6rz++AZxIRER3V1ZP/LOKpBwlppkGqXVLsBuOi6D\nXT7BE02cL10+YaQyJN4kLCTkQru10s5ZNRLa3Tk9NIcw0uombUiZLgxD3ePHj/dcoxtkqq261iop\nxTdHyCeMtFdQ4JXvqE0pSx0aEkbF1pev36FsCR9nFUqu9gsM3Et1s65WUz49+9quotDVd6GuUh0R\nRqUiSTmNIVCnxO4LQoBAbAno/VWaslBwIqks7dTXxIkO/4Z0+bxoKqncQb46mkbT6i2t3Epf3dbc\n7XOWN5O/jnyt5CidLWiaSCvm3MtjzQk0PyWjd3YRykdAz42+U/KR0iq4XE7ZmjbWs653smmFYTmC\nvvdqqxNI/lOONlBn7RHA+br2xpweN4GAfJK6du3qP03I3ixZ5OtSipewNrVxcsLWi0VHjhxpbpfw\nrMVIBMnJWR9CPAjouXEWywYbI6drbfsgYUSAQC0RQBjV0mjTVwiUkIAcmGUtyraSqYTVUFSZCMhJ\nXSvaGN8yDQDVlo0Aq9LKhp6KIVD5BPjRrPwxzNcDxjcfHeKqlQDCqFpHln5BAAIQgAAEINBoAgij\nRiMjAwQgAAEIQAAC1UoAYVStI0u/IAABCEAAAhBoNAGEUaORkQECEIAABCAAgWolgDCq1pGlXxCA\nAAQgAAEINJoAwqjRyLlRMJkAAEAASURBVMgAAQhAAAIQgEC1EkAYVevI0i8IQAACEIAABBpNAGHU\naGRkgAAEIAABCECgWgkgjKp1ZOkXBCAAAQhAAAKNJoAwajQyMkCgcgi4t9jb888/3+INnjBhgj33\n3HMtXi8VQgACECiWAMKoWILkr3oCH3zwgX9Zqt5KXmnhiiuusK222sp++umnFm36P//5T/v73/9u\n06ZNa9F6qQwCEIBAsQQQRsUSJH9FEHjsscdss802859LLrmk4DZ/+eWXtvrqq9u+++5reqlmJYXf\nf//dhg4danvvvbctsMACJWv6Z599Zm+88Yb9/PPPOcs88sgjbeLEiXbrrbfmTEMEBCAAgTgSQBjF\ncVRoU8kJjB071p599ln/+fDDDwsu/4svvrBZs2b59BIElRRuvvlmbyk6+uijczZbFh2JmIUXXtg2\n2mijnOlmzpxpxx13nC200EK2/PLL29prr20dO3a0HXbYwT7//POMfBKTm2yyiV122WUZcdyAAAQg\nEGcCbeLcONoGgXITkJXphBNOsNdee81OO+20cjen4PoTiYRdfvnltuWWW9rKK6+cNZ+mCPfYYw97\n7733fHyu6bapU6farrvuao8++qitueaadtBBB9mcc85pssI99NBD9uabb9qrr75qiy++eEo9xx57\nrPXr18+eeuop22KLLVLiuIAABCAQVwJYjOI6MrQrFgTq6ursggsusBEjRvhpuFg0qoBGSLR88skn\nJnGSLVx11VXe6vPVV1/Z1VdfnS1J8t4111zjRZGmEiUQzz33XBs8eLA/1xTjmDFj7JxzzkmmDyfb\nbLONty5deuml4RZHCEAAArEngMUo9kNEA5uLwNdff+1XTn377bfWvXt323TTTW3uuedOqU6rq2Qp\nUdB0kywg6UHTbQ8++KCpHE27de3a1bbeemtbaaWV0pMmr19++WW/Wkx5VOfSSy9tu+22m5+qSiYq\n4kRiZJVVVslpqTniiCN8n++8807r3LmzHXLIISYRmB5mzJjhp8Pmn39+u/76661t27YpSS666CLP\nRWzSg8rTNN5hhx1mH330UV4e6Xm5hgAEIFA2As7kToBArAk4R99Ejx49/KepDXVOyAn3JfOfAw88\nMHHbbbcl3A938p7iVlxxxcTHH3+cUsWLL76YTLPeeuulxDm/m8TAgQMTrVq1SqYJdejeMccck5Je\nF1OmTEm4VWIZ6ZWvXbt2iZtuuikjT2NvvPvuu778a6+9NmfWE088MfHnn3/6eOdn5NM7IZWR3lme\nfNxRRx2VEVfIDfXXOX4nBgwYUEhy0kAghYCeG333hwwZknKfCwg0JwGm0twvEqG2CLzwwgu23377\nWevWrW3eeedNdt6JItt+++1NjsYhZLOihLizzz7b3B9sbyVq3769bbDBBrbccsv5aFmOZLW54447\nQnJ/dALDnnjiCX8uK5H7w++tUHPMMYdf2t6/f38r1slbDs+y4Oy1114pdUcvzj///AzrTzQ+nAfH\naicKTavc7rrrLnNi0DbffHNvDXrppZdC0qzHDh06+D7ecsst9uOPP2ZNw00IQAACcSKAMIrTaNCW\nFiEg4SF/mcmTJ/sl55pOatNm9qzyp59+6n/8C2mIptB69eplG2+8sb399tvmrEte1GgPnxDCNFy4\nfvjhh/2ppqQ0nSZhpXvy+ZHY6Nu3b1HCSFN/zhpmBx98sDkLVKi2ycfRo0f7vBJaEo3ipva+9dZb\n3rlbK9mc9Slv+YcffrhpSk59JUAAAhCIOwGEUdxHiPaVnICsQHKoljVD59qIUNaeELSsPwRnrg2n\nGUc37WWymGhnaS1hD2HHHXcMp6Z9kKIhLP2fPn263XDDDcmNF930nl+9pRVcclpuahg5cqT98ccf\nXmQ1tYxoPjlWKxx//PGmDS5lVRs3bpzfo0hCsKvzp7rwwgvziskllljC+xepbwQIQAACcSeAMIr7\nCNG+khNYY401bLHFFkspN7qcXE7ZIeSbSlOa77//3q688kqTVUR7+vTu3dtvqBjypwur6PTWqaee\n6qe8VlttNT899cgjj6RM44UyGnPcdtttfZk33nhjY7LlTBuc0eUkrqX5K6ywQjKtxKSm1sToX//6\nV/J++omW8zu/J9t///3To7iGAAQgEDsCrEqL3ZDQoOYmEP1xD3UF3yBd59vROaTXURYfCSLt85Mr\npAuj8847z1uq/u///s9P5cmC9P777/uPdqlea621TD5Qc801V64i897X9Jmm0WQRU12LLLJI3vQN\nRS611FI+ifZzylaWNnoUO01PygdJVrj0IF8rCVHtmUSAAAQgEHcCWIziPkK0r+QEtCdRumCJvmhV\ny9cbCppO0hJ3iSL5J0mIyO9GL23N55AsJ+uzzjrL5Av09NNP2xlnnOGtTKE+WVfuvvvucNmk46GH\nHur7J7+lYkMQRtrlOldYcMEFfX2//PJLRhJxklVJbVLfCRCAAATiTgBhFPcRon0lJ6Dpr1GjRiXL\nldXmySefTF4vu+yyyfNcJxIwbrm7j9Y0nHbH1q7Qsow888wzWbPJoqJVXvpohZasMJqCklDTdFwI\nDzzwQDht0jFYZ7Rxo/yNigl9+vTxu1y//vrrWYuRMNQrViSO0qcnlUH90uo/WbEIEIAABCqBAMKo\nEkaJNpacwE477eRfsHrvvffadtttZ1phpuD2HzI5QjcU9M6wEGRtevzxx00ruDRFpldxZAuaopOT\ndrdu3UziS07e2hpAr+KQI3MIUUfucK+xR22sGFaoNTZvNP2SSy7pXwEiIZhtVZlWpMlSJJ7pQaJJ\neeRXlW0DyPT0XEMAAhCIAwF8jOIwCrShRQnovV9aKq/9eNKDRFH03WLpU24hvXyB5DSt94y5TQxT\nVpKtv/769r///S8kTR71LjG9QkOr2SQaZDGST47OQz1Ko12piw2yXmnpv/x7DjjggKKK0/YD2ntJ\nVh/5P8lCppfP3nPPPV7cSTxpB+z0MGzYMG8Zy/cS2/Q8XEMAAhAoNwEsRuUeAepvcQKyyMhao/2H\n9DJUBVk0zjzzzKxWkWwNlL+MXgOil7SGlWuyIundZNEVYSEulHHdddf5esK0k6bXJIo03bTnnnv6\npf9dunQJyYs6up23vVN3rqm9Qgvv1KmTud3HvVVIez7t5zbHlEgSQ4lMTUvON998KcWpT9poUnsz\n6dUkBAhAAAKVQqDO/QHLvVFLpfSCdlY1Af3wBuuOfqBLGWT5kL+P9tppapDFSGU0RtBoCk2O2nJO\nlqiQk3MpNmSM9kG+U+41J37VmF4qW4qgvYw0HppyXHXVVS2XU7amFrUfk+rVe+MIEGgKAX3v9bxp\nh3h9CBBoCQJMpbUEZeqILQGJkWJEkTqmpfWNXV4vC5GmoPRpriDxcuSRR9ppp53m/ZjcO8uKrkr7\nGmmvpoaCdsfWS3Tde+EaSko8BCAAgVgRYCotVsNBYyBQWgLymdLmjKUQRY1pmbYKGD58eHKasTF5\nSQuBQEDWIgIEWpoAwqiliVNfUQT4Q9k4fHq5bfRFuY3LXVzqRRddtLgCyA0BCECgDAQQRmWATpWN\nI9CjR49kBoRREgUnEKhqAtHvevRvQFV3ms7FggDCKBbDQCMaIhD+MEb/WDaUh3gIQKByCUS/6+H7\nX7m9oeWVRABhVEmjVcNtDX8Y9ccy+gezhpHQdQhUNYHwPWc1WlUPcyw7hzCK5bDQqHQCQRjpvl62\nSoAABKqXgL7jQRhVby/pWVwJIIziOjK0K4WAhFH4n6P+YCKOUvBwAYGqIRD9fke/91XTQToSewJs\n8Bj7IaKBUQJhwzfdY9O3KBnOIVD5BCSKwmau6k2pN3StfEL0oCUIYDFqCcrUUTICwWqkAmU1wnJU\nMrQUBIGyEtB3OSqKot/1sjaMymuOABajmhvyyu9w+v8qZW7H5F7540oPapNAmDrTMQSswYEEx3IQ\nQBiVgzp1loRAdFotFBhEUrjmCAEIxI9AEEHhGFoY/oOjIwEC5SKAMCoXeeotCQGm00qCkUIgUFYC\n4T80TJ+VdRiovJ4AwohHoSoIBF+j8D/QcKyKztEJCFQZgahFSGIoel1lXaU7FUgAYVSBg0aTIVBL\nBOrq6nx39VLaPn361FLX6SsEIFAGAqxKKwN0qoQABCAAAQhAIJ4EEEbxHBdaBQEIQAACEIBAGQgg\njMoAnSohAAEIQAACEIgnAYRRPMeFVkEAAhCAAAQgUAYCCKMyQKdKCEAAAhCAAATiSQBhFM9xoVUQ\ngAAEIAABCJSBAMKoDNCpEgIQgAAEIACBeBJAGMVzXGgVBCAAAQhAAAJlIIAwKgN0qoQABCAAAQhA\nIJ4EEEbxHBdaBQEIQAACEIBAGQggjMoAnSohAAEIQAACEIgnAYRRPMeFVkEAAhCAAAQgUAYCCKMy\nQKdKCEAAAhCAAATiSQBhFM9xoVUQgAAEIAABCJSBAMKoDNCpEgIQgAAEIACBeBJAGMVzXGgVBCAA\nAQhAAAJlIIAwKgN0qoQABCAAAQhAIJ4EEEbxHBdaBQEIQAACEIBAGQggjMoAnSohAAEIQAACEIgn\nAYRRPMeFVkEAAhCAAAQgUAYCCKMyQKdKCEAAAhCAAATiSQBhFM9xoVUQgAAEIAABCJSBAMKoDNCp\nEgIQgAAEIACBeBJAGMVzXGgVBCAAAQhAAAJlIIAwKgN0qoQABCAAAQhAIJ4EEEbxHBdaBQEIQAAC\nEIBAGQggjMoAnSohAAEIQAACEIgnAYRRPMeFVkEAAhCAAAQgUAYCCKMyQKdKCEAAAhCAAATiSQBh\nFM9xoVUQgAAEIAABCJSBAMKoDNCpEgIQgAAEIACBeBJAGMVzXGgVBCAAAQhAAAJlIIAwKgN0qoQA\nBDIJjBgxIvNmA3fOOOOMBlIQDQEIQKBxBBBGjeNFaghAoBkJNEboNCZtMzaZoiEAgSojUJdwocr6\nRHcgAIEKJdC3b1/f8kGDBlmfPn38eV1dnT8OHz48eU/pZGHiz5dHwz8QgEAJCWAxKiFMioIABIoj\nIEEkwSPhk80iFOJ0HDx4cHGVkRsCEIBAFgJYjLJA4RYEIFA+AsEapBZI/AQBJAuSBFEIWIsCCY4Q\ngEApCSCMSkmTsiAAgaIJBKtQvoIklmRdIkAAAhAoNQGEUamJUh4EIFA0gajVKFthWIuyUeEeBCBQ\nCgL4GJWCImVAAAIlJZDPGhSm1kpaIYVBAAIQqCeAxYhHAQIQiCWBXFYjrEWxHC4aBYGqIYDFqGqG\nko5AoLoIZLMaYS2qrjGmNxCIIwEsRnEcFdoEAQh4AulWI6xFPBgQgEBzE2jT3BVQPgSqhcCoUaOq\npSsV049+/fpZ4N67d+/kecV0oAoa2qNHjyroBV2AQOEEsBgVzoqUNUZAP8hDhw7lx7jGxp3uZicw\nYMAAk0hCKGXnw93qIYAwqp6xpCclJDBw4EAEUQl5UlT1EEAgVc9Y0pPsBBBG2blwt0YJyEokURQN\nrdrVWZuOs9/XpXMCBGqFwKxpCZs1dfbrNGf8nPpaTQkkfQgQqDYCCKNqG1H602QCmjbTJwSJoDk6\nsXAz8OAIgRmTZllUICGOeCaqkQDCqBpHlT41mkC6pUiCCOtQozGSoQYIyIo0Y5KzJLmjAuKoBga9\nxrqIMKqxAae72Qn07NkzGdFu6dbJc04gAIHsBP4cPyspjoYMGYJTdnZM3K1AAswTVOCg0eTSEohO\nn7WZHx+i0tKltGolEPzu1L/od6ha+0u/aocAwqh2xpqe5iAQ/qhLFLXpyFciByZuQyCFgF+UUP8f\nCU1F60OAQDUQ4FegGkaRPjSZQBBFKgBR1GSMZKxRAvrOBF+86HepRnHQ7SohgDCqkoGkG00jEP6X\nG/64N60UckEAAuG7BAkIVDoBhFGljyDtLwmBVu1KUgyFQKDmCPDdqbkhr/oOI4yqfojpYD4C/C83\nHx3iINAwgVbt/1qwwPepYV6kiD8BhFH8x4gWtgCB6B/3FqiOKiBQNQSYhq6aoaQj9QQQRjwKEIAA\nBCAAAQhAoJ4AwohHAQIQgAAEIAABCNQTQBjxKEAAAhCAAAQgAIF6AggjHgUIQKAqCLRu3dratp3D\ndEwPHdp3sCUXWzL9NtcQgAAEMgi0ybjDDQhAoFEEFuq4kHVadAmf56tvv7Dffv+t4PxzzjGnLb/M\nij79Dz9+b9/98F3BeZsjYbQv6eVPn/6nfTvuG/t96u/pUbG4PvqA42ynLXa2/z55r11y3YXJNs0z\n1zx2z5X329zueM6V/7bHRjySjIvLSau6VrZe9/Vt2aWWsyU7dbYfJ/1oX43+0l54bYT98ecfWZvZ\nbs721m3p5bPG/frbZBs9frTNnDkzazw3IQCB3AQQRrnZEAOBgghs0mszO3K/Y3zaG++93q6/a2hB\n+ZRomz797LiDTvTpb33gZrvmtqsKztscCaN9yVZ+IpGwcd+PtetcH59+8clsSWJ3b3EnWiWKFLyQ\nGOFPY/PP8susYCcOOMVWXHaljDaNnzDeLr7uAnvlrZcz4jo7AXX1v3M/azNmzrDR4761T7/6xK6/\n+1o/bhmFcAMCEMgggDDKQMINCDSdwHabbm83OXFU6P/Ud9zyb02vrBlz/umsQ59/81myhjqrswXm\nX8AWXnARW8JNSQ066kxbf61eduYVg5Jp4nryyZcf2/8Nu8K6LN7F7njo1lg1s9Mii9v/Db7GNNU3\n9rsxzpr1qLMajjPd327THdyxk5174gV2yGkH2cdffJSz7bIuRZ+5hRZYyOaft6Mt3XkZ/9l43T42\nxInu+564xyRuCRCAQG4CCKPcbIiBQKMJLNRxYdto7Y1txCvDG8y72opr2LJdlmswXTkSjPt+nA04\n5YCMqmV5OXC3/rbrNrvbFhttZa++/T978oUnMtLF7cadD98Wtyb59px+xGAvit5473U76bzjUqbN\n7n70TrvqzKG2XNdudtrhg2yvY3bP2YcjzzjUJk2elBLfcb6OttJyq9gR+xxlnZ0o1FRjlyWWSplm\nTMnABQQg4AngfM2DAIESE9jR+bkUEnbaIp7Wonxt/23Kr3b5jZfaUyNni6GD/3F4vuTE5SEw3zzz\n2epOHCtcdO35KaJI9+TLNeSO2VOrXZdc2uabZ37dLjhIKL086kXb/8S9k35VO7pnTlN3BAhAIDcB\nLEa52RADgUYRGPX+G95PpMeqPa1zpy7O+fXbnPn1I9d3vU389IesLr16bJgzbatWrayPS9vbTYdo\niqVN6zbOX2Scvfvx23b/U/81OUVHgyxRm2+4hb817L4bbeKkidFof666u6/aw375dbL3P2ns9MoD\nrl5ZjBZeYGGTZSLdWqFKZDlby9Wx3FLdTI7CXzrH9I/dtNYjzz2U0eb0BurHu8+6m7i8y9kiCy5q\n34z72r745nN7dPgjzjE5sz/p+dOvj9r/WJurw1x2+4O32Ndjvk5Gazqw7/qb2tsfvOXFg9jJCXrN\nlbpbq7o6+2rMV96Z+/Ov/5pWTGaOnKiMnqutbcsvvYLn/dYHo+zFN0Z6v55t+/azNVbubs+9/GyK\nr1CXJbraT5N/silTfrMxzlE6W1CfQ9BU4Huf/BwuCz5O+2OaXTjkPFtjxTX9NOixB57gp+YaO+YF\nV0hCCFQ4AYRRhQ8gzY8PgSm/T7Ennn/Mdt5qV9P/zP9z82U5G9dvk+380vLh/3vWJjtxkivIT+Sy\n0//jp1OiafQD3Ge9vn5K6/BBB9v3E/9azSZflBMOOsmW6bKsLTj/gnbqRSdHs3qh8c/DTrf27TrY\nvy49tUk+J2OcP0wIXRZfKkUYabrthAEn2aa9Ng9J/HGl5Va2bV2/d9x8Jxt8+el+1VVKAnchEbj3\njvvaAbsdlLLsXtNJKu/v/fa08685x6/WSs+b71pCUSyffP7xFGG0jJvKlAO8/HN+nfKLnX3C+U4Q\n/WVIl1Daxgmbi6+9wB5+9sGMKrSq8MSBp9iWG2+dEidReMCu/e3ofx9hvgxXx9ejv0oRRu99/I5t\n3z81X0oh7kLtC+GHnyaE00Yfp8+Yblfd+n929vHn2arLr2ayQMkviQABCGQSQBhlMuEOBJpM4P4n\n7/PCSD+mQ++4OmN6RAXrh3cHJw4U7n/qPttk/c38ebZ/zjruHC+Kfvr5R7vhnuvsg0/f94Kh11ob\neJEh59zTDv+XHTH40GR2WZDO/M8gu/bcG52Vqa9tvE6fFCFxbP/jvSh65sWnnBXjmWS+xpxIcIUw\n8adUC85Zx55jPVdfx/ddbX77wzdt6rSp3ppy4G4D/JL0K88cYn8//G9OjPwaivFHiaKD9jjYnz/4\n9P02/JXn7Hu3hUHXzkvbLlvvZrLGnePEy+GDDvHlpmQu4mKlZVe2zTbY3DR+z7z0tBN6P9nSTjz0\n332g9wM7cr+j7eU3X8qwVskSFUTRPY/dZSNff97EQ0Jurx338aJ23IRxTW6ZxllB1rZit3J48Y0X\nTCvVZHGURRNh1ORhIWOVE/jrv0ZV3lG6B4GWIPC1m3rRNIr2zkm3mIT6115jXdMSck3pvPn+qHA7\n4ygflFatWrsps3fs5AtOME1fffb1p351kgTH1bdd6fN0X6WHt4ZEC9DUz/V3XetvSQjN3WFufy4r\n04Y9N3bTPT/4ZeDRPI0536Dn7Km/qX9MtXETxiazakpQokgWmMP+NdBue2CYF3P6YZc17cCT9vFL\nyOede15nFeqfzKeTBd1+UHvttI+/d8VNl9qFQ8+zN959zU9JjnzteTvGWV+CkJNQiVp2UgpqwoWE\nzI33XG+XXn+RyZKjqa2Rr79gRw4+zKZMneKFZB8nMqNB4mLbvtv5W/IRuvzGS/x4aq8ntfPgU/u7\npfKfekEYzVfoufY06udWOSoMu/8mfyzmH42Jlv8ryBmbAAEIZCeAMMrOhbsQaDIB+f0o5FqKv1P9\nEv0HnLUoX9AU26GnD/CfDz/7ICPp86+O8D/ailimyzIZ8fKn0Y+8VsodstfhNlf7ufzKJCU896qz\nMqw1GQXkuCEL1L5/29/H/veJe1Om4vbYbk9/X87Z2ZaX//LbL3bTfdf7NDttuYvN4XaqDmGHzXb0\nAkTL1u99/O5wO3mcNWuWF4P6gddUonykShVkubrr0Tsyipv868/J6S9tvBgN2222g7feSeA+9PQD\n0Sh/ri0P/m/Y5Sl8MhLluCG/rXOOP9/z0X5Rsu6VIoz9brYvUxcn6ggQgEB2AkylZefCXQg0mcAL\nTrBo6mtlt1RaTsSffvlJsqxFF1rMeq21ocnSIgtKMaGNe/WF/JokeNrN0S6jqFmJWfbv/zvDbr7o\nVtveiQ75lUgkafru1bdfyUgfvaEf5oP/8df0nOIWcNNny3XpllzVJOtY+maWSzmHYoXnX829XcHz\nrz5vpx9hfkpHeyKFKR05IyvIaVkiKFsY76alZDXTZohLuaXno9wy91KEb8Z+nbIPULTMMIWlXcGj\nQRYjhZfffNHEOlvQ5opqsyyEhQY5ql9w8iXeUVr5ZTkrVdArUxRy7aZdqnooBwKVTABhVMmjR9tj\nSUB+HA8984Dtt8uB/hUVchYOYXtnZZCD8dMjnyz41SGrLL+q939Zesll/A+snJs1NaZyGgrapfqK\nmy6zkw7+p62x0pomp+krh/2noWxuafh8zkdm36zptJpJjshXuk0TZRUJQZsUSjwpfBdxBg/x4TjN\niUJZYrQyT1aYIIy0k7PCdz/Mnu4J6dOP4128hFFInx7flOtff0v1dYqWEe1j9H5499p4t0IwXxjr\nxqBQYdS2TVvvIC1HdVnOjj/76JK+giW0Od+KyXx9IQ4CtUAAYVQLo0wfW5yAhNE+brppM7caSgJC\n70+T06t2M1aQk28hQavHtGoqBE1FyTFYfiz6MddyeK2Myhe0eaCmn/RyVU2lSJg0FH7+ZZLd9/g9\nKckkEL52lhX5L0VXwYVEWuUWwjTnbJ0vaAn5fPOYdWjXPpmsQ31+xeULf9THR+vLl7654pLL3d2y\n/nwhf+xfOeUzddoRg2zdNdfzTt7HnnWUX87/V4rizjRtqZ3LFb51rwohQAAC2QkgjLJz4S4EiiIw\n4ccJfkpo43V621a9t/E+Mxu5c1lUtLJM00ENBQmiIIr0HrVnX3omI999Vz9omp7LFfRje6oTVxJF\nWq227prr+9Vsjz73cK4s/v7Pv0w2vfetMUH7C2mKsL2bClKbokv6o+XI0qUpPYWx3/3luK30cgpe\ndKFFo8kzzkO8LCrlDLIEaUuExd3eUvlCodaiY/uf4B32JUqPOvMwG/t9afunlZDBYf2bsV/lazJx\nEKhpAg3b4msaD52HQNMJ3O/e8q6gPY0U9OZ3Bb39vZCw9hrr+GTvf/qef7lsupjStEuYuspV3m7b\n7m5rrryWvfPR235lm9Lphbf5xFSusgq5P3b87B/zFd1UUK7QrevyXqgpXm+AD2HMd7OtGJpGyhVk\n9ZAYUci1KWKuvKW+L6udwoY9N0oKjvQ6VlhmxYKm0bRFgZ4TWQSPOvPwlL2W0stsyvXsVYAH+axP\nvvB40Uv/m9IG8kCgUgggjCplpGhnxRHQFJZ++OX0LFGkaS/51jznNnUsJMxVv8R+wsTvsybXbssS\nR7lC1yW72oA9DzFt7nfh0HO9w7VWOMlZW1N0dQ1MAeUqN9/9kW6vHIXdtvl7yoqzaJ69dprtu/Te\nJ+96HiFOy+MVZNWSeMoWtHxdvkmamnzzgzezJWmxe1qJJn8yWbl23nrXjHrbzdnOjtj3qIz76Tf+\n3m8Pv8pPfdKWBNHdrtPTNuVaTuIX/fMyv4WEXjOijR4JEIBAbgIIo9xsiIFAUQTkg/Jg/dL94w46\n0ZelV1qkv8IjVyWfuRVJCn3W3yT5Tq2QVpsRHu92t84VNHV22uGDvTjRXkLhNRjaH0hL07VR4t/c\ncvlSh9seuMXvkaQ9iS51O3brGIJEnF5kqteRiI2cwqNBezppE0KF80++2OR0Hg2aVjzcvRBV4eb7\nbkgRVdF0LXWuqS75kiloo8cTBpzs/YO0/9CWG29lQ86+3lmLlvT+YLnatHWfbX2f5AN2+sWn+LTt\nnd9Vtk8+EayVbNE8cmrXtgoD9zzUbrzwFlu52yp+pZ+2D2jKK1VytZ/7EKhGAvgYVeOo0qfYEHh0\n+MN+J2c5SEsMaJPGQoPerq4fTr0r7Kp/D/UOz9+M/cYvU9dU2HV3DbH1u2+QISBUvvYZ0sqt0c7J\n9ub/3pSsUu80u+qW//hVatrbSO9py+ULlMzUiBM5dp/9f2faGcec7VfB3T/kYd8G7XytKTBNhWkp\nvtr+0eeZezNdfsMlzmdnCZ9WwuKHn37wq9S0C7VW4ynIsnTvY3c3olXNl/Q/TtzJb0fTYPLhCTua\nq8YJP35vR7gduo850L3V3r02JT1oa4OTDz7VW+4kZCUk8wXt7XTZDRdnTXLPlfdnvR9uauXfOVf9\n2zH/MNziCAEI5CCAMMoBhtsQKAUBWWeeeekpv0OyRIiWzxcatMHjEYMOtcP2OdK/kFViSB/tuXPJ\n9ReaNleUMEoP8mvZd+cD/O0L3BRauoVKL3GVQ7iW7596+CA77PSBOffhSS+7kOvX3W7V+x63px3b\n/0TrvspaTsh19dk0pacfZr1DTrt5Zwtait//5P28pUNWMb2kVh+JSgk4bVoZrDTZ8rf0PfVJu17r\nVSBrOSucNp6URebtD9/yb7bXS2JzBfn9SBA1R5CvkvaZkiDSXkiPyVLp2kqAAAQaJlDn/uAkGk5G\nCghUJ4GePXv6js3RqZW1alfowuqWZ6GpkiU7Lenfw6VVS/mCtgXQD66+2rn24FG80ikoTXP+Gei0\ncCdr56aH5KysKaPGBPkTaRWalpcXss1AY8puqbRDz73Bb/Z5wZBzYyXqStn/aV/NHtchQ4ZYjx49\nSlk0ZUGgxQlgMWpx5FQIgcYTkCjQ/kGFBDkE65MvSKA0VqTkKy9fnKxATQ1yVtcnjmERtydQv022\n903TFGk269AC8y1gyy3VzadJX1UYxz7RJghAwO3KDwQIQAACEGg8Aflr7bz1bn6XcE2j/fPCE/1y\n+1CSdpnWVKX8qjT9WaiwDfk5QgAC5SGAMCoPd2qFAAQqnIB8ds51Ds3/Pu5ct1dUd3vsxqf99gx6\n3Yb8opbpvKyf0pwydYqdetFJ+PhU+HjT/NohgI9R7Yw1Pc1CIPgYtZm/ztp0bJUlBbcgkJ+AlsLv\nteM+bqPHjVPeXydBpBcF33zvDVmn2fKXWjmxMybNshk/z3ZVfeONNyqn4bQUAjkIIIxygOF2bRAY\nOHCgjRo1yjteywGbAIGmEpAzuyxF88wzr02YOMEacpJvaj1xy4cwituI0J5iCTCVVixB8lcFgVnT\nWJxZFQNZxk7I4V2O5sU4m5ex+U2uelb+d/42uVwyQqBcBPgvcrnIU28sCAwYMCDZDsRREgUnECiI\ngL4z4XsT/S4VlJlEEIgpAYRRTAeGZrUMAe25EvZd+XP8rJaplFogUCUEZkz6y9KKMKqSQaUbhjDi\nIah5AtE/6Iijmn8cAFAgAfkWYS0qEBbJKooAwqiihovGNgcBWYyCONIfev3BJ0AAArkJ+O9J/Uq0\n6Pcndw5iIFA5BFiVVjljRUubmUBYoaZqWL7fzLApvmIJRFehqRMs0a/YoaThOQhgMcoBhtu1RyD6\nnifty6L3P2E9qr3ngB5nJyArkaaaw55FshTpO0OAQLURwGJUbSNKf4omMHToUNMnPciKRIBALREI\nS/GDL1HoO6IokOBYjQQQRtU4qvSpaAJBGIVj0QVSAASqgEDwJ9KRAIFqJYAwqtaRpV8lIxDEkXbI\n1ocAgVohEASQjuFTK32nn7VLAGFUu2NPzyFQEQTq6mZPYQ4fPtz69OlTEW2mkRCAQOUSwPm6cseO\nlkMAAhCAAAQgUGICCKMSA6U4CEAAAhCAAAQqlwDCqHLHjpZDAAIQgAAEIFBiAgijEgOlOAhAAAIQ\ngAAEKpcAwqhyx46WQwACEIAABCBQYgIIoxIDpTgIQAACEIAABCqXAMKocseOlkMAAhCAAAQgUGIC\nCKMSA6U4CEAAAhCAAAQqlwDCqHLHjpZDAAIQgAAEIFBiAgijEgOlOAhAAAIQgAAEKpcAwqhyx46W\nQwACEIAABCBQYgIIoxIDpTgIQAACEIAABCqXAMKocseOlkMAAhCAAAQgUGICCKMSA6U4CEAAAhCA\nAAQqlwDCqHLHjpZDAAIQgAAEIFBiAgijEgOlOAhAAAIQgAAEKpcAwqhyx46WQwACEIAABCBQYgII\noxIDpTgIQAACEIAABCqXAMKocseOlkMAAhCAAAQgUGICCKMSA6U4CEAAAhCAAAQqlwDCqHLHjpZD\nAAIQgAAEIFBiAgijEgOlOAhAAAIQgAAEKpcAwqhyx46WQwACEIAABCBQYgIIoxIDpTgIQAACEIAA\nBCqXAMKocseOlkMAAhCAAAQgUGICCKMSA6U4CEAAAhCAAAQqlwDCqHLHjpZDAAIQgAAEIFBiAgij\nEgOlOAhAAAIQgAAEKpcAwqhyx46WQwACEIAABCBQYgIIoxIDpTgIQAACEIAABCqXAMKocseOlkMA\nAhCAAAQgUGICCKMSA6U4CEAAAhCAAAQqlwDCqHLHjpZDoKoIjBgxotH9OeOMMxqdhwwQgAAE8hFA\nGOWjQxwEINCiBBojdBqTtkU7QWUQgEBFE0AYVfTw0XgIVA+BPn36mKxGdXV1/pivZ3379rXBgwfb\noEGD8iUjDgIQgECjCSCMGo2MDBCAQHMRCEJHwiebRUjCSXE6ShgRIAABCJSaQF3ChVIXSnkQgAAE\nmkogCB/ll/gJAihYlEK5/OkKJDhCAAKlJIAwKiVNyoIABIomEKxC+QqSWArWpXzpiIMABCDQWAII\no8YSIz0EINDsBKJWo2yVYS3KRoV7EIBAKQjgY1QKipQBAQiUlEA+a1CYWitphRQGAQhAoJ4AFiMe\nBQhAIJYEclmNsBbFcrhoFASqhgAWo6oZSjoCgeoikM1qhLWousaY3kAgjgSwGMVxVGgTBCDgCaRb\njbAW8WBAAALNTaBNc1dA+RCAQPMSGDVqVPNWUMbS+/XrZ6F/vXv3Tp6XsUnNVnWPHj2arWwKhgAE\nCieAxahwVqSEQGwISCwMHTq0qoVCbGC3cEMGDBhg+hAgAIHyEEAYlYc7tUKgSQQkhvQhVD8BBFL1\njzE9jCcBhFE8x4VWQSCDQLooatN2Xmvbdj7TUUHnhMokMH36ZJsx/Rff+Km/j052QtNrQ4YMSV5z\nAgEIND8BhFHzM6YGCBRNYODAgclpMwmh9h06I4SKphrPAiSSJI6CUFIrJY7wQYrneNGq6iPAcv3q\nG1N6VGUEor5EEkTzzrcqoqjKxjjaHVn+NMYa6xCYPg0kOEKg+QkgjJqfMTVAoMkEotNn+qGM/lg2\nuVAyVgQBjfU8863i2xqc7Sui4TQSAhVOgKm0Ch9Aml/dBHr27Ok7qOkzWREItUfgl8nvJ6fVmFKr\nvfGnxy1PAItRyzOnRggURCA6fYKlqCBkVZkoKoijz0RVdpZOQSAGBBBGMRgEmgCBbATCj6BEESvO\nshGqnXvRKbWw4WXt9J6eQqBlCSCMWpY3tUGgIALRH7+wHL+gjCSqSgJRYRx9Nqqys3QKAmUmgDAq\n8wBQPQSyEYj++EV/FLOl5V5tEYg+G7XVc3oLgZYhgDBqGc7UAgEIQKAoAlgOi8JHZggUTABhVDAq\nEkKg5QnwY9jyzONaI5bDuI4M7ao2AgijahtR+lMVBJguqYphpBMQgEAFEkAYVeCg0WQIQAACEIAA\nBJqHAMKoebhSKgQgAAEIQAACFUgAYVSBg0aTIQABCEAAAhBoHgJtmqdYSoXA/7N3HnBOFG0Yf48O\nKkiVLl1AFBRsKHBgARUU8bNhb6ACNsSKAvaCDRQpgoqdIthQEaUponIWwIYovUqRDlLyzTPHhE2y\nyaVtsps87+8Xstmd+p/j8tw778yQgBsINGpYSwoVDv37Z9fO/2T5irWyU73TSIAESIAEDhCgMDrA\nglckkHEEHn3kRjnooJK2/fL5fLJmzQZZsmSVjJ8wTX76aYFtOt6MjkClSmXVDuVFZMOGzbJjx67o\nMjEVCZCA6whQGLluSNggEkg+gTVrN8i2rTv8BUMs4Yu8cuXy+nX88UfKx5O+lhEvv88vdT+l2C76\n97te6tWtLk8NfEM+n/JdbJmZmgRIwDUEKIxcMxRsCAk4R+BlJXimz/gxoIKSJYtL7VpV5dJLO8hx\nLRpJx7NPkcaNakuPXk/J3r37AtLyAwmQAAlkC4HQ4INs6Tn7SQJZTgDTPb/+tkju6/uSDH5hrGBq\nrU6danJOp9ZZTobdJwESyGYC9Bhl8+iz7ySwn8CHH82Uxo1ryantjpMrLj9Tpk7Lk3//3eLnU6VK\nebm0awfZuHGLjBz1gdSrV0NObnmUNGvaQHJycuTW25/1p8VFkSKFpUP7k6RB/RpSW4mtnTt3yaJF\nK+Xnn/+Ur2fNDUhrPgTXUaJEMWnZ8mg5plkDLdiWLl0tv/22WCZ9Mkv27Nlrstm+o32tTmkqdWpX\nlYoVy8qyZWvkb1X/Z5Nn6xig4EylSpWQm248X99+ccg42+nE0qUPkm7Xd9ZpBg0eI//9t1tf39H7\nUv1+WKVy+v3MDidJ06b19fXkyd/K3HkL9TX/IQES8AYBCiNvjBNbSQKOExg56kM55eSmOli7datm\n8sGHM/11lilzsJxx+gmycuU/MksJm6ee7CXFihXVzzdv3uZPh4vDa1aWu++6QuqqeBurNT26vnQ+\nt43MnPmTPPv8O7J163brY7HW8eZbn8qjj9wkTY6s409TX4kdCLd2bVvIgw+PtBU4hQoVkosvOk0u\nv+wsKWxZjQdPWJs2x8r5XdrKs8+9HSLOihcvqvuHykaMmGgrjCDUwAAG8QSDKDT39A31T5MmdfUL\nn+GRozAyZPhOAt4gQGHkjXFiK0nAcQLr1v0rv/++RHs7qlevZFvfoYceIggyXr16vXz40VeyYsU/\nUqhQjj/twQeXlIEDb5Eyyruydu1Gee31j+XPP5cJRMXRR9VXgqWDtFKiC96XPncN9uezXpQsWUIe\nfugGqVnjMIFnBuKiWLEi2jt1mYqHaty4tn7eo+dTevrPmhei6KorO+pbCCaHCEM7ah5eWTqf01qa\nKe9Tvweukzv6DEqKYMH0402qHbB77r5Saihuo1+fJLO//UXf+0cFvdNIgAS8RYDCyFvjxdaSgKME\nViiPEKaBqlWzF0aYcvpjwVIdl2Q3ndX1kvZaFK1ctU5uueVp2WTxJkF0/fDjHzLoudt1HZgmg/cp\n2MqWPUTvvYQgcGwnYAz5585dKM88fYte/dXqlGYyY+aBgPJy5UrLRReerpMPHfaevKe2IDCGPZtm\nz56vxUub1sfIDTd0ETthZdLH8r5w4TKdfNeu/D2h0GZzL5ZymJYESMAdBBh87Y5xYCtIwBUEVq5c\np9tRvVrFsO0ZOvQ92xgfxBVhqgz21lufBYgiUxgEw5T9S9n/d347czvkfcyYKQGiyCSA92ja9B/0\nx87nBgaJn33WyYKVdhBlE9+fYbL43/ft26fjo7DiDsvqm+2PA/In4AUJkAAJKAIURvwxIAES8BPA\nBoUwE1jsf7D/Al6ixWpDSDvDnkgQR7Cvvv7ZLom+Z4Kva6ipsnBmxI/dc0yPwYKn+2pUzy9v9jfz\nBCLIzjAF+Ndfy/WjSPXb5eU9EiCB7CBAYZQd48xekkBUBKpWraDTLVexQ3a2d+/ekLgek67afi/T\nVrWR5PbtO83tkPfV+6fHEIeEmKRgg/hCvFM4M9NriHeCh8iYqX+NiimKZCa/SR8pLZ+RAAlkHwEK\no+wbc/aYBMISMGJh+fK1YdOEe1BKBU3Ddu6PtQmXzsTi4HmJEgeEjUmP5whqDmfW891KWvKXLJVf\nFrYGiGSmfda8kdLzGQmQQHYRoDDKrvFmb0kgLAHE3TQ8opZ+jj2DYjUs5YeVK1vaP6VmV0Ylta8Q\nDNN169dvCkmC40rsPEkmIY4ygUFAbdi42dxWWwnkx0eZ5/4HQRfmOWKR7CxHLfm3syJFuFbFjgvv\nkUCmEbD/DZBpvWR/SIAECiSAlVpYeg/BECnGJ1xBWNEGQxn16gXuYWTN06BBTf1xlaonnGcIR5OE\nsyOOOFw/QryQ1VaolWewBg3yn1ufmWvsvVRLHYMCM+3FtdULVVZN0dlZ1Sr504x2z3iPBEggcwhQ\nGGXOWLInJBAXASzB79P7MrXPUD2d/6Wh42X37j0xl4XYonnz/tL5Lt6/bD64EAR3d1GbLMJmqSDp\ncNa1a3vbR8WLF5PzOuevfPtGLb+3mikP577VrVvN+sh/3aH9iXo7gW3bdshctQu3MRyPYnb6btjQ\nXli1a9fCJLd937t/N24Gddvi4U0S8AwBCiPPDBUbSgLxE4CnBIHK5lWhfBlpfmxDwZL54UPvkdNP\nP14XPuWL7+Xb/ZsTxlPb0OHvaS8Q9ijq1eMCMavcUBam2B579CZB3ZgCe+fdz8NWgSm9+++7JiC4\nurzK98TjPQRB1xBhY8Z+EZAfx418MztfbD00oLs0algr4Dl2qDZHerz1duh2Ar/8ukinx9EntWpV\n8efFDtpdLzlDHzHiv2lzYYLKW550lJjjQWyS8RYJkIDLCXDS3OUDxOaRQDII9LnjMsErnG3Zsl1e\nfGmcfPnlnHBJorqPXa5xtMg1V3eUTp1aSQd1bhjOSMPO19XVcnpMs+EokKefftP22A1Ugtihx54Y\nLX3vvVrGj31cFi1eKcWVsDP5EZv0/OB3Q44UQd4hL42XKpUraGHzvNpIcp2KYVqrVsHVVMeUmLgl\neJYmTJyO5AH2yqsfyoknNBHEIA0dcpeeUoQnqbra7BLiqO8Dw+TJx3sG5LF+wGaV2DwSdY1+rZ8+\nn+31Nz6R6TMObEJpTc9rEiABdxKgMHLnuLBVJOAogV27dsvSZasFQdZLlqwWHHZqDWROpPIxY6fI\n/F/+khu7d9GHv5qYIizh/3nunzL4hbERl+OjboiMhx4epT01OBAWwgQbMy5YsEwGvTBGvS+1bSKW\n4ve8eaBcc1VHyc1trr1T8FAhlgnB4WPGfSGTJs2yzbt06Rq5rfezcvutXbWwgiDC1gHYlPKtdybL\n/Pn504S2mdVNHLwLr1aX83L1OwQSAslpJEAC3iKQo35h+LzVZLaWBDKfQPfu3SUvL0+KFC0tpcs0\n8WyHIWjg6cESepxZFunXDWJ7Bj3XW3uMOp17h7/PiCvCNgIr1BYCu/afaO9/WMAF9kqqqFbB4UgQ\na4B1AdmUd6mUVD6snCxDnQVsP2BXlp66VF6yzcoTF6nPdnnD3duxfZng1bx5cxk2bFi4ZLxPAiSQ\nIAF6jBIEyOwkQALhCcDLsyTMTtnhcwU+gTD5++8VgTej/ISz2qzntUWZTU/TLVRTfvEapvvC7R4e\nb5nMRwIkkBoCDL5ODWfWQgIkQAIkQAIk4AECFEYeGCQ2MfsIYLoEtmf3gQ0Ms48Ce2wlsHt36GaY\n1ue8JgESSA4BTqUlhyNLIYGkEjDCCIXiC7Fo0TJJLd+NhW3YsFnGjf9SBzy7sX3pbpMRydafjXS3\nifWTQCYSoDDKxFFln0jAgwQQnD18xEQPtpxNJgESyCQCXJWWSaPJvmQUgRYt8nda9vrKtIwalDR1\nxqxIQ/Vz5iS211SausBqScAzBBhj5JmhYkOzjUC3bt10lzGFwviSbBv9wP5CGMHMz0TgU34iARJI\nJgEKo2TSZFkkkEQC1lgS88WYxOJZlEcIcOw9MlBsZsYQoDDKmKFkRzKNAISR8RDAa8QvyEwb4YL7\ngzE3446fBfPzUHBOpiABEoiXAIVRvOSYjwRSQABfhMZzZP2STEHVrCLNBKzjbRXJaW4WqyeBjCdA\nYZTxQ8wOep0Ajn+wiqMN62b5vQhe7xvbH0oA8WSbN80PGGN6ikI58Q4JOEWAq9KcIstySSDJBIYP\nHy54GStZqoa5FOu1/yYvPEMAYsgE2Zv9itB4CGKei+aZYWRDM4QAhVGGDCS7kR0EgsVRdvQ6O3vJ\nmKLsHHf2Ov0EKIzSPwZsAQnETAACKS8vT79izswMriVgYonM1KlrG8qGkUAGE6AwyuDBZdeygwAE\nEsy8Z1qv+/fvr7uUm5sreGWaGRFk3jOtf+wPCXiNAIWR10aM7SWBLCOQk5Ojezx16tSMFEZZNpzs\nLgm4ngBXpbl+iNhAEiABEiABEiCBVBGgMEoVadZDAiRAAiRAAiTgegIURq4fIjaQBEiABEiABEgg\nVQQojFJFmvWQAAmQAAmQAAm4ngCFkeuHiA0kARIgARIgARJIFQEKo1SRZj0kQAIkQAIkQAKuJ0Bh\n5PohYgNJgARIgARIgARSRYDCKFWkWQ8JkAAJkAAJkIDrCVAYuX6I2EASIAESIAESIIFUEaAwShVp\n1kMCJEACJEACJOB6AhRGrh8iNpAESIAESIAESCBVBCiMUkWa9ZAACZAACZAACbieAIWR64eIDSQB\nEiABEiABEkgVAQqjVJFmPSRAAiRAAiRAAq4nQGHk+iFiA0mABEiABEiABFJFgMIoVaRZDwmQAAmQ\nAAmQgOsJUBi5fojYQBIgARIgARIggVQRoDBKFWnWQwIkQAIkQAIk4HoCFEauHyI2kARIgARIgARI\nIFUEKIxSRZr1kAAJkAAJkAAJuJ4AhZHrh4gNJAESIAESIAESSBUBCqNUkWY9JEACJEACJEACridA\nYeT6IWIDSYAESIAESIAEUkWAwihVpFkPCZAACZAACZCA6wlQGLl+iNhAEiABEiABEiCBVBGgMEoV\nadZDAiRAAiRAAiTgegIURq4fIjaQBEiABEiABEggVQQojFJFmvWQAAmQAAmQAAm4ngCFkeuHiA0k\nARIgARIgARJIFQEKo1SRZj0kQAIkQAIkQAKuJ0Bh5PohYgNJgARIgARIgARSRYDCKFWkWQ8JkEBE\nAtOmTYv4nA9JgARIIBUEKIxSQZl1kAAJFEhg+vTpMmDAgALTmQQQUhRThgbfSYAEkkWgSLIKYjkk\nQAIkkAiBfv36SU5Oji4C15EMgqht27bi8/kiJeMzEiABEoiZAD1GMSNjBhIgAacI9O/fX/CK5DnC\nM4gipKORAAmQQLIJ5Ki/uPgnV7KpsjwSIIG4CRivUW5ursBzBBEEmzp1qhZMZvqMv7riRsyMJEAC\nEQjQYxQBDh+RAAmknoDxBJnpMtMCeIqMKDJpzDO+kwAJkECyCNBjlCySLIcESCBpBIzXKFyB9BaF\nI8P7JEACiRKgxyhRgsxPAiSQdAKRPEKRniW9ISyQBEgg6wjQY5R1Q84Ok4A3CITzGtFb5I3xYytJ\nwKsE6DHy6six3SSQ4QTsPEN29zIcA7tHAiSQYgL0GKUYOKsjARKInkCw14jeoujZMSUJkEB8BOgx\nio8bc5EACaSAgNVDZL1OQdWsggRIIEsJ0GOUpQOfyd3Oy8sT80I/cU0jARJIL4HmzZvrBpj3bt26\npbdBrJ0EwhCgMAoDhre9RwACaPjw4RRC3hs6tjhLCUAcUSBl6eC7uNsURi4eHDYtOgLhBFGhEhV0\nATkl89+jK42pSIAEnCLg27FO9u1cF1L8sGHDxHiSQh7yBgmkmACFUYqBs7rkEoAo6t69u79QiKHC\nZRtJIYohPxNekIAbCezZ+Jvs3fi7v2n0HvlR8CLNBIqkuX5WTwJxEwgWRYXLNpQiShTRSIAE3E/A\n/F814gjT4DBOrbl/7DK9hfQYZfoIZ3D/WrRo4e9d0Sqt6CXy0+AFCXiLwO6VM/1TbJxW89bYZWJr\nuVw/E0c1C/pk/rpEV+Ep4tRZFgw6u5ixBDD9bcz6f9vc4zsJpJIAhVEqabOupBEwvzw5fZY0pCyI\nBNJGAH/Y4P8yDFPkeNFIIF0EKIzSRZ71xk3AiCIUYOIU4i6MGUmABFxBAP+XzUpS6/9xVzSOjcgq\nAhRGWTXcmdFZ80vT/IWZGb1iL0iABMyUGr1G/FlIJwEKo3TSZ90xE6CLPWZkzEACJEACJBADAQqj\nGGAxqbsIFCpR0V0NYmtIgAQSImBdRME/ghJCycwJEKAwSgAes6aegPWXpfWXaOpbwhpJgAScIGDi\njKz/152oh2WSQDgCFEbhyPA+CZAACZAACZBA1hGgMMq6IWeHSYAESIAESIAEwhGgMApHhvdJgARI\ngARIgASyjgCFUdYNOTtMAiRAAiRAAiQQjgCFUTgyvE8CJEACJEACJJB1BIpkXY/ZYRKwIXBwqeJS\nv3ZlaVDrMKlTs5L8u3m7LFmxTub9sVyWrdpgkyMzbjWuV1WaNKguh1crL//t3iOLl6+Tr/MWyrqN\nW8J28Mj61aRwoZyQ5zv/2yPLVq6XHbt2hzzjDRIgARLwCgEKI6+MFNvpGIHOpx8rt151hhQtWjik\njn379slHU3+Wl8fMkPUbt4Y89+qNcmUOkpuvOl1OP/nIkC7s2PmfjBo7U976cHbIM9x45r5LBELS\nznw+n6z6Z5MsWvaPvPvxd5I3f7FdMt4jARIgAdcSoDBy7dCwYU4TKFm8qNx1w9l+cQDhM3/Bcvlz\n8Ro55OCScmT9fG/KOaceIycfW1+uv+8VWbNus9PNcrz8okUKy8B7L5YjlIds+47/ZOKUH+Tvpf9I\nmUNKSpsTGsrRR1SXHpefKrv37JWxn3wftj2rlQDaun2n//lBpUpI5QqlpWqlQ/Wr5bH15P0pP8qL\nb3yh6/En5AUJkAAJuJgAhZGLB4dNc5bA9Re38YuiiZ//IM+M+kz27t0XUOlxR9WWAbd2lvJlD5aB\n91ws3fu+6vkv+avOP0WLog2btsm1d4+StesPiL13P/5W7up+tnRq10yLo2nf/i7/bLCfVoPg+fKb\n3wJ4lSxRTOrWrChX/6+VnNisrsAb16RBNblG1RPMNiAjP5AACZCASwgw+NolA8FmpJaShBjSAABA\nAElEQVTAYcqz0eWMFrrS0RO+lqdGfGL7xf39vEVy28Nvy+7de6VOjYpyZuujU9tQB2prffwRutQR\n70wPEEW4qWbCZPBrUzQLeJYgamIxTMPNX7BCej/6jjw98lNVnk/qHX6YnN8+n3UsZTEtCZAACaSD\nAD1G6aDOOtNO4LoL2+iYok1btsvo976O2J4/Fq2WyV/Nl7PbNpVTWzaW8Z/NsU3f6rgGcuyRh2sh\nULJEUflLTU/98fcq+fDLn7Swsst0Z7ezBAJk0Gufi9Ik0vbEhnJM48O112Xl2n/l59+WyTg1nbXH\n4smqq4LDL+54guxV8U9Pv/ypnvKyKztXTYud3Ly+rFyzUV4Z/5VOUqRwITnkoBICb9HcP5bZZZNt\nO3bJ6nWbpNphZaVGlfK2aaK5+d5neTqwu32rJnLtha3l869/kY2qXhoJkAAJuJkAhZGbR4dtc4wA\nRAwMAcLRrKIa+tZULY727YN8CbSDldC48/oztWiyPmlUt6p0VGLq3NOOlf6DJuqAZOtzXJ/Z5igp\nVrSIvKqES9+e5+j4HpMGnpbWxx2h09z0wOtasODZCiV0IHpKlSwmM777Q2b9sNBkCXi/vHNLaVi3\niox4d7r/PgRW5xsG+T/bXRxUsrgcVqGMfhRuGs0un929oW99KW2UhwrB2u1ObBRWVNrl5T0SIAES\nSAcBCqN0UGedaSUAjwlesJ9+WxpVW+Bh2TDP3tvx8O1dBLFIu9Ry9VFjZ8iPvy4VTCkdUaey8pS0\nUR6kSjJkwOVyYa8hsmXbgWBla8UP9DpHyqqVYv2enyALFq0RiBMIiq7nnKg9UFf/7xR54fUvdJad\najn81Nm/aQ9Wu5Ma2QqjKioAGqIIU1mfzphnrarA6+Ob1hZ4liCivp+7qMD0kRKsXb9Ffl24UnvS\nalQtFykpn5EACZCAKwgwxsgVw8BGpJJAtcpl/dWtWrvJfx3PBaaqIIoQWHxTv9HyxvvfyC9/rpC/\n1XL1T6bPk2vuGqn3QSqtVrldc0GrsFVUqXioTjvl619lqdoL6Le/VsrQt6fKWx/kL5k/K7dpQN5P\nps/Vn1u1aKCn4gIeqg+YkoNBpGH1WLSG4OluF+fq5B+rbQoi7WcUbZnLV+fvA1WjCoVRtMyYjgRI\nIH0EKIzSx541p4kAYmdgEDPrwqy4irZpiPWBIQbp979WhWTbvHWHvDJupr7fRQUgY9rMzt7+aLZa\n+r4r5NEnM/IFEJbSGy8XEsHThf2CMI3XQgmzYIMnCRaLt6hQTo7063Wu1KxaXou5waOnBBcb1+fl\nqzfqfDUTiFeKq2JmIgESIIE4CFAYxQGNWbxNADs8wwqp3ZsLqymjRAw7RsOmfftH2GIQBwTD9JTV\nW2XNgEBtO7N6e7BlgDGsHjOix4gg86xKxTKC+CYz5WbuF/R+2zXtBbFXW9V03z0Dx+npwILyRPO8\nmAouh+36jztiR8OLaUiABNJLILFvhfS2nbWTQFwEVuz3YOQoDwmW7cdrCH4uf2i+WLEKmODyENyN\n1W+wGpXtp5O2bLWPPTIiLrhMfP7UTKcpMQPRZaytCnKGQZBhA8doDPsOdWnfXB8L0ueJMbaB4tGU\nY5em2v4+L83go1Xs+s17JEAC3iRw4LepN9vPVpNAzASwDN4YgpTjNcTjGNu5K7IA2bkr30uFZfzJ\nMkxRzVVnuWGKrcXRB6bT2u6fRpu0XzgVVB/2GLpOLafH1OL9z06Qub/bL+MvqJxwz2tUyZ+6zOQz\n58L1nfdJgAS8R4DCyHtjxhYnSABTTCaoGMveozHsNVTmkFL6ZdLjCBGz1N8sbzfPrO+YsquwfxoM\nS+2TaZ9My49BwlJ4WGU1jYaDYbHMPm/eYn0v0j84K+22a84QnAmHLQW+mrMgUvKYnzVQx440VofO\nwhYvt58ujLlQZiABEiABBwlQGDkIl0W7lwDO8IJh08aK5Q4psKE3XdZOJo28TZ7te0lA2hX7V1w1\nUkvjw1n9WpX9sUzLViVXGH35za96+gu7WWM6zaxG+2zmfNmHQKQIduIxdfXeSUj1yJCPQo73iJA1\n6kc3X3m6IKgbgnDKrF+jzseEJEACJJAuAhRG6SLPetNK4O0Pv9W7MMMTdIfanLF4MfvVYmjkEXWq\nCA6ShRkPjf6g/pn5fb6H5cKzjg+74uzyzifp5PPUtJeJNTL5E33HSja0QU+nqdVpJr4ouJ3B9eCg\n2EduP18KK2/WU8M/8QdyB6eL9zP2Yerbo5PaxbumLuL5Vz8Pu/t3vHUwHwmQAAk4QYDCyAmqLNP1\nBLAB46j9y+hPUXsRDRlwhV6mbm140aKFpdOpzWTQA5dKieJFZeGStTJp/9SVSfem2rcI03JYMfZc\n36763TyD6Lrt6jO0WMFGizj2wwkzsURXdjlZT6NhD6TFK9aFrQobTj5190W6TyPHzNBHdSBeyu4V\nSTDimTUPPG/HN60jl3Q6QV5/upvasTv/XDmsnvs678+w7eEDEiABEnATgfB/JruplWwLCThAAGd5\nYbbpFjXdg12i337uBu1FWrB4jT7CAvv5mL2DMBV0+yNv+4/lMM1BjNHDL34oD956njRtVEMmDr1Z\nlq3coJe611GnzGPfIsTvjHh3ht4B2uRL5vt3P/8t6//dKkc3rKGL/WRa5J2uB95zsd7/CImvu6iN\nfoVrz19L18oVd4ywfdy3xznKK2T7SN/EHk7PvjJZJqtpPRoJkAAJeIUAhZFXRortdITAhMl58qva\nqbpPtzOlgYoFwrEcJyivh7FNW3ao3ae/kfGfzvEHWptn5h3HZkA89L62gxyjDpE1exvt3rNX72A9\nSJ1Wn+yVXqZuvOP8NoiPSzqdqA+UxWGtkQx9dMJwJAo8VYuXr9PL/eFdg2CjkQAJkICXCOQoF3/k\nCE0v9YZtzXgCw4cPF7xgxeucl9T+wruDk+vh6YG3A8vhcZzF7t17Y6oHGyyWUFNTONoDS+BpJEAC\n0RPYvXKm7Nu5Tpo3by7Dhg2LPiNTkkCSCNBjlCSQLMb7BLCZIuJz8ErEcFQHjQRIgARIwJsEGHzt\nzXFjq0mABEiABEiABBwgQGHkAFQWSQIkQAIkQAIk4E0CFEbeHDe2mgRIgARIgARIwAECFEYOQGWR\nJEACJEACJEAC3iRAYeTNcWOrSYAESIAESIAEHCBAYeQAVBZJAiRAAiRAAiTgTQIURt4cN7aaBEiA\nBEiABEjAAQIURg5AZZEkQAIkQAIkQALeJEBh5M1xY6tJgARIgARIgAQcIEBh5ABUFkkCJEACJEAC\nJOBNAjwSxJvjxlYrAns2/kYOJEACGUYA56TRSCCdBCiM0kmfdSdEYO/G3xPKz8wkQAIkQAIkEEyA\nwiiYCD97hgBO36aRAAlkFoG8vLzM6hB74zkCFEaeGzI22BAYNmyYueQ7CZBAhhDo3r27UBxlyGB6\ntBsMvvbowLHZJEACJEACJEACySdAYZR8piyRBEiABEiABEjAowQojDw6cGw2CZAACZAACZBA8glQ\nGCWfKUskARIgARIgARLwKAEKI48OHJtNAiRAAiRAAiSQfAIURslnyhJJgARIgARIgAQ8SoDCyKMD\nx2aTAAmQAAmQAAkknwCFUfKZskQSIAESIAESIAGPEqAw8ujAsdkkQAIkQAIkQALJJ0BhlHymLJEE\nSIAESIAESMCjBCiMPDpwbDYJuInAqlWrZPr06W5qEtsSB4GdO3fKxIkT48jJLCSQOQQojDJnLNkT\nEkgbgUGDBkmHDh1kw4YNaWsDK06cwLhx4+S8886TOXPmJF4YSyABjxKgMPLowLHZ8ROYNGmSnHba\nafr1zDPPxF+Qx3KuWLHC3+8rrrgiaa3fvn27DB8+XC6//HIpV65c0spNRkF79uyRH374QebPny87\nduxIRpFJK+PPP//UAuTff/9NWpnhClq7dq1888038ttvv8l///0XLplceOGFUrlyZXnuuefCpuED\nEsh0AhRGmT7C7F8IAQiEL774Qr9+/fXXkOeZegMCxvR71qxZSevma6+9pj1Ft956a1Rlwhtx2GGH\nScWKFbWXKapMMSZat26dnHPOOVK6dGlp3ry5HHXUUVK2bFm57bbbZMuWLTGWVnByTEHdfPPNuk+t\nWrUKm2Hv3r3Su3dvqVChgjRo0ECOO+443a5zzz1XFi5cGDZfvA9mzpyp6wDvli1bSuPGjeXQQw+V\ne+65R7Zt2xZSbLFixeSmm26SMWPGCP6f0EggGwkUycZOs88kQALJIeDz+eT555+X9u3b6y/dgkqF\nt+Kaa67R4gQenI0bNxaUJebnf//9t24PhAam91q3bi2Igfr444+1JwRiGNdFiiTn198vv/wil1xy\nicybN0+3Ndx0Ivp7wQUX6LqbNWsm119/vRQvXlzgwfzggw+0Z+vbb7+VqlWrxtxnuwwoC55RiLFT\nTz1VjPgaP368PP7449p7NGHCBMnJyQnIfuONN8qjjz4qL774on4PeMgPJJANBNQvNhoJeIbAsGHD\nfMoDoF/xNlpN+/jU/239uvbaa+MtxnP5FixY4O933bp1k9L+jz76SJf52WefRVXeAw88oNO/8MIL\n+v3444+PKl8siZSnyKe+7H0q7ikgm/Lq+I444ghd79ixYwOexftBiQdfyZIlfQcffLDvpZde0mUr\nr4xtcWraVj+/+OKLfUogBqS58sor9bMePXoE3E/kgxKEusxPP/00oBg1veg75ZRT9DPlQQx4Zj4o\n0eZT06I+5VUyt1L23q1bN/3/G+80EkgHgeT8yZQNCpJ9zAoC3333ncADADvkkEPkf//7X0C/EQ/y\n+eefy9y5c2Xz5s3aS4KpE0xRBNsnn3wiq1ev1rcR0FqoUCFRAkK+//57Of/88+WEE07Qz1555RX9\nXqJECe15WLlypUyePFnHnxx++OHSuXNnqV+/fnDx/s8oD96B33//XU9RNWnSRM4++2zBtIjT9uyz\nz8qRRx4pZ5xxRoFVgetjjz2mvRfwlvTs2bPAPLEm+OOPP+TDDz+U008/XXr16hWQHd6Z0aNHixJF\nIV6SgIQxfEAdxxxzjLzzzjtSo0YNgbcl2AOD4hDrhLgdTGONHDlSihYtGlDLwIED9TQcpheTZT/+\n+KNUq1ZNe8+sZRYuXFiUEJOvvvpKkKZdu3bWx/oa06IjRozQvG644YaQ57xBAhlNIB1qjHWSQLwE\nnPQY/fTTT/ovf/Uf3qe+uHxKnAQ0c8qUKb7q1avrv7SRxrzUlIyvb9++vt27dwekb9OmjT+NWsru\nU1Mk/s9PPfWUP60pR30p+lSQsE8JMn86PINHQk15+NObCxUr47vuuusC0pqylDjyqS89k1S/J9tj\npMShrlt9gQbUY/dBTef4TjzxRF+pUqV8f/31l/aYoK2RPEZq+sungoXtivOp6aqQ/iHhnXfeqdtk\nx8u2IMvNeOsz3h94pNAnJRQtpeZfquky/eyWW24JeVbQDfxcqVgh22T79u3zTZs2zfYZvEIqrsqH\nNMGmRJpujxL5wY/8n9X0qK9hw4a2+f2JHLigx8gBqCwyJgIMvla/yWgkgBiUjh07ytatW/Vf/KNG\njdJeB0MGcSmIV1m+fLm+Be+A+uLR1/AGPPzwwxFX8igBI/AERTLUjTYgOBjeI2OITVFTLCGrqrp3\n7y4vv/yyTgYvAOJIypcvrz9jFdaZZ57pSKCxaRc8IPBwXHbZZeZW2PehQ4fK7Nmz5cEHH5Q6deqE\nTWd9oKacJDc3V8fCWO8jLgkeIXipggOITQCzEmGaN+q96KKLpFOnTqLEqyxZssRaVMB1PPU98cQT\nId6fgEL3f7C2C0Hw7777rmD80A94Z77++mu7bPoefrbAAQHRVlO/6UWJCGnbtq32GFqf4RorzMBK\nTV8G/OxgZRpWY2LsUG44Q6A6vJDwfNJIIKsIxCSjmJgE0kzACY+R+qLytWjRQv8Frf7z+9R0T0gv\n1ZdwwHN4QGAq4FZ7l5APnh61Gsqf1+oxQsyLmjryqS9A3z///KNfJiHymtdJJ53kU6u2fGiTiVkx\nz9R0mcmiyzH3a9Wq5VOCTT+D1+Kqq67yl3fvvff68yTTY7RmzRqfmpry3X///f7yw10oQegrU6aM\nT005+RDfAoOXBe2P5DGC96xSpUo+taLKp4SpzgdPEWLM4NGz8wqpVV76GbxS8O6p6Usf+MBThfow\nRkqU6LKC/4mnPmsZkTxGffr00fXD66gErL6uUqWKTwlZfY2fD6Sxs02bNmlvmxK//rbDC2S8heHy\noSwlnH1qZZ7voIMO8qkpWR88ieAAb9DSpUvtqvPfQx2Il1LizX8vFRf0GKWCMuuIREAiPeQzEnAb\ngWQLo6uvvtqn4n30lwW+MOyCX5Unx/8cUxMQLVZTq338z62BrlZhpLxN1iwB16jXvNSuwwHPatas\n6X+m4lj8z8wXLfKpFUb++7jAFJopD9NXxpIpjNRGgLqOGTNmmOLDviuPjRYoKn7LnyYaYYTEEJ6Y\nYoQ4gqg0oui9997zl2W9gNhAIDSCyyEQlcdEP4aQVbE9elrSTOdZ85nrWOsz+fAeSRipVWual1qN\n5lOxZT7lifFnVbE+vtq1a+vn1jH2J1AXEEfIB3H09ttv+0WRWvpvTRZyjbIbNWrk/3kwPxd33323\nDz/XBRmm/iCA0bdUGYVRqkiznnAEKIzCkeF9VxJItjBSAcr+Lw2IEOPRsHbeKjTwpaoCoQNe5q9+\nfOkMHjzYn9UqjMJ5KZDYfFnhPVh0qeXd/udqvyB/2VYxBs9IcJtMmWibsWQKIzW9pwULhGUkQwwL\n2qL2xglIFq0wQibEMql9f3Q5iOdSy80DyrJ+AAfUpwLibWNjVJCzfo4v33AWS33WMiIJI6zyQruw\n0gvetmCDaITXSO1tFPzI/1kF/msPmxnb22+/3f/M7sJ4DtWUmk9tcql/tuC9U9PEPrWJo455g9gM\nZxhjeOxQTiqNwiiVtFmXHYFC6j8ZjQSyloD6gvb3XU0t6JU4/hv7L9QXmf+WEi6CHYutr/Xr1/uf\nW9P6b6oLxHNEY9bYIqQPt9eOtR7EPVnbg2tjaBv2sUm2oZ1YrfTWW28JdlW2M7DFyjP0HXEy8Rri\nuZT409nVlJwoD0jYorCKD4Z9hexWh+E+7Oeff9bvdv/EUp9dfrt7pl3YV0iJjZAk2OixXr16ehzx\nM2Zn2KwSKwCNmVWN5rP1HSvzXn31Vb13EeKZsHJOBfGL8qiJErOitlnQKyYjrQx888039dgi1ohG\nAtlEgMIom0abfQ0hgCXtOMrCmPorXAecms94V9Mc/o9NmzYVtUoo7GvAgAH+tE5eWNuEDfsitQmB\n2U4YdkhWf23JkCFDbIvHLttYPo/6sT0BloWbF4KOYQgEVp41fT6XXSHYHgFpEUyOQGeIHZSBoGA7\nMwIEu1zbGY4sQRnhjuGItT67OuzuFdQu5EHgPHhiG4hgw30IUWztADGjYrPk0ksvFZxtZmdqilPf\n7tq1q91jvRu42tNJL9dH0L+dIbgerI8++mi7x7xHAhlLgMIoY4eWHYuGADwIONICOzfDsAIM96ye\nJIgQs+8MPA1YYQRPjnnBY5KXl6df4XY9jqYtsaTBl5oxrFYybTHv2J8GbYKgcMpwphZYqSBx2bVr\nV0g1EEQ4igJf6ljVZ31BEMHAG+JJBUuH5FdxNXrlmdpGQe8TpJbiy5dffqn3BMJKLOQLNqwchGE/\nKjsDE7QHez0FWzz1BZcR7jNWf2EfJew5ZWfgAD4QR+BqNbQX+yPhPDp4b9R0rd7n6thjj9X8IYyD\nDXXBIh1/AkGEnxc74Yy9uvCzQ29RMFl+zgoC6j8djQQ8QyDZMUZm52vsYWPiWNR/fF9wUKtaUq1j\nRPAMK6kQfIwVaGopsw4Mxn2sgFLHUfhZWmOM1Be6/37wBfKaV/CeM0p4+J9ZY4ywCg0rjZAPwbEI\nplWCTQf1qi9Rfx5rfEgyY4xMH0z8FQKbYzHEr6DtkValqWknn/ri1qytZZsYILV5YUgAMfgpD4dP\nTfX5sC+V1bCLM+pDvW+88Yb1kb6Opz5rIZFijJAOqxJRt9pCwJpNX5tnWGkWbGoaUudTIiXgkYk5\nAiNrYDsS4ecSdakz4kIY4bna6FI/D8dfbfWg452Cfx6R12ljjJHThFl+QQTw1xONBDxDwClhBADv\nv/++/rLAFwoCYa2b3+FLyKwcwnO713333RfA0UlhhIrUGWW27TBtU7EyAULNCWGEdijvjV4Gjuto\nLRphpA66DRtoDXGEL3c7mzp1ql6Zho0xsXoPq7gQdK1ieDQvtaeRXTZfvPWZwgoSRgh8Nm1QU1w+\nFQOkRZJZvo8gevycBRuCta0bglqfI/0jjzziM9tHWJ+p/aV0f/Fzi+NIsMkkWFxxxRVaxGMhQbB4\nRH5sqomffxx3kg6jMEoHddZpJUBhZKXBa9cTcFIYofP4pWyEBXaqtu5LpGI/fGpTPr+nxqTD7sAq\n9iOEndPCCBVCvGE5Nr7ITHuw0g6eIrWZYUCbnBJG6gBUXbdVSAZUbPMhGmFkky3qW+r4Ee05Mkzw\nDi79+vXzqWm/qMuJJWFBwghlQcio42G0MLG2DasPIYCSaWgPtnLAFhPWunANMaamFW2rw8848kSz\nnN+2gARvUhglCJDZEyaQgxLUfxQaCXiCAOIs8IKpjRDT0mb8l8EOyko06fOxEEeTbkO8CGJucL6b\n2nYgYOdsp9umpltEiUO9qgonxbvJsHoP8VZYCYbVbFiZ5QbDeCHeCefnId4pXLB4MtqqBJKOi1PT\nvIJVfTh3T4l+26KxihGr8nAGHILd02HYERxs1J5Vov4QSkcTWGeWE+Ahsln+A8Dux04Aq5pq1aql\nX7HndiaH2tRQf5E4U3rkUvHlfvPNN+sjNxB8jpVfbjGIVhOQ7ZY2oR0YL+VRTEmTsLUCxJddwHlw\nAxB0je0dgg/gDU7HzySQyQS4Ki2TR5d9I4EUEVBB7IJ9oNwkilLU9YyqBufFwRtq9o3KqM6xMyQQ\nJQF6jKIExWQkQALhCWCKyi3TVOFbySfREAjeLiCaPExDAplEgB6jTBpN9oUESIAESIAESCAhAhRG\nCeFjZhIgARIgARIggUwiQGGUSaPJvpAACZAACZAACSREgMIoIXzMTAIkQAIkQAIkkEkEKIwyaTTZ\nFxIgARIgARIggYQIUBglhI+ZSYAESIAESIAEMokAhVEmjSb7QgIkQAIkQAIkkBABCqOE8DEzCZAA\nCZAACZBAJhGgMMqk0WRfSIAESIAESIAEEiJAYZQQPmYmAe8QWLVqlUyfPj1pDZ4/f77gRSMBEiCB\nTCJAYZRJo8m+OE7gl19+kdGjRwtOR/eaDRo0SB+oioNeEzWfzyfnnXee3HPPPYkWxfwkQAIk4CoC\nFEauGg42JhUEJk2aJKeddpp+PfPMM1FX+ffff8vRRx8tV155peCwTS/Z9u3bZfjw4XL55ZdHPOj1\nv//+k99//12++eYbWbt2bdgu5uTk6BPYP/74Y1mwYEHYdHxAAiRAAl4jQGHktRFjexMmsGLFCvni\niy/069dff426vL/++kv27dun0//5559R53NDwtdee03gKbr11lttm7Nt2za599575dBDD5VGjRpJ\ny5Yt5bDDDpMWLVrIjBkzbPNcc801Urp0aXn++edtn/MmCZAACXiRAIWRF0eNbU4LAXiZ+vTpI23a\ntJEXX3wxLW2Ip1JMe0G8tG/fXho3bhxSBJ5fdtll8thjj2lvUq9evQTTbqeeeqr8/PPPcvrpp8vs\n2bND8h188MFy/fXXC0TXxo0bQ57zBgmQAAl4kQCFkRdHjW1OCwFMHz355JMybdo0PQ2XlkbEUSmm\nDv/44w+5/fbbbXOjPxMnTpRTTjlFlixZokURxNGUKVMEU2WYXrvzzjtt8yLdzp079TSdbQLeJAES\nIAGPESjisfayuSTgCIHFixfLl19+KUuXLpVjjjlGe0vgEbEaYm4gFGAVK1aUjh07Wh/ra0y3vf/+\n+7ocTLvVqlVLzjzzTD09FZJY3di7d69OD8/M6tWrdblHHnmkdOnSRYoXL26XJeZ7zz77rKDMM844\nwzbvjz/+qO8jdqpw4cIBaZCnWrVqYtIEPFQfatasKeeff7688MIL0rt3bylShL9SghnxMwmQgLcI\n8LeYt8aLrXWAwFtvvaWnkjClZKxhw4bai3LEEUeYW4K4IsTVwE488cQAYQQRdNNNN8mIESP8cUgm\nI6bfbrnlFgkO9EbQMsSVXbxS5cqV5dNPP5WmTZuaYuJ6nzdvno6lQrvCmanDbqUdmCBw26SxK+O2\n226TMWPGyNixY+WSSy6xS8J7JEACJOAZApxK88xQsaFOEEBg8VVXXaU9JQgkNoaVWeecc4726Jh7\nmEoLZ4888ogMGzZMi6KSJUvKySefLPXq1dPJIZrgtXn77bf92SE4rKLouOOOkx49euigZySC9+jc\nc88Vq1jzZ47h4rnnntNeKMQQhTPETCHQGsLNGoy+Y8cO6d+/v44fuuCCC8Jl1yIRQhF10UiABEjA\n6wQojLw+gmx/QgTgrcHS+02bNsm///4r77zzjn86CB6dd999N6ryMYWGlVytW7eWn376Sb766ivt\nCcJKL2NmGg6fEfNjPEXwxnz77bd6Ourrr7/Wy+AR8NygQQNZuXKlyR7zO6b+3nzzTbnhhhukRIkS\nYfNj+uv777/XgdmYcjvqqKP0VB6mCyF24G2CxyuSwWv03XffyaxZsyIl4zMSIAEScD0BCiPXDxEb\n6CQBE1BdqlQpwfVFF12kvT2mTizrNxbJe/Pqq68KRA12loagMda5c2dzKdgHyZhZ9o/PuD9+/Hgd\n5IzPWBE2efJk/UJ8T7w2c+ZM2bVrl15VVlAZ5cqVk2OPPVYnw27WEyZMECzhR/2YVizIsGIP/NBu\nGgmQAAl4mQCFkZdHj21PmAC8NYjnsZo1SBlB2cYiTaUhzZo1a/Qy/p49e+ppMExRYUNFY1ZhBbGB\nPYJgW7ZsEUxVlSlTRnud7r77bu3BMfnifT/77LP1NNorr7wSsQhs5ggxN2rUKP2ClwpxRT/88IP2\nHrVq1UquvvrqiGVgyT74XHHFFRHT8SEJkAAJuJ0Ag6/dPkJsn6MErMHVpiITG4TPmF6LxiAqIIgQ\nlxPOrMKoUKFC8tFHH8nNN9+svTO7d+/Wy94hUvB64oknpHv37jJ06NBwxRV4H9NnmEbDFgOPP/64\nVKpUyTYP2o2YJkyFNW/e3J8Gq/MwlQivEzxiOAIEcVfBhpV18HIhJqpOnTrBj/mZBEiABDxFgB4j\nTw0XG5tsAtjDxypYUL71oNUaNWoUWCU8LDfeeKMWRYjXgRDB8nYc2orptXCGgGcID3iaxo0bp5e7\nW6etcISHdfotXDmR7mOlHPo3ZMgQ22RYiQbPEASiVRRZE3ft2lV/DLcDNqbd4FlDnBGNBEiABLxO\ngMLI6yPI9idEAKIkLy/PXwZifz777DP/57p16/qvw11AWGATRBim4bA8v1mzZnqKDpsk2tn69etl\n4cKF+oUpKOwFNHDgQPntt9/0tBryQNBgT6REDNOEWEL/0ksvac9PcFnYtwhiDtN54cws4w+3rxJW\n3EFUYcqNRgIkQAJeJ0Bh5PURZPsTJoApInhn4LXp1KmTYIUZDNNd1157bYHlV6hQwZ8G3qZPPvlE\nli1bpleZhTtHDEHK9evX1y8sdYdIgsHzMnfuXH951kBu/80YL3A+mlmhFpwVWwtA1CxfvlxGjx4d\n/FgHYJtl+NgZO9jMSjR6i4LJ8DMJkIBXCTDGyKsjx3YnhQCCnrHEHPE8wQZRZD1bLHjKzaTHai4s\nccdmiljJddZZZ5lHctJJJ+mYIf+N/RcQYE2aNBGsAMPSfYgk7LRtvDNI1rZt26hWlAWXHfwZ3iuU\nBc+O2aDSmgaiEFsNIMAaq/A6dOigD5PFXk6DBw+WRYsWyaWXXqp38LbmwzXKrFq1qlx44YXBj/iZ\nBEiABDxJgB4jTw4bG50sAvDIQAxg/yEzVYT9ex588EG9YWM09RQrVkxPeeGQVrNyDV4knE1mXRFm\nnqFMiCBMs1133XUCrw3MiCJsNHnPPffonbdRdjIMHh2IMLupvaOPPlqwtB+HxsJrhJgiiDu0H4fD\n4nDZkSNHhjQDXjF42bAxZdGiRUOe8wYJkAAJeJFAjvor+MA5CF7sAducVQTg3cALNmfOnKT2HYeh\nIvYnkb2D4DFCGThDLFrDqi9MZa1bt07HJVWvXj3kzLJoywqXDrFTCOzGijscKhvOEEiOaT2sxqtd\nu7b2ZIXbHPKuu+7SHiUIpPLly4crkvdJICYC8N4i7g9TvNhNnkYCqSbAqbRUE2d9riUAAZCIKELH\nDjroIP2KpZPwVCHIO5pA71jKtaZFvBS2Bujbt69s2LBBsKGjnWFaDK+CDH9PYbsB7FtEUVQQLT4n\nARLwEgEKIy+NFttKAgkQQMwUhIz1TLh4i8O0ILYkgIeMRgJOEAi3fYQTdbFMErASYIyRlQavXU/A\n+svSusze9Q13QQMRy5QMUWS6gvinsmXLmo98J4GkEOD/66RgZCEJEKAwSgAes5IACZAACZAACWQW\nAQqjzBrPjO8NPUYZP8TsYBYTMAsrgMD6fz2LkbDraSBAYZQG6KwyMQLmFyZd7olxZG4ScDMB8//c\nzW1k2zKTAIVRZo5rRveqW7duun8QRta/MDO60+wcCWQ4AetWHOb/eIZ3md1zKQHuY+TSgWGzIhMw\ne50gFfY64V+XkXnxKQm4nUCLFi38TUz2HmX+gnlBAlEQoMcoCkhM4j4C1r8o6TVy3/iwRSQQCwHr\n/2Hr/+1YymBaEkgWAXqMkkWS5aScAKbSrGec4Rcqf6mmfBhYIQnETcBMh5t4Qf4fjhslMyaRQOH+\nypJYHosigZQRMDs0m1+q5p3TaikbAlZEAnETgJdowIABsmrVKl0GRVHcKJkxyQToMUoyUBaXegIQ\nRFbPEVoAcWQEknlPfctYIwmQgJWAmTIzf8SYZxRFhgTf3UCAwsgNo8A2JIUAfumaX7xJKZCFkAAJ\nOEoAf7RAFPGPF0cxs/AYCVAYxQiMyd1PAOLI/EVq3t3faraQBDKfgBFAeDevzO81e+g1AhRGXhsx\ntpcEsowADqyFTZ06VXJzc/U1/yEBEiABpwhwub5TZFkuCZAACZAACZCA5whQGHluyNhgEiABEiAB\nEiABpwhQGDlFluWSAAmQAAmQAAl4jgCFkeeGjA0mARIgARIgARJwigCFkVNkWS4JkAAJkAAJkIDn\nCFAYeW7I2GASIAESIAESIAGnCFAYOUWW5ZIACZAACZAACXiOAIWR54aMDSYBEiABEiABEnCKAIWR\nU2RZLgmQAAmQAAmQgOcIUBh5bsjYYBIgARIgARIgAacIUBg5RZblkgAJkAAJkAAJeI4AhZHnhowN\nJgESIAESIAEScIoAhZFTZFkuCZAACZAACZCA5whQGHluyNhgEiABEiABEiABpwhQGDlFluWSAAmQ\nAAmQAAl4jgCFkeeGjA0mARIgARIgARJwigCFkVNkWS4JkAAJkAAJkIDnCFAYeW7I2GASIAESIAES\nIAGnCFAYOUWW5ZIACZAACZAACXiOAIWR54aMDSYBEiABEiABEnCKAIWRU2RZLgmQAAmQAAmQgOcI\nUBh5bsjYYBIgARIgARIgAacIUBg5RZblkgAJkAAJkAAJeI4AhZHnhowNJgESIAESIAEScIoAhZFT\nZFkuCZAACZAACZCA5whQGHluyNhgEiABEiABEiABpwhQGDlFluWSAAmQAAmQAAl4jgCFkeeGjA0m\nARIgARIgARJwigCFkVNkWS4JkAAJkAAJkIDnCFAYeW7I2GASIAESIAESIAGnCFAYOUWW5ZIACZAA\nCZAACXiOAIWR54aMDSYBEiABEiABEnCKAIWRU2RZLgmQQEwEpk2bFlN6JI4nT8yVMAMJkEBWEaAw\nyqrhZmdJwN0EBgwYEHUDkXb69OlRp2dCEiABEoiGQI5PWTQJmYYESIAEnCbQtm1bXcXUqVP9VeXk\n5Pjv5ebm6muIov79+wt/ffkx8YIESCBJBOgxShJIFkMCJJA4gX79+unpMYihcNNkEE8QRXjRSIAE\nSCDZBCiMkk2U5ZEACcRNAB4h4xWCALJOrWHazCqYIKJoJEACJJBsApxKSzZRlkcCJJAQAXiKzJRa\nuILgLaIwCkeH90mABBIhQGGUCD3mJQEScIQAhFG4qTRUyNgiR7CzUBIgAUWAU2n8MSABEnAdgUje\nIMYWuW642CASyCgC9Bhl1HCyMySQOQTCeY3oLcqcMWZPSMCNBOgxcuOosE0kQAK2MUT0FvEHgwRI\nwGkC9Bg5TZjlkwAJxE0g2GtEb1HcKJmRBEggSgJFokzHZCRAAopAXl4eOaSQQMeOHf3M27Rp479O\nYROyuqrmzZtndf/Z+ewkQI9Rdo47ex0lAQih4cOH8ws5Sl5MlpkEIJDw6tatW2Z2kL0iAQsBCiML\nDF6SgCEAMYQXjQRIIJAAxBEFUiATfsosAhRGmTWe7E2CBOw8RIVK5J/VVaRs/nuCVTA7CXiGwL4d\n+Udp7tspsm9n4LGaw4YN014kz3SGDSWBKAlQGEUJiskynwBEUffu3f0dhSCCGDLCyP+AFySQpQT2\nbNwne/49IJDoPcrSH4QM7zaFUYYPMLsXPYEWLVr4Exc5FKKIu1n4gfCCBPYTCBZH9BzxRyPTCFAY\nZdqIsj9xEYCnyKw4K1alEL1EcVFkpmwisHPRXn9358yZ47/mBQl4nQD/JPb6CLL9CROwrjqDp4hT\nZwkjZQFZQAB/QBizTkGbe3wnAa8SOPCT7dUesN0kkCABs/osP6aI/yUSxMnsWUJA/39Rf0jA4G01\nHtcs6T67mcEE+C2QwYPLrhVMwIgipOSqs4J5MQUJWAkgDs94WK3/l6xpeE0CXiNAYeS1EWN7HSNg\nfsE7VgELJoEMJkCPUQYPbpZ1jcIoywac3Q0kYH6ZI7aIRgIkEDuBQiViz8McJOBmAhRGbh4dts1x\nAkYYOV4RKyCBDCVQqOSBPyr4/ylDBznLukVhlGUDzu7aE7D+crdPwbskQAJ2BDgFbUeF97xMgMLI\ny6PHtpMACZAACZAACSSVAIVRUnGyMBIgARIgARIgAS8ToDDy8uix7SRAAiRAAiRAAkklQGGUVJws\njARIIF0EChcuLEWLFhO8B1upkqWkeuXqwbf5mQRIgARCCBQJucMbJEACMRGoULaCVDmsms6zaOlf\nsnX71qjzFy9WXBrUaajT/7N+jaz+Z3XUeZ1IaO1LcPm7d/8nS1cuke07tgc/csXnW6/pLeedcb68\n99k4eeblp/xtOuSgQ2TsixPkYPX+6IsPyaRpH/mfueWiUE4hOfGYk6Tu4fWkepUasn7jelm07G+Z\n8d002fXfLttmliheUurXbmD7bMvWTbJs1TLZu/fAeWa2CXmTBEgghACFUQgS3iCB2Ai0a3ma3HzV\nbTrTK+NGysh3h0ddwFm5HaX39Xfq9G9MfE2Gvjkk6rxOJLT2xa58n88nK9eskJdVHz//6jO7JK67\nV1WJVogimBYS0/Sla/5pUOcIubPbPdKwbqOQNq1au0qefvlJmf3jrJBnNZSAeumh8D9re/bukWUr\nl8qCRX/IyDEj9LiFFMIbJEACIQQojEKQ8AYJxE+g06nnyKtKHEX7l3rn9l3ir8zBnP8p79DCJX/6\na8iRHCl3aDmpWL6SVFNTUv1ueVBOOralPDionz+NWy/++Pt3eWH0IKlZtaa8/cEbrmpmlUpV5YX+\nQwVTfStWL1ferI+V13Cl4H6nU89V71XksTuflBv7Xi+///Vb2LbDu2T9matQroIcWrqs1K5RR79a\nn5Arw5ToHv/pWIG4pZEACYQnQGEUng2fkEDMBCqUrSitjmst02ZPLTDvUQ2bSt2a9QpMl44EK9es\nlG73XBNSNTwv1154nVxw1sVyRqsO8u1P38hnMz4NSee2G+98+KbbmqTbc3+v/loUzZn3vdz1eO+A\nabMxH78jQx4cLvVq1Ze+PfvJZbddHLYPNw+4STZu2hjwvGyZstKo3pHS64pbpIYShZhqrFnt8IBp\nxoAM/EACJKAJMPiaPwgkkGQCnVWcSzR23hnu9BZFavvWbVvk+Veelckz88XQDZf2jJSczyIQKHNI\nGTlaiWPYwBFPBIgi3EMs17C386dWa1WvLWUOORS3ozYIpVl5X8nVd17uj6vqrH7mMHVHIwESCE+A\nHqPwbPiEBGIikDd/jo4Tad6khdSoUlMFvy4Nmx9fcm1PbKenP+B1adn8lLBpCxUqJLkqbRs1HYIp\nliKFi6h4kZUy9/efZMLk9wRB0VaDJ+r0U87Qt0aPf0XWbVxnfayvUfcxTZrL5i2bdPxJrNMrE1W9\n8BhVLFdR4JkI9lagEnjOjlV11Du8viBQ+G8VmP67mtb66MsPQtoc3EB8eeee0E7lrSeVyh8mS1Yu\nlr+WLJSPp36kApND+xOcP/jzLVffLgeVOkjeev91Wbx8sf8xpgPbnnSq/PTLj1o8gB2CoJs1OkYK\n5eTIouWLdDD3wsUHphX9mS0XKKPFUcdJg9pHaN4//pInX82ZqeN6zm7bUZo2Pka+nPVFQKxQzWq1\nZMOmDbJt21ZZrgKl7Qx9NoapwHl//Gs+Rv2+c9dOeWrY49K0YTM9DXr7tX301FysYx51hUxIAh4n\nQGHk8QFk891DYNv2bfLp9ElyfocLBH+ZD37tubCN69iuk15aPvWbL2STEifhDHEiz90/WE+nWNPg\nCzj3xLZ6SqtnvxtkzboDq9kQi9Ln+rukTs26Uv7Q8nLfwLutWbXQuLfH/VKyRCl54Nn74oo5Wa7i\nYYzVrHp4gDDCdFufbnfJqS1PN0n0e6N6jeVs1e/Op58n/Z+/X6+6CkigPkAEXt75SrnmwusDlt1j\nOgnlXdSxqzwx9FG9Wis4b6TPEIpg+dn0TwKEUR01lYkAeMTnbNm2WR7p84QSRAcc6RBKZylh8/SI\nJ+XDL94PqQKrCu/sfo+0b31mwDOIwmsuuE5ufaiX6DJUHYuXLQoQRvN+/1nOuS4wX0Ah6gPaZ+yf\nDWvNZczvu/fsliFvvCCP3PG4NGlwlMADhbgkGgmQQCgBCqNQJrxDAnETmPDZeC2M8GU6/O2XQqZH\nUDC+eM9V4gA2YfJ4aXfSafra7p+Hez+qRdGGf9fLqLEvyy8L5mvB0PLYk7XIQHBu354PSK/+N/mz\nw4P04OB+MuKxV5SXqa20Pj43QEjcft0dWhRN+Wqy8mJM8eeL5QKCy9i6DYEenIdvf1RaHH287jva\n/NOvP8iOnTu0N+XaC7vpJekvPjhMLurZRYmRLaYY/Q5RdP0lN+jr9z+fIFNnfylr1BYGtWrUlv+d\neaHAG/eoEi89+92oyw3InMCHRnUby2knny4Yvylff66E3gaprcTDdRd313FgN191q8z64esQbxU8\nUUYUjZ30rsz8frqAB4TcZZ2v0KJ25dqVcbcM4wyDty3RrRy+mjNDsFINHkd4NCmM4h4WZsxwAgf+\nNMrwjrJ7JJAKAovV1AumUbB3TrDHxNR/XNMTBEvIMaXzw/w8czvkHTEohQoVVlNmP8vdT/YRTF/9\nuXiBXp0EwfHSmy/qPMcc2Vx7Q6wFYOpn5Lsj9C0IoYNLHayv4WU6pUVrNd3zj14Gbs0Ty/XJLfKn\n/nbs2iEr167wZ8WUIEQRPDA9Hugub04crcUcvtjhTbv2riv0EvLSB5dWXqHr/PlwUV7tB3XZeVfo\ne4NefVaeGv64zJn7nZ6SnPnddLlNeV+MkINQsXp2AgqK4wOEzCtjR8qzIwcKPDmY2pr5/Qy5uX8P\n2bZjmxaSuUpkWg3i4uy2nfQtxAg9/8ozejyx1xPaecN916ml8gu0ILTmi/Yaexp1VKscYaMnvKrf\nE/kHY4Ll/zAEY9NIgATsCVAY2XPhXRKImwDifmDhluKft3+J/kTlLYpkmGK76f5u+vXrn7+EJJ3+\n7TT9pY0HdWrWCXmOeBp8yWOl3I2X9ZSDSh6kVyYh4WNDHg7x1oQUEOYGPFBXdrlaP33v03EBU3GX\ndOqq7yM42255+eatm+XV8SN1mvPa/0+KqZ2qjZ17WmctQLBsfdwnY8xt//u+ffu0GMQXPKYSESOV\nLIPn6t2P3w4pbtOWf/3TX9h40WqdTjtXe+8gcD/4fKL1kb7GlgcvjH4+gE9IojA3ELf16B1PaD7Y\nLwrevWTYitX5sUw1laijkQAJ2BPgVJo9F94lgbgJzFCCBVNfjdVSaQQRL/j7D39Zh1WoLC2PPUXg\naYEHJREroo6+QFwTBE+JYiVCitrn2ycPvTBAXhv4hpyjRAfiSiCSMH337U+zQ9Jbb+CL+YZLD0zP\n4Vk5NX1Wr2Z9/6omeMeCN7M8XAUUw6Z/G367gunfTpf7e4me0sGeSGZKB8HIMAQtQwTZ2So1LQWv\nGTZDPFwtPc9Ty9yTYUtWLA7YB8happnCwq7gVoPHCDbrh68ErO0MmyuizfAQRmsIVH/y7md0oDTy\nw3OWLMORKbBwu2knqx6WQwJeJkBh5OXRY9tdSQBxHB9MmShX/e9afUQFgoWNnaO8DAgw/nzmZ1Ef\nHXJkgyY6/qV29Tr6CxbBzZgaQzkFGXapHvTqc3LXDfdK00bNBEHTL44eXFA2tTS8jIqRudI2HVYz\nIRD5RbVpIrwixrBJIcQTbLUlGNw8N+87lSiEJwYr8+CFMcIIOznDVv+TP91j0ge/r1LPIYxM+uDn\n8XzesjUw1slahrWP1vvm7LVVaoVgJFuhxiBaYVS0SFEdII1AdXjO7njk1qQewWLaHGnFZKS+8BkJ\nZAMBCqNsGGX2MeUEIIyuUNNNp6nVUBAQOD8NQa/YzRiGIN9oDKvHsGrKGKaiEBiMOBZ8mWM5PFZG\nRTJsHojpJxyuiqkUCJOC7N/NG2X8J2MDkkEgLFaeFcQvWVfBmURY5WZspwq2jmRYQl7mEJFSJUr6\nk5Xanx/PItmu/c+t9UVK79Qz/3J3taw/kkV+eiAnYqb69uonJzQ7UQd53/7wLXo5/4EUiV1h2hI7\nl8OWqqNCaCRAAvYEKIzsufAuCSREYO36tXpKqPXxbaRDm7N0zEwrdQ2PClaWYTqoIIMgMqII56h9\n8fWUkHzjX3pfMD0XzvBle58SVxBFWK12QrOT9Gq2j7/8MFwWff/fzZsE577FYthfCFOEJdVUENpk\nXdJvLQeeLkzpwVasPhC4jfQICj6swmHW5CHX5jk8Kuk0eIKwJUJVtbdUJIvWW3T7dX10wD5E6S0P\n9pAVa5LbP6yENAHrS1YsitRkPiOBrCZQsC8+q/Gw8yQQP4EJ6pR3GPY0guHkdxhOf4/Gjmt6vE42\nf8E8fbhssJjCtIuZugpX3oVnXyzNGh8rP//2k17ZhnQ48DaSmApXVjT3V6zK/zJvqKaCwln9Wg20\nUMNznABvbPnqfC8GppHCGbweECOwcJsihsub7Pvw2sFOadHKLziC6ziiTsOoptGwRQF+TuARvOXB\nngF7LQWXGc/n/FWA1+usn834JOGl//G0gXlIwCsEKIy8MlJsp+cIYAoLX/wIeoYowrQXYmu+VJs6\nRmMH7V9iv3bdGtvk2G0Z4iic1apeS7p1vVGwud9Twx/TAddY4YRgbUzR5RQwBRSu3Ej3Z6q9cmAX\nnnVRwIoza57LzsuPXZr3x1zNwzzD8ngYvFoQT3aG5euITcLU5A+//GCXJGX3sBIN8WTwcp1/5gUh\n9ZYoXkJ6XXlLyP3gGxd1vESv8kOfsCWBdbfr4LTxfEaQ+MB7n9NbSOCYEWz0SCMBEghPgMIoPBs+\nIYGECCAG5f39S/d7X3+nLgtHWgQf4RGukj/ViiRY7knt/GdqmbTYjPAOtbt1OMPUWd+e/bU4wV5C\n5hgM7A+EpenYKLGLWi6fbHtz4ut6jyTsSfSs2rEb78Yg4nCQKY4jARsEhVsNezphE0LYE3c/LQg6\ntxqmFXuqA1Fhr40fFSCqrOlSdY2pLsSSwbDRY59ud+v4IOw/1L51Bxn2yEjlLaqu48HCtenM3LN1\nnxADdv/T9+i0JVXcld0rkgjGSjZrHgS1Y1uF7l1vkleeel0a1z9Sr/TD9gHxHKkSrv28TwKZSIAx\nRpk4quyTawh8PPVDvZMzAqQhBrBJY7SG09XxxYmzwoY8NFwHPC9ZsUQvU8dU2MvvDpOTjjk5RECg\nfOwzhJVby1SQ7WvvveqvEmeaDXl9sF6lhr2NcE5buFggf6YYLhDY/cgLD8qA2x7Rq+AmDPtQtwE7\nX2MKDFNhWIqPtv+2MHRvpudHPaNidqrptBAW/2z4R69Swy7UWI0Hg2dp3KQxMbTKuaSDlbhD3A6m\nwRDDY3Y0R41r16+RXmqH7tuuVafaq2NTgg1bG9x9w33acwchCyEZybC303OjnrZNMvbFCbb3zU2s\n/Ht0yEOK+a/mFt9JgATCEKAwCgOGt0kgGQTgnZny9WS9QzJECJbPR2vY4LFXv5ukxxU36wNZIYbw\nwp47z4x8SrC5IoRRsCGu5crzr9G3n1RTaMEeKhziioBwLN+/r2c/6XF/97D78ASXHc3n79Vu1Vf2\n7iq3X3enHHPksUrI1dLZMKWHL2acIYfdvO0MS/Gvu/sq7emAVwyH1OIFUQkBh00rjZfGLn+q76FP\n2PUaR4Ecq7xw2HgSHpmffv1Rn2yPQ2LDGeJ+IIicMMQqYZ8pCCLshTQJnkrVVhoJkEDBBHLULxxf\nwcmYggQyk0CLFi10x4pVKSSFSkS7sDr1LDBVUr1KdX0OF1YtRTJsC4AvXPzXDrcHD54jHQxpnPw1\nUKViFSmhpocQrIwpo1gM8URYhYbl5dFsMxBL2alKO/yxUXqzzyeHPeYqUZfM/u9clD+uw4YNk+bN\nmyezaJZFAiknQI9RypGzQhKInQBEAfYPisYQEIxXJINAiVWkRCov0jN4geI1BKvj5UarpPYE6tju\nHN00TJHaeYfKlSkn9Q6vr9MEryp0Y5/YJhIgAbUrPyGQAAmQAAnETgDxWuefeaHeJRzTaPc+dade\nbm9Kwi7TmKpEXBWmP6MVtiY/30mABNJDgMIoPdxZKwmQgMcJIGbnMRXQ/FDvx9ReUcfIpFc+19sz\n4LgNxEXVqVFXT2lu27FN7ht4F2N8PD7ebH72EGCMUfaMNXtqQ8DEGBU5NEeKlC1kk4K3SCAyASyF\nv6zzFWqjx9YB59dBEOGg4NfGjbKdZotcqnee7tm4T/b8mx+qOmfOHO80nC0lgTAEKIzCgOHt7CDQ\nvXt3ycvL04HXCMCmkUC8BBDMDk/RIYeUlrXr1kpBQfLx1uO2fBRGbhsRtidRApxKS5Qg85MACZCA\nIoCAdwSaJxJsTpAkQALpJ8A/kdM/BmxBGgl069ZN175vp0/wopEACcRGwEyjmf9LseVmahJwHwEK\nI/eNCVuUQgLYc8Xsu7JnI4VRCtGzqgwggGk0YxRGhgTfvU6AwsjrI8j2J0zA/EKHx8j6iz7hglkA\nCWQwAWtskfk/lMHdZdeyiACFURYNNrtqTyDAa6RW11Ac2XPiXRIwBPQfEftXouH/D4WRIcP3TCBA\nYZQJo8g+JEzAepQBYiYojhJGygIylAD+b/y3ilNoGTq87JYiQGHEHwMS2E/A+lcvxBHOf6JA4o8H\nCeQTgJcIgsgEW+Ou9Q8KciKBTCHAfYwyZSTZj6QRGD58uOBlNRwwW6hE/p1CJd172Ky1zbwmgUQJ\n7NuB1Zr5pVhXbZrpM7NwIdF6mJ8E3ESAwshNo8G2uIaAnThyTePYEBJIIwF4Vq3e1TQ2hVWTgCME\nKIwcwcpCM4WA8Rxhd2y8aCSQbQSMVwhiyFxnGwP2N7sIUBhl13iztyTgOQI5OflTl1OnTpXc3FzP\ntZ8NJgES8BYBBl97a7zYWhIgARIgARIgAQcJUBg5Q74MRwAAQABJREFUCJdFkwAJkAAJkAAJeIsA\nhZG3xoutJQESIAESIAEScJAAhZGDcFk0CZAACZAACZCAtwhQGHlrvNhaEiABEiABEiABBwlQGDkI\nl0WTAAmQAAmQAAl4iwCFkbfGi60lARIgARIgARJwkACFkYNwWTQJkAAJkAAJkIC3CFAYeWu82FoS\nIAESIAESIAEHCVAYOQiXRZMACZAACZAACXiLAIWRt8aLrSUBEiABEiABEnCQAIWRg3BZNAmQAAmQ\nAAmQgLcIUBh5a7zYWhIgARIgARIgAQcJUBg5CJdFkwAJkAAJkAAJeIsAhZG3xoutJQESIAESIAES\ncJAAhZGDcFk0CZAACZAACZCAtwhQGHlrvNhaEiABEiABEiABBwlQGDkIl0WTAAmQAAmQAAl4iwCF\nkbfGi60lARIgARIgARJwkACFkYNwWTQJkAAJkAAJkIC3CFAYeWu82FoSIAESIAESIAEHCVAYOQiX\nRZMACZAACZAACXiLAIWRt8aLrSUBEiABEiABEnCQAIWRg3BZNAmQAAmQAAmQgLcIUBh5a7zYWhIg\nARIgARIgAQcJUBg5CJdFkwAJkAAJkAAJeIsAhZG3xoutJQESIAESIAEScJAAhZGDcFk0CZAACZAA\nCZCAtwhQGHlrvNhaEiABEiABEiABBwlQGDkIl0WTAAmQAAmQAAl4iwCFkbfGi60lARIgARIgARJw\nkACFkYNwWTQJkAAJkAAJkIC3CFAYeWu82FoSyFgC06ZNi7lv8eSJuRJmIAESyCoCFEZZNdzsLAm4\nm8CAAQOibiDSTp8+Per0TEgCJEAC0RDI8SmLJiHTkAAJkIDTBNq2baurmDp1qr+qnJwc/73c3Fx9\nDVHUv39/4a8vPyZekAAJJIkAPUZJAsliSIAEEifQr18/wfQYxFC4aTKIJ4givGgkQAIkkGwCFEbJ\nJsrySIAE4iYAj5DxCkEAWafWMG1mFUwQUTQSIAESSDYBTqUlmyjLIwESSIgAPEVmSi1cQfAWURiF\no8P7JEACiRCgMEqEHvOSAAk4QgDCKNxUGipkbJEj2FkoCZCAIsCpNP4YkAAJuI5AJG8QY4tcN1xs\nEAlkFAF6jDJqONkZEsgcAuG8RvQWZc4Ysyck4EYC9Bi5cVTYJhIgAdsYInqL+INBAiTgNAF6jJwm\nzPJJgATiJhDsNaK3KG6UzEgCJBAlgSJRpmMyEiABFxPIy8tzcevib1rHjh3F9K1Nmzb+6/hLdGfO\n5s2bu7NhbBUJZCEBeoyycNDZZe8TgFgYPny47ogRDt7vFXvQrVs3DcG8kwgJkEDqCVAYpZ45aySB\nuAkYQUQxFDdCz2SEOKJA8sxwsaEZRIBTaRk0mOxKZhOAh8h4idDTIkVL6w4XLVrGf53ZBDK3d3t2\nb9ad2717k5hrM9YUR5k77uyZOwnQY+TOcWGrSCCAQPfu3QPia0qWqiF40TKPwI7tywQvY4g/GjZs\nmPnIdxIgAYcJcLm+w4BZPAkkSgCeAzN1Bi/RIWWOpChKFKqL80PwlqvQ0j/GGHsIYxoJkEBqCFAY\npYYzayGBuAhYp8/whVm6TBPB1Bkt8wlYvYImtizze80ekkD6CXAqLf1jwBaQQFgCLVq08D+DF4GW\nfQQ2b5rvjzvClBqX9mffzwB7nFoC9BilljdrI4GoCZjgW2RgPFHU2DIuoXXsrT8TGddRdogEXEKA\nwsglA8FmkEAwAfMlaJ1SCU7Dz5lPAFOnRhxhSs3Em2V+z9lDEkgPAQqj9HBnrSQQkQC//CLiybqH\nZmuGrOs4O0wCaSBAYZQG6KySBAoiYBVGxltQUB4+z1wC1oB7689G5vaYPSOB9BGgMEofe9ZMAiRA\nAlETMF4jCqOokTEhCcRFgMIoLmzMRAKpIWC+DFNTG2shARIgARKgMOLPAAm4kAC9Ai4clDQ3yTqd\nluamsHoSyGgCFEYZPbzsHAmQAAmQAAmQQCwEKIxiocW0JEACJEACJEACGU2Awiijh5edIwESIAES\nIAESiIVAkVgSMy0JkIC3CDRqWEsKFQ79+2fXzv9k+Yq1slO900iABEiABA4QoDA6wIJXJJBxBB59\n5EY56KCStv3y+XyyZs0GWbJklYyfME1++mmBbTrejI5ApUpl1QG/RWTDhs2yY8eu6DIxFQmQgOsI\nUBi5bkjYIBJIPoE1azfItq07/AVDLOGLvHLl8vp1/PFHyseTvpYRL7/PL3U/pdgu+ve7XurVrS5P\nDXxDPp/yXWyZmZoESMA1BCiMXDMUbAgJOEfgZSV4ps/4MaCCkiWLS+1aVeXSSzvIcS0aScezT5HG\njWpLj15Pyd69+wLS8gMJkAAJZAuB0OCDbOk5+0kCWU4A0z2//rZI7uv7kgx+Yaxgaq1OnWpyTqfW\nWU6G3ScBEshmAvQYZfPos+8ksJ/Ahx/NlMaNa8mp7Y6TKy4/U6ZOy5N//93i51OlSnm5tGsH2bhx\ni4wc9YHUq1dDTm55lDRr2kBycnLk1tuf9afFRZEihaVD+5OkQf0aUluJrZ07d8miRSvl55//lK9n\nzQ1Iaz4E11GiRDFp2fJoOaZZAy3Yli5dLb/9tlgmfTJL9uzZa7LZvqN9rU5pKnVqV5WKFcvKsmVr\n5G9V/2eTZ+sYoOBMpUqVkJtuPF/ffnHIONvpxNKlD5Ju13fWaQYNHiP//bdbX9/R+1L9flilcvr9\nzA4nSdOm9fX15Mnfytx5C/U1/yEBEvAGAQojb4wTW0kCjhMYOepDOeXkpjpYu3WrZvLBhzP9dZYp\nc7CccfoJsnLlPzJLCZunnuwlxYoV1c83b97mT4eLw2tWlrvvukLqqngbqzU9ur50PreNzJz5kzz7\n/Duydet262Ox1vHmW5/Ko4/cJE2OrONPU1+JHQi3dm1byIMPj7QVOIUKFZKLLzpNLr/sLClsWY0H\nT1ibNsfK+V3ayrPPvR0izooXL6r7h8pGjJhoK4wg1MAABvEEgyg09/QN9U+TJnX1C5/hkaMwMmT4\nTgLeIEBh5I1xYitJwHEC69b9K7//vkR7O6pXr2Rb36GHHiIIMl69er18+NFXsmLFP1KoUI4/7cEH\nl5SBA2+RMsq7snbtRnnt9Y/lzz+XCUTF0UfVV4Klg7RSogvelz53Dfbns16ULFlCHn7oBqlZ4zCB\nZwbiolixIto7dZmKh2rcuLZ+3qPnU3r6z5oXouiqKzvqWwgmhwhDO2oeXlk6n9NaminvU78HrpM7\n+gxKimDB9ONNqh2we+6+UmoobqNfnySzv/1F3/tHBb3TSIAEvEWAwshb48XWkoCjBFYojxCmgapV\nsxdGmHL6Y8FSHZdkN53V9ZL2WhStXLVObrnladlk8SZBdP3w4x8y6LnbdR2YJoP3KdjKlj1E772E\nIHBsJ2AM+efOXSjPPH2LXv3V6pRmMmPmgYDycuVKy0UXnq6TDx32nryntiAwhj2bZs+er8VLm9bH\nyA03dBE7YWXSx/K+cOEynXzXrvw9odBmcy+WcpiWBEjAHQQYfO2OcWArSMAVBFauXKfbUb1axbDt\nGTr0PdsYH8QVYaoM9tZbnwWIIlMYBMOU/UvZ/3d+O3M75H3MmCkBosgkgPdo2vQf9MfO5wYGiZ99\n1smClXYQZRPfn2Gy+N/37dun46Ow4g7L6pvtjwPyJ+AFCZAACSgCFEb8MSABEvATwAaFMBNY7H+w\n/wJeosVqQ0g7w55IEEewr77+2S6JvmeCr2uoqbJwZsSP3XNMj8GCp/tqVM8vb/Y38wQiyM4wBfjX\nX8v1o0j12+XlPRIggewgQGGUHePMXpJAVASqVq2g0y1XsUN2tnfv3pC4HpOu2n4v01a1keT27TvN\n7ZD31funxxCHhJikYIP4QrxTODPTa4h3gofImKl/jYopimQmv0kfKS2fkQAJZB8BCqPsG3P2mATC\nEjBiYfnytWHThHtQSgVNw3buj7UJl87E4uB5iRIHhI1Jj+cIag5n1vPdSlrylyyVXxa2Bohkpn3W\nvJHS8xkJkEB2EaAwyq7xZm9JICwBxN00PKKWfo49g2I1LOWHlStb2j+lZldGJbWvEAzTdevXbwpJ\nguNK7DxJJiGOMoFBQG3YuNncVlsJ5MdHmef+B0EX5jlikewsRy35t7MiRbhWxY4L75FAphGw/w2Q\nab1kf0iABAokgJVaWHoPwRApxidcQVjRBkMZ9eoF7mFkzdOgQU39cZWqJ5xnCEeThLMjjjhcP0K8\nkNVWqJVnsAYN8p9bn5lr7L1USx2DAjPtxbXVC1VWTdHZWdUq+dOMds94jwRIIHMIUBhlzliyJyQQ\nFwEswe/T+zK1z1A9nf+loeNl9+49MZeF2KJ58/7S+S7ev2w+uBAEd3dRmyzCZqkg6XDWtWt720fF\nixeT8zrnr3z7Ri2/t5opD+e+1a1bzfrIf92h/Yl6O4Ft23bIXLULtzEcj2J2+m7Y0F5YtWvXwiS3\nfd+7fzduBnXb4uFNEvAMAQojzwwVG0oC8ROApwSByuZVoXwZaX5sQ8GS+eFD75HTTz9eFz7li+/l\n2/2bE8ZT29Dh72kvEPYo6tXjAjGr3FAWptgee/QmQd2YAnvn3c/DVoEpvfvvuyYguLq8yvfE4z0E\nQdcQYWPGfhGQH8eNfDM7X2w9NKC7NGpYK+A5dqg2R3q89XbodgK//LpIp8fRJ7VqVfHnxQ7aXS85\nQx8x4r9pc2GCyluedJSY40FskvEWCZCAywlw0tzlA8TmkUAyCPS54zLBK5xt2bJdXnxpnHz55Zxw\nSaK6j12ucbTINVd3lE6dWkkHdW4YzkjDztfV1XJ6TLPhKJCnn37T9tgNVILYoceeGC19771axo99\nXBYtXinFlbAz+RGb9Pzgd0OOFEHeIS+NlyqVK2hh87zaSHKdimFaq1bB1VTHlJi4JXiWJkycjuQB\n9sqrH8qJJzQRxCANHXKXnlKEJ6m62uwS4qjvA8Pkycd7BuSxfsBmldg8EnWNfq2fPp/t9Tc+kekz\nDmxCaU3PaxIgAXcSoDBy57iwVSTgKIFdu3bL0mWrBUHWS5asFhx2ag1kTqTyMWOnyPxf/pIbu3fR\nh7+amCIs4f957p8y+IWxEZfjo26IjIceHqU9NTgQFsIEGzMuWLBMBr0wRr0vtW0iluL3vHmgXHNV\nR8nNba69U/BQIZYJweFjxn0hkybNss27dOkaua33s3L7rV21sIIgwtYB2JTyrXcmy/z5+dOEtpnV\nTRy8C69Wl/Ny9TsEEgLJaSRAAt4ikKN+Yfi81WS2lgQyn0D37t0lLy9PihQtLaXLNPFshyFo4OnB\nEnqcWRbp1w1iewY911t7jDqde4e/z4grwjYCK9QWArv2n2jvf1jABfZKqqhWweFIEGuAdQHZlHep\nlFQ+rJwsQ50FbD9gV5aeulRess3KExepz3Z5w93bsX2Z4NW8eXMZNmxYuGS8TwIkkCABeowSBMjs\nJEAC4QnAy7MkzE7Z4XMFPoEw+fvvFYE3o/yEs9qs57VFmU1P0y1UU37xGqb7wu0eHm+ZzEcCJJAa\nAgy+Tg1n1kICJEACJEACJOABAhRGHhgkNjH7CGC6hEYCJEACJJB6ApxKSz1z1kgCBRIwwmjP7gM7\nOxeYyeMJNmzYLOPGf6kDnj3eFUeaj/gimPnZcKQSFkoCJCAURvwhIAGXE9i9e5PaD6iMy1uZePMQ\nnD18xMTEC2IJJEACJJAAAU6lJQCPWUnAKQJWr4DxFDhVF8t1PwHrz4D1Z8P9LWcLScB7BCiMvDdm\nbHGWEDBfgJhOg9eIlr0EzPjjZ8L8XGQvDfacBJwlQGHkLF+WTgJxE+jWrZs/r9Vj4L/Ji6wggLE3\nsWYURVkx5OxkmglQGKV5AFg9CYQjgC9BI47wxUhxFI5U5t7HmJtxt/48ZG6P2TMSSD8B7nyd/jFg\nC0ggIgGzCzYSlSxVQ78iZuDDjCCA6bMtm37x92XOnMTOsfMXxAsSIIGIBOgxioiHD0kg/QSsxz9Y\nPQjpbxlb4BSBzZvmB4gi4zl0qj6WSwIkcIAAPUYHWPCKBFxNwOo5QkPhPYLhPLVsWM6vO5uh/5jg\n6uApUzN9xtiiDB14dsuVBCiMXDksbBQJ2BMYPny44GVnEEg07xEwgdXBLYcYsnoLg5/zMwmQgDME\nKIyc4cpSScBRApEEkqMVs3DHCdBL5DhiVkACEQlQGEXEw4ck4G4CeXl5uoHm3d2tja91/fv31xlz\nc3MFr0w0M1Vm3jOxj+wTCXiFAIWRV0aK7SSBLCWQk5Ojez516tSMFUZZOrTsNgm4kgBXpblyWNgo\nEiABEiABEiCBdBCgMEoHddZJAiRAAiRAAiTgSgIURq4cFjaKBEiABEiABEggHQQojNJBnXWSAAmQ\nAAmQAAm4kgCFkSuHhY0iARIgARIgARJIBwEKo3RQZ50kQAIkQAIkQAKuJEBh5MphYaNIgARIgARI\ngATSQYDCKB3UWScJkAAJkAAJkIArCVAYuXJY2CgSIAESIAESIIF0EKAwSgd11kkCJEACJEACJOBK\nAhRGrhwWNooESIAESIAESCAdBCiM0kGddZIACZAACZAACbiSAIWRK4eFjSIBEiABEiABEkgHAQqj\ndFBnnSRAAiRAAiRAAq4kQGHkymFho0iABEiABEiABNJBgMIoHdRZJwmQAAmQAAmQgCsJUBi5cljY\nKBIgARIgARIggXQQoDBKB3XWSQIkQAIkQAIk4EoCFEauHBY2igRIgARIgARIIB0EKIzSQZ11kgAJ\nkAAJkAAJuJIAhZErh4WNIgESIAESIAESSAcBCqN0UGedJEACJEACJEACriRAYeTKYWGjSIAESIAE\nSIAE0kGAwigd1FknCZAACZAACZCAKwlQGLlyWNgoEiABEiABEiCBdBCgMEoHddZJAiRAAiRAAiTg\nSgIURq4cFjaKBEiABEiABEggHQQojNJBnXWSAAmQAAmQAAm4kgCFkSuHhY0iARIgARIgARJIBwEK\no3RQZ50kQAIkQAIkQAKuJEBh5MphYaNIgARIgARIgATSQYDCKB3UWScJkAAJkAAJkIArCVAYuXJY\n2CgSyD4CAwYMkGnTpsXU8VjTx1Q4E5MACWQlAQqjrBx2dpoE3EegX79+0rZtW4FAKsggiHJycmT6\n9OkFJeVzEiABEoiJAIVRTLiYmARIwEkC/fv3F7wiiSM8g4BCOogpGgmQAAkkkwCFUTJpsiwSIIGE\nCBihE04cQRThGY0ESIAEnCKQ41PmVOEslwRIgARiJRBO/OTm5vpjkOgtipUq05MACURLgB6jaEkx\nHQmQQEoIGK9RcGUMtA4mws8kQAJOEKAwcoIqyyQBEkiIQKTpMnqLEkLLzCRAAgUQoDAqABAfkwAJ\npJ5AOK9R6lvCGkmABLKNAIVRto04+0sCHiFg5zWit+j/7J0HfBTF+8bfQOjSe+9VmgQLKFJERcWC\nHbv+NNh7b8jf3nsBe8desDdAFFGJqPTee+8lwP7nGZh177KXXJK9u929Zz6fy+1On+9cck/eeWc2\nIJPHbpJAgAlQGAV48th1EggzAVqNwjy7HBsJ+JcAhZF/54Y9I4G0J+C0GtFalPYfBwIggaQQ4Hb9\npGBmIySQfAI5OTliXslv3bsWnbvRsGU/iCErK8vudnZ2tn3NCxIgAf8RoDDy35ywRyRQZAIQQsOG\nDdOCqMiVsGDCCRhxZN4T3iAbIAESiJtAZtw5mZEESMDXBCCI8IoOFcuU0lHmPTqd94knsHF7ruBl\ngnOeKI4MFb6TgD8I0GLkj3lgL0igWASiRVG9SuWlUtnSQjFULKyeF4Y42rBthyzZsMWuG8tsQ4cO\nte95QQIkkFoCFEap5c/WSaDYBJyiCEKofuUKFETFppr4Chav32wLJIqjxPNmCyQQLwEKo3hJMR8J\n+JCAUxTBSgRRxBAcAhRHwZkr9jR9CHC7fvrMNUcaMgIURcGfUAhZCFoE4zgf/FFxBCQQbAIURsGe\nP/aeBDQBWoqC+0FwLn1C7DKQAAmklgCFUWr5s3USKBIBp3XBWByKVBEL+YKAU9hibhlIgARSR4DC\nKHXs2TIJFJmA88vT+aVa5ApZMKUE4DRvdhDSapTSqWDjJCAURvwQkEAACRhhZL5MAzgEdjmKgJlL\nM7dRybwlARJIEgEKoySBZjMk4CUB8+Vpvky9rJt1pYYAzp0ywcyvuec7CZBA8ghQGCWPNVsiARIg\nARIgARLwOQEKI59PELtHAvkRcFoZ8svHNP8ToPXP/3PEHqYHAQqj9JhnjpIESIAESIAESCAOAhRG\ncUBiFhIgARIgARIggfQgQGGUHvPMUZIACZAACZAACcRBIDOOPMxCAiRAAhEESpQsKSVKlJDdu3fL\n7l27ItJ4QwIkQAJBJkBhFOTZY99JoBgEKlerLjVq1Y6rho3r18uKpYvtvKddeIkc2u8YGf31FzJ8\n2LN2PC9IgARIIOgEKIyCPoPsPwkUkUDWwT3klAsGxVV63Mgf5fWnHokrb3EyVatZSzIzS8mGdWtk\n29atrlWVKVtWKletLrt27ZTVK5a75mEkCZAACRSVAIVRUcmxHAmEhMDO3FxZtnhhvqNZu2pFvule\nJV58853SsFlzef3JR2TcqB9dq23dobNccutgWbV8mdxx8fmueRhJAiRAAkUlQGFUVHIsRwIhIQCB\nce81l4VkNBwGCZAACRSPAHelFY8fS5MACZAACZAACYSIAC1GIZpMDoUE/EIAO9b263aIdD7oYKlR\nu7aULJmplr6Wyqypk+Xnb74ULN85wzlXXKtvq9Wqpd8PPryftOrQSV//9tP3MnPyROl0YDfpdEA3\nqVqjpo6vWLmymHJbN2+WD14ZquOdP0qVKi3d+x4pjVu0lPpNmsom5US+aO4cyfn1Z1kwZ5Yzq319\n2HEDpH7jpjLm269k3szpahwHS6v2HaVpqzayaeNGWTxvjnz3yYeyacN6uwwvSIAEwkOAwig8c8mR\nkIAvCOxTqbJcNeQ+adCkWUR/4DsEsdSn/wny2O03ypqVe/yWMjIypFufwyPytmjXXvBCmDN9qhZG\nDZu1iMhXpmw5+3792jV5hFHt+g3kwutvydOPdvtlCcTPJ2++Kj+N+EQsy4pou23nLrLvfl1l2j8T\npItyUO973IkR6e1Uerc+R8jT/3e7LJg9MyKNNyRAAsEnQGEU/DnkCEjAVwSyb7xNi5EN69bKl8Pf\nljkzpiqLUUlpn3WAdD/sCKmujgg498rr5PE7btL9hjC5/7or9PUF194kEDRfvPumTBz/h45bs9fx\ne4yyNP37+2/Ssn0HOfn8bFm3erU8f99dOg92qDlD2fLl5fr7HhGItEXKwvP522/o90pVqsiBvfpK\nr6OPVXVcJBvXr5M/Rv/kLGpf91R56jVqIh+++qJMn/i32gW3S5q3aScnnHWeqreSnHHx5fLgjVfn\nEVZ2BbwgARIIJAEKo0BOGztNAv4kUKFiJclQy2hYMvv4tRdl7ozpdkfnz5opK5YsFogfLE1BtJjl\nKLOstWP7dp0f2/BNnKkAViG8qlSvoaN27szNk8fk7XfSabr+hXNmy0M3XS07d+4RTmtXrRT0Y4Oq\n53glcI4/81z5a+yYPEt7qKdpq9by8M3XRoxh6YL5+oiAKwffq5bnWkndho1lyYJ5plm+kwAJhIAA\nhVEIJpFDIIHiEKhVr748/Pp7MauAeBlyRXbMdGfC5o0b5NFbr3dGRVxPGPerbNuyRWDRqde4icyY\n+E9Euhc38GfCch0C/I6MKHLW/cNnH+nlNJyb1K5zlvz75zhnsr6elPNnhCgyGab+/Zc6Z2mtVKpS\nVWrVq0dhZMDwnQRCQoDCKCQTyWGQQFEJwFEaS0OxgmXtjpVU6HiIlq1b9wij0qXLFLp8PAVq1Kkj\npUqXltwdO2TOtKmuRSCWFs6dLW07dVHipr5rnsXz57nGIxL+URBGlatWi5mHCSRAAsEkQGEUzHlj\nr0nAMwJ41Mdjt+/x93Gr1Npd+GehYQdX1x49pZ5aaqpRp66Uq1BBypWvoJ+v5taGl3E169TT1WWW\nypSHXn83ZtVlypTVaTVV/9zClk2b3KJ1XO6OyF11MTMygQRIIHAEKIwCN2XsMAl4S2D3rt2yfs1q\nzyrFFnrnLrPNmzbKxnXrZPniRQKx0bpDR2XRSYy1CIMop5bpEHapca1dtUpf5/dj+zb3R4/kV4Zp\nJEAC4SVAYRTeueXISCDpBCCIjCj69uP3Zfwvo/W5Qc6O3DvsdYFvT6LCymVLddW71S6ye6+5lLvG\nEgWa9ZJASAlQGIV0YjksEkgFgbad9tPN4uyhT9U5QdEhMzNTKiXYL2fl0iW62dJlykidBg1l6cIF\n0d3gPQmQAAnEJMBHgsREwwQSIIHCEoAfEQK2xbuFLt17CMRRrGDOI6rTsFGsLGqJbM/W+6pq237Z\ncuXy5MPSHY4LQMC2fbcAJ3CkYct+g6aRB1G65WccCZBA+hCgMEqfueZISSDhBLDTC6FL90OkRdt9\nI9rrekhPGXjxnoMcIxIcNzi/CAGP/oi13GbylFQCC48OgciJDh+pQxlxcOT+h/aWYweeHeH0jaMC\nzr/mBi2Keh11rHpUybLo4rwnARJIYwJ5/6KkMQwOnQRIoHgEfhzxqRzUu69+ntl16uRpbGtfppyu\n66jTrCF0RqgTrdtn7a+fO+bW0j/qZOusgw/VS2D3DH1NO2x/Mfwt/Wwzk3+FWipbog5arNeosT4B\n+6hTBmo/pifuvNlk0c84Q1vHDjxLjj71DMEp1nhGGrbY12nQQDIySujt/C8/9qA+V8kuyAsSIIG0\nJ0CLUdp/BAiABLwjgAMe8agPCBxYbPYcoNhFcKL18GHPyVfvv5NvY3+OGSUfvfaSrF29ZzcZfITM\nLjNTEE7VLz50r0z+a7wWNxX2qaiFl0k3719/8K48MfhWwenXZdVz1Vqrh9LWVUt0eDTahN9+kUdu\nuU4m5ex57Igpw3cSIAESyFB/vNSfCQYSIIEgEejatavubptaVaRimVK+7HqZsmUFZwqtU0cBmEd/\nFKajpUqVljLlyspm9UT7/P5M4TEkO7Zv0yIpVv3wa6rToJEWaHj22s5cf55D9OfCPb5ZQ4cOlays\nrFjDYTwJkEACCXApLYFwWTUJpDOB7du26Qe3FpVBbu4OwaugACtVQQEnXeNhsgwkQAIkUBABLqUV\nRIjpJEACJEACJEACaUOAwihtppoDDSOBDdsKtqiEcdxhHNPi9ZvtYXEZzUbBCxJIOgEKo6QjZ4Mk\nUHwC5otz43Z/+soUf4SsgQRIgARSQ4DCKDXc2SoJkAAJkAAJkIAPCVAY+XBS2CUSKIhAdna2zgKL\nEa1GBdEKRvqSDVt0R83cBqPX7CUJhI8AhVH45pQjSgMCWEozy2nTVqxLgxGHe4hO/yIKo3DPNUfn\nfwIURv6fI/aQBFwJOL9AKY5cEQUiEqKI1qJATBU7mSYEKIzSZKI5zPARgMXIiCMspzmtDuEbbThH\nhHkzosg5n+EcLUdFAsEgwJOvgzFP7CUJxCQwaNAgycnJ0en1KpWX+pX3POE+ZgEm+IKA01KEDo0f\nP94X/WInSCDdCdBilO6fAI4/8AScj4+A9QGPlaD1yL/TCisRlj6NpQg9xRwykAAJ+IMALUb+mAf2\nggSKTWDYsGGClzPgOWp+fZaas59hvzY7B827GS+WzyiKDA2+k4A/CFAY+WMe2AsS8ISAEUbm3ZNK\nWYnnBIw/Ed4ZSIAE/EWAwshf88HekIBnBCCOjO+RefesclZUKAJGAOHdvApVATOTAAkkjQCFUdJQ\nsyESIIGiEMjIyNDFRo4cKb169SpKFSxDAiRAAnEToPN13KiYkQRIgARIgARIIOwEKIzCPsMcHwmQ\nAAmQAAmQQNwEKIziRsWMJEACJEACJEACYSdAYRT2Geb4SIAESIAESIAE4iZAYRQ3KmYkARIgARIg\nARIIOwEKo7DPMMdHAiRAAiRAAiQQNwEKo7hRMSMJkAAJkAAJkEDYCVAYhX2GOT4SIAESIAESIIG4\nCVAYxY2KGUmABEiABEiABMJOgMIo7DPM8ZEACZAACZAACcRNgMIoblTMSAIkQAIkQAIkEHYCFEZh\nn2GOjwRIgARIgARIIG4CFEZxo2JGEiABEiABEiCBsBOgMAr7DHN8JEACJEACJEACcROgMIobFTOS\nAAmQAAmQAAmEnQCFUdhnmOMjARIgARIgARKImwCFUdyomJEESIAESIAESCDsBCiMwj7DHB8JkAAJ\nkAAJkEDcBCiM4kbFjCRAAiRAAiRAAmEnQGEU9hnm+EiABEiABEiABOImQGEUNypmJAESIAESIAES\nCDsBCqOwzzDHRwIkQAIkQAIkEDcBCqO4UTEjCZAACZAACZBA2AlQGIV9hjk+EiABEiABEiCBuAlQ\nGMWNihlJgARIgARIgATCToDCKOwzzPGRAAmQAAmQAAnETYDCKG5UzEgCJEACJEACJBB2AhRGYZ9h\njo8ESIAESIAESCBuAhRGcaNiRhIgARIgARIggbAToDAK+wxzfCRAAiRAAiRAAnEToDCKGxUzkgAJ\nkAAJkAAJhJ0AhVHYZ5jjIwESIAESIAESiJsAhVHcqJiRBEggkQRGjRpV6OqHDBlS6DIsQAIkQAL5\nEaAwyo8O00iABJJKoDBCpzB5kzoINkYCJBBoAhmWCoEeATtPAiQQGgK9e/fWYxk8eLD06tVLX2dk\nZOj3kSNH2nHIBwsT/3xpNPxBAiTgIQFajDyEyapIgASKRwCCCIIHwsfNImTS8H7XXXcVrzGWJgES\nIAEXArQYuUBhFAmQQOoIGGsQegDxYwQQLEgQRCbQWmRI8J0ESMBLAhRGXtJkXSRAAsUmYKxC+VUE\nsQTrEgMJkAAJeE2AwshroqyPBEig2AScViO3ymgtcqPCOBIgAS8I0MfIC4qsgwRIwFMC+VmDzNKa\npw2yMhIgARLYS4AWI34USIAEfEkgltWI1iJfThc7RQKhIUCLUWimkgMhgXARcLMa0VoUrjnmaEjA\njwRoMfLjrLBPJEACmkC01YjWIn4wSIAEEk0gM9ENsH4SSBWBnJycVDXNdj0i0L9/fzHz2LNnT/va\no+pZTQoIZGVlpaBVNkkC8ROgxSh+VszpcwL4AnW+fN5ddo8E0ppAdna24MVAAn4jQGHktxlhf4pE\nYNCgQbQmFIkcC5FAaglQIKWWP1vPS4DCKC8TxgSIACxEw4YNixBFJcrWkIxyNaRE2ZpSQr0zkAAJ\n+IPA7q2rZPe2lbozu9ZOi+gUBVIEDt6kkACFUQrhs+niEYAgwssECKJS9XqYW76TAAn4nMDOtVPF\nKZAojnw+YWnSPQqjNJnoMA6za9eu9rBKVm0jmVXb2ve8IAESCAaBaHE0dOhQoYN2MOYurL3kOUZh\nndmQjws+RSaUqtuDosjA4DsJBIwA/qEp02yA3Wv6C9ooeJEiAhRGKQLPZotOwOlTBEsR/YiKzpIl\nScAvBPAPjgnOJXITx3cSSBYBCqNkkWY7nhEwfzThU8TlM8+wsiISSCkB/IODf3QQzLEbKe0QG09b\nAhRGaTv1wRy4EUXofUn6FAVzEtlrEohBwPmPDsQRAwmkggCFUSqos01PCHAJzROMrIQEfEUAlmAE\nCiNfTUtadYbCKK2mO/iDNX8szR/P4I+IIyABEnASwBlkCOZ33ZnGaxJIBgEKo2RQZhueETB/LM0f\nT88qZkUkQAK+IICDWRlIIJUEKIxSSZ9tkwAJkAAJxCRg/hGKmYEJJJAAAhRGCYDKKhNPgP9VJp4x\nWyABEiCBdCRAYZSOs84xkwAJkAAJkAAJuBKgMHLFwkgSIAESIAESIIF0JEBhlI6zzjGTAAmQAAmQ\nAAm4Esh0jWUkCYSYQI2qFaVercquI1y+eoOsUC/Lck1mJAmQAAmQQMgJUBiFfII5vLwEDuveVq48\n9/C8CXtjtm7bIXMXrZK/pyyQVz4cI7hnIAESIAESSA8CFEbpMc8cpQuB3NxdMn/JKjslIyNDWZKq\nSLmypaVdi3r61btbW3nghS9k/MR5dj5ekAAJkAAJhJcAhVF455YjK4DA4hVr5dwbXorIpbSR1KlZ\nRQ7s1EwuPauP1K1ZWZ6840y54/GP5affpkbk5Q0JkAAJkED4CND5OnxzyhEVgwB8i5auWCeffv+X\nnHP9izJ19hJdG5beypUpVYyaWZQESIAESCAIBGgxCsIssY8pIbBs5Xq5+5nP5c1HsqVmtYpy7kmH\nyAvvjHTtS+lSmXJsn87Spnldad64lqzbsEVmzlsuP42dItPnLnMtc9oxB0iLxrW1CJs6a4n0PLC1\n7LdvY2nfsr6s37hVZs1fIW9//puuy7UCFdmkQQ05uV9XaVy/hlSuWE47jk+esVg+/i5H1xGrXFH6\nG6suxpMACZBAmAhQGIVpNjkWzwnMX7xaPlEi4+Sj9pfjDuvsKowa1asud18zQIscZwewHHd6/wPl\n+bd/kve+/D3PTrcDVPpBnZvLnxPnSh/ly4S8zoD0Y3p3lGvuHS7T5yx1Junr85VQu+DUQ6UE1v/2\nhuaNakm3/VrIGcd1k2vve1cmTl9kkuz3ovbXroAXJEACJBBiAhRGIZ5cDs0bAiPHTdPCqHLF8lKx\nQlnZuHmbXXGFcmXk+f87R6pUKq8sPMtl2PDR2lJUrUoFOerQDnKSsuZccU5fWbt+s3w7ZpJdznlx\n0pFZ0qxhLXn6jR8kZ9I82blrt3Rs3UAGDeytrEDl5YaL+slFt74aIawO3b+1XHhaT533lY/GyNi/\nZsniZWukfasGcvqxB8r+HZrKwzefJidc/JRs255rN+dFf+3KeEECJEACISRAYRTCSeWQvCWwaNla\nu8KGyjo0ZeZi+/7sAd21KJqhlsuyb3tNcnfu0mk4C2na7KWyat0muVgJnOzTe8lP46YKdsJFh3Zq\n6WzQ7a9H1Dt34UpZqpbyHr9toLRtXk+aNqgpc1ScCb0OaqMvP/jqD3lVHSlgwri/Z8sk1b97rz1J\nKpQvLa2a1JZ/HVYjL/pr2uI7CZAACYSRAJ2vwzirHJOnBFat3WhbXRrVrWbXnVmyhMBPCOGp17+3\nRZGdQV0MH/G79hGqo3a3HdipuTPJvv5NWXucYssk/PHPHFmjLE0IDR3t4r7yPuXwJtXVYZXRYZOy\naF1199ty4S2vRogir/ob3R7vSYAESCBMBCiMwjSbHEtCCJQokSEllQhC2L7jv2WperWrCpyYd+Tu\ndPXlQX5YkOCEjdCwblX9Hv1jzoL/LEHRaXAAR6hedZ+IpAlT5uv7vge3k5sHHSOtmtaJSHe78aq/\nbnUzjgRIgATCQoBLaWGZSY4jYQRq16gspTJL6voXLl1jt9Ogzh6hk6nSvnzpGjs++qKsOjASob4S\nUm5hw+atbtE6DqLLLbz35R/SsU1DOTirpRyrnMLxgmXr7ykL5decGTJm/Mw8J3Z71V+3/jCOBEiA\nBMJCgMIoLDPJcSSMgFnGstQhR05/IzgyI+xSztJ4xlpBYeu2/6xNBeUtKB2WqBsffF/vQDuiR3u1\nu62Z4BlwsCDhBQfxx17+Rr77ZbJdVSr7a3eCFyRAAiTgcwIURj6fIHYv9QQGHNFFdwLO0M4dXouX\n73HKhjA6T52gvTsFT579bcIswQs79rGzDRYknGuEpbc7rjhelqjDKiepc40Q/NBf3RH+IAESIAEf\nE6CPkY8nh11LPQEcuIit8Qivf/xrRIeM9aisOhG7Uf3qEWnJvoEmm71ghbzxya9yyhXPyuq1m/T5\nRjgfyQQ/9df0ie8kQAIk4DcCFEZ+mxH2xzcEcPjikCtP0P3Bo0G+HPl3RN82bNoq/05bqOPOGXBw\nRJq5wU4wbJHHlv2Wauu8FwEO36gTr7rqobfRYfuOnTJhygIdnVlyj28UblLV3+j+8Z4ESIAE/EyA\nS2l+nh32LaEEcGJ0ub2O0WgI9/VqV1FLUjVl/47N5KieHXT78Nd5+MVvIg5YNB3DoYzD7j1Pjjhk\nX71s9coHP8vu3cp8owJ8em6++Gh1qnU72bx1u7z56VhTrFjvcMg+8pD20lT1s2/3feWywW/Ipi3b\n7Tph5erepYW+/2vynt1rJjEV/TVt850ESIAEgkCAwigIs8Q+JoQAHo3xwxs35Fv3mD9nKFH0taxW\nBzW6hSnqGWcvvf+z/E89mgOP6MAp1njGWdXKFdTzy6prsQUhc9eTn2px5FZHUeIefeVbefSW09Vj\nSGrJVy9fK9PUI0NwqGSnto2kmmob4evRE2XU79Miqk9VfyM6wRsSIAES8DEBCiMfTw67lnwCEBdz\nF60SnDyN5ahfxs8osBOvffSLXlLDoz+aqWeVdVEWG4Tdu3fLqD+myxvKNynWg2QLrDxGhgnKEnSp\nshRBjMHhel91ejZeCPAlgnXq69H/upZORX9dO8JIEiABEvAhgQy1BXmP3d+HnWOXSCCaQNeuXXVU\nqbo9pES5GtHJKb/HeUd40j0Ogly2ar3rI0C87iR8jnCydjnlBI5daM5nuRXUVir6W1CfmJ7eBHZv\nXSW5S8doCEOHDpWsrKz0BsLRJ50ALUZJR84Gw0wA5wvhYbLJDFiqW7BkdZGaTEV/i9RRFiIBEiCB\nJBHgrrQkgWYzJEACJEACJEAC/idAYeT/OWIPSYAESIAESIAEkkSAwihJoNkMCZAACZAACZCA/wlQ\nGPl/jthDEiABEiABEiCBJBGgMEoSaDZDAiRAAiRAAiTgfwIURv6fI/aQBEiABEiABEggSQQojJIE\nms2QAAmQAAmQAAn4nwCFkf/niD0kARIgARIgARJIEgEKoySBZjMkQAIkQAIkQAL+J0Bh5P85Yg9J\ngARIgARIgASSRIDCKEmg2QwJkAAJkAAJkID/CfBZaf6fI/bQhYB5yKRLEqNIgARIgARIoMgEaDEq\nMjoWJAESIAESIAESCBsBWozCNqNpMp6srCzBi4EESCB8BIYNGxa+QXFEgSFAYRSYqWJHnQSys7Mp\njJxAeE0CISGQk5MTkpFwGEElwKW0oM4c+00CJEACJEACJOA5AQojz5GyQhIgARIgARIggaASoDAK\n6syx3yRAAiRAAiRAAp4ToDDyHCkrJAESIAESIAESCCoBCqOgzhz7TQIkQAIkQAIk4DkBCiPPkbJC\nEiABEiABEiCBoBKgMArqzLHfJEACJEACJEACnhOgMPIcKSskARIgARIgARIIKgEKo6DOHPtNAiRA\nAiRAAiTgOQEKI8+RskISIAESIAESIIGgEqAwCurMsd8k4CMC3377raxdu9ZHPWJXikpg0qRJghcD\nCaQrAQqjdJ15jpsEPCKwZs0aOfHEE+WBBx7wqEZWkyoClmXJgAED5JZbbklVF9guCaScAIVRyqeA\nHUg2gdNPP1369u2rX6tWrUp28ylr7/7777fH/eOPP3rWDzwJffv27XLZZZflW+eiRYtk7NixsnTp\n0nzzFTdx9+7dMn/+fPn1119lwYIFgi/7eMKOHTtk4sSJ2lqCOuINEIbjxo2T2bNnS2HKxVt/dL5N\nmzbZ7e3cuTM6uVj3GRkZcsUVV8iXX34pM2bMKFZdLEwCQSVAYRTUmWO/i0xgzJgxAmGA17Zt24pc\nT9AKYnnEjNsrcZKbmyvPPPOMnHTSSdKoUSNXJB9++KFOa9iwoRx88MFSr1496dy5sxZJbgWWL18u\nNWvWzPf1559/5ikKUfLCCy9I7dq1pUmTJnLIIYdI48aNpUGDBvL+++/nyW8i1q1bJ//73/9kn332\nkY4dO0qHDh2kcuXKcskll2jBZ/JFv//999/SvXt3qV69unTr1k1atGghdevWlVdffTU6qyf3f/31\nl2RlZUmVKlXs9urXry/PPvts3PWPHz9e8wHffv36uZa74IILpFKlSvLkk0+6pjOSBMJOIDPsA+T4\nSIAEEkfggw8+kMWLF8s111zj2sjQoUPl4osv1mLorrvukooVK8q7774r+ILu3bu3/Pbbb9KlS5eI\nskuWLBFY8lq3bq2FRkTi3pvy5cvnib7jjjvkvvvukxo1ash5552nRc5nn30mEMKnnXaazn/qqadG\nlNuwYYNuf+7cuXLggQfKCSecIKVLl5avv/5aiywIsB9++EGLEWfBf//9Vw466CCBheXKK6/UfUWZ\nb775RiAsNm/eLJdffrmzSLGuUfcpp5yiLVKweO63334yYcIE3U+0A6sVxp9fgEUMfdu4caNs3bo1\npk8YBOJFF10kzz//vNxzzz1StWrV/KplGgmEj4AyMzOQQGAIqP+YLbzUF2uR+6wsFlhb0a+FCxcW\nuZ6gFTzjjDPscb/55puedL9r166Wspa41rVixQpLCRhLWTWs1atXR+RRAkb3RVl1IuJx88UXX+g0\nZeXJkxYrYurUqZYSKZYSRZZaaorI9tZbb+n6lMUqIh432dnZOk0JAWvXrl0R6UrI6bTbb789Ih43\n+++/v1WiRAlLLddFpKmlQl2mTJkylhJHEWlFvVEixqpVq5alrFjWL7/8ElHNtGnTLLRVsmRJa9my\nZRFp0Td33nmn7puy8On3Aw44IDqLfa+WInWdym/MjkvWBX63vfg9T1Z/2U74CNBiFD6tyxEVkQD+\no37nnXdsn5RDDz1Umjdvbtemvjjl+++/l3/++Uf7sGDpBEsbPXv2tPOYC/Ulpf+bxz2WdWAdQTn4\nbmDJR33Z6qz4rx9LMghmOQZ+OFjy2rJli64fVg71JazzRP/AMhD6BAsGrB/t2rWTHj166PfovF7f\nqy9pbfmJtUwFawvGcOONN0q1atUimoflQn1RS05OjoCr+mK302ExQsCyVLxh1KhReinshhtukAoV\nKkQUA7/rr79elAjWVhKnBeS9997T1qAnnngiD2PMET4PWFK6+uqr9ZIZKoaPD/qNzweW0pwBc4il\nOPgqmaU2Z3pRrt944w1RIlNbw7AU6QywqmHpDstsWB7FMqJbmDx5ssDH7LDDDtPWoIKsWVgWxfIo\nlkmvu+46yczkV4UbV8aFlED4tB5HFGYCXvwnGctidPbZZ+v/pNWvunX44YdbSijZKJVjraW+lOx0\n5DEvtYvHgnXEGUaOHGmnqyUQ695777Xv1Re3nXXw4MF2vPIVsc4//3z73tSvhFdEX0xhtcRjKf+Z\nPPnVl5gFK4fy/zFZ9bvXFiO1E81SPjyWcgCOaMfcwOqghKDlZpVD32ABgTUpOhhLzcyZM6OTinyv\nvuitVq1aRZRH/8BYCZyIeOeN+Ux89NFHdrRaitLjUsLHjnNeHHPMMbpe5bzsjNbXsIYoAZsnHhFK\n3FpqCTFPGqxTpUqVspTvVZ60eCJgCVPLftp6h88xPtcYd34WI9Srljl1PiUO42nGszy0GHmGkhUV\nkQD/DVB/IRhIAL4UanlJg4D/hvoiFPVlpO+x40oJJZkzZ46+h58MLAOjR4/WzrmffPKJwNqkloBc\nQcJygjwFBTjRTpkyRcqWLRvhFI524O8BXxYTkA/Os2ZXEhyb4WgMKw7iMB44EMNSkogAnxz47zz4\n4IMR1h5nW7A6xHLIhm/R+vXrtd+MswyujWN4nTp1ZPjw4fLzzz9ra0/btm0F/jXRPknR5Z336u+i\n9hXC7jRYqJzBWJZgaYsV4CuEgF1uJsAH5+ijjza3Ee9w5leiWDtit2zZMiIN1j3shoRVD75I+ByZ\nAOsS0uDnBKuiM2C3W7NmzUQtp2nL4FdffaWZYH7VUqZ2EnfzuTJ1wCEdu+YeeeQRXQ8c5uMJ8KHC\nC9a0gQMHxlOEeUggHASKKKhYjARSQiARFiO1nKL9U9RvtKWWvSz1xRwxNuMPg3TlnGvBYoCwcuVK\nSy2b6P+qkfbdd9/Z5ZwWI6S1b9/eUl9QlnJUtpSosPM5LUbI99RTT+n61VKMpZZp7LqPOuoouwwu\njjjiCDtNLZHY/jEoB+sC6lJfvBEWCC8tRsrZ2lICwVJf9hH9iucGFgtYMOATpERPniLHHnusBasX\nWGMcaAdjwTXiH3744TxlnBFKBFjwjbn22mstWIrKlStnPfTQQ3ksaCgD6yF4wVcnOmB+1Y4z3e5V\nV10Vnex6jzbRz7vvvts1XTmea98dzK2xHKnlVN0O+hJtZYKfEupTS2CWEkS6r/Apatq0qWaBNLWk\na2He3YJaltSWOSX2bctevBYj1IffDbQR7Uvl1pZXcbQYeUWS9RSVAPwpGEggMAS8FkZqK7n+4sQf\nf3wJun1BYikD6XjhS9cZHn/8cTvt5ptvtpOihVF0OZPRKYzUFnYTrd9feeUVu+42bdrYaXAuNv1R\n/jKW8uOx03Bx/PHH2+nKMmGneSmMIPT69Olj112Yi3PPPVf3z8nLWR5zjPHtu+++ejkHy27KL8vC\nWJQPjRZUaqeZs0jEtbJi2eNHPXAQV1a7iDzmxjgiq236Fhy4TVAWJgtLmFh+Qx1ql5tJivlu5gsO\n5bGWF1H47bfftsURhCE+d8qfypo+fXqeuhGH9tEPtYXewufNLJHic6B8n3Q6BDoET3RQu/G0k/gf\nf/xhJxVGGMFpHgIWn9NkBQqjZJFmO7EIUBjFIsN4XxLwWhiprdn2l+iLL77oOmb4wuDLCS+1PBLx\ncvr4KGdVu7xTGKklIDs++sIpjJSTckSycpi124WFwARYGEx/sOsruk/GyoE8Tz/9tClmeSmM1LKM\n/nJXy4t2/fFcqBOVdd9PPvlk28oVXQ4cBg0alMdyh3yffvqpLq+WsqKL2fdqic6aN2+epZzdLYgk\n7JoDC8xPtGCB4DrrrLN0OnaZQYCopS5tjYHAGTFihE5Dv/ML2EkHa5ZyhtaWxPzyIg075dAe+gVR\n5CbIkQ8WRjPXt912G6LyhP79++s80b5Ayilfx1966aURZQojjB577DHdT/gmJStQGCWLNNuJRcB9\nq4v6TWQggXQgoL4k7GHCXwY7jpwBPiPwhTFBOQSL84XTnE3AwYRuAYfpxRPgW+QM6ovWeWtfO9vB\nri9nf3Ct/st3zWtHenBx4YUXCvxa1NJf3LWpL1m9M0pZmkQJgzy7wExFmAf4xcDHKDooESBqKSnf\nZ3nhcEL4W+GwRuyIwy4/JcS039hrr70WUSXOIYJvGXzA4EcDvyNlDRMlKLWvjzkZHT5csQL8unDG\nEHaE4ZlxOEepoIA2jI8R/LBwUKNbwM48nKuEcOaZZ7plsf1/sOvRBHyusfMMnz34mxUlYLcg5ldZ\nILVvUlHqYBkSCCIB97+8QRwJ+0wCRSCA7ctwblUWBpk1a5Z+HILz5GKIFXw5wSEYW8pxmKGyyLi2\nhC/ZZARlPbKb6dSpk94yb0dEXcTa5h+VrdC3cPxVO+jk5ZdfliFDhuiTkvOrBIIEjuDYbv75559r\ncZNf/lhpmAMIivwcpt3Kqt1lghO4IZJwynV0wMGOeEUHtQSlo3DkgluAGFE+UXr8OGIBgqyggKMV\n8LlTvk9y00036aMblA+ZPt4Bjt3OgM8URBk+o85jBpx5zOcRzt0moC9qGU6LS2y7dwYcF4Gglg71\nURM4SsFtcwDi8HuB4wIYSCCdCNBilE6zzbHmIfDSSy9pi4E5Rwdf4DjN2RlwVgwC/oPGlwUsOeYF\nixLOtMHLuXPJWd7rawgjs2MOX8wQdKY/eMeZN6ZPOBE5UQG75LBrC+Iov4Dda7AwKV8twY4qsxvM\nrQzqg8UFO9CwGzA64HwoWHGU/1FEEk7XVn5Y9o62iER1g5OeEaJ3bz333HP64bc4DTo6wBqHc4wg\njCFkogPEypFHHqkFM07HNp+T6HzOe5xvhLowfzh7CQ9rff3117Vgw043swvOWcY8usOINGcartXS\nk46CFcoEfJ5hwVJLBXqnI3YxmhcEEQKYQDxhHG5B+TPpc7RwLhYDCaQVgVhrbIwnAT8S8NrHyJyx\ng3N/1C++fsGhGc63Jhi/FqTDpwg7x3CmDBxa4YdiyilRZYpYTh+j/M7JcfoY4WRiZzCOt6jf6WOE\nPMbpFmk4jwZO5J2FofAAAEAASURBVDgDRz06QjsoIx4+LE4fIC99jEw/sXNMWVPy+O6YdHBQVjcL\njuVKpJnofN/Nbjy1TTwiH/yBjON29InMuMeYo/1pUIESr3oXHNLByRlw4jXicX6UM+DsHzhcI00t\nRTmT9DV2e2FO1HPLLHW4Yp50t4i1a9daamnL1acIJ5FjvuA4Hx3Ucq0+3RoO+KjDGZQo1rvOwFgt\nozqTYl7jJG2MK79zjH7//XedB75QyQ70MUo2cbYXTYDO19FEeO9rAokSRtjpgy8KfGHghR1J+HI0\nAYcZmjS3d+zQwhewCYkWRtgmjy9mt76YuGhn3UQII3XGku5DtOAAB2Wh0Dup0B8ISDg/u72cO6ZQ\nDs7l2GIPoaBODLdw8CUc49U5P7ot7CCDA7EzYIcWxBfagrO7OgFb7/6C4DHO6NihFR1wyCOcn1EO\nAvbRRx+14FiOa8TBcTv6SAIIC+zKQzqcrd3GhDi1JBvdnB5HLEdrOE8rS1+eMojAcQPYHQZhDhGo\nzneyML/mGAP0O94QjzBS50XpowyiOcfbRnHyURgVhx7LekGAwsgLiqwjaQQSJYwwAJwhg1Op8YWH\nF84vMgHWCvVoCP0fv0nHO57NpR7eaeHLxhkSLYzQFs7Bwe4tZ5/RJ1gW3L6UEyGM0A914KI+FRzX\nzoAze5ysYl3DIhcdcG4O6o0uA6ETbTUxZfGsMLVkZ5/vY8pimzvm0ilcTRm8Q8AZ0WXK4Kwg5eyc\nZ16RH+dcmXz5vcOq52VQy7h5Pn94hhpEUmFCQcII1lK1JKtPay9MvV7lpTDyiiTrKSqBDBRUv9wM\nJBAIAjjpFwFPbVciKSV9hg8PnFLhw6H+g4958nOyOodfYfg3wfcGjrroVzIDdnWdc845Ah8Y+BF5\nFTAu+L8owaodruFDE8sB2dkm/KpQBv5IcJqG7w8cnQsKmFP43KjlMf30erMbrKByyU6HTxnGh+f4\n4Xl9xj/Oq37AIRy78vBsOePY7VXd8dQD/zgl+HXWVP6ex9NX5gknAe5KC+e8clQJJIBHM+Dll4Cd\nSxAAeKUiqCUqvbtKnfnjqTDCuPDFj1dhAnZZ4VEWhQ2pZFiYvhaFSbz1Q4zi0TYQuqkQRfH2k/lI\nIJEEKIwSSZd1k0AaEIBlBU93dzt3KA2GH6ohQowqHy/X3XGhGigHQwL5EKAwygcOk0iABOIjQFEU\nH6cg5ILQ9esyYhD4sY/BJ8BzjII/hxwBCZAACZAACZCARwQojDwCyWpIgARIgARIgASCT4DCKPhz\nyBGQAAmQAAmQAAl4RIDCyCOQrIYESIAESIAESCD4BCiMgj+HHAEJkAAJkAAJkIBHBCiMPALJakiA\nBEiABEiABIJPgMIo+HPIEZAACZAACZAACXhEgMLII5CshgRIgARIgARIIPgEKIyCP4ccAQnEReDb\nb78V9QDWuPImKpN6kKuoh8YmqnrWSwIkQALFJkBhVGyErCBdCOBL/Z133hE85DJoAQ9WPfHEE+WB\nBx5Iadc//PBDGTBggKgnqKe0H2ycBEiABGIRoDCKRYbxoSVw+umnS9++ffULT6SPN1xyySVy5pln\nSteuXQP3xT5s2DDZvn27XHbZZQUOd+bMmXp869atKzBvYTOceuqp+plqTzzxRGGLMj8JkAAJJIUA\nhVFSMLMRPxEYM2aM/Pjjj/oFK1C8YcaMGXZWiIeghNzcXHnmmWfkpJNOkkaNGrl2e9euXXLddddJ\njRo1pFWrVrL//vtL1apV5fjjj5dZs2a5lnGLhOisWbOmfoFxdMAzuC699FJ5//33ZfHixdHJvCcB\nEiCBlBOgMEr5FLADQSHwyCOPyGGHHaatLliWCkr44IMPtAi55pprXLu8detWLYAee+wxadiwodx8\n880yePBgLY4+//xz6d27tyxZssS1rDPy3Xfflffee08/mR2WuB07djiT7WtY3kqWLCnPPvusHccL\nEiABEvALAQojv8wE++F7At26dZMffvhBW1/KlCnj+/6aDj7++OOCvh900EEmKuL9hRdekC+//FJg\n7fnjjz/k/vvvl7vuuktfn3vuubJo0SK57777IspE36xcuVKuvPJKadGihQwaNCg6OeIeVqmzzz5b\nhg4dKlu2bIlI4w0JkAAJpJpAZqo7wPZJINUE4HszduxYwRIbloEOOeQQ6dChQ55uYVeXsZwcccQR\nUr9+/Yg88MmBdQZLT+vXr9fLVhAjffr0icjnvJk7d6589tlngnfLsrTFpn///tK2bVtntiJf//LL\nL9pfCEtXbmHnzp0Cf58qVarIyy+/LKVKlYrIBiuZWRqLSIi6ufrqq2X16tXy0UcfCTgVFJD/xRdf\nlDfeeEMuvvjigrIznQRIgASSR0D9MWYggcAQyMrKsvBSu5qK3Od69epZ6jdMv6ZMmaLrM/d4z8jI\nsIYMGWLt3r07oo3DDz/cLvfNN99EpKkveatChQp2urO+nj17Wps2bYrIj5tbbrnFyszMzFMG7Sux\nkCd/USLUkp/VuHFjSwkg1+JfffWVbv+qq65yTY8n0tRh+nzrrbfqOhGfXzjyyCOtNm3a5OGcXxmm\nhZ8Afre9+D0PPymOMFEEuJSmvsEY0pfAKaecorffw9G4RIk9vw7ql0372Lz99ttxgRk9erRkZ2dr\n3xrU0bFjR+2fY+pD+rXXXhtRF+rGkhUsNrDWDBw4UM466yypXr26thxheevVV1+NKFPYG2ONuuKK\nK7RPj1t541gNyxaWteAjhKUwJQIFVp1ff/3VrZgdhzLwGYL17MEHH7Tj47mAz9O0adPk66+/jic7\n85AACZBAUghQGCUFMxvxKwEsjUG44Jyf5cuXS69eveyu3nPPPVqk2BExLv7++2/tw9O9e3e92+qf\nf/7R/jnKqmSXgA+PM4wYMcK+xRIWzkd68803tUiAKMFr2bJldp6iXDz99NNSrlw5ufDCC2MWX7hw\noU7Dctlxxx2n/YzQtwkTJsiTTz4pPXr0kBtvvDFmefgizZ8/X5566impVKlSzHxuCViObNeunV7K\nc0tnHAmQAAmkggCFUSqos03fEDjttNPk0EMP1f2BUzB2Y5kwffp07Xhs7mFJcgtqGUpbVmBdwZZ4\nEyBu1PKavsXWdOcuLbVMZ7JpMTV79mx9j23y3333nX6ppTY7T1Euvv/+eznggAOkcuXKMYvDsRrh\n+uuvF7Xcpy04EIvYVQb/pCZNmsjDDz+sLUnRlUycOFHg2A2fqKLs0lNLhloA/vzzz/qMpej6eU8C\nJEACqSBAYZQK6mzTNwT69esX0RdYfYyYQcK8efPsdHyRxwo4DwnLY7CunHzyyXpbPw6CxFZ4E5zC\nCstmJmD5Cru5lC+QQKi99tpr2nnbpBf1/bzzztPWMCypxQr77LOPTlqwYIFga37r1q3trAcffLAW\nRBj3nXfeacfjAmPBeURw1sYZSUUJYIYt/lhGDNIuv6KMlWVIgASCQ4DCKDhzxZ4mgIBTCKB6HEDo\nPAQxntOfsezUtGlT7SME6wp2Zv3000/ad8lpGXIKIyxbQUg524I4we6x888/XwsULNEVJ2AJrXz5\n8nqZK1Y9EGMIOAm8Vq1aebLBggXRhgMtnVvrsewHi9Jtt92mBV2egnFEYPwrVqyQWOcrxVEFs5AA\nCZCA5wQojDxHygqDRGDkyJER3cUXNRyCTcCBhwUFnMlj/IEuuugibaWB7w6WpoxFxq2OM844Q1uk\n8NwwbJnHMpyxnMDfCctUxQlYQoPIgg/Thg0bXKsywgjO57GCcQh31mEOZ4TvFI4jcL4geBBgPVM7\n8rQlyq1ujBnl4KzOQAIkQAJ+IcBzjPwyE+xHSgjgix27qkyAw7Sx7GBXGSxB+YWNGzfK5MmTdRY4\nHz///PP2DjD4zkAcRQfUb3yK0Ibamqxf8FVCXe3bt9dFcL5RcQMOXcRSF8SRm2UGzuYQY3/++adr\nU1gKVEca6N1yderUsfNAdNWuXVvmzJljx5kLMEGA/xIOfnSzusH/adKkSeJ0Qjfl+U4CJEACqSRA\ni1Eq6bPtlBOAMLrgggvk008/lUcffVQuv/xyu0/Yyp+f4zIywh8Jy1UIsKjACgJHayyJYZu8W4DP\nzjHHHCMtW7aU5s2bCx7FgWUq+NxAMJiA9OIG1I9lO+waw/PQokODBg0EVq6//vpLn0QdnQ6rD8Y1\nYMCAiCQ4iMNK5vYy48ZOO6Sfc845EWVxA2sYnskGDgwkQAIk4CsC6r9XBhIIDAEvDn5zHvCorCjY\napbnpaw/Fg5/dAblh2Pncx7wqM79seOddSnLj1WxYkU7TVlf7OrUGUV2PMrgoEdlubHjcK/O97Hz\nF+dCHUeg6/3www9dq1G70CzlR6TzqOU9Szl/W+ocJUs9F07HKfFkKauPa1m3yJtuukmXi3XA49Sp\nU/Uhmmo5zq0449KcAA94TPMPgA+GT4uRr2QqO5NsAg899JDeom+coJUg0WcS4Zlh0Y/liLUrDRYf\nWJrM4zRgQcIWdiylKWFkD8lZHjvGhg8fbvvX4KBHPJoEAbvB8FiN6B1zdkWFvMBxBF26dInps1S3\nbl392BBYhdAn9A2P6fjxxx/FHIBZkOWsMF0yjyDBc9gYSIAESMBvBDIgzvzWKfaHBGIRwBZ4BDyA\nFL45Xgac31OtWjUpW7ZskarNzc3VfjVw2IbAijfADwf+OPA3aqLODfJShJg+YBcZlrQg+LDTLFaA\nT1ROTo7uC3yd8nPKjlVHfvF4nhr4YLmtsCdl51cv08JDAJ8/8yDiRPyeh4cUR5IoAvH/9U5UD1gv\nCfiEgFpiK1ZPYDEqyFnbrYF4HtLqVq4wcTgfSS1xaWfn/IQRdtFhJ1miAnyo4Otk/JAS1Q7rJQES\nIIGiEqAwKio5liOBABHA+UxwsHbuLEtF908//XTBTrhU9yMVY2ebJEACwSBAH6NgzBN7GUUA5naG\nwhHwixjxSz8KR4+5U0HA6+XyVIyBbQaPAIVR8OYsrXts/lBSGKX1x4CDDzEB/m6HeHIDMjQKo4BM\nFLtJAiRAAiRAAiSQeAIURolnzBY8JJCdna1r43+VHkJlVSTgIwLDhg3TvTG/6z7qGruSJgQojNJk\nosMyTLOUhvGYP6BhGRvHQQLpToC/0+n+CfDH+CmM/DEP7EUhCBhxhD+itBwVAhyzkoDPCRhhhN9x\nWox8Plkh7h6FUYgnN6xDc/7BNH9IwzpWjosE0oWA83fZ/POTLmPnOP1FgMLIX/PB3sRBAH80cSIu\nAixGzj+ocRRnFhIgAZ8RwO+w+T3GPz7Of3581lV2Jw0I8JEgaTDJYR2i848pxsg/qGGdaY4rrATM\nPzZmSZy/w2Gd6WCNiydfB2u+2FsHAfNfpflP07wji0lzZOclCZCADwgYEYTfV3ONblEU+WBy2AVN\ngBYjfhACTyDacuQcEH0VnDR4TQKpJeAUQs6eUBQ5afA61QQojFI9A2zfMwL5CSTPGmFFJEACnhDA\nPy3OlyeVshIS8IAAhZEHEFmFvwjgv1Lnf6bOa3/1lL2Jh8CoUaN0Njx8liHYBIwQwihozQ32XIa5\n9xRGYZ5djo0EQkAgIyNDj2LkyJFCcRSCCeUQSMDnBLhd3+cTxO6RAAmQAAmQAAkkjwCFUfJYsyUS\nIAESIAESIAGfE6Aw8vkEsXskQAIkQAIkQALJI0BhlDzWbIkESIAESIAESMDnBCiMfD5B7B4JkAAJ\nkAAJkEDyCFAYJY81WyIBEiABEiABEvA5AQojn08Qu0cCJEACJEACJJA8AhRGyWPNlkiABEiABEiA\nBHxOgMLI5xPE7pEACZAACZAACSSPAIVR8lizJRIgARIgARIgAZ8ToDDy+QSxeyRAAiRAAiRAAskj\nQGGUPNZsiQRIgARIgARIwOcEKIx8PkHsHgmQAAmQAAmQQPIIUBgljzVbIgESIAESIAES8DkBCiOf\nTxC7RwIkQAIkQAIkkDwCFEbJY82WSIAESIAESIAEfE6AwsjnE8TukQAJkAAJkAAJJI8AhVHyWLMl\nEiABEiABEiABnxOgMPL5BLF7JEACJEACJEACySNAYZQ81myJBEiABEiABEjA5wQojHw+QeweCZAA\nCZAACZBA8ghQGCWPNVsiARIgARIgARLwOQEKI59PELtHAiRAAiRAAiSQPAIURsljzZZIgARIgARI\ngAR8ToDCyOcTxO6RAAmQAAmQAAkkjwCFUfJYsyUSIAESIAESIAGfE6Aw8vkEsXskQAIkQAIkQALJ\nI0BhlDzWbIkESIAESIAESMDnBCiMfD5B7B4JkAAJkAAJkEDyCFAYJY81WyIBEiABEiABEvA5AQoj\nn08Qu0cCJEACJEACJJA8AhRGyWPNlkiABEiABEiABHxOgMLI5xPE7pFAuhAYMmRIoYdalDKFboQF\nSIAE0ooAhVFaTTcHSwL+JdCzZ0/JyMiQUaNGFdhJ5Ondu3eB+ZiBBEiABApLgMKosMSYnwRIICEE\nevXqJXhB8ORnCTKiCO+DBw9OSF9YKQmQQPoSoDBK37nnyEnAdwSM0LnrrrtcxREEk7EUIQ8DCZAA\nCXhNIMNSwetKWR8JkAAJFJUAhA+sQQiwILldI41/ukCBgQRIwGsCtBh5TZT1kQAJFIuAsRqhEiOK\noq9pLSoWYhYmARLIhwAtRvnAYRIJkEBqCDitRm49oLXIjQrjSIAEvCBAi5EXFFkHCZCApwScVqPo\nimktiibCexIgAS8J0GLkJU3WRQIk4BmBWFYjWos8Q8yKSIAEXAjQYuQChVEkQAKpJ+BmNaK1KPXz\nwh6QQNgJ0GIU9hnm+EggwASirUa0FgV4Mtl1EggIAQqjgEwUu0kCbgRycnJ0NN7NtVu+IMc5d6Zh\n+37YQlZWlh4S3s112MbI8ZBAkAhQGAVptthXElAEIICGDRsWWiGU7pOcnZ2tEZj3dOfB8ZNAsglQ\nGCWbONsjgWIQGDRokKsgyixVqRi1smiqCezM3ZCnC7AeDR06NE88I0iABBJLgMIosXxZOwl4QsDN\nSlSx8r667lKlKnvSBitJLYHc3PUCgWTeTW9gOaL1yNDgOwkkngCFUeIZswUSKBYBiCJYikyAdahS\n5fbmlu8hJLB1y0LBywRYjuh/ZGjwnQQSS4Db9RPLl7WTQLEJwJ/IBFiJKIoMjfC+lyvfUPAyIdYS\nqknnOwmQgHcEKIy8Y8maSMBzAk4na3xRctnMc8S+rRDzbZZL0UmnQPZtp9kxEggBAQqjEEwihxBO\nAsavCKOLtiCEc8QcVTQBCGFjOcLnAS8GEiCBxBKgMEosX9ZOAkUm4PwSNF+ORa6MBQNLAHNvdh3S\nahTYaWTHA0SAwihAk8WuphcB8yVIUZRe8+42WvMZoNXIjQ7jSMBbAhRG3vJkbSTgCQGntchYCzyp\nmJUEkoDTt8z52QjkYNhpEvA5AQojn08Qu5eeBJxffs4vxfSkwVGDgBHIzs8GyZAACXhPgMLIe6as\nkQRIgARIgARIIKAEKIwCOnHsdnoQMFaC9BgtR5kfAVoO86PDNBLwjgCFkXcsWRMJeEaAyyWeoWRF\nJEACJFAoAhRGhcLFzCRAAiRAAiRAAmEmQGEU5tnl2EiABEiABEiABApFgMKoULiYmQRIgARIgARI\nIMwEMsM8OI6NBNKdQNs2TaREybz//2zftkMWLV4h29Q7AwmQAAmQwH8EKIz+Y8ErEggdgfvuvUQq\nVCjnOi7LsmT58jUyf/5S+eiTUfL33zNc8zEyPgK1alVVD/nNlDVrNsjWrdvjK8RcJEACviNAYeS7\nKWGHSMB7AstXrJHNm7baFUMs4Yu8Tp3q+nXAAfvKl1/9Ki++9Bm/1G1Khbu4a/BF0qJ5A3n4kbfk\n+x/+KFxh5iYBEvANAQoj30wFO0ICiSPwkhI8o3+eENFAuXJlpGmTenLmmf1k/65tpf8xh0i7tk3l\nsisell27dkfk5Q0JkAAJpAuBvM4H6TJyjpME0pwAlnumTJ0rt93+vDz9zAeCpbVmzerLcccemuZk\nOHwSIIF0JkCLUTrPPsdOAnsJjPhijLRr10QO67O/nHP2UTJyVI6sW7fR5lO3bnU584x+snbtRnn5\nlc+lRYuGcnD3DtK5UyvJyMiQq6993M6Li8zMktLvyG7SqmVDaarE1rZt22Xu3CXyzz8z5dex/0bk\nNTfRbZQtW1q6d+8o+3VupQXbggXLZOrUefLV12Nl585dppjrO/rX45BO0qxpPalZs6osXLhc5qj2\nv/1unPYBii5UvnxZufSSk3T0s8996LqcWKlSBcm+6ASd56mn35cdO3L19fXXnanfa9eqpt+P6tdN\nOnVqqa+/++53+XfiLH3NHyRAAsEgQGEUjHliL0kg4QRefmWEHHJwJ+2sfWiPzvL5iDF2m5Ur7yNH\nHH6gLFmyUsYqYfPwQ1dI6dKldPqGDZvtfLho3KiO3HzTOdJc+ds4Q6eOLeWE43vKmDF/y+NPDpdN\nm7Y4k8XZxtvvfCP33XuptN+3mZ2npRI7EG59eneV/7vnZVeBU6JECTn9tL5y9llHS0nHbjxYwnr2\n7CInndhbHn/i3TzirEyZUnp8aOzFFz91FUYQamCAAPGEAFFo4nSE+tG+fXP9wj0schRGhgzfSSAY\nBCiMgjFP7CUJJJzAqlXrZNq0+dra0aBBLdf2qlSpKHAyXrZstYz44hdZvHillCiRYefdZ59y8sgj\nV0llZV1ZsWKtvP7mlzJz5kKBqOjYoaUSLP2khxJdsL7ccNPTdjnnRblyZeWeuy+WRg1rCywzEBel\nS2dq69RZyh+qXbumOv2yyx/Wy3/OshBF553bX0fBmRwiDP1o1LiOnHDcodJZWZ8G33mhXH/DU54I\nFiw/Xqr6gXDLzedKQ8XtjTe/knG/T9ZxK5XTOwMJkECwCFAYBWu+2FsSSCiBxcoihGWg+vXdhRGW\nnKbPWKD9ktyWs84YeKQWRUuWrpKrrnpU1jusSRBdf02YLk89ca1uA8tksD5Fh6pVK+qzl+AEjuME\nTED5f/+dJY89epXe/dXjkM7y85j/HMqrVaskp516uM7+wtCP5WN1BIEJOLNp3LhJWrz0PHQ/ufji\nE8VNWJn8hXmfNWuhzr59+54zodBnE1eYepiXBEjAHwTofO2PeWAvSMAXBJYsWaX70aB+zZj9eeGF\nj119fOBXhKUyhHfe+TZCFJnKIBh+2LuV/eST+pjoPO/vv/9DhCgyGWA9GjX6L317wvGRTuLHHH2w\nYKcdRNmnn/1sitjvu3fv1v5R2HGHbfWd9/oB2Rl4QQIkQAKKAIURPwYkQAI2ARxQiGAci+2EvRew\nEs1TB0K6BZyJBHGE8Muv/7hl0XHG+bqhWiqLFYz4cUvH8hhC9HJfwwZ76hv320SBCHILWAKcPXuR\nTsqvfbeyjCMBEkgPAhRG6THPHCUJxEWgXr0aOt8i5TvkFnbt2pXHr8fkq7/XyrRJHSS5Zcs2E53n\nfdne5TH4IcEnKTpAfMHfKVYwy2vwd4KFyATT/nLlU5RfMOVN/vzyMo0ESCD9CFAYpd+cc8QkEJOA\nEQuLFq2ImSdWQnnlNI2wba+vTax8xhcH6WXL/idsTH6kw6k5VnA+362co3y58nvqwtEA+QXTP2fZ\n/PIzjQRIIL0IUBil13xztCQQkwD8btq0bqLTcWZQYQO28iNUq1rJXlJzq6OWOlcIAct1q1evz5MF\njytxsySZjHiUCQIE1Jq1G0y0Okpgj3+USbcToi5MOnyR3EKG2vLvFjIzuVfFjQvjSCBsBNz/AoRt\nlBwPCZBAgQSwUwtb7yEY8vPxiVURdrQhoI4WLSLPMHKWadWqkb5dqtqJZRnCo0lihdatG+sk+As5\nw2K18wyhVas96c40c42zl5qox6AgmP7i2mmFqqqW6NxCvbp7lhnd0hhHAiQQHgIURuGZS46EBIpE\nAFvwb7juLHXOUAtd/vkXPpLc3J2Frgu+RRMnztblTt+7bT66Ejh3n6gOWUQYq5ykY4UzzjjSNalM\nmdIy4IQ9O99+U9vvncHUh+e+NW9e35lkX/c78iB9nMDmzVvlX3UKtwl4PIo56btNG3dh1adPV5Pd\n9X3X3tO46dTtioeRJBAYAhRGgZkqdpQEik4AlhI4KptXjeqVJatLG8GW+WEv3CKHH36ArvyHH/+U\n3/ceTliU1l4Y9rG2AuGMoisuO0XMLjfUhSW2+++7VNA2lsCGv/d9zCawpHfHbRdEOFdXV+UefOAy\ngdM1RNj7H/wYUR6PG/lt3B6xdfeQQdK2TZOIdJxQbR7p8c67eY8TmDxlrs6PR580aVLXLosTtM8Y\neIR+xIgd6XJhnMq7d+sg5vEgLtkYRQIk4HMCXDT3+QSxeyTgBYEbrj9L8IoVNm7cIs8+/6H89NP4\nWFniiscp13i0yAXn95djj+0h/dRzw/CMNJx83UBtp8cyGx4F8uijb7s+dgONwHfo/gffkNtvPV8+\n+uABmTtviZRRws6Uh2/Sk0+/l+eRIij73PMfSd06NbSweVIdJLlK+TCtULvgGqnHlBi/JViWPvl0\nNLJHhFdfGyEHHdhe4IP0wnM36SVFWJIaqMMuIY5uv3OoPPTA5RFlnDc4rBKHR6KtN14frJ/P9uZb\nX8von/87hNKZn9ckQAL+JEBh5M95Ya9IIKEEtm/PlQULlwmcrOfPXyZ42KnTkbk4jb//wQ8yafJs\nuWTQifrhr8anCFv4//l3pjz9zAf5bsdH2xAZd9/zirbU4IGwECY4mHHGjIXy1DPvq/cFrl3EVvzL\nr3xELjivv/TqlaWtU7BQwZcJzuHvf/ijfPXVWNeyCxYsl2uue1yuvfoMLawgiHB0AA6lfGf4dzJp\n0p5lQtfCKhIP3oVV68QBvfQ7BBIcyRlIgASCRSBD/cGwgtVl9pYEwk9g0KBBkpOTI5mlKkmlyu0D\nO2AIGlh6sIUezyzL788NfHueeuI6bTE69vjr7THDrwjHCCxWRwhs3/tEezuxgAuclVRT7YLDI0Gc\nDtYFFFPWpfJSp3Y1WYg2Czh+wK0uvXSprGQblCUuvzG7lY0Vt3XLQsErKytLhg4dGisb40mABIpJ\ngBajYgJkcRIggdgEYOWZH+Ok7NilIlMgTObMWRwZGecdntXmfF5bnMX0Mt0steRX1IDlvlinhxe1\nTpYjARJIDgE6XyeHM1shARIgARIgARIIAAEKowBMEruYfgSwXIKwM/e/AwzTjwJH7CSQm7vnMEzz\n2XCm8ZoESMA7AlxK844layIBzwg4v/zwhViqVGXP6vZrRWvWbJAPP/pJOzz7tY+p7BdFcirps+10\nIkBhlE6zzbGSgI8JwDl72Iuf+riH7BoJkEA6EOBSWjrMMscYOAKwGBmrEXYiMaQ3AednIDs7O71h\ncPQkkGACFEYJBszqSaCoBMwXIJZQjH9JUetiueASwNwbYWQ+E8EdDXtOAv4nQGHk/zliD9OUgLEY\nYfgb109OUwocthFFIOH8TJAMCZBAYghQGCWGK2slAU8IOA/y27A+8qGpnjTASnxNAKLIOF3DWkRh\n5OvpYudCQoDCKCQTyWGEkwC+CM3yCb4gIY64rBbOuXaOCnOMuTbWInwGzOfAmY/XJEAC3hPgI0G8\nZ8oaScBzAsOGDRO8TChXvqHgxRA+AhBDRhBhdBDHTsth+EbMEZGAvwhQGPlrPtgbEohJIFocISOe\npWbOOMI1QzAJGAd7s2xmRkFLkSHBdxJIHgEKo+SxZkskUGwCeLAsXk7rUbErZQW+I2CWUOlT5Lup\nYYfSgACFURpMMocYTgIQR0YohXOE6TUqI4JgJTLX6UWAoyUBfxCgMPLHPLAXJEACMQhkZGTolJEj\nR0qvXr1i5GI0CZAACXhDgLvSvOHIWkiABEiABEiABEJAgMIoBJPIIZAACZAACZAACXhDgMLIG46s\nhQRIgARIgARIIAQEKIxCMIkcAgmQAAmQAAmQgDcEKIy84chaSIAESIAESIAEQkCAwigEk8ghkAAJ\nkAAJkAAJeEOAwsgbjqyFBEiABEiABEggBAQojEIwiRwCCZAACZAACZCANwQojLzhyFpIgARIgARI\ngARCQIDCKASTyCGQAAmQAAmQAAl4Q4DCyBuOrIUESIAESIAESCAEBCiMQjCJHAIJkAAJkAAJkIA3\nBCiMvOHIWkiABEiABEiABEJAgMIoBJPIIZAACZAACZAACXhDgMLIG46shQRIgARIgARIIAQEKIxC\nMIkcAgmQAAmQAAmQgDcEKIy84chaSIAESIAESIAEQkCAwigEk8ghkAAJkAAJkAAJeEOAwsgbjqyF\nBEiABEiABEggBAQojEIwiRwCCZAACZAACZCANwQojLzhyFpIgARIgARIgARCQIDCKASTyCGQAAmQ\nAAmQAAl4Q4DCyBuOrIUESIAESIAESCAEBCiMQjCJHAIJkAAJkAAJkIA3BCiMvOHIWkiABEiABEiA\nBEJAgMIoBJPIIZAACZAACZAACXhDgMLIG46shQRIgARIgARIIAQEKIxCMIkcAgmQAAmQAAmQgDcE\nKIy84chaSIAESIAESIAEQkCAwigEk8ghkAAJkAAJkAAJeEOAwsgbjqyFBEiABEiABEggBAQojEIw\niRwCCZAACZAACZCANwQojLzhyFpIgASKSWDUqFGFrqEoZQrdCAuQAAmkFQEKo7Sabg6WBPxNYMiQ\nIXF3EHlHjx4dd35mJAESIIF4CGTGk4l5SIAESCDRBHr16iVGGA0ePDjf5pDvrrvuEsuy8s3HRBIg\nARIoLAFajApLjPlJgAQSRgCCCIInIyNDYi2T9e7dW+dBPgYSIAES8JoAhZHXRFkfCZBAkQnAaoQX\nAgSQsSDhHstmTsFUkFUJZRhIgARIoLAEMpQpmrbowlJjfhIggYQRgKUIoii/AGsRhVF+hJhGAiRQ\nVAIURkUlx3IkQAIJIwBhFGspDY3y/7mEoWfFJJD2BLiUlvYfAQIgAf8RyM8aRN8i/80Xe0QCYSJA\ni1GYZpNjIYEQEYhlNaK1KESTzKGQgA8J0GLkw0lhl0iABMTVh4jWIn4ySIAEEk2AFqNEE2b9JEAC\nRSYQbTWitajIKFmQBEggTgKZceZjNhIIJYGcnJxQjissg+rfv7+YOerZs6d9HZbxhW0cWVlZYRsS\nx5OGBGgxSsNJT9ch4wt22LBhevjmyzZdWXDcJJBoAtnZ2boJ857o9lg/CXhFgMLIK5Ksx7cEjCCi\nGPLtFLFjIScAcUSBFPJJDtHwuJQWosnkUPISgIXIWImQWqJsDZ0po1wNdV0zbwHGkAAJFIvA7m0r\ndXlr6yrZvW2Vvja/gxRHxULLwkkiQItRkkCzmeQTGDRoUIRPSsmqbSSzatvkd4QtkkCaEti5dqrs\nWjvNHj18kCCO6ItkI+GFDwlQGPlwUtil4hNwWopgJSqpBFEJZSViIAESSD4Bp0CCKBo6dGjyO8EW\nSSBOAjzHKE5QzBYcAk5RBCtRqXo9KIqCM33saQgJwFKL30UE4/MXwmFySCEhQItRSCaSw/iPQNeu\nXe2bMs0G2Ne8IAESSC2B3CVjbL8jWI24pJba+WDr7gRoMXLnwtiAEjBOnui++Q81oENht0kgdASw\npG2C83fVxPGdBPxAgMLID7PAPnhGwPyxpaO1Z0hZEQl4RgB+fqXq9tD1YUmNR2h4hpYVeUiAwshD\nmKwqtQScf2S5FT+1c8HWSSAWAecmCOfvbKz8jCeBZBOgMEo2cbaXMALOP7LOP74Ja5AVkwAJFImA\nOU/M+TtbpIpYiAQSQIDCKAFQWSUJkAAJkAAJkEAwCVAYBXPe2Ot8CJj/RvPJwiQSIIEUEsDJ8wwk\n4FcCFEZ+nRn2q9AEaJYvNDIWIIGUEuDvbErxs/EYBCiMYoBhNAmQAAmQAAmQQPoRoDBKvznniEmA\nBEiABEiABGIQoDCKAYbRJEACJEACJEAC6UcgM/2GzBGTQP4E9m1ZX0qWyMiTaduOnbJwyWrZuj03\nTxojSIAESIAEwkGAwigc88hReEjgsdsGyj7ly7jWaFmWLF25XuYuXCnvffmH5Eya55qPkSRAAiRA\nAsEkQGEUzHljr5NAYJkSQJu2bLNbqlC+rNSpUUnq1aqiX927tJDPfpggz771o2zZusPOxwsSIAES\nIIHgEqAwCu7csecJJgDB89NvUyNaKVe2tDRvVFPOP7mHHNS5uZxweBdp36q+XHDzK7Jr1+6IvLwh\nARIgARIIHgE6XwdvztjjFBLYum2HTJqxWK67b7g8+vI3gqW1Fo1ry0lHdk1hr9g0CZAACZCAVwRo\nMfKKJOtJOwIff5ujrEUN5Mge7eV/px4q3/86Wdau3+zKoW3zetLzwNbSqmkdqVKpvMxZsEKmzFoi\nn6uluJ0ulqZu+7WQPt3ayoQp8+WrUf9Kx9YN5CAV17ltI8lQjuHzFq2Uj77JkVnzl7u2h8jKFcvL\nKUfvL22b1ZVaagkQfYNv1Eeq3wuUE3l+oeeBbSRr38bSUvUXYea8ZfLnv3NlzJ8z8ivGNBIgARII\nPAEKo8BPIQeQSgIvvPOT9DygtXbW7nNQWyU6xkd0J0NtbjvrhO5y0ak9pWTJ/wy0rZXgOKpnRzmm\nVye544mPZcnydRHlsFx3dK+Oenlu4+Ztct/1J0sJVLY3QCgdrco+8tLXMuLHv020/Y5lvruvOVHK\nlyttx0nDmpLVvomc1K+rPPna9/LB13/+l7b3qkK5MnLToKPlsO7tItLQHqxiX4+eqC1lsJwxkAAJ\nkEAYCVAYhXFWOaakEVixeqO2/HRR1pWG9arlafes47vLxQN7a4Hz2ke/yOg/psuGTVuljbLiXHbW\nYdKmeV159JbT5azrhrn6KLVtUVf6HtxOPlFWnh9gkdqwRZo0qCEXndZT+TrVkqvOPVzG/jVLVq/d\nZLddq3olWxRByHz780SZPGuxNG1QU1u3IIyuOu9wmTp7iV4WtAuqi7uvPVEO7NRM1m/cIs+9PVL+\nmbpASigL1QEdm8mgM3orMddBWbh2yQMvfOksxmsSIAESCA0BCqPQTCUHkioCi5atES2M6kYKIyyZ\nnT2gu+7W4Cc/kZHjptldxI43bPV/54mLpVG96nJsn87y6fd/2enmAv5LcAJ/5/NxJkoWLl0j/05b\nJB88c6nAwtNLLXt99M1/lqoDlLCBpWj6nKVyz7Of2+Umz1wseJUqVVJaNqktWN6Dv5QJEER4wRr0\nv1telaUr/rNizV+8Wqap+p7/v3OUlaujPqoAy3IMJEACJBA2Av/Z9sM2Mo6HBJJEYNGytbqlRnWr\nR7SIHWsQLn9Nnh8hikwmLJG99elYfXt83/1MdMQ78uC8pOgAi864CbN1dMMoQVa5YjkdDx+jTMfy\nnanjwaFfyYVK+EQvpZ1xXDed5Z0R4yJEkSk3cfoi+WX8TGVBKqGEXCcTzXcSIAESCBUBCqNQTScH\nkwoCpTNL6ma374g8ERtLVwj5HQIJB2yEBnUirU06Uv2Yv3iV6xIb0mF1QqheZR/9bn78PWWBvqxT\ns7I8eutAgSM3lsMKCk0b1tBZxk+cFzNrQf2NWZAJJEACJBAQAlxKC8hEsZv+JVB/r6hZoJa4nKFB\nnar69mzlfD2w/4HOJPsaO8wQsPRVtXKFPLvaYDGKFXbk7nRNwnLZi++N1jvlunZoInjhAMp/py+U\nP/6ZIz+OnSqr1m6MKIvzmYzAeuSW08TabUWkm5vMvSKw/t6xmXi+kwAJkEBYCFAYhWUmOY6UEWhY\nd48Agu+PM1TY+1gROFvnJ3BMmbJlSpnLYr/D0RvLXtjZdqjaNVdXWY+wUw2vy88+TN4Z8bsMfXek\n7N4rgJy711at2aQdrPPrxPqNW/NLZhoJkAAJBJYAhVFgp44d9wMBnEvUTj10FgFnCznDYuV7BP8f\nnHf05l5fImd6oq9xxtFTr3+vX9ipdkDHpnLyUftrx+uzju8mG5Vge+uz33Q31qzbJNvUw3Ehzu59\nboR20k50/1g/CZAACfiRAH2M/Dgr7FNgCFyptsvjfKHFy9fKD2OnRPQbu9UQIJ5SHVas3iBfjPxH\nzrvxJX1kAPrjPKtIHeCtx4D41s1S31/0g4EESIAEUkGAwigV1Nlm4Algt9ntlx0r+7VrpMeCAxNz\nc3dFjGvM+D2nRGMpq3H9yB1rJmPHNg31OUcDj3X3QTL5CvPeX239xzEB+6mzldwC/IwQjL+QyWNO\ntT5d+UNhS79b6HdoB91fHGrJQAIkQAJhJEBhFMZZ5Zg8IVCmdKbAKdm8alarKDgjCCLmzUez9cnV\naOgbdYDirzkz87SJ3V2/TZilt8zff/0p+kBGkwmHWMMp+rFbT9cipnzZMiap2O+tmtbW4uWhG09V\nz3GrFVEffI1wwCPCBHWMgDNgWW2NemxI/dpV5Z5rT5JK++zZ9o88pZTTNQTTHZcfp/u7IR+ncGed\nvCYBEiCBoBGgj1HQZoz9TRqB2y87TlmFYjcHp+rHX/1OvhszKWamx175Vh65uaq2GL320P/U9vvV\n+vTqVuqAxX0qlNXlflcWnLc+23OeUcyKCpHwxsdjpVvnFlKvdhV5/eGLdJsz5y1XS3q19WGSqGq2\nelbbsOGjImrFwY7wLxpy1QA5JKulfPrClfaz2Fo1qWNbkV5Vjt3RoiqiIt6QAAmQQIAJUBgFePLY\n9eQS2L5jp8xT5wrNW7RKP4wVD3ddrZyW8wt4BtoFN78sV5zTVz9Tral6XlnTvQWWr9qgDln8Qz78\nerzk7oxchsuvzoLSsBX/kjvfkHNO7K6fxYZlPLOUt0lZej5Up2QP/+J32bRle56qcGjkeTe8KNdf\ndJR0Ust8++51LEdGnGEEq9Lo3/87wTtPBYwgARIggYATyLBUCPgY2H0S0AQGDRokOTk5UqJsDSlV\nr4cvqVSvuo/UqFpRlq9aL+vUc88SHfDgWiwBVq1UQVas2SDYfRbvbzycynFeUelSmfowyc1b8wqp\nRPef9YeTwM61U2XX2j0Ce/z48eEcJEcVWAK0GAV26tjxIBLAw16dD3xN9Bh27dqtRY05Jbsw7e1W\nCir6bKbClGdeEiABEggiATpfB3HW2GcSIAESIAESIIGEEKAwSghWVkoCJEACJEACJBBEAhRGQZw1\n9pkESIAESIAESCAhBCiMEoKVlZIACZAACZAACQSRAIVREGeNfSYBEiABEiABEkgIAQqjhGBlpSRA\nAiRAAiRAAkEkQGEUxFljn0mABEiABEiABBJCgMIoIVhZKQmQAAmQAAmQQBAJUBgFcdbYZxIgARIg\nARIggYQQoDBKCFZWSgIkQAIkQAIkEEQCFEZBnDX2mQRIgARIgARIICEE+Ky0hGBlpakksHvbKsld\nMiaVXWDbJEACJEACASVAYRTQiWO38ycAccRAAiRAAiRAAoUlQGFUWGLMHwgC2dnZgegnO0kC6Ugg\nJydH8GIgAT8SoDDy46ywT8UikJWVJRRGxULIwiSQUALDhg2jMEooYVZeHAJ0vi4OPZYlARIgARIg\nARIIFQEKo1BNJwdDAiRAAiRAAiRQHAIURsWhx7IkQAIkQAIkQAKhIkBhFKrp5GBIgARIgARIgASK\nQ4DCqDj0WJYESIAESIAESCBUBCiMQjWdHAwJkAAJkAAJkEBxCFAYFYcey5IACZAACZAACYSKAIVR\nqKaTgyEBEiABEiABEigOAQqj4tBjWRIgARIgARIggVARoDAK1XRyMCRAAiRAAiRAAsUhQGFUHHos\nSwIkUCCB8ePHy6xZswrMF6YMK1askJ9++ilMQ+JYSCBtCPBZaWkz1RwoCaSGwBVXXCG7d++W33//\nPTUdSEGrt956q3z22WeycOFCKVu2bAp6wCZJgASKSoAWo6KSY7lQErj//vulb9+++vXjjz+Gcoxu\ng1q8eLE97nPOOcctS5Hixo0bJ3hdddVVBZbftGmTzjt79mzZuXNngflTkWHr1q0yYcIE+ffff2X7\n9u0xu3DllVfKqlWr5K233oqZhwkkQAL+JEBh5M95Ya9SRGDSpEkCQYTX0qVLU9SL5De7ZcsWe9xj\nx471rAOPP/641K9fX0455ZSYdf7111+SlZUlVapUkW7dukmLFi10mWeffTZmmeiEp59+WmrWrKlf\n//d//xedXOx7LI1BMO6zzz7SpUsX6dSpk1SqVEluueUWAbvo0LFjR+nTp4888cQT0Um8JwES8DkB\nCiOfTxC7RwJBJbBgwQL5+OOP5fLLL5dSpUq5DuPrr7+WQw89VKZOnSqnn366PPLII3LmmWdqixHK\n3X333a7lnJGwMN18882yefNmbaXBu5cBlqyDDz5Y3nzzTTnxxBMFgu2iiy7SS2QPPPCAnHvuua7N\nXXvttTJ58mT57rvvXNMZSQIk4E8CFEb+nBf2igQCTwBWnNKlS8ugQYNcx7Jt2zY577zzJDMzU77/\n/nu97HTdddfpd1itypQpI0OGDJHly5e7lkekZVnyv//9Twupe+65J2a+4iTAAgXncYigDz74QC69\n9FIZNmyYYPmxWrVq8uGHH2prW3QbRx99tLRq1UpgNWMgARIIDgE6XwdnrtjTFBP4/PPPZfXq1boX\nLVu2lEMOOSSiR3PnzpVRo0bJxIkTtSBo3769HH744VK7du2IfLh59dVXdRwccwcOHCiLFi2SESNG\nyPz58+Waa67RZZYtWyawqCA0adJEevfuLVjq++GHHwRWkrZt22rrSuXKlXWe6B+7du3SguOff/7R\n9WKJCktWPXv2jM7q+T2sLC+99JIWPlWrVnWt/4033hAsUd13333aIuPM1Lp1a80Iy2xY0nRjiPxo\nY/To0QLx0qFDB2cVnl1jTiHwYAFyBiyrwboFAQjH8sMOO8yZLBkZGXL11VfLZZddpi1imC8GEiCB\nABBQ/3ExkEAoCGRnZ1vqi9/Ce1HDGWecYalfW/1SSyd2NeoL2I5v0KCBpXYb2Wlqx5X15JNPWkrk\n2HlMHcqiYA0fPtzOay5MuvKLsX7++WerZMmSdtk///xTZxs5cqQdp3x0rNdff92+N+UbNmxozZw5\n01RrvyvhZKnlnzz5UW7AgAGWEiR2XlzMmDHDztu8efOItKLcPPXUU5YSBtb06dNjFt9///0ttcRm\nKYtQzDz5JSxZssRSfkmWEkTWjh07LLVkpcdw4403xiwGprGCEliWEpN5kpUQtdTW+zzxiHj44Yd1\nm8qC5JqulvUsfAaK85l0rTjgkUOHDtW/q/h9ZSABvxHgUpr6pmAggfwIqC9TueSSS3QWOAjDiqPE\nkV0EVgvsusLSEAKsMlhCQVizZo22CP3xxx/6PvoHLCuwGMG6k1/IyckR9eUqSkDppSeTF9vBlRAw\nt/odu6Vgqfr111/1fcWKFeWII47QS1OI+OSTT+T888/XaYn4ga35ShjJMcccY3NwawdWr2bNmkmt\nWrX0Li8sVWH5CTweffRRV6dmZz1gvmHDBm01iuXD5MyPeYTVzW2HnBKdOg0+TtEBliCUcwtfffWV\njj7qqKPckqV8+fJ63uCfZKyNrhkZSQIk4B8CflNq7A8JFJVAIixGsHiopSBtFVA+L5ZaVono3rp1\n6yxYfdRvtLaQwPpjAv4rRjxe3bt3N9H63cTjvUaNGpZaCrKmTZtmKb8VC1YGBPVFbpdHvgsuuEBb\nqtQSm7ZAmDrUl6/Ob36opSm73AknnGBt3LhRJ61cuVJbV0w5WFhM8NJipM7v0e2rnX2m+jzvGCP6\noUSHpcSFthyBb9OmTS3lc6TT1NKfpZYl85RFxJdffqnzqDOS7PR4LEZqWUuXU9vp7XKvvfaaVaJE\nCUstMdrs7cR8Lsw4MYb8glom1eO7995788uWVmm0GKXVdAdusHBeZCCBUBDwWhiprdYWvpzxBY5l\noffeey8PJ/MFjTz9+vWLSMfyDkSPKa/OwLHTEWdeylJixzsvnMIIYkGdi2Mnz5kzxy6PeiCWTMAS\nlalbnSFkovW7cgS209ROLjvNS2GkdpNZ5cqVs5Tlyq4/+gKCE31UljVLbXu30K/c3FydTVnRLOWb\no9PNMpmzvNoebymfK6tevXqWshjZSfEIIyx7KudpXTfEkfL10qJI7Yyz0G684e+//9b9xvw6l1Vj\nlVfb97XwipWebvEURuk248EaL52v1V9nBhJwI4AlKiVudJLyPZJTTz01TzYlKOw45RuUZ+nInHGj\n/izonU1wyI4O8Sxr4eyc6tWr20WVZUWf2aOsQDrOedigs09nn322XQYXOKDQBOWbZC49fcdOs2ee\neUaUb5U++8etcjguI6Cvt912m3ZSNvkqVKigd3JhJ9gXX3yhd31hec0EZXmRefPmyfvvvy9YJixM\ngEM0+maW+1C2R48egiUxtBtPQNtY8sMhlN9++23EsqpbeTiQ40BIZZlyS2YcCZCAzwjQx8hnE8Lu\n+IeAEUXoEbZkY3dXdHBuJYcPCcSG82WEEco58zrrwcGEBQW3x0pgm3t0gJ/T+vXr7WhnX3CN3W8m\nxOqPSS/qO3ysIDby26Zet25dvdMLbWBnl1swYsjJHWNQDs/6lO78Do10q8/EQRwdeOCB5lbvZotX\nFIEZ/LcgSPGZOOigg+x6Yl2AQ506dbTvVKw8jCcBEvAPgbx/Wf3TN/aEBFJKAA7W7dq10wf0wSID\nqxEeiKqWiex+wXJjAh4DAafhWAGO04kOEFAQHdjijvZw1o7T0uRsHwIhUQFHDuAwRGx179WrV55m\n0LbaUaePHYi1nd/0W/lx2eXh6A7BCoGHk6WdAY7uCO+8845+tAicpu+8805nFn0NR2icfQTx1qZN\nG3nuuee0SMtPyKEgBKdaLhUcy6CWVSWWw7WzQbVzTue94447bCHoTOc1CZCA/wjQYuS/OWGPfEIA\npy7jS1b5sugeTZkyRa6//vqI3uG8HRNgQVBOvHrXGKw5eGE5CDvK8HJaoEyZRLybPmGnG3agmb7g\nHRYl0x+cmZSocPzxx+sdZ/mJDYgMhFg79iBCEZzLjxClONNo7dq1gvlwvsx4IJCUD5NAlEQHPLsM\nS304yRrLZ8rXRR9AiUd3RJ9T5CyLJchjjz1WL4nh/KWTTjrJmRzzGqdkQ6BefPHFMfMwgQRIwGcE\nguUSxd6SQGwCXjtfm3OM4NSrLBy207I66NHuBM69Uf4/dpp6rIWlTm3Wu8uef/55+3witS094owc\n9WfALgOHYLfgdL6Gc3B0UJYhuw4lCuzkTz/91I7HmUs4U0gtAVlKgFjqUEo7DbuxTPDS+drUCed1\n7PZSy18mKuIdu7WwE01ZbSwldCLSlKC01MGV+myoWOUjCqgbdYyCHlusc4xwTpESKZayFNk79VAH\n+KvTuXVZJeSiq9VO4f3799efgZdffjlPeqwIOIkrq5d14YUXxsqStvF0vk7bqQ/EwGkx8plQZXf8\nRwA+JTjB2AQsw+BUagRYiGAVwHk1CHA4Vlvz9UNQcfYRrDY4NRmnIyNvMgKsNVjGQsCSE5b4YGU5\n4IAD5JdfftHxWIbCs8kSGdTxAvqhq+rwS9dm8HBZWOVg3cGp1Q8++KBedrr99ttlv/3200tXcLTG\nid1eBFiJ8IgRWIqM8zfqxbKeErFy//33uzqLYx7hBI4lP5Q9+eST87yiLYmoF5Yl+J05PzuIZyAB\nEvA5gUDIN3aSBOIgkCiLEZpWS1AWtlyrX2f9OvLII7WlwXQLFo6+ffvaZ/CYfDjjRokRk81+N+l4\n99pihEZQJ07jNmcsmfawvVz5u1jOowOQPxEWI9Srlqcs5dicxyKENBPUcl+efqpDH11PDDdl3N4L\nshi5lYknTi1N2vNuOEa/d+7cOaIq8IclTInqiHje7CFAixE/CX4mkIHOqV9yBhIIPAE8rBT+M9gV\nBd+RVAR1Fo/egg5LUePGjSXWc8yS2Tc8jwxbzGE1gkM5fF6SFdAuLD54Hlr0Cd3RfYA/Frbvq0eS\n6DLJ7Gd0X4p7j9PRsaUfFqZ4nLSL217QyuMhvHghGF+yoI2B/Q0vAe5KC+/ccmQ+JhioAAAjZklE\nQVQpIIBHU+y7774paDl2k//f3n2A2VWUfxx/QwkdDFIMNXRBIGiCdIxCAihFRFAeJPREkCIQKaKQ\nCIiCUuUhiUhJlF5E6aEsIEgLEAhIkY4iUkPv+ec3OPd/dvfcu/feuWf3zNzvPM9m7557Zs7MZza7\n787MmaNHbuijL9KgQYNs1u7bbiqqp8BIAVSrps36oq3Za+qBwHporF9gnn2P1wggUG4BAqNy9w+1\nQyB6gfHjx7v1OdE3pIEGaAsA7XlU5JYIDVSHUxFAoAEBAqMGsDgVAQQaF5i1rqnxTAnk0NQlCQEE\n4hPondtk4nOhxggggAACCCDQhgIERm3Y6TQZAQQQQAABBPIFCIzyXTiKAAIIIIAAAm0oQGDUhp1O\nkxFAAAEEEEAgX4DAKN+FowgggAACCCDQhgIERm3Y6TQZAQQQQAABBPIFCIzyXTiKAAIIIIAAAm0o\nQGDUhp1OkxFAAAEEEEAgX4DAKN+FowgggAACCCDQhgIERm3Y6TQZga4CepCnHuLaijR9+nTTBwkB\nBBCIUYBHgsTYa9S5dAIzZ860G264wd5//333VPXYngy/33772aeffmp33XVXkK0ctt12W/viF79o\nepAqCQEEEIhNgBGj2HqM+hYqcNxxx9mmm27qPm688ca6rzVp0iQbMWKEbb311nbSSSfVna8MJ955\n552mjwMOOKBmdV577TV33pNPPumCqLyT9dBUBVlXXXWVPf7443mncAwBBBAotQCBUam7h8r1toCm\ngBQQ6ePFF1+s+/LZIOCJJ56oO18ZTlQgt+SSS9r222+fW50HHnjA1l9/ffv85z9v6623nq244oo2\ncOBAO/vss3PP33333W3BBRe0U045Jfd9DiKAAAJlFmAqrcy9Q92iEdh3333t6aefdlNphx56aDT1\nfu655+yyyy6zo48+2uacc85u9X7wwQdt3XXXNY0E7b///rbKKqvYNddcY9dee60pAHrnnXdMbc+m\n+eef3/baay8744wz7JhjjrEBAwZk3+Y1AgggUGoBRoxK3T1ULhYBjaCcd955LshYfvnlY6m2nXba\nada/f38bPXp0bp333HNP++ijj9wImkaA9tlnH7d26NZbb3Xnjxkzxt59991ueTWdpvVWEydO7PYe\nBxBAAIEyCzBiVObeoW59LqDFxJpKuvnmm+3jjz+2tdde24YNG+ZGULKVmzZtmt13333u0JprrmlD\nhgzJvu1e33bbbaaP559/3hZYYAFTAKXpK01R5aU333zTLrroItPU3IwZM9x0l6a0Ntlkk7zTGz72\n9ttv25lnnmm77rpr7qiO3p86daptvPHGbiotewFNqa2xxhr20EMPOR/VK5uWWWYZ22677ex3v/ud\nHXzwwTbHHPyoyfrwGgEEyivAT6vy9g01K4HA3nvvbRMmTOhUk2222ca02FrraHzSYuMjjjjCfXnY\nYYd1CoxeffVVtyj7jjvu8KdXPh9yyCGu/B133LFyTC80vbXHHnvYG2+80em4vtDUlqayFlpooW7v\nNXJAa4QUcNVadK07y7T+KC8p+FFgtOiii+a9bQceeKAL7C6++GLr2r7cDBxEAAEESiDAVFoJOoEq\nlFPgV7/6lQtatGZmrrnmqlTyiiuusIMOOqjydU8vdthhB/NBkUaHNOK0yCKLuGxvvfWWC4Ceeuqp\nSjHaT2innXZyQZFGWrbYYgs31bXSSiu5c3QHmdb7hCTdmn/qqafat771LVt55ZVzi1K7v/nNb9rg\nwYO7va9pMo2iaSG2r1fXkxTA6ePkk0/u+hZfI4AAAqUVIDAqbddQsb4WePjhh+300093oyqa1soG\nQxoxevbZZ3usovJ9+OGHbipKU0ta7KyA4qWXXrINN9zQ5X/vvffspptuqpTl90PSAY1YXX311TZ+\n/Hi755573MjT8OHDXZmVDE28uPLKK92GjhrVaSZpdExri3bZZZea2VX+3XffXQkMa57MmwgggEAJ\nBAiMStAJVKGcAtqkUIuNZ5ttNrdAWXdYzT333K6yWpDsFyDXqr2m27Su6Pbbb7dLLrnE5p13Xne6\nytSeRz5lR4w0muOTrqHRJq110tSZRquuv/56O//88/0pTX2eMmWKzTPPPJXgrJFCNAV34oknuryH\nH354zazaE0p3tKnOJAQQQCAGAQKjGHqJOvaJwOabb97pugokNtpoo8qxZ555pvK6pxe67f344493\nt7hr+mqDDTbotBGkAh+fFDD59Uta1K1zNQWn+pxwwgl1jVT5sqp91oJrjVRdcMEF1U7JPa61VKNG\njXK37V9++eXW0w7f5557rguMRo4cmVseBxFAAIGyCRAYla1HqE9pBLRnT9ekNTU+5S2M9u9lP+tW\n+LXWWsu0v5FGWzQ1plGg7AaS2cBoqaWWclNr66yzTqWY119/3a677jrTYm2tCVLAEZJ015yCvEZ2\n6f7b3/7m7qJbfPHFXV38Oqlq9fjkk0/cOiYtVo9pC4Nq7eE4Agi0hwCBUXv0M61sQkBrgbqmW265\npXJo6aWXrryu9kLTZ9rLR4HPsssua2eddZY9+uij9vLLL5sWd1dLCly0yFpTbMqjDRN9IKI1S2PH\njnVlVstfz3Gt/9FWBB0dHT2erpGrrbbayo1kaVdwtaWnpBEljao1u46pp/J5HwEEEChCgMCoCFXK\nTEJAi6AVhPikhdOPPPKI/9JWWGGFyutqLxTc+PSjH/3IdtttNzcNpSBHI0B56YUXXnALo3V32hJL\nLOHyKLjS/kc+GFPAoaAmJPmRnJ5GjfRstM0228xNm8kkbyQtrx4q149M5b3PMQQQQKCMAgRGZewV\n6lQKAT00VZspah3OOeec4x4S6yumPXwULPSU/CiPztPO2LqzTMGVFi3njUjpPD2eQ7fA60N3fb3y\nyivuoa3Kq7vZlLR4u57AzJ1c5R+Vodv+/R1qeadpuk93wX3wwQemBdurr7563mndjvk70Rgt6kbD\nAQQQKLkAGzyWvIOoXt8JaIRHIzVaW5NNusvql7/8pbtTLXs87/V3v/td97wwPVNMIzxf/epX3Wkq\nQ3v8ZEeUfH5dV8GYbvW/8MIL3cd8883nnkvmz1Fg5Rdo+2PNfNbzzo488kj3wFc9HiSbtFfRiBEj\n3DPgNEp07LHHZt+uvN5yyy3d7tmVA7NeaLRIo13aw4mEAAIIxCTAiFFMvUVde1Xg29/+tgtK9OgL\nBTJKGqXRLfPagLGepMXa2j161VVXrZy+3HLLucXTCkp88uXraz1SRPsaaWNHf1yBlZLyaidubR3Q\niqRHk+h5aFoU3nUxub6ePn26u8xjjz1ml156ae6H1h9lk6b8tLZKAV7eg2mz5/IaAQQQKJtAv1mL\nQv//PuGy1Y76INCAgO7+0rO9tK6l62M8Gigm91TdFab/KgsvvHDu+/Uc9FNiiy22WD2nu3O0M7YC\nDQVGmr7THWGtTlqvpABOo2C66y006e47jT6p3tWeAxd6DfLHLaCRWH0o3XvvvXE3htonJ8CIUXJd\nSoOKEBgwYEBQUKQ6ab1RI0GR8mhEZ7XVVnMPry0iKNI1Bg0aZBod01qj0KTgUeVo3yKColBN8iOA\nQF8IsMaoL9S5JgIlE9AjRxT8hSZN/d1///2d1kOFlkn+dAU0uktCoGwCjBiVrUeoT9MC/oesptNI\njQloNKunXazrLbF///4tCbLqvR7nxSfA/9H4+qydakxg1E69nXhbfWCkZvKDN/HOpnlRC/j/n9n/\ns1E3iMonJUBglFR30hgEEECg3AI+KCp3LaldOwsQGLVz7yfWdv316f8C9Xe8JNZEmoNA9ALZwEgP\nJCYhUDYBAqOy9Qj1CRLwP2j1w5fgKIiSzAi0XCB7m77/v9ryi1AgAoEC7GMUCEj28gn4/YxUM+1n\n5EeRyldTaoRAewkMHTq00mD2L6pQ8KJkAowYlaxDqE64QPYvUf2Fmh26Dy+dEhBAoBkB/cHiU/b/\nqD/GZwTKIsCIUVl6gnq0VEDBUNcfxPwwbikxhSFQlwD/F+ti4qQSCcw+dlYqUX2oCgItEdADTJX8\naJH/rGP+Pb0mIYBAMQL6Pzdu3LhOa/30xwl/oBTjTamtE2DEqHWWlFRCAf1wrjadxg/oEnYYVYpa\nwP8B4j9nG8N6v6wGr8ssQGBU5t6hbi0TyN4N07JCKQgBBGoK+C00/OeaJ/MmAiURIDAqSUdQjd4R\nUIDkU95ftf49PpdHoKOjw1Vm2LBh5akUNakp4AMh7gitycSbJRUgMCppx1AtBBD4TEAPplW6+eab\njeDoMxP+RQCB4gS4Xb84W0pGAAEEEEAAgcgECIwi6zCqiwACCCCAAALFCRAYFWdLyQgggAACCCAQ\nmQCBUWQdRnURQAABBBBAoDgBAqPibCkZAQQQQAABBCITIDCKrMOoLgIIIIAAAggUJ0BgVJwtJSOA\nAAIIIIBAZAIERpF1GNVFAAEEEEAAgeIECIyKs6VkBBBAAAEEEIhMgMAosg6juggggAACCCBQnACB\nUXG2lIwAAggggAACkQkQGEXWYVQXAQQQQAABBIoTIDAqzpaSEUAAAQQQQCAyAQKjyDqM6iKAAAII\nIIBAcQIERsXZUjICCCCAAAIIRCZAYBRZh1FdBBBAAAEEEChOgMCoOFtKRgABBBBAAIHIBAiMIusw\nqosAAggggAACxQkQGBVnS8kIIIAAAgggEJkAgVFkHUZ1EUAAAQQQQKA4AQKj4mwpGQEEEEAAAQQi\nEyAwiqzDqC4CCCCAAAIIFCdAYFScLSUjgAACCCCAQGQCBEaRdRjVRQABBBBAAIHiBAiMirOlZAQQ\nQAABBBCITIDAKLIOo7oIIIAAAgggUJwAgVFxtpSMAAIIIIAAApEJEBhF1mFUFwEEEEAAAQSKEyAw\nKs6WkhFAAAEEEEAgMgECo8g6jOoigAACCCCAQHECBEbF2VIyAggggAACCEQmQGAUWYdRXQQQQAAB\nBBAoToDAqDhbSkYAgQYEOjo6Gjj7s1PHjRvXcB4yIIAAArUECIxq6fAeAgj0qsDXv/71uq/XyLl1\nF8qJCCDQ9gIERm3/LQAAAuUQGDZsmKtIv379rNZIkEaWFBTp81FHHVWOylMLBBBIRoDAKJmupCEI\nxC/gA52xY8fmBkfZoEjnkBBAAIFWC/SbOSu1ulDKQwABBJoV8KNByq/gxwdAGlFSYOQTP7q8BJ8R\nQKCVAgRGrdSkLAQQCBbwo0K1ClKw5EeXap3HewgggECjAgRGjYpxPgIIFC6QHTXKuxijRXkqHEMA\ngVYIsMaoFYqUgQACLRWoNRrkp9ZaekEKQwABBP4nwIgR3woIIFBKgWqjRowWlbK7qBQCyQgwYpRM\nV9IQBNISyBs1YrQorT6mNQiUUYARozL2CnVCAAEn0HXUiNEivjEQQKBogTmKvgDlI4BAMQJTp06t\nFJx9XTmYwIuBAweaPpR0u/7EiRMTaFV+E4YMGWL6ICGAQN8KMGLUt/5cHYGGBRQEKUBINRhqGCTB\nDKNGjTJ9kBBAoPcFCIx635wrItCUgIKhaiMmgwcPbqpMMpVDYNq0abkVIUDKZeEgAoUKMJVWKC+F\nI9Aaga5BkQKhnXfe2RVOUNQa474uRcGRD5AmT57squMDYUaP+rp3uH47CTBi1E69TVujFBg9enSn\nabPf/OY3RjAUZVfWXWkFSAqOfKCkjPfee2/d+TkRAQSaF+B2/ebtyIlA4QIaMfBriRQMTZkyhaCo\ncPW+v4D6WgGwHxVUjRQgkxBAoHgBAqPijbkCAk0JZKfP9AtSvyhJ7SUwcuTISnDkF923lwCtRaD3\nBZhK631zrohAXQJDhw6tnKeRIlL7CowZM6YyrTZhwgRu62/fbwVa3gsCjBj1AjKXQKBRAb/oVvmy\n0ymNlsP5aQhkvwey3xtptI5WIFAuAQKjcvUHtUGgk4B+IWo6hdTeAlpz5Bfc+zVn7S1C6xEoToDA\nqDhbSkagaQFGBZqmSzZjdtSI4CjZbqZhJRAgMCpBJ1AFBLIC2V96fpQg+z6v21OA74X27Hda3fsC\nBEa9b84VEahbgF+GdVO11YnZ4LmtGk5jEegFAQKjXkDmEgg0IsAvvUa02utcAuX26m9a2zcCBEZ9\n485VEUAAAQQQQKCEAgRGJewUqoQAAggggAACfSNAYNQ37lwVAQQQQAABBEooMEcJ60SVEECglwQ+\n+eQT+/jjj2222WazOeecs5euymUQQACB8goQGJW3b6gZAoULnH766TZ27FgbPny4XXjhhYVfL6UL\nvPDCC3bDDTfYP//5T5sxY4YNGjTIVl99dWepQJOEAAJxChAYxdlv1BoBBPpIQCNsxxxzjGkTzvff\nf79bLdZYYw33wN+1116723scQACB8gsQGJW/j6ghAgiUSODnP/+56UGuSltvvbVtsskmttBCC9kT\nTzxhf/jDH+yhhx6yHXbYwW666SZbbrnlSlRzqoIAAvUIEBjVo8Q5CCCAwCyBadOmVYKiU045pdsD\nfkePHm2bbrqpPf744/bTn/7Uzj//fNwQQCAyASbCI+swqosAAn0ncNddd7mLr7jiit2CIr0x//zz\n26GHHurOufvuu91n/kEAgbgEGDGKq7+oLQINC2iU4/LLL7f777/fdBfaBhts4BYIDx06tK6yXnzx\nRTvvvPPcFNFTTz1lyy+/vFtkvMsuu9iiiy6aW8aBBx5oH330kVuL069fP/vLX/5it99+uz3yyCO2\n7LLL2nrrrWd77bVXzTvhtLD5kksusSeffNLdObfMMsvYiBEj3DRVrTvo1M6//vWv9uCDD9qrr75q\nq622mn3lK1+xkSNH1rxebkO6HPzvf//rjmihdbWk9im98cYb9sEHH9hcc81V7VSOI4BACQUIjErY\nKVQJgVYJnHvuuW4E48MPP6wUeccdd9hvf/tbO+OMMyrHqr24/vrrbZ999rHXXnutcsr06dNdoPP7\n3//eTSsNGzas8p5/oTvctDD54IMPdvn9SIveV/6rrrrKLrjgAvd5gQUW8NncZwVUepK8rp1NCvAU\n8Jx22mnuc9egbObMmXbyySfbcccd5wIpn1f5NKWl4E5rgGoFNT5Ptc+rrrqqe0sBnhZhzzFH9x+h\nCsiUtL6IoMhR8A8CUQkwlRZVd1FZBOoXuPrqq00jNwqKNEIzadIku+eee+yiiy6yLbfc0gUsV155\nZdUCde6OO+7ogqJtttnGBTEPP/ywXXHFFfa1r33NXn75Zfve975nzzzzTNUyfvjDH5pGWc4880zT\n1NKNN97o6qSAQgHS8ccf3y2vtg9QUPSFL3zBTjzxRDfS9Y9//MMFNRo10vqdvffeu1s+rfk5+uij\n3fExY8ZYR0eHWxOk4FDBkEaStChaAU2zaauttrIVVljB/v3vf9sRRxzRraxHH33Ujj32WFe87EkI\nIBCfQPc/d+JrAzVGAIEuAp9++mnlF/Tmm29uCg789JN+sWuBsH6x1xo1+tnPfmYahdlzzz07BTAD\nBw60DTfc0AUZCnQUjGgkJi8999xzptGiBRdcsPL2l7/8Zff6pJNOciM5PpjxJyjwUtL7m222mT9s\n2267rZuGO+SQQ+zNN9+0d955x+abbz73/iuvvOLO1xcKwnS3mE9LL720bbTRRrbOOuu4PYcmT55s\nu+22m3+7oc/9+/d3exfJTiNmar/K/tznPufuSlNAt8gii7jRME37kRBAID4BRozi6zNqjECPArfd\ndptplEUbDY4bN64SFGUzHn744TZgwIDsocrrO++8040uaTHxUUcdVTnuX2jd0JFHHum+/POf/+wC\nFf9e9vO+++7bKSjy733/+993LzVFp7U4PikQe/31192XL730kj9c+ay1Qlp7pADEB0V685xzzrG3\n3nrLBWzZoMhnVODy4x//2H2pIDEk6dZ8TS+qLlpzpfI0WqUROo1G6ToKHEkIIBCnAIFRnP1GrRGo\nKaA9dZS08HillVbKPVdBT3ZEJnuSpoSUhgwZ0ikAyZ7zpS99yeaee243qqQAIS/p+nlJozg+ZQMg\nBVzrr7++e0tTar/+9a9Ni797Sr6+G2+8cdVT1RalanWtmjHzhgKfAw44wAU+9913n+l6++23n2l0\nTeuitO7psMMOM42KTZ06NZOTlwggEIsAU2mx9BT1RKABAb/ux98hVS1rtfd98PD3v/+95iaFuutK\nSddba621ul1GIzV5qdai5BNOOMGtXVJwp8BIHyuvvLILRrTGR6Mxs88+e6din376afe1pt/0mJO8\npOlFpbffftutj+q6eDsvT9djWtitqTgtGNeCbh/E+fM0vacF51rH9Z3vfMcFR5paIyGAQDwCBEbx\n9BU1RaBuAf3yV5p33nlr5qn2vqalfP4llliiahlLLrmke08jPa1KWih966232sUXX2yXXXaZaVpP\nC671cdZZZ9kqq6xi48ePt8GDB1cu6eurqcFqwVjl5Fkv3n333eyXdb3WNfyaLAVrXYMiFaLpvVNP\nPdUt9FZgp/O1UzYJAQTiESAwiqevqCkCdQsouFB6/vnn3edq/1R73z/KQutotJdQbyeNKP3gBz9w\nHxqV0h1ll156qbvl/rHHHjOtUVLApPU+SmqvHuaqheJ+LVGr66zr+mej1VpYrQXa2sJAgdEDDzzQ\n6mpQHgIIFCzAGqOCgSkegb4Q8IGR1t689957VatQbR2MD4z03C8/BVW1kILfUJC07rrrmqbYrr32\nWnc1rUvSfkw+adNJJe1ZVFTK3uavjTJrJX9uX9vVqiPvIYBAvgCBUb4LRxGIWkDrcDRNpju+zj77\n7Ny26FZzjcTkJe2OrdEY7VWkjRHz0n/+8x93q75ut/dTWXnnNXJMoz5aJ6RNHP36pWx+Pbl+scUW\nc4d88KEvtthiC3dMd4b5hefuQOYfjTCprtXWIGVOzX2pqTu/oaN28q6WNE2nB8gqacSNhAACcQkQ\nGMXVX9QWgboEtOBXmysq/eIXv3ALhrMZFRTpkRzZW96z7y+88MJ20EEHuUPas6drIPDss8+aNn1U\nEKONG7vuXp0tq5HXCsa0QaK2CPjJT37iHmHi82tHbD3VXhtGKkDRKJJP2nBy+PDh7jEkmoLTztQ+\naQuAW265xbbffntXX7/+yr9f7+d55pnHtttuO3e61g1pF+6uSYHkHnvsYfLRHXv+/K7n8TUCCJRX\ngDVG5e0baoZAkMD+++/vnk+mDRZ1i7n2HdLCZd3BpV/g3/jGN9xGiNXW5IwaNcp0V5qmr3bddVdb\naqmlTA9P1SJo7fyspJ2otdi4VUl3iino0N5Lf/zjH90z3rQxo/Zj0tSZXzStgKzrXWVaEK274zRi\npEBJ2xToHD2iY8aMGa6KarMsmk26rqYnNWWnZ8VpywKNJCmg07UVgPk6atSr2nYFzV6ffAggULwA\nI0bFG3MFBPpEQLtNa6RHj8/QCJKCA43uaHHw7rvvbn/605/cqEa1ymltj6bRdIu61iz961//so6O\nDhcUaQ8kjUhdd911NW/nr1Z2reMKXHT32Zprrul2t9a0lDZ1VMChO8H0QNyddtqpWxGqo+qnXa01\n4qUARhtdqt0K6jSNpvZoJKfZpLzXXHONaY8l3f2mR6SoTN19puOqo4IyjcgxWtSsMvkQ6FuBfrOG\nmWf2bRW4OgIIZAUmTpxo+lCaMmVK9q2g17oDTYuGFUA0k7SOSE+61yiMnmPWdS+hZsrsKY8e/aF6\na+pMey41EtRogbY2h1RQVMReQrpDTR7a80n11OiZHrdSa3uDntrb0/t6BpxGqzSapw8SAgi0XoCp\ntNabUiICpRTI7jbdTAW1jihvE8dmyqo3j0a9NF3VTFp88cVNH9WSFqVrqrDepLVW2Q0xFaSpbs3W\nr97rch4CCPSuAIFR73pzNQR6FPCPrujxRE4IEtAeQ3kLqKsVque+kRBAIH0BAqP0+5gWRiygaZPs\nDs8RN6V0VdeDX/URUypyn6aYHKgrAkUKsPi6SF3KRgABBBBAAIGoBAiMououKtsOAtmpNEYI2qHH\n62vjpEmTKidmv0cqB3mBAAItESAwagkjhSDQWgH/i0978JAQ6Crgvz+6HudrBBAIFyAwCjekBARa\nLuBvxdaIUXakoOUXosAoBPQ9MHnyZFdX/70RRcWpJAIRChAYRdhpVDl9AY0I+FEB/UJkSi39Pq/V\nQh8U6RwCo1pSvIdAuACBUbghJSBQiED2F2D2F2MhF6PQ0gpkRwyz3xOlrTAVQyByAXa+jrwDqX7a\nAtldsHXb/s4778zt+2l3eaV1GiXMjhYqKCIwqvDwAoHCBAiMCqOlYARaI5ANjlSigqORI0e2pnBK\nKaVAdk2RKqhp1QkTJpSyrlQKgdQECIxS61Hak6RA1+BIjVSApKSRJDaBdBTR/uPXkPkpU/+1GsRI\nUbTdSsUjFSAwirTjqHb7CUydOtX04R8w234C7dVijRIpKPKL8Nur9bQWgb4TIDDqO3uujEDTAnkj\nSE0XRsZSCRAQlao7qEwbChAYtWGn0+T0BDSSRIpbgJGhuPuP2qcjQGCUTl/SEgQQQAABBBAIFGAf\no0BAsiOAAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBA\nAIFAAQKjQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0JS1B\nAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6AgRG\n6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAACCCCA\nQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BAsiOA\nAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKj\nQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0JS1BAAEEEEAA\ngUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6AgRG6fQlLUEA\nAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp\n9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBA\nOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AA\nAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNA\nQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACB\nQAECo0BAsiOAAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQAB\nBBBAAIFAAQKjQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0\nJS1BAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6\nAgRG6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAAC\nCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BA\nsiOAAAIIIIBAOgIERun0JS1BAAEEEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFA\nAQKjQECyI4AAAggggEA6AgRG6fQlLUEAAQQQQACBQAECo0BAsiOAAAIIIIBAOgIERun0JS1BAAEE\nEEAAgUABAqNAQLIjgAACCCCAQDoCBEbp9CUtQQABBBBAAIFAAQKjQECyI4AAAggggEA6Av8HzFgH\nL21kDWIAAAAASUVORK5CYII=\n" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![network_structure.png](attachment:network_structure.png)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model Template Definition" + "Images will also be randomly rotated, flipped, zoomed in and out, shifted, and stretched. " ] }, { @@ -371,89 +331,42 @@ "metadata": {}, "outputs": [], "source": [ - "def simple_custom_CNN_definition(nb_conv_layers=(32,16), \n", - " kernel_size1=(4,6), \n", - " kernel_size2=(2,3), \n", - " nb_dense=128):\n", - " \"\"\"Simple CNN model we will use to classify images. \n", - " \n", - " Args: \n", - " \n", - " nb_conv_layers: number conv layers\n", - " type: tuple \n", - " \n", - " kernel_size1: size of the first convolutional kernel \n", - " type: tuple \n", - " \n", - " kernel_size2: size of the second convolutional kernel \n", - " type: tuple \n", - " \n", - " nb_dense: nb of nodes in the fully connected layer \n", - " type: int \n", - " \n", - " Returns: \n", - " \n", - " Keras model \n", - " \"\"\"\n", - " model = Sequential()\n", - "\n", - " # Convolution layer (4x8), 32 filters \n", - " model.add(Conv2D(nb_conv_layers[0], \n", - " kernel_size=kernel_size1, \n", - " activation='relu', \n", - " input_shape=(200, 300, 1)))\n", - " model.add(MaxPooling2D(pool_size=(2, 2)))\n", - " model.add(Dropout(0.25))\n", - "\n", - " # Convolution layer (2x4), 16 filters \n", - " model.add(Conv2D(nb_conv_layers[1], \n", - " kernel_size=kernel_size2, \n", - " activation='relu'))\n", - " model.add(MaxPooling2D(pool_size=(2, 2)))\n", - " model.add(Dropout(0.25))\n", - "\n", - " model.add(Flatten())\n", - " # DNN FC layer: \n", - " model.add(Dense(nb_dense, activation='relu'))\n", - " model.add(Dropout(0.25))\n", - " # softmax layer\n", - " model.add(Dense(2, activation='softmax'))\n", - " model.compile(loss=keras.losses.categorical_crossentropy,\n", - " optimizer=keras.optimizers.Adadelta(),\n", - " metrics=['accuracy'])\n", - " return model\n", - "\n", - "\n", - "\n", - "def train_CNN(CNN_model, model_file, Xtrain, Ytrain, Xvalid, Yvalid,\n", - " epochs=10, batch_size=100): \n", - " \"\"\"Training the Keras model \n", - " \n", - " Args: \n", - " \n", - " CNN_model: keras model definition \n", - " model_file: hdf5 file where to save the model object \n", - " Xtrain: numpy ndarray of training image data. \n", - " Ytrain: numpy ndarray containing target values.\n", - " Xvalid: same but for the validation dataset. \n", - " Yvalid: same but for the validation dataset. \n", - " epochs: number of epochs \n", - " batch_size: size of each training batch (in number of images)\n", - " \"\"\"\n", - " CNN_model.fit(Xtrain, Ytrain, \n", - " batch_size=batch_size, \n", - " epochs=epochs, \n", - " verbose=1, \n", - " shuffle=True,\n", - " validation_data=(Xvalid, Yvalid))\n", - " CNN_model.save(model_file)" + "from keras.preprocessing.image import ImageDataGenerator\n", + "\n", + "image_generator = ImageDataGenerator(\n", + " rotation_range=20,\n", + " width_shift_range=0.1,\n", + " shear_range=0.1,\n", + " zoom_range=0.1,\n", + " samplewise_center=True,\n", + " samplewise_std_normalization=True\n", + ")" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "## Model Definition" + "train = image_generator.flow_from_directory(train_dir, \n", + " batch_size=8, \n", + " shuffle=True, \n", + " class_mode='binary',\n", + " target_size=(180, 180))\n", + "\n", + "validation = image_generator.flow_from_directory(valid_dir, \n", + " batch_size=1, \n", + " shuffle=False, \n", + " class_mode='binary',\n", + " target_size=(180, 180))\n", + "\n", + "\n", + "test = image_generator.flow_from_directory(test_dir, \n", + " batch_size=1, \n", + " shuffle=False, \n", + " class_mode='binary',\n", + " target_size=(180, 180))" ] }, { @@ -462,21 +375,24 @@ "metadata": {}, "outputs": [], "source": [ - "# Simpler model. chose larger kernel sizes, reduce number of layers, \n", - "# and remove neurons in fully connected layer. \n", - "\n", - "# simple_model1 = simple_custom_CNN_definition()\n", - "simple_model2 = simple_custom_CNN_definition(nb_conv_layers=(16,8), \n", - " kernel_size1=(8,12), \n", - " kernel_size2=(4,6), \n", - " nb_dense=64)" + "class_weight = {0: f_pneumonia_training, 1: f_normal_training}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Training Deep Learning CNN models" + "# Custom Model Training\n", + "\n", + "We are going to define the architecture of a convolutional neural network (CNN) to train on our set of X-ray images. A convolution neural network (CNN) is a type of deep learning model commonly used for image classification problems. Our CNN model consists of \n", + "\n", + "- Convolutional Layer\n", + "- Pooling Layer\n", + "- Fully-connected Layer\n", + "\n", + "In the convolutional layer, the input image goes through a set of convolutional filters. The filters have different weights, and they are applied to an area of the input image where an operation called a convolution is performed in order to extract features. The filters are moved through the input image. The pooling layer is used to reduce the number of parameters. It is similar to the convolution layer in that a filter is moved through the input and an aggregation function is applied to the input (e.g., maximum value of input area, average value of input area). Finally the fully-connected layer is used to aggregate the final feature map and generate a classification. \n", + "\n", + "We are going to use [Keras](https://keras.io/) to build our CNN model. \n" ] }, { @@ -485,43 +401,39 @@ "metadata": {}, "outputs": [], "source": [ - "# training the CNN model\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, Conv2D, MaxPool2D, Dropout, Flatten, BatchNormalization\n", "\n", - "train_model = True \n", "\n", - "model_path = f\"./model_artifact/\"\n", - "if not os.path.exists(model_path):\n", - " dirpath = os.makedirs(model_path)\n", + "model = Sequential()\n", "\n", - "hdf5_path = f\"{model_path}xray_predictor4-march21.hdf5\"\n", + "model.add(Conv2D(filters=32, kernel_size=(3, 3), input_shape=(180, 180, 3), activation='relu'))\n", + "model.add(BatchNormalization())\n", + "model.add(Conv2D(filters=32, kernel_size=(3, 3), input_shape=(180, 180, 3), activation='relu'))\n", + "model.add(BatchNormalization())\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", "\n", - "if train_model: \n", - " train_CNN(simple_model2, \n", - " hdf5_path, \n", - " Xtrain, Ytrain, Xvalid, Yvalid,\n", - " epochs=10, batch_size=100)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Saving the Model to the Model Catalog " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 1: Publish your conda environment \n", + "model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))\n", + "model.add(BatchNormalization())\n", + "model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))\n", + "model.add(BatchNormalization())\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", "\n", - "If you have: \n", - "* modified a data science conda environment by adding a new library for example \n", - "* created your own conda environment \n", + "model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu'))\n", + "model.add(BatchNormalization())\n", + "model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu'))\n", + "model.add(BatchNormalization())\n", + "model.add(MaxPool2D(pool_size=(2, 2)))\n", "\n", - "then you need to publish your conda environment. In the file `runtime.yaml` of the model artifact, we keep a reference of the conda environment that was used to train the model. That same conda environment can also be used as the inference environment used by the model deployment resource, if you decide to deploy the model later on. \n", + "model.add(Flatten())\n", + "model.add(Dense(128, activation='relu'))\n", + "model.add(Dropout(0.2))\n", "\n", - "You can publish a conda by running the following `odsc conda` commands in the terminal or by executing the following cells. Initialize `odsc conda` first by providing a target bucket destination for your conda: " + "model.add(Dense(1, activation='sigmoid'))\n", + "\n", + "model.compile(loss='binary_crossentropy', \n", + " optimizer='adam', \n", + " metrics=['accuracy'])" ] }, { @@ -530,8 +442,14 @@ "metadata": {}, "outputs": [], "source": [ - "# replace with your values: \n", - "#!odsc conda init -b -n " + "%%time\n", + "r = model.fit(\n", + " train, \n", + " epochs=10,\n", + " class_weight=class_weight,\n", + " steps_per_epoch=100,\n", + " validation_steps=25,\n", + ")" ] }, { @@ -540,51 +458,22 @@ "metadata": {}, "outputs": [], "source": [ - "# specify the slugname of the installed conda environment that you want to publish: \n", - "#!odsc conda publish -s " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Step 2: Prepare the model artifact\n", - "\n", - "First we want to prepare a model artifact. That artifact is a zip archive of the following: \n", - "* **score.py**: an inference file is used to load the model object to memory and call the inference endpoint of the model (i.e. predict())\n", - "* **runtime.yaml**: a file describing the provenance of the model as well as providing a description of the runtime Conda environment of the model. This environment will be used in the upcoming OCI Data Science Model Deployment feature. \n", - "* **your serialized model object**. This depends on the library you are using and the format you want to use. Models can be serialized as pickle (pkl) objects, ONNX, hdf5, json, pmml, etc. \n", + "evaluation = model.evaluate(test)\n", + "print(f\"Test Accuracy: {evaluation[1] * 100:.2f}%\")\n", "\n", - "**(Optional - we are going to skip Functions)** you can also generate the following files for the deployment of the model through Oracle Functions: \n", - "* **func.py**: file containing the definition of the Function's handler \n", - "* **func.yaml**: description of the container running the function \n", - "* **requirements.txt**: Best guess at the python libraries that will be needed to run the model in the Function container. If you wish to deploy your model as an Oracle Function, double check requirements.txt carefully. " + "evaluation = model.evaluate(train)\n", + "print(f\"Train Accuracy: {evaluation[1] * 100:.2f}%\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "In the cell below, we are using the `prepare_generic_model()` function to generate a template model artifact. This function can handle any model trained with any ML library. You just have to fill in the blanks. The following files will be created under the `artifact_dir` directory: \n", + "# Transfer Learning -- VGG16 Model \n", "\n", - "* `score.py`\n", - "* `runtime.yaml`\n", + "Rather than defining a model architecture, we can also use transfer learning to train a model. Transfer learning uses a pre-trained model that has typically been trained on a large dataset as a starting point for training another model. We are going to use the [VGG-16](https://www.robots.ox.ac.uk/~vgg/research/very_deep/) model, which is a convolution neural network model trained on images from the ImageNet database.\n", "\n", - "Since those are templates, next step will be to modify each file to ensure that our model can be saved to the catalog. \n", - "\n", - "In the `prepare_generic_model()` call below, we set the value of `inference_conda_env` to be the published conda environment path on object storage. The `inference_conda_env` parameters keep track of which conda to use for model deployment. This is the same environment we used for training. You can find the path on object storage directly in the Environment Explorer in the card of your published environment just like the following screenshot shows: " - ] - }, - { - "attachments": { - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAJiCAYAAAChJDR3AAABRmlDQ1BJQ0MgUHJvZmlsZQAAKJFjYGASSSwoyGFhYGDIzSspCnJ3UoiIjFJgf8rAzMDIwAHE5onJxQWOAQE+QCUMMBoVfLsGVAcEl3VBZnlzOfawVj2cu7n62MG9H6NWYqpHAVwpqcXJQPoPEKclFxSVMDAwpgDZyuUlBSB2B5AtUgR0FJA9B8ROh7A3gNhJEPYRsJqQIGcg+waQLZCckQg0g/EFkK2ThCSejsSG2gsCPC6uPj4KoUbmhqYeBJxLOihJrSgB0c75BZVFmekZJQqOwFBKVfDMS9bTUTAyMDJkYACFOUT15yBwWDKK7UOI5S9hYLD4xsDAPBEhljSFgWF7GwODxC2EmMo8Bgb+FgaGbYcKEosS4Q5g/MZSnGZsBGHz2DMwsN79//+zBgMD+0QGhr8T////vfj//7+LgebfZmA4UAkAjSJhIp4nn0AAAABcZVhJZk1NACoAAAAIAAQBBgADAAAAAQACAAABEgADAAAAAQABAAABKAADAAAAAQACAACHaQAEAAAAAQAAAD4AAAAAAAKgAgAEAAAAAQAAAnWgAwAEAAAAAQAAAmIAAAAAqn4c/gAAAgtpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iPgogICAgICAgICA8dGlmZjpSZXNvbHV0aW9uVW5pdD4yPC90aWZmOlJlc29sdXRpb25Vbml0PgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICAgICA8dGlmZjpDb21wcmVzc2lvbj41PC90aWZmOkNvbXByZXNzaW9uPgogICAgICAgICA8dGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0aW9uPjI8L3RpZmY6UGhvdG9tZXRyaWNJbnRlcnByZXRhdGlvbj4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CtQK6igAAEAASURBVHgB7J0FnFXV9sc33d3dLaAgNgoiiCh257Ox9W/XU9/Tpz772d3d2AFISDcIIt3d3f/13cO5nrlz78y9U8wMv/VhuPees8+O367fXmvtfQrtNnESISAEhIAQEAJCQAgIgXyNQNHo3MPx1q9f7zZs2OA2btwYfVu/hYAQEAJCQAgIASEgBHIJgUKFCrly5cq5smXLujJlyqSbaipSt2r9CnfPW7ek+4BuCgEhIASEgBAQAkJACOQ+ApXLVXUP/uPxuAkXDu6goZNmLkBDn0JACAgBISAEhIAQyFsIZMTVIqRu165dInV5q+6UGyEgBISAEBACQkAIRBDIiKtFSF1G7C8So74IASEgBISAEBACQkAI5DoCGXG1CKnL9ZwpQSEgBISAEBACQkAICIFsQ0CkLtugVERCQAgIASEgBISAENh7CIjU7T3slbIQEAJCQAgIASEgBLINAZG6bINSEQkBISAEhIAQEAJCYO8hIFK397BXykJACAgBISAEhIAQyDYEROqyDUpFJASEgBAQAkJACAiBvYeASN3ew14pCwEhIASEgBAQAkIg2xAQqcs2KBWREBACQkAICAEhIAT2HgIidXsPe6UsBISAEBACQkAICIFsQ0CkLtugVERCQAgIASEgBISAENh7CIjU7T3slbIQEAJCQAgIASEgBLINAZG6bINSEQkBISAEhIAQEAJCYO8hIFK397BXykJACAgBISAEhIAQyDYECu02IbYdO3a4efPmuVq1amVb5IpICAgBISAEhIAQEAJCIHsQ2Llzp1u+fLlr1KhRzAilqYsJiy4KASEgBISAEBACQiB/ISBSl7/qS7kVAkJACAgBISAEhEBMBETqYsKii0JACAgBISAEhIAQyF8IiNTlr/pSboWAEBACQkAICAEhEBMBkbqYsOiiEBACQkAICAEhIATyFwIidfmrvpRbISAEhIAQEAJCQAjERECkLiYsuigEhIAQEAJCQAgIgfyFgEhd/qov5VYICAEhIASEgBAQAjEREKmLCYsuCgEhIASEgBAQAkIgfyEgUpe/6ku5FQJCQAgIASEgBIRATARE6mLCootCQAgIASEgBISAEMhfCIjU5a/6Um6FgBAQAkJACAgBIRATAZG6mLDoohAQAkJACAgBISAE8hcCInX5q76UWyEgBISAEBACQkAIxERApC4mLLooBISAEBACQkAICIH8hYBIXf6qL+VWCAgBISAEhIAQEAIxERCpiwmLLgoBISAEhIAQEAJCIH8hIFKXv+pLuRUCQkAICAEhIASEQEwEROpiwqKLQkAICAEhIASEgBDIXwiI1OWv+lJuhYAQEAJCQAgIASEQEwGRupiw6KIQEAJCQAgIASEgBPIXAkXzV3aVWyEgBISAEBACQkAIpEVg586dbu7cuW7q1Kn+c9WqVW7Lli1u27ZtaQPn4pVChQq5EiVKuFKlSrlq1aq5Jk2auJYtW7patWpley4K7TYh1h07drh58+blSCLZnmtFKASEgBAQAkJACAgBQwDSNmrUKDd06FC3fPnyfIFJkSJFXL169Vznzp1d27ZtE84zxJUyNmrUKOYz0tTFhEUXhYAQEAJCQAgIgbyMAARnxowZ7rvvvnNLlizJy1lNkzfyPmfOHLdgwQI3YsQI16tXL1e7du004ZK9IFKXLGIKLwSEgBAQAkJACOxVBLZu3eqGDBnifvrpp72aj6wmjpX0r7/+8uTuxBNPdB06dMhSlCJ1WYJPDwsBISAEhIAQEAK5iQB+cr/88osbPHhwbiabo2lt2rTJff31147PI444ItNpafdrpqHTg0JACAgBISAEhEBuIoCG7vfffy9QhC7Ab/Pmze7XX391Y8eODS4l/Zmhpg4Aly5d6iMuXLiwq1ChgitXrlzMhHbt2uVWrFjhd5uw26N06dKuSpUqjoym57xI2PLly/u4Y0Yc4yJpsbMFVsvzZcuWdZUqVYqExF69bNkyt3379pj3IwH3fGG/yNq1a926dev8lWLFiqW7aYT4Fy1a5PbsM0kVHfkBJ8qUnvAs6ZFuohLkKzq/PA/eVatWTTcq8r148WIHfgh1yjMlS5aM+xwYzpw5002ZMsVj3rx5c9e6desM04oboW4IASEgBISAEEgSAeYvfOjyu8k1vWLDab7//ntXs2bNTPnYZUjqNmzY4O6//373xx9/uKJFi7qOHTu6J5980n8PZwywJ06c6G644QYHEaxcubJ/DmIzZswYd/PNN4eDp/kOESpTpoxr0aKFO//8891hhx2WJkz4wsqVK91ll13mnSPJ13777edefvnlSBCAefvtt92XX37piUvTpk3diy++6MlfJFDoC2T0uuuuc7Nnz/b5OPPMM12fPn1CIVJ/JfyFF17oSWXqOym/2NlSvXp1v225U6dO7uSTT3ZcCwt5fO+999w777wTvhz3OwSsWbNmPjz18vrrr7tPPvnEhwe/Bg0auHfffdcVL148ZhwQObZ6X3755RFSBxG+++67/Q6c6IfWrFnjMf3hhx88MQ/fpyykd/XVV8d8NhxW34WAEBACQkAIZBUB5syCTOgCfIJyXnzxxcGlhD8zNL9WrFjR3XTTTf58FRz60NZ8+umnaRJYvXq1e+aZZzyhQ2PUs2dPd/DBB6cJF+8CmieICgTwnnvucS+99FK8oH778oQJEyK7XcjX/Pnz3aRJkyLPoE2EHEKsIDMLFy70BCoSIPQFACEuELpgmzGELSsSaMQGDBjgnn76aXfXXXc5MMopAT9I2LBhw+ImgcZ04MCBEUIXLyB44bgJQf/iiy8ihA7iGBBGyjdr1ix33333+bpCmycRAkJACAgBIZATCHBsybhx4yLzfk6kQZzMc3AY+AubFrC6JSOcRcezKHJQDqGgQsmVjARHzIU5TaLPZ6ipg+Sg5brkkkvc888/74kX2iHOVqlbt65PZ+PGje6zzz7zWiDCc7DelVdemSYP3GvYsKGLZp8QBDRfEA60fcT3zTffuMMPPzzm+S2QMJwkEbRXCNd+/vnnVOE55O+KK65wDz74oL+PSvPYY49Ndb4LZAjzMhozBDJ46aWX+kr1FxL4j0pHy4cJE0KEWRjCwx8kmMaIQydbrp977rmY5mvMqm3atHEHHXRQ3BRpbJiz4wmkbdCgQe6oo46KGYT7+CJkJOTzlltu8bigBaU+L7jgArf//vs7SP60adN8eT788ENfVx999JE3ud94440ZRa37QkAICAEhIASSRoDNERz9kdPCXAyZO+usszzfefPNNxNykYKL1K9f3z8XcKMgryh0UJCMHz8+uJThZ1DeZM6wI9IMSR2BYJ69e/f2gI4ePdoTsGeffdY98sgjnsQwyX/wwQcE9YwUDU8sHy1ICea+7t27+7DR/3FOyx133OHQwlEgAIguUFgjxQnN3F+/fr3XLFHhkDtYNsJ9dpHAmrkHsK+88op7+OGHI0nzLIQOvzbCQ6qOPPLIyP1EvlBWiFS0Dx1k7rfffnNPPPGE16JxHg0Ve9FFF6WJlobUrl07TyjT3MzgArjyF6xkKFO03yPEmcOlIZpBeAhotECoySNEN2jc//73v1OtVjB1YybHr+6BBx7wxK5fv37uhBNO8AuA6Dj1WwgIASEgBIRAZhFg/mL+TM83P7Nxh59D8dS4cWN33HHHhS8n9B2/fogghC7gKfARzp6D95xxxhnezx9f/ESEMqNgwQc+mTdPZGh+DRJHGwVZg7gE5IED/yBKTz31lDe74hN30kknpSFiQRwZfUKq8NlDggJFP4O2CZMmfnuQTTRvaA0DECFRYSHfaA0JS77ZVYI2C0HFOX36dG96heiwYeCqq64KP56l75gqjz76aPfPf/7TxwNhwswL6cpOIZ327dt7DDBhx9rmHZhewYnwEMhogeTR4NC6IqiMb7vttlSELngGwnfggQe6c845x1/C9Pvqq68Gt/UpBISAEBACQiBbEGDuZq7OCUHDBvE6++yz3fXXX+/9xKMVNBmly3zIa78gdLgijRw50u8pYP8BFi0EDgIfSEYyU+6ESV2gWgxID7s22XiA5gv/K8x0rVq1iqmFSrQQELlgpy2MuUaNGmkehZygFYKEQdiOOeYYryUjf7Bi7oWF6w3N5EuFIRAq1KmQQsoAESFdCOlpp52Wqd0m4fSiv4MLlY12C0IFCabCs1MgwxAsNJTgE4/U8QoVGh/m9FjMH+0oPnnEQZwHHHBAxMQeK7+kB6kGOxofmzAwo0uEgBAQAkJACGQXAoHffCLxwQ0gZSgczj33XMeBvvCJQJjbsKxx79RTT/UuTbg14e6Flo7nk5VgvuQ55s/+/ft7KybzIptM0TIy92LhiraipZdWMuUO4kmY1PEAZkaYJuZJCAoTOIflAQKgsKEicKQPEkjmE01W4PNFPJj3wkIBMR/C2AERuzfEAg0bpAmGjCmYF/qGBdJxyimnuIZG7iBwmCHfeustfxo1jpcQL3aVoh7NCSGv+KMhlAF1arSAJ/mHdMb7QwtH/qMF/CkjZuZY5Io058yZ48vNaiGeeTncgMgzRDE9IV0aaFBP5J90JEJACAgBISAEsgsBrEgoRBIR5lKEI0EOPfRQd8ghh6RSTjBX9ujRw1/neC5cr7A04VrGH25fnK6RjEAa8TdHIHXhV5YF8y/3UDKhjEpUkil3EGdCPnVBYD7JEMdYwD6DggMStmQ0QOlJQATZsBAWNET40Q0fPtyDC3mENUeTimAzBM9CToINAQFRYZMFYdjyzAaJsGBKJN/47EEe33///YgPHKye40uyQkjDaUV/p8KDM/TC2shwOBoCatpAVRu+F3yHOD/++OMREhVc5zNQ7WKahvyx6QTNI0LcXEeoq65du3ptpb8Q+o/Gx4oCgeiyczgjoWxBuIAURtdbRnHovhAQAkJACAiBeAjAHbCuJSqEhaOgeQtMoyh7mNewUjHnEybYyMjpGRyBhjBHMnemtykxOh+QNUgdJAwOwmcgfA9croJwwTwbhIn3mWy5iSdpUod2JjjoNyB1AFWvXr14+Ypch9CgycG5Pp6g+TnvvPP8cSTRYSAr+MMBDIAH5AESiF8dpmAIDO+DY7cu+QqEikVbxiYNSB8VitMlz0JyAk1aED47PwPMiJMKTuaw4UTzASHFrw5cMCuDU0DqIM1oQNG+sbEkIJjRcZO3oE7BOF648HOEC/wPqF+ZX8Po6LsQEAJCQAhkFQHIDVaoRAWrEYTt+OOP98oaTpZg3g8IHvEQX2aODInOA/M7XANexBxK2mEh7yg8kPB8GQ4T73uy5Saev1lPvFijrkOsOMKCU50DgURw8G96hCEIi2YnWiMGuIFZES3ajz/+6AlK+MW2EBN2sKImxeTKLlUqCAFUNIj4gBGGN0ngGwbRCwvk4x//+EckHgBGRcshxoFwHMn999+fSn0a3EPbx6YHnCqTESoajBDSjLUCABPyn9473yCgsXzhgrygreN5TOK8AYLVAH6J+DyiDmYl0aVLlyB4mk/qhmNgWNFQHwHBSxMwdIFwgVqc58FTIgSEgBAQAkIguxBgjmeOTJTYBcoT3LWwIDJ3MxfCI3AXgizBJaJdtTKTX+IiPeZC8skcHxau8YckS9KCcofjy+h7UqQOtgmzhdSRGKQKEsDBvqgvOYPt3nvvjZsmbBaNGOfdhQWtGcQDTRubCPB5Y0ctmxggMggauOBsOsJzJh2O/4EAKpWEoP7k/WnRpI48k182V7DDk7ghOVR4IFQMZIgyRQvxRrPw6DCxfpO3QIMFBoG5MhyW6zhRclhhZgWy261bN0/qwItNI/gSYoql7BBfzNrxOgZ5QOOKXwE4hP0C4uWJcJBohPaQiMY2Xly6LgSEgBAQAkIgGgHmLyxN8eau6PD8JiwuWZA6CCEbFpnbmX8D0ytzc3YI8yDKDRQ2zMNhIe8BjyG9ZCx1QbnD8WX0PTWlzCA0xASyBbnD7sx5a7wpgckckNh1GRCvDKJKdTswC0IIAZyCoyWC6CH8hjgEB/cBIHnBlBv8QQQDbRh5wUcvlqYJkNAoIXyHyISFstAIaADRf0HjCIdP5HugZSQs6dWpUyeRx5IOQ9wcFMzruyB1mFxJG/JLo8JcHTSuWJHzPIcnIsFzscIF11h1gDG+CwjPN2rUKLitTyEgBISAEBACWUYA7Vci7kDhhCB1bJyEL0DqcE9iYwTCvewwvQbpkQZkDU4BqQsTu8ACRthkSV1myp2a0QQ5jPGJox+OhIGzIYQHUgeBwncL7R2kCu0a4MXSRsWINtUlCAc7Vfr27euJI9oyzlNDQwZZBLhgVybHp0QLecH8ChnETIw2LzhHLTpsvN+YKP/73//Gu530dRrPqFGjPPmkgsCFMuaUBJtGeAcsrz3j3bf4DqKNxHcwPQF/NHlv2c5gGig+CWAZdIToZzGVf/vtt74NBPWSzM6e6Pj0WwgIASEgBIRANAIoDLACobxJVFA6wFuYw+ALKDyY37mOVg3rYmYEksaJGwgkjbjgJpzxShoQSE7jwOoIyWOfAFY40oXLBO5KiaQdlDuRsEGYhEgdJkcO7f3qq6/8cxAEDiJGq8Uf572wcxWtGcd18A7YB+3VXBQoGQGsgI0DVmBORevEuS8IfnHXXnut39USHTekDk3Rv/71Lw8eOz6TJXXRcWblNxX4+eefRw7lxZGSw5mp9JwSSB0mZXb30qB5WwZkErNz2EcxVvrUF+HAjHfv0vgeeugh/xf92hM0efg+Uj6eo954vZpECAgBISAEhEB2IsCcybFjwZFnicYNJ5g8ebIndcE8GFyDY2RGmOt4Pz2CIgu3M87XhQOhsGEO5vxW0kO5xDFwKEwC61kyLlxBuZPJZ0KkDtMnZldAwOzKgX1h7Q0kj5OYeV8omikYKto2CEwyAgjBwXykhbYoUJOitYO1NmzYMCahIx20RWw2gI1DCLGfY1OP9faEZPKVUdjgiBQqjnyz2QKCy6oi7G+GdpPXrcUSyomZNJbJOBweUsvxK/EEDNlMgTMojZl4qTNeKhyYneM9y3XUxrzui51CaPpY5UCiqUtwxNkUtTUbUdCeBm2CAx5zyqycXn51TwgIASEgBAo2AsxdKBZQOiTzqjAIFHMYnyigEEhd4DKUXagxD+ISxhzOUWtY5DjFIxDuwwWwJCYqlJmNh+ltjowVV4akLjCpooGDVKFGDGeWSAGLCZ+JH3MfGqJ33nnHv/Ir1lshYmWEa2h8ICAIlQApgt1iRkWC3Z3+R5z/0IbBltEioSnj2ZwmdbDxt8xkGU/IN0QJ4htPS4efIjuKw7uKY8UHnhdffHGaHTbhsBAzGhakDiF9VguJCqrlp59+2j366KO+kVL3aO6ihfqCQHMmYHB8SnQY/RYCQkAICAEhkFUEUJpwwD4uP4kKJk/mZ3zrgrc6oXTJrOk1vXThG998841X6vDuWPKLQCLZfIiiCwtXohKUN9HwQbh0SV2gPUJrgwRm11jEBA3bBRdc4JkotmXUkWj3MN8lKsSLhgltE2lDSv7880+v1iQOyEpG5CQgMJA6AERriCYtIIuJ5iUr4QKNY7DholOnTv5k66zEmcyzNAbeGvHaa695Wz++CGHNakZxQdZYIVB3n376qd9NC7FjtYEE5JtOgtYwln9jRmnovhAQAkJACAiBRBGAH2CJgyAlcjJDEC+kjiPXEhX4Akop/mIJGrnrrrsu1i1P4HAV48QJ+BKKMDSLwTl1MR+KcZHn2LTIMXHJSiFjsv6dGiSKZixZVV+yCSp8/kMgWO3wblfMw2hr2WGbiDk3/5VWORYCQkAICIG8iAAbElD0BG9/yIt5zI484WbFCxRinYkLBhDFeCdNpKupy47MKY78jwCaOTSxHPgsEQJCQAgIASGwNxBAkYAFjI0IgQVxb+QjJ9PEItmrV6+YhC6RdAsnEkhhhIAQEAJCQAgIASGwtxFgQyRHb0W/XGBv5ys70sd9jJcjZHRSRXppSVOXHjq6JwSEgBAQAkJACOQpBPAb79Gjh/ezLygaOzR0nCKRFUJHJYnU5ammqswIASEgBISAEBACGSGAxq6LncnKUSffffddUpsnMoo7N++zKaJx48ZZMrmG8ytSF0ZD34WAEBACQkAICIF8gQA+dmzcY9MAb27inLhkzrHbm4Uk75xMgRk5M7tc4+Vdu1/jIaPrQkAICAEhIASEQL5BgJ2hvMqUkxr45Ew6jjbjiLS9KWw2RLOIzxwHKPM6MV5GkJnTRrT7dW/WpNIWAkJACAgBISAEcgUBtF+YMvnbV0W7X/fVmle5hYAQEAJCQAgIgQKFgEhdgapOFUYICAEhIASEgBDYVxEQqdtXa17lFgJCQAgIASEgBAoUAiJ1Bao6VRghIASEgBAQAkJgX0VApG5frXmVWwgIASEgBISAEChQCIjUFajqVGGEgBAQAkJACAiBfRUBkbp9teZVbiEgBISAEBACQqBAISBSV6CqU4URAkJACAgBISAE9lUEROr21ZpXuYWAEBACQkAICIEChYBIXYGqThVGCAgBISAEhIAQ2FcREKnbV2te5RYCQkAICAEhIAQKFAIidQWqOlUYISAEhIAQEAJCYF9FQKRuX615lVsICAEhIASEgBAoUAiI1BWo6lRhhIAQEAJCQAgIgX0VAZG6fbXmVW4hIASEgBAQAkKgQCEgUlegqlOFEQJCQAgIASEgBPZVBETq9tWaV7mFgBAQAkJACAiBAoWASF2Bqk4VRggIASEgBISAENhXERCp21drXuUWAkJACAgBISAEChQCInUFqjpVGCEgBISAEBACQmBfRaBouOA7duxwM2fODF/SdyEgBISAEBACQkAICIE8gEChQoVc6dKl4+YkFakrVqyYa968edzAuiEEhIAQEAJCQAgIASGwdxBA+TZ//vy4icv8Ghca3RACQkAICAEhIASEQP5BQKQu/9SVcioEhIAQEAJCQAgIgbgIiNTFhUY3hIAQEAJCQAgIASGQfxAQqcs/daWcCgEhIASEgBAQAkIgLgIidXGh0Q0hIASEgBAQAkJACOQfBETq8k9dKadCQAgIASEgBISAEIiLgEhdXGh0QwgIASEgBISAEBAC+QcBkbr8U1fKqRAQAkJACAgBISAE4iIgUhcXGt0QAkJACAgBISAEhED+QUCkLv/UlXIqBISAEBACQkAICIG4CIjUxYVGN4SAEBACQkAICAEhkH8QEKnLP3WlnAoBISAEhIAQEAJCIC4CInVxodENISAEhIAQEAJCQAjkHwRE6vJPXSmnQkAICAEhIASEgBCIi4BIXVxodEMICAEhIASEgBAQAvkHAZG6/FNXyqkQEAJCQAgIASEgBOIiIFIXFxrdEAJCQAgIASEgBIRA/kFApC7/1JVyKgSEgBAQAkJACAiBuAiI1MWFRjeEgBAQAkJACAgBIZB/EBCpyz91pZwKASEgBISAEBACQiAuAiJ1caHRDSEgBISAEBACQkAI5B8EROryT10pp0JACAgBISAEhIAQiIuASF1caHRDCAgBISAEhIAQEAL5BwGRuvxTV8qpEBACQkAICAEhIATiIiBSFxca3RACQkAICAEhIASEQP5BQKQu/9SVcioEhIAQEAJCQAgIgbgIiNTFhUY3hIAQEAJCQAgIASGQfxAQqcs/daWcCgEhIASEgBAQAkIgLgIidXGh0Q0hIASEgBAQAkJACOQfBETq8k9d5XpOd+3a5ZYsXe5+GzLMrVi5OtfTz80Et27b5oaNGuvGTpicm8kqLSEgBPIoAhoT8mjF5EK28nPdF80FfJREPkWAhj1o6HA38Pfhbsvmra5n9y5JlWT37t1u46bNbs3qNa5WrRquSJEiST2fm4E3bNzk3v7gE1elUiXXof1+SSe9c+dOt2TZClemdClXsUL5pJ/XA/kbge07drjZc+a5cuXKuVo1quVKYVh0LV+12q1ft8HVq1PTlShRIlfS3VcSyeqYsK/gVBDLmZ/rPtdI3Zq169yjT7/gVq9dm6YNFCrkXOmSpV292rXdaSf1dPXq1kkTJjMXtm7d5voNHup++OlX16ZVS9fnkvMzE81ee4b8DzJCNXr8JLdq9WpXrmxp17RxE3dir2Nc2TJlEsoXxGrtuvVu6IjRbsLkqW71mjWuRtVq7qjOh7gDD2iXUBzJBILcTJs+273/6edeu7d9+/aUx62Sy5Ut4448/BB3Ys9jXLFixfx1iOPAISPcF99+nyYZaxaucNEirkrFiu6Adm3dycf3cIUsni1bt7qf+g9yP/06wNpKbXfnTdemeZYL6zdsdK+/97GbNWu229+I2iXnnRUzXGYvbty0yX3w+ddu0uQ/3caNGx1YI0Utzw3q13Nnn3qSa9KofmajzxfPrVu/wT3/2ttu+YoV7qTjjnVHHXFInsv3uvXr3Vff/exmzZ7nNm3e5GpUr+b2b9vadTvqiEheqcvPvv7e2syGyLXoL0UKF3H169Vxx/c4OtWtbSx+ho1yH1tbaNG0sbvl+j6R+7SJeQsWuhdef8cd0LatO/u03pF74S+J5DEcnu9r1q1z/3nsf65wkcLu5qsvd3Xq1LJxYo37+oef3bx5i9ymLZtdLSvroQd1dId06hD9uIOITrIxYcCQoW75ypXWbou5xg0aWPm6eozSPJDOhfTKSX8dYOPwzNlz04nB2fhQ1l10zunphom+Sft76Y13/eLxmssudNWrVY0O4n8zSb//yZe28FrmbuhzaY4svDZv2eJ++GWg+/Ov6W7N2jWuUoVKbr82LXx7KVw4tVEMQr5w8VL39fc/uyVLlrid1k7q1qrlOh92sGvXpmXMMnAxmXL4+WPoCG9pOfG47u7gAw+IG2+8G+nFkV31Spu968H/ukKGQSUb6++46WpX3hZHsYT8DDDL0Vff/eiKGKaNG9RzN1/Xx2U4j5hCoVTJkq5Z44burFNPzJH6j5XfvXEt10gdjZhBaJtVSizZumWbJxwz58xxZ5xygjvSGneiApGY8ucM98xLr/nB6KF7b/OP7rQ01xqJ2bxlq5HJNYlGlyfCQcSeev5VPyEEGVppq/I58xa6UePGu2sv+4dr0rhBcCvmJwPtnPkL3KNPPe+2bdtDrizkipWr3F+zZrmJf0xxl5x/dsxnM3Nxi+H8/S/93Xc/9YsQHEgYGrodNoGstwH4e7s3cfIUd9fN17kSxYu73bt220C1IW67cFudW7Bxs1u4aImR0inuvttvdDt37nIrzRy8xdrS+vUb42aVdrFi+Upf/2vXrI8bLtkb4Dp/4WL37Ctv+HwEzxc3ospEuWPHTjdz1hz31AuvuNNPPN516XxoECRXP+P1i+zMxK5dO63frnX033XpEKLsTDPRuBhz5sxb4P77zIvW/v8ed2j/U6dN9+b2O2+6xrdP2u7vw0f5dhovftrykqXL0pC6TZu3uAEDB7tSpUq6rp0PT/X4BiP7n/f9wa2yvjvP+mK0JJPH8LPU7fwFS6zvbPREs0bN6m7UmAnujfc+ctuChZQ9sGLFShsb//La9ttuuMoviohnIyTns6/c8JFjwtG6RdbPxk+a7M48pbc74pBOqe6l9yO9coLtECMXi82VIz2pUrlSerfT3NtsuH//a38jUTOMBJR1q6wdxiJ19FcWHaPGjvcLS+ah7NSmB+PBUy+86taa8iIQXFamz57t29Wt11/lqlSu6G/RFodYW4Nk8mwgSw2fSVOmGgk/MCa5TbYcLFS+NYXGdhv7Fyxe4hKfUYMcWTtJJ47sqlfKtc3aCMJY8nO/Qe70k4//OxOhb5ttoTJg4O9+vqA/rrE5BclwHrEwm81qNMII5Oy58124PnwEBei/XCN1AWbFbSJn5djbtDUIg9oyWyWOGzfZBp5hvhF993N/d6itLANtTvBsvE8aBasG4tptf/ldWPH9OmCIJ3QlShR3h3XqZCu+ZkbmJrkxYye4dUb43vjgY/fQPSnkNV55IYGP/e8lt337Dr8COvzQTrZ6LO8GDBrmFixaZKTuTzdj5mzXtEmjeFEkfJ2BaujI0e7bH3/1E0dtM7deeuG5rlH9up7k/DVjpteuTfpjqltkK9RnX37L3XLdFanir1ypoid7wcXNRhRmGcn/pf9gn9+ly5a7z02bclyUpiQIn1ufaJ2ffP4VXw8lS5Zwx3Q50h3XvYtfCULG0Ur81H+g22SDyFff/2SmsdoZEvCcyHtB6xfJYoQW59W3P/SErrSZxbt3Pco1qFvLtNZjTfs9wS0wYv7BZ1+7C8461dddty5HxFwkoB0YZ0SnsE0iNWtUT5UNMKY9YHqvaVqxjge09RP1BtMS/2HE8VfTKM+aO8+IY2pNTRBJMnkMnuETt4YffunnaH8Hd+zgF0xvffip22aLiooVKrjje3bzGu5+g353f0yd5iey9z/9yp1/5imeuE6ZNsMTOvJVv14917NbF28NgASQ976mQWq/XyuvPQunG/5O2RMpJxqSbl2P9JrS8PN8Z2z6c/p0H08JK0uiwoJ9rpHkX4wAxBOI76Ily8zaMcINNjcS5oecEBar7370uSd0pUuVcrSjpo0a+TaDpYVFxAuvv+3uvfUGnzyaqY8/7+u/V7IxDw13sWJF3Y9meZi/cJEbO36ia7dfa9PstvZhkikHdcK4P3rcRPdjv998uyiZpFk+0Thyol6ZRybYHBGL1KX0tfVeq5xePUbPIzusHSxdvsINMovQGOv3a4w4fv3DT9luuUkvT7l5L9dJHey6tHVygA+kapXKrmHduqaC3uV+swlxqxG0ubbCzg6yEaQR/gw6d7RKPBwm+E7YRMKFw/M9mWeCZ4NPVkCDh49wEODDDznID8Tca9m8mR+ov/u5n2lGtrqNmze7MjaIxBJI7lBbhW+x1Wy1KlXc3bdc68qXT/H1am8Dxt2m7iaOkUYSswNnzAJffvujL3cDI3K333i1Q3OFYI5s3bK5q12rppngX3RLzQSyZOlSb+oqZiafQNDohdsF1+vUqu5at2jm7nrgEZsAtvuV73HBA3vhkwmeDRUQa0zgF5x9muvUoX0kJxXKl3MnHNvN8l3LvWgDOavDnwcMclc1viASJvoLg3a0vyEDGH0lEQGXRBdA6cWXaFsnb/xlpY0H+Ug0zSB8omUlf2tNI0NbK1OmtDe5BJon2jv3x0yY6KYY4UEgfWeZdipaNlkf+/zrH/xisVbtWu6yC1NrtiFXP/36m2/rbVq18FpkFjAspjKSZPMYjo8xcoaZMytXrGBjxIFeG7TFFoN+Qrvlen+d8E0aNXAvvfWe+9NI3DTLF8Ji42dbdNC+atasYWTjen8dnVHb1i3cP//zhNfk/TZ4uOt9XMri2wcI/Ye2PNFysjA9uvNh/i8Uhddqj7ONSaPN8oDm7OpLLgrfTvc7/e9FM7v6dmjjRrRAtKmDxUuWRt/K9t+0kZmz55g/belUVqbmzRq5mtWquY+++NqPF5gI0SgNHzPOl526useIXqA1bNm8ifv3Y894ItbvtyGe1CVTDur1s77f+zk0s4VMJo6cqFfqc4Np/Geaq0S06wo4M5ZmJLHmkepVq7j6trheYQok3CHmzV+YUTT59n6uk7p4SGG66Hbk4b5Boi4ePnqce8LU2UySN/S5LJXzMRNrfyN/3/z4ix+wt5lGhwENgZFfdfNdrob5Vtx2w9WR5FAjv/7ux2aiGOfNEwxorJIYyMOTMhMsPmFvf/SJOfiv9Z2vqJGT6tWquNN69zLfrjY+zsC2/4OZG1lVVTLChK1/k6WDRMdNg/yi74/u95Gj/Er6zhuvipAs/0DoPya6TUaSypgPWpfD/zbdlTQyfOhBHRykjjDr1m2IT+qMsA03zRkdr0P7tqnSAtNbrr3KmyQaNagbSjlzX8FixJjxfiIob3GfYz4LAaELx4iJ5PKLznGPPfuSH4zx8Ttw/4z9+ooVLWrahLqmtZtrHT4F33C8ufmddkSdQ2hq166Rqu0E+Shq+W1lA/QB7fbzZr5V5gIQTILPmf9Zk4YNjGT0dq+8+b5bZu21fv063i+QuD/6/BtPNiDcpFHDnO67HnFoKv8vCHt/08D89OtAb35jILQZOuKzeFrv48wUtcY98PBTMfvF/Xf8n88qk8zgYSPdN9//4uPhYkUjCeT7vDNOTkUqg/Y7YsxYTwogAPhI7t82pT/4CBP4D7MffogTJv3hMJ8hpY10tW3Zwl103hkpJnkrzyKbjP/z5HNGjmu4Hl27mEbtS68JoaxljEwfZe4ZsVbzQRZok2PMF9XHb5NtQOj4zeR7wnHdPM5bDIMFCxa5uuabGS2YMUePnWia19/NdFbJXXvlJWnIM5qFcZP/8BtkepkG2S9aS5d01aun+HYxia83E+l2Cxctmc0jmvxBv4/0msNG5rtZuHAh02Qv8T5G1WzygugFQv/vaP1/6p/T/SKO62guFixe7MeGA9r+vSmIJQTYNrS+NtcmvqmmQYtH6pIpZ5CX8Cf1iEvF6+986OvjTBszatsCDkF7+cKrb7t5Zk2ob/Vyx43XhB+1tko/6Wtte6v5SrdI5aISBETz1cj8WXeaewCyC5cN02Blt3gt0B6zMguDsNsQ7iVobj/+sq9fkGL2q2Wa3sl/TPOa22o2RwWEjnyhdT3i4E7eZIqPI5JMOYrY4rm2kfSg7VFmSGEyktU40qvXjPIBGathJBhTuV8IN0rtA09/GW/jRhBusSkGkhX88Gi7zCkFVfJMyZhgqDCESbGusWoGxDVr1rlfjJ1faBqRQBjUBpupdqf5LlUuX8HNWDnHkwTu06iYEIMJg2sQoEWLlvo/flOh+D7h5/KBmSRq2gDM5gwaDWTxs6++jcQX+Enha/LqW++7o825+vSTetlgscutts0LOOOPNAIabAiIFzcdjE0i5G1bya2WfnxTQDkjP30uudAVssG6jhGHQHDG//Lbn/0EDglOb5cd5BSfDgbpTh3bmal1qhs38Q/zAVvjGjes5w7ssL85TyfvOBvkJfzJ5Ddt+kzfWRik4mn+ICmNG9Z3Lz7xn8jjDMwZCQMnHZjOyMC3N4X2xWoWYhDtPxXOV1kjPNddeXHkEn52aFfQnM6xwf3xZ1/2JAVMfDu3wRffRxYlCO2INka7+9xW30xkJ/Xq4SeyH8xM880Pv6TEbZgUL17Mm7gxA+FvAtliIsfPifwi0f3CO1x//IWR8XH+fmEbUDEvrjbT0EBbnEA2b7r6Mo85TvzPvvy2rZ5n+7B+ULTwpDfYfKV8vSRg4sHsBFGj3yGUnb+N1ofQXsyeN880vNd4/yjaBVrOmbPmupdmv+P7MOMC7Zp+gIkbc13gxuEjDP23Y+cOc0Bf7uMHj7CQX7SsYIyv5zwzw8YidZTvg8+/8qbZLqZpqlYltc8X7X7ylGk+Dny5ggm6gZkzH7nvTp9koPnA/Bctmc0j2AwZMdITyWOP6WpkroirVrWyad1Mq20a8bD4vrN4mR8zwA+hLeDbDC4tmzUJB/eY1DdN++x5861e4i+gIJKJljNVAnt+QNze+fAzt8vy0qhBfTMh7x8JRh0vs4mdvsLO3rAwbuMjOHrcBF9eNlag3YoW+udlIX9hCN2dpu3PboEIFy1W3Hy5q3o8wvEz7zAGgzfY17b6YXG3Zt1aV7RIUdsYWCsc3FtmWrds5kndLsMAHJIpByTyGDP98ocEWj76dKKS1TjSq9eM8sCcBilGsznH2h/4MT4g9FO0d7QJNO+tmjf1c0JGcQb3qQM2QdGusYA1b9I4uFXgPvMEqaPy5s5fZD4AAz3ATFKtrHEf0LaNGzF2vHeEDSMPqVtqDvDskDnvrJOts9Q0wjLFm7vwa/nPfXf44DgwB0LjaGiD1Q1XXerwe5j610z37Euv2264zT7dyy8615trvvrmB/8Iuyqvv/JS79y63Hwinn3pTe/XNXTEKDN3dPIaRB/QGgudD7KSXtx+BWSrtBlG2CBtxYqlNRkEeYVIdtg/ZQXNxDHG/CMGmClkybKl3veEXWInH98zCB73kwEdDeZ3Pw9w4yakaC0IPHnqVG9+6da1s2kfs27MpPwrVqzymgL8ebJTqMOfzDeEyRETY63qKav57Ewj0bggWcvN8ZwBghU0GrdkhWchW6w2m5pp7OgunU0bUcdr/yB0aMous7bY2gYtNHf4QeHMPnDIcO9nyuTQf9BQjzXk+UYjXgzE7Gp+5MkXvIZushH4HubD9PLTj8TsF9QXAySErpT1hZN6dXc9jj7K7yDD/+gj06SxU5HFVFcjM5OMuEDoSOeIQw9y55oWb5ctuDC/PfPyG/E3uYTAof6+MX9LCB2D9/E9jnG9bJclmi52jpLmylVrbKL/3F17xUWRJ8GrimnUr7RFDouRhYsWu/+9/OYev6EJcUkd+QNnCBz9PVo8MbX2xNiDKS9awJ4ds2wwYvHUq3vX6CC2cNzsfjUzWemSpWwzzGFp7md0ITN5hBSwWYM8M0aBCQLh5y8s0Hn8hwYPG2EkoojXEgX3wbWwkcGqUUSVnbSVK1bybZyJNCeEeKdNn+UnbsaLc884KVUy9A0IKoI2Kyy0nzdsRztj6MXnnJHGbSEcNje+k9c2rZq5h/eQ+HCaKQTnE0+o0ZgyX7GwQXnAfFTBFsBhQYsUbBahXa5Zuz6yuSIcLq9+z6heM8o3Y1sDs1rQX7FUsZkk0Hx606v5p7IQa2g7tAsXgU7HFjZb/OeJ5yI3d9mCep1txoPY0+/r1K5pftlp+3PkgXz+JddJHdoKnMj7DRwSgW6HNWBWJggsGnNmdfOz41y0kUbqmBCYQJo3bWI7GU1LN3SUD1uhQjmbEHHEz3jwqWST5fV9LrHVaVn/bIN6tV0LmzjZBceOJTR7OBWzEsTX4SY7IiBYeVezvNx49aXurn8/6k2MX5nv2EXnnuHj4b+M4iYMTqWnmYaPv2SESW/M+Mluhu1WRWiUrLBrGZGNJwFx4L7XgE6c7CpULO8ObN/emTeU3wWGFmKQEYVmtoO2XZvW8aJK6LqfGDesN81iYVfONCCZFQhTnxtTCDlxUA6IKZ8IZuOz4hwJ4QPk8H+0M3a9IgzK0RNioskzeLVt3TKiyWOgH2hkCvPNiT17eEJHXKzSzzz5BO9funLVKiPn/Y3MH2vkqphhUdZhsoJoIcVMW9DQtvevNO3xxtBixt+M+g8t3Vff/uC1B/uZZgdChxDX4QcfaCvgZV5bh+/gQR0PcN9bupSXIzPOM0d7pIgNqs3t+I5rL7/YPfncy/5aev9ttn7PsToQc0y2EDrE+40e3NF2qa+z8v1qprQFnowFcbEqP/XEXhH/GjRiPY/p4t4zLWO8nfTBs7vMR5ehn7zHEtrrbmtf202rFxbaG87tw0aO9u4Nx3br4vtddBi09AvNjImrR1jTFA6X0fdk88iRLLQDnN87mbY9nkD+ps+clUK6bWHImIb/JxL0JxtKrB5TTwGFDLFgwYkWLScE3DCnM0E3szbEETNhwU3jNtstGi2QpDfMhQY58ID23iLABJ4XhQUaigB2/KIVPrHXsZFsevwN+8KF0rbLoK0ShgV9fpKM6jWRskB+29kGEaxfbLwLSB2LKzT5ZW086GHKiMlTpsaNjnF6xqzZMe+jMGlsi3Hm44IqqXt0LpUSErDN/lKJjTAVrDMfYxqG4ByoCuanxm4ztuX3sx2bkDr8iXCsZVDrmIA/FmlAhJgcwmffMJixAkeVz6AOmZtv2kJ2g0X7OhAH2sO2LVv6HU0rbIINJJG4g7CZ+USTcmrvY91htmN43sKF/swh/I2eeO4ld82lF8Y0dTIgbN2aMiCQPzC8/46b/IRKHsD3gUef8lq/b37sl2VSh9mO+kArCGHIisQayNCKNahf3112wVmelOOcvjeElXSgiUxZSWfuaAQGptONrAWC5gzyvmtXUSM+o9yI0WODW57UMpn59mm+XywgHn/wXj8xo9nqZ+ZWjk/BBwoNDvWdkXjNqq1aKUPKkTcvRB6B9G/atMXHz85GwrDogfBF+8+hpcCkhKkZV4j0ZKf1L1wU6NM9u6WQyCA8A2wXOzfxe9vNyW7IWXPm+4UL91PIS/sgqCeiDcznC0Fzmp7QD6AlfhKNEXC3kT4kmEiDICwiOQeRskMwgokluM9nRHNgk0TLFs3Ct5L6nmwe0fL8Za4OaHQDM1t0gmgZP/7iG795gvjRdPa59KLIIjXcRqKJG4gFi+SMW1J0yhn/Ju6ZdkgzmkbKcPqJiVkKWJwOHznWNofMcXXNbInPZ14U76c6dKR34WEsQ+vU+3g7Iy5kXvaN0jIfr136clk/Lhpnx3ReLHdm6zW6LOCFlQHrBNYfXD9Y+P1uC0JOtkApw+af9Egdi+Owaww4My/Nm7/A75juZ8cPTbdTHzgeqyBKrpM6rw0w8+VJx/9tKmCQiXWYLhV8jJmn3v3os4iNfZOdWYYalZVnd7uXiBA/K4D0xE9e1oBYPVWIcfAhExh+E4TDrh9IInEHYTPzCZFg1yh/mGQ7m/nr/kee8qafIdbQY/mvMUlVNC0mQrlZ0Yd3R6ZMooe6vmZeYuLOquCPBdlA47R2ffqOuRz58dwrb/kDkSlLd1t1BYLp4Z+hjga25DvQRgXhmGwgkjYqpvwFN2J8MvETNHrijhE0w0to2Di5H2EQ40iFihViazkhJ2yf/8AcunlLBeehBUI8gT8kBGuR+X4hxMmkFUvAggkDYjRq/ET30Wd9re5S+xsRJhFhkNtqBJy2jHaUv1jiB0MjCBBO/Ncq28Gg0QKu7MCGeMYTtEZovhB2QteJ8iXielDXaGbZGV2ubIrPC9fpe8kKUKC9hKSQ/1iCnyNmSRZsYQHniZOm+LbXpHHD8K3Id8jVaKsH3iByfI9ukevJfEk2j8GOdhp0/Tp10vSLQDvHrlA08eDGQrjPJef5yTA6b9Q/JuqwryB17v2RyRx/2Sy4U/yyZ+cti2w2diQi+IV99vW33nTPAb2cTYdQzmBBwdExRa09UmeJ9oVE0k40zDLrRy+/8Z4dHzPPp88mp8suODeiZfbxGKSMlzusH7MwCAvYc6IBwviW0ZwVfnZvf89svUbnm3pj7uLEBs695Mw6Fi+cIQm5a9+mVfQjaX5j4TgtxmKBsZPTHticw0KVI7KitcRpIsuHF3Kd1DFQMEkHZtD0MGOw5aykjy08TtODbKfewoVL/AQNyclOp3k6EVoxVq7hTRZB/tjosMo2OvjJx/KTU8LEPmHKn+79j76wzSK13P9dc3mqpHgVEEd84CgMqYgnDOh+QjS/mcqVUvu5oY2sYn4zCKQiq8LEyETN6oeNLel1FsrHLlb8qqLbAAQh+lqsvFE2diMjaLAYDGMN4sGkVciIeqls2mAByYSU4QbAkQ8cDxNLtm7baqTuD78JAHN5mFRC1ANJKUtl/5PB6MQTetjElJpkcDPF36ai+XUudm+885EvM2TxMFsgtWnZ1Ha8VXP9Bvzufvi1fxB13E+wKmp9q9COwq5921bmdNwiTVjMcKVKl/CEjd3fbObYsCntAgDs2UGanuCnFbgyQLJZlEVP5sQDocM8wqnyWRX8xVj4ke9YhJP0GOQZi2rsaUukCdFjRc+Ei7n/6KMOT5MV2tz0GbO8+bee9dHgUNk0ATO4kGweGZcG2cYUNBE9j0mt7fTjhvlSvvj6u96VhUXWuaef4ndfxsoGfZZyzDGtGWdJBkL551sbYzzMzvE1iB+CzevUICxt03lzQhCeT9/GjETTPnbYPPDBp1+Gb0e+f/blt14T/H/XXOY3vkVu5PAX8rfIFiKPPvWiX2gxtnF25Skn/G1yDbKA0qCs7Y5escr8wo1UhIWF4MxZs/0lxouwZSkcLi9+z0y9xisHpzzgu8tbI8ZPnuLbMItC+nOPbkfGeyzD64zdbAyi7W/ZusXMu2Nj1lGGEeXxAH/PLnk0o7Dz/W3iZBLl7B7OliptneboI5N3TE6viGxkYLs5JGfZ8uV+wA+HR5U+zVaHYRNc+H52fWfCLWEahjVGIOebSQ2H9rBAVFidsjMW01Q8YVCoZGRu+w7zRbDdlmGhLNNt8CCtsAYvHCaZ7wxiHEdDmqz8OZYjlmAW4rU4DILkne3+mRHMsY0bNfSPpuwEHJUmGnDC34YjZiBhDbPh6BYSgQS0tdUik9/c+fONZC1NkzYXIBITJ6dsv68b7f9ouIcFIkMeqVPIdlczRQZ/h9oO5Q2bbJepObtPsWMpxpsGibJVNQ3Ho/+6yw9KaGOKmTtB2C0gHH/0d982zEGdbJQyJ/8gLT47H9bJVbOT7wcOHeYm2G5pSGe5cmW8lnCSDbBhoR4xj8TaaBAOR2lZjPjB1PrxkOGjw7d9X/vTTIr41fq6zcQGlFQR2o/i1kaamcbGEwJLc7ntQgyECWic4cg90mtkjteBMNgPGT7Ga6kgTxzvES2YZ3+042Ro90cedkj07YR/J5NHdpouN3MUGis2CURr6NeYBpzd+VYou9fQPXTv7XH7F/XPcUn4Kf1h7idhYbyYY+MF4xzakuwUSDT1DDmj3XWPQZhjpmcNlUUZx3VE/+HPSHn4q2yafjTgpUuXiRlNTl2kr7/yxgee0OF/fffNN8QlC/QB/KFTNPSpxw4Wgmz4Y1wunoFlKafKkpl4M12vcRJjbuDoLnxel5lv4vsff+nrt6rt8M4K0fULNvPZpf3RXsrbuFYQJc+TOswbPW3nGRPZInvVCdu0OaYjWkPChIjwDr3MCKbeo4881HeolTZwvvLWBz5N4mIQ72tHSEAS0OYdk+hgFMoIJp3fbGPC4/972eJ+30+SoduRr0yiDEw0OvwA+tp7HJl8EDrPJNPicYio3wVkAz3CVu1nX3nLPfPi66Y9GuavQT7YAMHAzZlg+CkhmGg42BmfBYgE/glZFQYhdnJxjAYagz/+nGZ5eSOCH/FDyjlXDTU66eKsigYrMwI21a2DM/B5ovjNj36yCOICL87t4p2kfGdCOKB9u+B2lj7xH0O1jwmFtohv4x9T/p4YSQ8N6pP2ijc0IZTxpOPT36mMRhpixhlun371rT8GgUwS19Lly93X3/7kHfK32YQbnNNHxw20rAxSvBlklGlvMTeinQokVr+AjHSxs+9S2sYU/2aRIDwLhtff/9jetrDIXsGzzrCzBVTnw31as63dBO2L8PSHl/ccABs8H+8T4tqsWWN/JAvHoODEj9Cv55qvIK9Mol453zGzmq9w2ixWOB6CeoJ48vos8ER4ndQXfb/3JLqcmQDD7ZCBn+NzIDWV4uzkps3h31rWNKv4umZWkskj2PAKPjRc0Wc7Mj7xar5tpulhI8ntdj5nelo22lsbOxeQvjrD/DGDuqCPDhg41I8nmNsz867Q9LBI8ZdMWaRCaIPD0KOfQUv6yRff2gacV/wCkZEdM9mD9vrH6L/b7JBz/KXxU73swnMcv7Oj/UTnKd5v+h7azvnWHtBG33jNFZHz9mI9k6KFOtC3RQj653tOW6AvcwIEb/9godGkYcNYj2frtVjzRmYSSLRek4kbZU6ThvV9G8Wszjh0mL0+LbPC/IuW+23bXY9AHNvv1yaz0eXp53Lf/JokHBAGOgtnybGTCLLSJuosJohQ4Bey3Jg9Oyhr2aGlvN8tUSEdBsTDDu5kxGOkmc4muutuvdfISgXTRKzz5hj8gSAj+9mp6+HjUhJJgwOVIWRTpv3l/c+YnEtUjm3G9b6E5mv2sx3xwjPX3nqPqZ4r+cEWrQh5rWqr6FNOTCELTM7jJ072E5EZIv27RtEysCGCs/841uDhJ581x+TydreQN38xwVW3CfRMe89udgiD6hn2vr5FVkcL7dDQCaaluuKG271WgVU5797ljD7yjunt0gvPzlKyaCsuOfcs99Kb7/pJ+jF7vycTdHlzpN20ZZM3A0MY/KrPdnQG7SNLie55GN+/s23n6Udf9PW+GU9FNzv6AABAAElEQVQ8/7IfdMqbLwiaQ+oIfL0G86jOfpCHLMQT/EnPOe1Ev3kFk8ydDzzs2zwDPT6IUBE2GJxgp/vPsXPbOAx3qfnv3HTX/a5q5arejzH8zkk20rxuJtpLbGNJUO5wv7jv9pvMz7KdvYpusH/lDu9MZgVc3N7usdKORkFjRnon2xEZkAicvNmtjgnk3Y8/968+K2WDIosfiEEiAhk+97ST3b//+7TXQvNmEdoj5ijMseBFPz/HwmSXsADrZhr9X6ycaNmvtHGBfgFxJT3a0Om2szYstBnOk/RmcSMS0QKB4hgTJt7mzZr69hwdJpnfieYR7eJU06pxuPexe3YrB+mgef/TdvFbobxm4/rb7wtuRT4hhQ3sCJRbru/jd1WfYK8RY8MZhPeRp17wDv077KDe4NDrWrYBpkP7/SLPZ8cXzuWbv8BMu5aXUlYP8QR/xeGjx/hFE23j7L244z1eHoPrnOYw2t6KgdBXH4xxZh73MIffefO13p2BOaRu7dr+iCzI+K92dFBR63ucv4hUtL535qnZMy77COP8F2veiBM03cuJ1mu6kUTdxBrXwzZU4dKD0G/DB4hHBU/1Ex/hy66/LdU1NlnQ5xGsBocc2CHTpxekijgP/sh1TR2rLtSqyYjXLJi2AKFye9qBm2GBKOCH08K0HXxnkEPrkZ74fETtLsKn6bwzTzbV+XHet4eVK07brBwZfLubn8QNV12SXrT+Xqy4jUv5CSzDhy0A5eXMqV7dj/YmK3xpOJ8LsoCWi12IN197Rdq3NljZ9ygsfTKYI26/4Sp/jh/NeaWZoJiYGVSbNG5k71m9NuYGlUTyGCsMJsE7b7ran9mFJpEJErIBhkwWrL54pRGbISDngeBzlawQ/wG2ceSqSy7wu+josJBv3mm7ynaFkjaD41lGlrLjLL5w/sg75n9Ouq9spkraHG2FF3IH5Kpa1aqWtwsjR3dYEGv3KWso2kdYeJ535d572/Xe5EXemczQBHKPMxCv73Opq2CEtakdAXHEoQfTnPwuVY4AoV3g03jDVZf79oJGl12tPBuvX7CL9+5brzNtlvnTWeMg35xiz+BXxbSgHH+B9hBhl+Ld9uqpZk0a+d+kx5ENYM4ZkbzmjwxxCG48iZTRdmHzDM9ST34DhT3LYeO3XHeVaY7rx4vCXyeeeO9RjX6QieGkXsf69kibh4AGhDuFQJ5kZ4w1T/UY+aKtsoDjtULRwmYFXgxf2saKE449Ovp22t/gYsQ1niSSx6ZmRsbBGy0sZCBaC4efIkQUoe1wfl70H24Iq62OA2Fh9X+mVYJsUGa0j0G592tlx+1ccXEQNLHPDMpJJFgJVq9d7cefqpVT/EjTjdzqOmUaTjdUwjfxE8xuYbGGmwwCjtG4B785GSB4LzkLpuv6XGzuAY08EYfEQuho2/Tjay6/yJO/eHlNtByUFr/NDMXSDc8b4fCJxJF0vYYTCH0nLfyfEeY53paCgsNbpeyAavow4sPtmTPCWITnERam4T/qhufZvHLh2Wek+zYan0g+/q+QFdb3Gwa8+eYj1KhRozxXHFbHn379nT+9vpFNcHfffF2O5xFYMC/N4xVC1tEyeyZZVjPKIM2p5JAV/DXo9EHjTiZuzAQLTL1fuGgh28FZxw8gGT0PUeHNBQPtpdS9j+3uzw3M6JngPvixGxafHbSUTZo09JNkZvIexBnvk7TwQcTEjKarkmk1mzSs5zWv8Z6Jvo7W6e5/PeJ3qj70z9ujb6f725ux7LBeXsbN5oWmdvZfVnw/IGUzrSzs5KtZs1pM4r3BJmGO4GFAbdakgV99kkmOe0FTyvmN0ZN/vEKgEVy4OOVdvDXtcOf0zFcpk9gCm2xN81OvttdoxYs3vetgxunu5B8zS3b4dqaXHuksXrLEiOsq/wYDSF1mBA09mpVKRuY723uZs1Pi5REzPu9u5X2VHQ5oF9k5nV1p4wc7y/zoyphGHd9TtJQSWwRnYUxIFD+/wcDqdbsRuyY2bmBmlOx9BHKj7jNbyoy4Wp43v1JwNGXDRo3xDZ5jMHJDWDWx24a/vSmQIHZ6Brs9M5sXHHQbGtHJLQE/zJSxzvjK7jyQFhqpjvvvnbpiVcmuquhXLmW2nBCcluZ/lp7gz9WqRdM0QfBBDTRsaW7GucAkzjs2ExE0WI2yYSMDmHlNRSKJZkMYtHtoA/nLiqBZO9G06Dkh8fKIpoKdoonuFk02b5j/29lh2JLcRwDrRYs9GvDcT10pFkQE8iypY3U6wXao8fogVsfY/6vUqJgrJKEgVrTKJASEgBAQAkJACBRsBPIsqcOkxkHDmPCQiqaJ4eXNEiEgBISAEBACQkAICIG0CORZUscRCAd32t+Vr1TefIuK+HeUsmtFknsIUAcd92/v/bX2a9Mq9xLeCylhtjzzlJPiOgzvhSwpSSEgBPYiAhoT9iL4eznp/Fz3+WKjxF6uXyUvBISAEBACQkAICIG9jkBGGyVS9gjv9WwqA0JACAgBISAEhIAQEAJZQUCkLivo6VkhIASEgBAQAkJACOQRBETq8khFKBtCQAgIASEgBISAEMgKAiJ1WUFPzwoBISAEhIAQEAJCII8gIFKXRypC2RACQkAICAEhIASEQFYQEKnLCnp6VggIASEgBISAEBACeQQBkbo8UhHKhhAQAkJACAgBISAEsoKASF1W0NOzQkAICAEhIASEgBDIIwiI1OWRilA2hIAQEAJCQAgIASGQFQRE6rKCnp4VAkJACAgBISAEhEAeQUCkLo9UhLIhBISAEBACQkAICIGsICBSlxX09KwQEAJCQAgIASEgBPIIAnuN1O3atcutWLnazV+w0G3fvj2PwKFsCAEhIASEgBAQAkIgfyJQNDezvWPHDjf5z7/cZ19+5xYvXep2794dSb58uXKu65GHu949u7nChVO45qrVa9y9/3ncVSxf3j14z62uUKFCkfD6kjMIrF6z1t3/6FOudMkS7uZr+7iqVSrlTEJ5INa1a9e5p158w1UoV9bddM1lWcrRlq1bXf+Bv7vxk6a4NWvXuvLWZls2bex69+ruShQvnqW49bAQEAJCQAgIgUQQyDVSt90I3dhxE90rb3+QQuaMoBUvXszt2rnL7di5061bv95999Ovbt78Be66Ky/2eYf0bd602QhGSf+MSF0iVZq1MGhQN27c5IpY/VBnBVW2bdvmRo2fZO1tvqtWrWqWirnGyOFjz7xgC5XlkXhWrFzlZs2e40aNHe9uuOpyV7tW9cg9fRECQkAICAEhkBMI5BqpW79+g3vro898GerUrumu73OZq2ZaoBTt3XT37Q+/uFlz5rq/Zs5yw0eNdYd06pAT5VWc+zgCm7dscXPnLXT9TKs2dsLELKOxyRYdX337kyd0LFI67t/eHdSxnZs2fZb7ecBgt9K0za+/96G799YbspyWIhACQkAICAEhkB4CuULq0Lht2LTJbd2y1ZU3U9c5Z5ziCR0ZK1q0qNt/v1auft1a7v6Hn3Jbt25xEyZPzTFShyYqMO+mB0xO3yMfaB6jtY/xrudkfpLFhPqMznd6+YsXf7zrseJKJmys57m2ctVqd+cDj/iFRLwwyV7H7DrStHHFilk7btvWXX7ROT6K1i2au1q1aro33/3IrTZit2jxMmnrkgVX4YWAEBACQiApBHKF1DEhr169zmdslxECyF20lCpR0h1+yIFu9LgJrqT5c8WSrWYyGzx0pPv6+59c65Yt3FWXnB8JxuTa77eh7sd+/V0bu9dnz71ttglj5Jjxru/3P7s15i+20/JSrnxZ16FdO7d6zRo3f9Eid+5pJ7sO7fez32vdA+ZPtmv3LtexfTt30TmnR+IPf1m7bp178rnX3PJVK42M1na333B1hOQQx6NmisOESR7PO+Nk99Lr71rYVe70k453CxcudgOHDneFCxV2V116vmvcsIGbNPUv98kX37jlK1Y4sEKKlyjh2rdu6S4zkrDB4nro8f+5XW63O7770a7bUUdEsgPBmmebTR595kVXoXw5n5eKFcpH7sf7Qj5fe/tDN3PuXLdt6zaf/+rVq7muhx8a85GNRso/+vwbN8a0W9QfxLhGDQt/xKGR/GzYsNG99cGnbo6Z0Ht17+r9y/6aMcth6ixl5Wm7X2v3j3PPcD/8OsD1HzTUMNro061UuaI79fjj3GEHd4ykvdNM8tOmz3Zvf/SJW7N6rTcFFy1WzFWvVsWd1ruXO6BdG0eePvysrxs/ebJr1qixmTkviTzPl6A+0aBdcv7ZrlaN6q5B/bpu/YYNzqB0tA3aRGYF7Ddt3uy2mPavgvnQHd+jSySqYpbXNi2aWT0Wd7TNEWPGuVNOODZyX1+EgBAQAkJACGQ3ArlC6ooUKeLq1q7hiQAT/9sffurWrl1vJK6jaTiK+TKVKlXSnXVKb/8Xr5A7zf8O4rN58xZzRl+TKtiuXbvNL2+tv7d6zz0m05/7D3Jff/dTZFNGcUtvnaX92+DfPaEoXaqUkaaNPi4IFWbiIkZYVq9JIaGpEtnzg2e6H93ZvWFamDlzF7j3PvnSXXDWqY6yvffxF27ZshWuUsUK7uTjjzWSttOtWL3a4l3vhgwb6f6YOs3HwsYQiMvUaTPd86+8GSFzxUxziWyzvI+b9Id70QjhRUaEIA1zjSz9PmJ0hEQRbpNh0W/gUE+0ileu7BIhdEuWLfckEeKJFLb6QZYuXeY++uJr/z38Hz5jjz71vFu6fIW/TB4hx4sWLXGf9/3ek86TevXw15YtX+lWmUbso8++9r6SaPQIv9nKA2GfMXu23U+pu6KWLvGssl3Qn/X9ztWvU8vVNZK81Uhm/8FD3WdffZuq3vDxI81X33rfHW3E9sTjursmjRq4oSNGufkLF3q/THBFtm3b7iaaxnfduvWuWtUqrnmTRr793X3zdf4+bemvGTPdY/97yf/OzH87dux0CxYu8o+iqatXt06qaCC+VStVdstXrnTL92CXKoB+CAEhIASEgBDIRgRyhdSRX4hQty5HuF+MZDHRvvPRp+79T7/wJKRJ4wbu4AM7ejNsMma9jHAgnb7mq8fk2rJZY3ddn0sdRGLOvAXu8Wdf9hqWcByEg4wVss/aNeM7tkNE92/bxh3UYX9vehtjG0A6tm/jVhoRHDdxsitdupQRjh6mGarmd0KSBiQDQlemdGm/y7d9m1auivkUvvr2+57QVatSxd19y7V+1yRk6/3PvnLDR44xX61l9kwpd2y3Lu6lN94xMrzOzIhrXBXTbqXEu83M1X+4EqYR2r/dfv5aev9BYL/4+gevSSxbtow79/STvakbLeig30eYNu7rCJEiHkjjD7/094SuomFz2UXnutbNm3ot2fufpuRx4JDh7lDzgSxh2rhAihiRO6ZLZ3fmqb29ZuzlN993U2zn82rTulWvXtW0oGe4FrY7dOacee6xp1/wdTF6wmRP6tCEfvXNDz6qekbyrr/yUl/e5bb54NmX3nQLTLsKkTv8kE6uXZuWDqKOxmzA4GEOcomgPRs8fJQ37zesV9e3AX8jG//zGmhbICAsXKKF9lSmTCm3bPkutymGdjo6vH4LASEgBISAEMgKArl2Th2auNNO7OXNYFWrVPZaMjRV+DmNHD3eJuvX3bW3/dO0M99lpTyRZ1M0WENsd+1OV7lyJXfj1Zf7yZ+JFpPppReeHQkbfIHQPf7gve6xf93tzjzlhOByzM+yZUq7s0470ZPAdWbOe8bIxnsffuZJBObfo444JM1zFStUcPfcer07tXdPB5ElL5DYqqZJ6tblcE/oeAiT3f5tWvvnwQi/w6YWHrIIefnFHPARSAXHvqBdhCz26Hakv57ef2jBPAm0YzYO7nhAxHeRYzcwf3ftfHiqxyFHA43seaLas4cndAQgvTNPPsHVqlnD8rTJffdz/8hzlKuubYaB0CGlS5X25li+0w56Ht3VtTJiSLjqVvaaNWr4smAuRQvbb9Dv3txKfdxk9RYQ2GrWbm68+lKPD8T3q29/9Duomzdr4knzhMlTSMILWj12Upe29LoceVhwOVs/d5sNl/aFxDtsh7rj4J5dO3UWowdK/wkBISAEhECOIZBrmjpKgEbliEM7+T/IyaixE41gTPG7XtGqbTYfqV8GDHIrjOgFPnGZLTm7ajGNFi1axNU20hDWpDDRNqxfzxOCzMbPc5hEr738IvfQk8/7A5QhaLWNzFzxj3PTRBuYoGuY31ogbBq55bo+/ickZdio0W76zLm2O3OBm2t+cmEpaVqwg4yEDRwyzP3xJybc3p4A/frbEF82tIJlTBsaHK+xfuPm8OOubJky7mwjodWrVvaECYJ5jGlOw4I2tYeZlfsPGhK5DKnEJ27XrqJeOzZi9NjIvZSjaDb4+OYvSDFDchNza6MG9SPhChcuZIQ1xSxayo6n6XxYp8g9gyyVDyVkbP78RVamwv6okWhzMv5xbVu2NNP0ZGsnqzxh7NntKDd5yp/epL/OtHylrBxT/5rhzb9ljHxDIHNKdu+OR+dSUgQ/pFChtJq8lBD6XwgIASEgBIRA9iCQa6QOArDTJmwIFQQHAnHU4Qf7PzROc+cvdM+abxmO69NnzjYTbXyftkSKTpycfVfINiSgVYsWpuJixexQWHN2z6xAVqqYHxvmPY5jwbRbu2bNVAQyiJsyV6v2N6HjOn6AC8wX7OW3PnCLlywNgvrPwM8tuIimDBIGqdtgmkE2I5QvW9ZNNpMu2q8uezRskIjl5qMGqQ0Lvn3Lzd8tKC6kKUwwg7Dkk3IgxIWPHEJ8M+zctVgCmcV8GxEDt0jh1CTG9vn624QljXhCva21emMjSYU9/nHhsDxbw8y3hNtiWj3KUdNM5WUNi81bNpuWb5j5HB5uG2pG+EVEy+bNwo9n63fKUqJEik8ovoHRwkYKzO4ZlTn6Of0WAkJACAgBIZAZBHKF1K01LdyzL7/pzWGtW7VwN151aaq8YoZraLsSr7dDh//16NNeMzTenNzbtGyeKlx6P3bbjtVNm//eVctEiomQc8LYPRotfsI15/3iZnbMrPB6M45fgdAhaJmmTvvLzj+b7HfThuNl8wVvxggLvmNPPP+qN5+WMtJ2cIcOrn3bFl7LtX79RnfvQ4+Fg/vy1Ddn/EVGAH/uN8gdedhBfgdpTdP+sXsXQbN19y03eIITfhiiVrNWDbduz25Pv7HE0ufNB9ESEBQIVPVqlf1tsDzxhB6uaOEUEhN+hrJl15snClu9oWljlzSm2GjhsOpV9sYG6rfYnrorWbyEO/CAdmYmHuYm/THV44K2s7SRebR4OSUe0+opvpcQYPwV0YgGAvFcaZtkaN8VK6bFOQinTyEgBISAEBAC2YFArpA6zHH169Xx5Gep7bxEqxPr1Ulo8RA0YBzPES02j5tpr5h35Mc3LCzsRGQiD4QJt7qZJGfNneeW2CvJwgIZ+3P6TE/CMkvqIIVosd7/5At/Rlnjho08wcKJ/5Mv+rpmTRq6cqY9CkshK1cgPM+RHPjDUdbrbDNA44b1/G20Yn/NnBMEjXyirTvumK7upTffNXPjVLfdtECYI1uEzIsQsQb1akeeif6y1YgSWkAO4R0wZIRtLOgeCQKmo8ZOSLVRApM59ULeq1SsFCGPPLTFnP9/GTjYTZw01TYstHIcKp1VKWLmco4e4W0My5Yv92btYIc0cXMMyTQzrXqSbCZkBE1lN3vFHFpMTLKQ6u07d3gSzc7XnBKwrlWzmieY/tiS0RNMS3iYT476XW8kjx3RaKVZtEiEgBAQAkJACOQkArmyUYKdmR3at/XlWL5ipd95iu9XWPj9ypsf+EvsomxrZ7RFCyY9JmkmTHzwgtcyYeLi7QAQqkDQ9nQ3MxwanVWmnXrFdl8iaE/m21lx7378eRA08sn5Zc++8pZ75sXX7ciTYZHrsb5g2mVH5zYjYJhgb7z6EnfFxed60yXamRdfezfWY5FrlGFDxO+NYz9SqoLrS+z4i/f25I/fgUCOmxpZhCSgfRw7cZJtYPh7E0IQLr1PCBK7TtkAMcjOy5s1Z74P7nFZtNh9Zce/hAXS2LxpE79b9lM7YmSFmXYR8rXUSNfX9jaFhYsXe/+18HOZ/U7Zjj7yUF9vaFlfMdM0eUN4ewO7mdlQQf0eY/WLeK2saeVqGhmERH365TcO7V1H097ltEB4q5qfInn7dcBAt9F8RZF1Rtbfef9TjxOk8+ADD8jprCh+ISAEhIAQ2McRyBVNHRoNtFDdjupsZ6oNdjNnzXG33vugN0mVLV3GT4ScbcbkzQR4dOfDvckqum4gGK1aNPXECRL4TzNPVqpUwfstQfKY3ANB21fdfNjYXIBz/3D7GzV+oithpAYtFaQk2m8NcjjejiRBC2TvTDA/tUOD6FJ98vyvA4Z4ElnONjucd/opXvPIsSSn2g7fT4xUcKbctz/1c0fYjtJYgkmO16RBCjDDPvj4s97HDb8wjv0IiAwE5uGnnvOHCvMMGyYO7NDejh8Z7stbuVJFT3RjpRHrWjk7xoSdvQ9Zerzp4OEnn/WbGMCO32ESyfOYE8+xDRYcyoyW9c4HHvYmXsyNmNWhnGwYYeftju2p/fhipZ/RNfJR3d7FetjBndzvw0e6MVZn1916r6tgWjn8LNlgw+YXDm3er3WLSHRswDjysIPdx6YlxX+zgpmh0d7ltPhjYU49yf3P/EE5x+/G2+/zO4V5ZzH5YEHDQdaxNNM5nTfFLwSEgBAQAvsWArmiqQNSNDCnnXScHWtygp3dVdo74a80rQ/kZ4Vp7yATaOHOPv0k17N7l7i1wK7Nc844yZMhiMWKFav8OWg1zLfphJ7HpHqOdC485zTXu2d3V8LeUsFGDUgBZtEj7c0JbKDArFjGjtxIJUYsQpbSVLe8hsrIzfd2dhtar7atWro2rVN8/5jADz2oo5k/66aYN+2tCZhoi0A27R/O/2EhH+edcYrfLYpJmINswYQNAufY+XHVqlXx5I7Deikrgu9dj66dPaHjzRucD5eMQJrq1anj7r75WjvqpaKPFzIHqQ4ICKZrwnmzq33WNl+8e2+73khoSn44hgZSTZjGDevbe3wv9Ttv4+bDwtm/OGJY7wE7+MR/77wzT7Y3MBznNztAojGhU3deA9vlyDRvjyDv+NWRZxYRNYwYxnszCRkhP0WKZH1NA1atzPfzgrNP9/6Z1BMmdQhdSSOaXY84zI52Sf94nDjA6LIQEAJCQAgIgaQQKGQkxdv38OOaP3++a9SoUVIRZCYwWqhlRuRmzZ3vNqwznzLTqjSsXyfmbsx48ZPf2fPmm4/VDtfEjs+INYFvtY0QG0xjUsw0O7xpgKM58OeDTGEGvvNfj/p30d550zVJabvi5Smz17dbGeYZ9us2bHJNTKMZbF6gjHPmLfTkq7Kd2YZAGqb8OcM99cIrtjmhsnv4vjvS3U2aUZ7AaI4dIVLGCCJvc8hIIJ8zzWRb1LSGNc2fLLwxIKNnM3Of5om2cp4dmVK3dq1s25CRmbxk9Ax55dzAeQsWGKmsoXe9ZgSY7gsBISAEhEBSCGTE1bKuqkgqOymBMSOyY5O/zAoamWaN4xNQNCV/Tpvhnnn5DYeJ8p5bb/BmQzZG4I/GIcccHIu2LSed6RMpH6+YahKjLJSRQ4fDQt6/+OZ7r91rZCZItFJZEfwXWzSNj2N03ODF2zlyS9AGUn/85Yaw4Jgxa6577tW3MkwOjeJpJx7nNYQEJq9V7KBr/iRCQAgIASEgBHIbgb1C6nKjkJjF6tmO25Lmo4f2BK1cMyNBvK1hrmlSMHPih3WE+W7lBwl86/Bbw/SJGfo0ezOFJPsRwJRb2zZdZCTsRq4YY5d2Rs/pvhAQAkJACAiBnECgwJI6wIL43H59H/fca297EjfZv4khBUZ8/Hifau/jjskJXLM9TjRIEFFMfJBR3qPLhgJJ9iKAFrmBLQbu+L9rsjdixSYEhIAQEAJCIIcR2Cs+dTlcpjTRQ4Rw7p9trw3bYeeX8YowXquVnwQ7OmfubbRjUMJ+d/mpDMqrEBACQkAICAEhkHkE8qRPXeaLk7kn8XViUwF/+VXwr2veJPd82fIrTsq3EBACQkAICIF9FYHUZ2zsqyio3EJACAgBISAEhIAQyOcIiNTl8wpU9oWAEBACQkAICAEhAAIidWoHQkAICAEhIASEgBAoAAiI1BWASlQRhIAQEAJCQAgIASEgUqc2IASEgBAQAkJACAiBAoCASF0BqEQVQQgIASEgBISAEBACInVqA0JACAgBISAEhIAQKAAIiNQVgEpUEYSAEBACQkAICAEhIFKnNiAEhIAQEAJCQAgIgQKAgEhdAahEFUEICAEhIASEgBAQAiJ1agNCQAgIASEgBISAECgACIjUFYBKVBGEgBAQAkJACAgBISBSpzYgBISAEBACQkAICIECgIBIXQGoRBVBCAgBISAEhIAQEAIidWoDQkAICAEhIASEgBAoAAiI1BWASlQRhIAQEAJCQAgIASEgUqc2IASEgBAQAkJACAiBAoCASF0BqEQVQQgIASEgBISAEBACInVqA0JACAgBISAEhIAQKAAIiNQVgEpUEYSAEBACQkAICAEhIFKnNiAEhIAQEAJCQAgIgQKAgEhdAahEFUEICAEhIASEgBAQAiJ1agNCQAgIASEgBISAECgACIjUFYBKVBGEgBAQAkJACAgBISBSpzYgBISAEBACQkAICIECgIBIXQGoRBVBCAgBISAEhIAQEAIidWoDQkAICAEhIASEQFwEdu3a5ZYuXepWrVoVN4xu5A0Eco3U0Riuuuoq16NHj3T/TjnlFPfpp5/mGDrLly93J510krvgggscDVUiBLIDgd27d7s5c+a4nj17umuvvTY7okw3DgZY+soJJ5zgHn300Zhh165d6+677z6fp6uvvjpftPfNmze7Tz75xPfRl19+OWa58uvFYAxk/Hn99dfjFmPDhg3umWeecb169XJ33nln3HB57caOHTvcqFGj3PHHH+/uv//+bMvepk2b3FtvveXb+8cff+zjXbNmjbvlllvcWWed5aZMmZJtaeXniFauXOkuvfRSd+6553oCltWygPu7777r4zv44INd9+7dXZcuXVzHjh3d5Zdf7kaOHJnVJArE87T7YcOG+bH43//+914vU66ROgo+c+ZMt2TJkgz/Fi9enGPAbN++3c2ePdtB7iTxEaCejjjiCE8IGEAzEiasK6+80nXt2tX9+uuvGQXP1/djYQOp27Jli6PtQu5yWsqWLeuOOeYYN2/ePPfDDz+4gQMHpkpy69atbsiQIe7LL790EKWTTz7ZFS6ca909VV6S+cFCa8WKFX6MgLgWJClSpIirWrWqbx/ffvtt3KJt3LjRff7552716tWufv36ccPltRvUHeMAfWDBggXZlr2dO3f6+Oh3wbjNOD5r1iy3bNkyt27dumxLK15E1MlLL73kDjvsMPf444/HC5bp69kRfzDHggkLg6wIcdxxxx3usccec5MnT3bEXaVKFVexYkUH9iNGjHA33HCDe+6557KSTIF4lnZPG1y0aJGbO3fuXi9T0dzOQbly5dwVV1zhV+Kx0mbiKVGiRKxb2XKtdOnS7tRTT3VlypRxhQoVypY4C2IkkBSIAXglotEMwjMAJxI+P2MWlDVRbHKirLRftBQDBgxw06dPd0899ZQ78MADfbsmf0ysDz/8sO9LTERoyCV7FwHqDC3W119/7dCiTpo0ybVt2zZVppg8Z8yY4VhIVa9e3YdPFSAP/4C01qtXz/Xu3du1aNEi23JavHhxd9BBBznadfv27bMt3mQj2rZtm2N84zMnJKfjTzTPEHMI3ejRox3zNRa2E0880ZUvX96P7fPnz3fPPvus+/nnn71WvUGDBr7OE41f4XIWgVwndRApBjcYf2aETsXgkVkh3URMAxAT8hpN/LiejMYju8InGk+i4QL8sopnEE8yn8nmMV7cxBOrjuKFj3c9u/ITL/5EMU42H5UqVXL33nuvu+iiizyJY9V8++23e8KA+W79+vVe05ORCS8ejonmO165k7mebNmzK3wy8SQTNlbZixYt6ho1auTJGpoUNNrRpA6TF5MlY1ydOnViauqSzUey4WPlPXwNcsVf9DhInlu3bu0eeOCBcPCY3+PlKdZ1FvmB207MyOJcjJfPOME9YcmO8YT4Y5UjXrrJXk82bjRrxYoVSygZwqKZg9AF4wsWgUCoc0jc3Xff7cnt4MGD3WeffZYuqUsmv4RFottWkH74M9l4E4kziD9W3Mm2pyCu3P7MdVKXaAGD1QKmI+zUTz75pBs7dqyfqCBm+BJdf/31vvKHDx/u/vOf//hV4osvvpiK9LEifuKJJ9zUqVPdhRde6A455BDvD0Acb775po8PLceff/7pbr31Vm+a/fDDD706lbjq1q3rBg0a5F599VV/j0ZfrVo1d+ihh/r0MacgDNKvvPKK9zPAf4k8/fLLL963oWTJkl5tf9ddd/kBncaB2QzfKwZ1fKOCPDCotGvXzvvSsEr673//6+NisOc3KybKTZyBYJJgEsfcxgqfznj44Ye7f/zjH65p06Y+WKJ4gvcjjzzixowZ4zV1xH322Wf7MqP5iTYHkS98oN5///2IaeRf//qXxwv/DnzMIAdok6hD6gFVNas+ytmnT580E1tQruCT8AE+0XX00EMP+XokDL5lTISB4GNy2223+XJwr0KFCgnXURBH+BNs42FDPgJhxd2vXz9fJ5hiGUxq167tLrnkEnf66acHwfxnInWX6oHQDybRZs2auWuuucavnH/66Sd39NFHe5MU6VeuXNmXH6yR9HAM2nr//v29vxemLbRGpEGd05Zop2D6f//3f96kS7pHHXVUJEe0a8pL+6dfPP/8876eIwFCX+hH+F9BRGkbYIZ5h8k7lqaeNoQGC3PQH3/84U3daIW6mI/PZZdd5tPJ7n6FSYx23bdvX2/+o28yoZFH0kSDlKyg3cU3iTGG/nrTTTelioL+hymdhW+gXQUbJk/qiHohHy1btnTHHXecO++88/xvTP/kk75IG2vSpIk3F06bNs1/Zxw89thjvdYlnCDjAgsBFgA33nijHx/D94PvjG/4tTGB8wx5II9M+LSDGjVq+PYCGWAsZpxlvAuPOyymg3Gc/DZu3NiPxYxVjJ24EWD2Y2xjfKWvM/4yxuBL991333n/LiwtsYT6R0ONmZR2THsnn2B+5JFHeh88xu6M+gHYBUIfYN655557/GKJfOPSgPkRVxMwQzLbVhKNP5lxgr5CvT/44INu3LhxnoCH58xY/SsoL9iAHySwVatWvn6De+FP5qLzzz/f/f77777OyB/YIom0V6xA1NFrr73mtdGMzW+//bafF6kzNL20ywMOOCCSbCJjQBA4kbAQN/wxaadogi+++GLPFSZOnOg6dOjg55NE2lOQZl75zLOkjkH/r7/+8h0Jp0w6e6lSpfwkg68JgwsD4D//+U8/0OJ/w2/IFINEIDRSBjsmmf3228/7AzAwMskyCNCpIFj8ff/9935Q5FlMHwxkTDo0NoSGzgRJWphQSAuy0aZNGx8v9nQ6E6SG/LIyZ+Cjw//222/e5v7RRx/5uMgr4fE9+fHHH31e6Cjkl0GEBsZv7PTEE9zD14Z80+D5ZKIDHwZPJmA6L/h88803ftJETd68eXOfv0TwZEImX4E/E50DXxY6AFhFC9fp0EF47lMGBPzovJBbBkXCkkc6MGGYqOhATGzxBmriSa+OaCd0TDBiwA0Lz+HHyT3yQdhE6yjWqo74MsKGOgEvykQctBdwoJ7/97//+TaMCS6ZuguXKfo7ExZkiwESwozzOIMqEyOTTufOnSOPpIcj2NFmaLsI9UQfgAzgg/r000/7emOw4zpmX9pimNTRptEy0RYgXAGZjGRgzxfCffXVV948HKRFm8CX7oMPPvC4hSceysPCCoJOGeiH9AcIJI7cTFwQSPwMs6NfkSfyAnkdP368JwbgSbqMHSzwmMwgWfHKuKeoaT6oLxY6kEX6KW0X7RZC2YifvlyzZk0fjrGDTRVMfgFBoW4w3dL3qRv6Fv2UPGMag3CwyONZ0mNMACPqFzJKORCe4XnCsxiK1hr6QPYfbQA/MsY82jSLBfoUYxxjK+3unXfe8W2GsLR1yoEE4zgLon/YwgDySJ54HjKPppkJnHGAuGkHxEF9044YL8nnwoUL/R/jYTwhPItE2gVY0R5Ii3zSLsGG9pVeP4iOm34KqaRPB8JYQj6CMS8rbSWj+DMzTrDwwnwKBsyZ9J/oOTMoS/QnYVFw0L/OOeec6NuR39QfRIjFf1gSba/BvEE7oe3Q5ql/0qX+6Rf097dsIUHbTHQMoD8mGpa5mfGC9kp5WCzyF4w9ibancPnzwvdc95wGRAgZu/Ki/+63lRwTX1jo0Py98MILnkRBjjA3Ec/QoUP9PRoCkxedDwIRCBMVAxaNm4aB6SOeMNiw65YVJ5pBBmw6L4SOgQEtC5oF0mfVyKQFmUFzQ8cLhLySD5xIafCsutEUBo0YwhYtrLoZdIibFTwaAPJDBwEjJhBWsayMyFOw64iBEtJJWPymeJ4/SCLElsEM0huWjPBEy0ce0PrQuJlciBNTESvraGHgZEXNJM+EzwTCBIAWAo0BAwxaMiYi8kg4BmzKC+mgA4M1WGYk0XXE5JpencaLLzN1RFwsDBLBhsEJDRoTHsSVT7ChPpkYkczUnX8wxn9MsphDSJfBm/bHogWCF0ti4UjZGFypc7Tg9BvqnLaErx59iTqlviHgweBPOQIJ+h+DJXHEE9olJJG02OHJ4og2Qd+l3dJXwkIbQutAvwj6Ie2IuqC/slihDUVLZvsV5YB0Quhoz2jLwQPijKaJfLBYyMzuXPoBddOwYUM/htEPAiFd+h2kCw07aVM2CB39kn7FLjvygcYSwkQd8RcI4+L/s3ceYFYUSxsucs6SQRYBQUEQBQMSxZwVc8Sc8zX+ei9X7zVfc05gzhFzAAGzooAgSpKcc8789Tb2OjvOOWdmM0vV8+ye3Qk93V9XV39dVT0HLy02jwUahBBvEpM7+kcfevHPg7B27tzZLUD9ueAn16EH1IexjD2gnl5fGLveJgXvC/5Nn4Ib0RHsNl43FpvYM8jdscce6/qfuoMxY5R+x1MSRygHeztZCR0eI2w5z6HeEH7Ko55BOxM1DsL2hL7oqd5gcIcQgyORC+YCIhd51ZVM5efWTjCe082ZUZgyj2GPIb30FeMniYBxUn3lHha9eHyZ59AtFjyQe45jO5EkNiDJtZRNe1kgMaaxW9gS5rSk+kRZxUEKndR5zwou7PDPm2++6bxlQWCYII455phs7xtMvE+fPm4CQyGYIPwkwsSDceEZiDdwnGd1nEmYIFjJ8coBDAN/M+gIE2IYmTT5YWXJgGYQsPpjwHvhejyChB4xrAwOXMgYMJQnbKSYkMlB4XmUDYliEsX4Q6JoK4aENhB6xThinHk2KwkmN8JWhDwYCAhlsHpnAgYfVsFe4uDpr83rJ/gzAWEoaB+TIxMDgrcHtzeYM3iZoONIsI8wwGCWVJL2UdLymYDJYyNsiQ7QH4TJ0FcMTm77LlU9wIBFC7uVERYhhO7o61QSxpGVKnpEIjpkAL1FIF4co+4QRq4jPEXb/GTPdeglHguMOnpHiDFKuIeJm7FKHVhA8QyE/1nEeB3hGNdh6NEhxp0fh4wPJh3GIXrG4omJ3UtuxxX3M9k///zzDj+8FYQtETABYzx4tAMyxVhMKr5/qDek3wv/01b6jdAq9WCC43q8sR5T6sEilrAnYwc7GhT0j3QAvFZEEehX2kCdWRx64X/GJ89jd3Q6of+9veU6jz+LCSZC+jydYLexiT6cxvXeJmO3SCnBRtA2PIb0H88LkrB05TOmwI/2YjOxtwj6CkFGx9BRPEJBCY+DpPakIHUlt3YitzaeeZP5DKF/6Q8vjC30jNeZhH969+7t5qHc6ivPIUJAvXluli540H/6nzkuiQ3ATjCGktoLxhg8g3mU+RdHUW70yeNVlJ+FHn6FoJD3w3tvwsIECLhBYRUZvpYyMPx+IHtDgHHAULHy9547VtisWlCSdEKZGGyvyCg4rmHqgzchKAx8VtuETQjHsdIk/wDBeKD0QUFRmXRx4aOgQeF6vDpewACDR32CoTOeiaJ58fXjepSP1WhQOAY+fgXr2xAHz2A5efmbOoKN9wSEQ1V+8oI8s0rKJOE+ynR9qvNJ+yhVOamOUz6eOS9MLHh2fX8k7TsWFemE8khuxpgh3iPI4gS9C0sUjkz8eFGoI+QNkkQqAWE7Fi20wQv6CclA5/A04blA3yA5lE0+FJ9R4tvu9RCCHRTGG6t2PDkIHkGIIoLXIvweKE+qGFestn15uR1XPIc6Mvkz4bOQCgr1Jj8LjxXXMf59+DR4Xbq/wYY2kkdGm3zemw+9NmzY0NlIbBltZ3IjLBRsuycoHk//POwE9cYL7oVxhncV7+PIkSOdfoDP5MmTHRGHAAX11d/nP2kzthH9IuoA4QUD8uZ6qhfLY0RfpRKex2Tpxdsz+gvSFbQNfh4I20p/b9QndSQywA+LZ0KIjAlwwzsZJPz+/qhx4M/F/SxIXfF9W1g2nj4BRwQ7gP4FyTrzGHUKC8fAl8+k+kr/k6cafA62hlxKX4ckNoCwbRJ74dvC3NpX0wO85Eaf/L1F/fmXpS6kmtCJkJ5MK0NfHRTJe6D8sahPDBerUdy1hHGI95O0i6JCuIKr/6j7UaSg6x1DimGnvnhawuKJGmQkmG/B8zI9y5fFYOX6sHCcHz/Awuf5H8PFqgrFZ1WS6oXNTJLBEFlcPKOemfQYGOIp5Jl45sIC5kxgfkUWPh/+P9xH4fNx/0/SR3HL9NfRb9Qzql/9NbntO39/+BNvBt5edBVjiD74Y4QIqVNQonDEIBNuwJsKOfLCvfRfUDzxgtSRi0pOCpM2BI9xmG5se50AH4hkWKgbpMQLWJFPxX3kf/ETJd5TiD5R5yj8Oc5PunFFOXhTEdpNeWGhbDxJYEbdkpI67mehiVcJYgVupJT4lAe8WeCI54N+ZMJkccpPlGADINUI+IXrTDvQCzyd2Cqeh3cFrx196T2RUWVzDM8f+kWeHmSbaAMpKPyAJQtmcrjCehIsL0qPOM9xdCc/BLxI3yHXE71BUj2Xc1HjgONxpaB1Jbd2gn6IM2eG2xnEA91mrPk8S/oI8u4JPPeim+R++xxqxmhSfWUsBAl9uE78n8QGoN9J7IV3lGA7vUPH1yGpPvn7ivqz0EldQTUY48T7kdj9BZljYiPMg3EkMT2TMBAw1F5QNlYPrFaCpMif9wOa+zB6hS08l8mPemKwMapRwkBlJVQUQt0wLmBFf4QFI+ATZOMQ4XAfhcsL/89kx4QIBsVJ8rPvMKgQN8gzkzk5lnh+CBHipSB8Ry5mUMI4ghPk4uKLL3bkCc8gOU6QDgwdkz85XEGhX/G4k7dEAj6eHAgexCGdZ9E/m2cSOgwLOuEnCc5xPXVgUsEzxLv5ogRvPYs3DHpeJDjJoLd4LcPkk+MYfGwO5Cw34skUuYWEYMEbTxj2ykcVqAu2BWJCGNiHLsPPoyxPVLknaMf8tdgyvHXk5UEeyW/1odfgRO2vD39Sj379+rmUCTZp4P1i8Uyfox/0JykfRSX0B5vCIJpgyDcGEelgoQ4pYAzQb0Hxuhg8luTvgtYV6lfYNt6TG8Ymnl1P6qJwwbayYcR72XKjr1Hlho8lsQHMhcz/cewF6RvYSuodjizkRp/C9S6q/4vXbJcHFOh4QqLkoWGIMViEjZgQemqIII5gPL1ABMgbIlmaicvnf/jzTDxMmhjTLM0BKGxh8GGwMFRMhHg/g4rJoGRnICsXQhJRnrKCrrNf+ZGsTBiPetJPXgiv+NBeXAyDfeTL4TmUHSSO4AJhJDyHkS9OkrTvwp4X3xbvXSPXBZJFDhVhXlaf6Cu4DxgwwIVDg69p4P4gjhhnwnKEORg/JMBj6BDwY/UdFgw5IVhCrnw7Ap6iICEJX+//p6/oa/oe40s/+WdxDceDeWZgRZ28nkMeg0IfQ4y4zudRBc/n5m/GEW2hTSRvB0kPmOPJ5ByYMwZzIxAxdg5Td/KG6CvsFv3n20ibWJCxqOR6f5znoe+EGNnIBZ6QaYR+DeLpDuov7BQhUzYhMJHRLhasO++88988FP4ePsGdsDDPoR/wzPicKjat4BljIR21ASxYTkH/TX9AiukTNqlh87zgWQTDKI9QcBz465N8FqSuJLUT+WHjsR3k/6KXpGDwlWNh2wE+kB7shPeIciyJvvp0Je7LJJQb1wbwJoi41wbTnoLzEvXJrT5lakthnP977K8wnlpAz8AQk7TL5E6oAONGfg+r+KTCpEUYiUkG5YYkeiE8g3HkHEYkmPvmrynoT9oGiSUfhYkNTwqGHmFyJq+QXTwQ0qiVe9z6sQKnnZkE48hP8HomIrw51BUPChMAkwTChAIZYRMHWJP/lRthMOJFoDxeSeMFzxWhxIKUYFuTPCe/+g7C7sOubGaAZCF4PUmiZxJDV7nG60ZUPekTjLQnBLQL8cSBxQHHggYccoZRZGVM+NVvLMBbnk7QCUJ/COkD7NDzAoEkdIbX0AuTJuSH5+Mh8rvhOE+d2d3JMRZfUZO2LyfJJ3XEW+a9oD7fE5yoG5sQfB4vWDPeIKJs2qA9/B9HsB3kskHmeDUSxAsPmp9gsGeMCxZobCQiX8gL97AjGCKDHsQRxhmhVuwF91J+kLBGleHHNLu26WOfr8S11JPUFPQ5v7CPqkOcY/QNEzGCbnphLuC9ayxcwjrsr4n7STspI2gPk+pKumeFy88vO5HumeFztIc5lHGNDeXbn8I7mxl3RAf867l8Gfmtr77cJDYAz2Z+2IvC0Cffvvz+/Ev787vkFOWhEBg/wgBRgmKwC8VPUFHXpDrmJwxCUEwQhEYyTTKpysJoE+6BFOJNYoszKxZCMSTgYiww6LxAGKULDvRUZeb3cZ7PrjF2BLJzmNdCQPJwiTP5UC8IJ8nyeAOSCAaFSYeBzW4y2k6/4UmIEq4Hb/Ky2MnEBMArAHhFBd8JS/4VKztCNZABEswJ3VBHdmomWbkFn8/9JJ1TPoSAsFCWei7oIyZl6pXfEoVN8OXDcZ6XpO+iykP/IBBM0Hjywq+uYbIlJM8OYzxLvP6FEF+UEKogzIIhwysDkaA/IGt4o73gbcWY05+IJ+OEvcCEMsKhSn+v/4QkUF+8PLyqA1KGp4/VNc8Ov4cseD0bC/ppCJD7mHQgObQfLCkvvwSC0leTpvFCQjwJ+dI26gJ5hNyCLx4hBBJHvhvEi+N4N+IsJD0h8B5LbJ/f0ES5lEFuMBsMuIaQIh45dB79hsTwPPLx4gj9xViGBEPY8coE3zMYVQZtZlFI6Jf+x4vDAoKxzvilHpTL4q0oBR0mXYBFLDsYyRtEqJ9Pn+GTDS7YzKQCgUW3sfOkG+DZZnFCWUl0JdVzU5XPV3QVlI1PVRfayYKY98RhAyB29Dd2m/mbRQ6LaBYh6AZ/I/mtr75+SWxAkmt9+VGfSfQJG1ucJP9nvAytY6VDCANFiPphVeoHYbqi/Go2fA1EhN2yTDJ4cAgvZBJflv/016Ow7PZi0FIe4Q7CFtQRBcdF7d/67u+J+kTRuD+O+Gv9Z9Q9vizc0oRkmLDx2kHAMGoQOu9G55UDcSTcdiY2SBkDF4JMCIPVbirBsDP5Ee5mkmNyxkvERAV+kB7qhFcBrwaTJddClnmRcibx9fOf/nq/CMADwUTFcyHhTHxXXnmlIwv+2nSf6fAO35cUG8oO1zsvfcf4gVyQtI6+s7AIh14wShDqnj17On3l3ZAYY18P/0nb+Jtkf8qhrkzW5F3hlWEs4akDZ8ZrMFkfUgKhRh85n8nr43FEVwiTQDrRL/oMMo7+Ug8Wdb5efFI2ukjOFu2arPrN9XirIIjoUKa8Wd+//tM9IPTLjysOs3jBE8H4gsSxWIFYcT+4smghPcNL8F5/LNOn98zhWeL+KHuFDcKLx9jCdkJSeEcaOsCrk1gcs+CiXr5PU9WF85BhCDTjA91ADzMJkzxkiPAtNgDPDV5xCD+EmpAs/ZNUUtU32Ef+mkxlUw/0gEUtxAv9wFaDBXaA1AT6EbuDnvly/Wem8ukr8GKx4+0M4wRJqitRz0pVfl7sRPg5cdvKdegW+biMacYcmIEnkRXsOwsNwu4QvqDE1dfgPVF/h+uaxAYkudZ7ddG5oCTVp+C9Rf13KTUULtbiFT63OSJF3ZCCfj5eDLxdeAa8USzoZyYtn0mXlRUGgskujsFO+oy8XI+qQdgJxUJCMQD5JZSN9wqCwCQU3EGZX88oyHKKS9/5eoBnlno8MegIXiGwhRT4Y0xuhETxFDGx4QFKRShSYce4YkyhF5SN7qYTr0OMRUgQZDZskNPdn5tz3jZSVzAJTzi5KTM394A37WZRSbuZeJKKz7GlD/F8RuVLpSvTL/DQB8YvdiZpn6crP6/nvJ0mDxQvpl/scBxiwie2p6CkoHXFj8/CtPEeUzzpLMjwFmcap+CbH/oa1U9JbECSa6Oe5dteVPoUVSevY6m4mpG6KNTsmCFgCGREACJGbhYreHZn5iaslfEhdkG+IYAHizxW8m+JYDz99NP5VrYVZAgYAoWDQCZSV+g5dYXTbHuKIWAIFBQCfHME+TZ4awjB+TyygnqelZs3BPBgs0mJ946xS5WQfdw8vLw92e42BAyBwkbASF1hI27PMwS2cATIq4IcEJogBMg78UikNimeCJB/Ry7e2LFj3atR2DyWaYNE8WyJ1coQMAQyIWDh10wI2XlDwBDIgQDuf5LEye9hs0BRv84iR+Xsn78h4POCyMcjn8znmf3tQjtgCBgCxR4BC78W+y6yChoCWxYC7Bhjs5DJloEAGxnY0MCPiSFgCJRsBEqX7OZZ6wwBQ8AQMAQMAUPAENg6EDBSt3X0s7XSEDAEDAFDwBAwBEo4AkbqSngHW/MMAUPAEDAEDAFDYOtAwEjd1tHP1kpDwBAwBAwBQ8AQKOEIGKkr4R1szTMEDAFDwBAwBAyBrQMBI3VbRz9bKw0BQ8AQMAQMAUOghCNgpK6Ed7A1zxAwBAwBQ8AQMAS2DgSM1G0d/WytNAQMAUPAEDAEDIESjoCROu3gBQsWyJlnniknnnii8Nb1dMJb9AcMGCBHHnmkvPLKK+kuLbBzc+fOFb7q59RTT5VNmzYV2HPys+B58+bJ4YcfLqeccor7eqn8LHtLKYs3gf/www9y8MEHS79+/baUals9SwgCy5Ytk7vuukuOPvpo+eyzz4qsVfkxDopLWwoDxCi8Fi9eLP/4xz/kuOOOk19//TVlNaLuTXlxhhP5WVaGR9npPCBgpE7BQ1knTpwokKXly5enhXPDhg0yffp0mT17tkBUikKo75QpU1x9txRSx/dP8oXiRYVZUfRT+Jl8XdPChQtl1qxZTofC5+3/zQgwxkaMGCG77rqrW7hs7bisWLFCHn30UenSpYsjZZnwSHU9dmPatGnOdrGQzU9Br88991zp1atXRsIYNQ6S9nlBtiU/ccmPsqLwwp5OmjTJzQFLly5N+Zioe7mY+atr165ywAEHCAQxjqQqK869dk3hIVC28B5VMp5Uvnx52W233ZyHrEOHDiWjUYXQisqVK8tRRx0lVapUkVKlShXCE4vfI8qUKSNNmzZ1XtbWrVsXvwoWkxqxUFmzZo0w0fNpIrJ27VqHB59xJOn1ccpMd02wz5j800nUOAjeb32eE70ovHJekfq/VPd6vLHLmfrLl56qLH/ePosHAkVO6lAovpswLKmOh6/D8KNscSRumb4sVkPlypXz/7rPChUqyH777ed+cpyI+Cdu3Rhg+U10kpQJLjw/bh3SXZ8KYzDXKgAAQABJREFU45o1a8YKOaa6PwJeZ4yidCfq2lTHkjyPMuL2adTz0NMdd9xR/v3vf0edznEsVb1SHc9xc+CfJPVNV3a6c4HHJe6TJPULPifT30n0P1NZwfNxceCeJNdSXyTuGHQX59OvuH1AHfnJ65hLMg6SNrEg2pKkH8P1TYpZ1LPyglde7g23JUlZUe2gvFTHw8/KD9zCZfr/49bBX7+lfRYKqaODpk6dKhdddJHstNNOLh/tnnvukd9++80Zsfbt28t1110n1apVkzvuuEO+/fZbIXeN/w877DC55JJLpGLFig5bVnGDBg2Sp556yrmfccOjbNtuu6307dvXle07gefOnDlT7r77bhk+fLgLfeFp48vIzzjjDOd69tfyiUH4/fff5T//+Y/8/PPPzoBBRg455BBXBwgd9SKX7v3333c5eOTWBdt2zDHHuBDJ2LFjnQI3atTIPYs8lqAQInnppZfkzTffdOE42rfLLrvIscceKz169AheGvvvuGWCGXkYDz/8sMMFTJlMateu7fLeLr74Yocpbn3fT1dddZULn1Jnjt95553y+eefy/fffy8XXHCB67NPP/3U5STSFkJF119/vdSrV8/Vn7Dr2WefLeDZv39/oa6PP/547PspZNWqVfL222/LW2+9JRMmTHB1RJ/ILXz++ecFEv70009nJPnU5b777pMvv/zShR5q1aole+21l9Ofli1bun6P26e0g2ejD5RxzTXX5Oiv+fPny4UXXujq9K9//UsWLVokt9xyi+yxxx4OH86j3yweHnzwQYcJ+U7o6TvvvONweuGFF+Tdd991IVv6qVmzZm5RcdZZZ7nreCDhr2uvvdZhdPPNNzud/+mnn4Tco7AO+zH05JNPykEHHSQ1atRweaIzZsxw44ywzA033CCTJ0924zGoy4wxdNQLY4a+QB/GjBkjq1evdt7Inj17CvWrXr16IjzpG/SJ8BDGd9y4ca6OjG9CkOkkk/5z/sUXX3Rjji+3p8516tRxRZJ2gT6i0y1atJB7773XkRfGyi+//OL0BdvA+K9UqZJ07NjR1RP98xIHC3QU+8azGe/oG3XCTqED22+/vRx//PHOm8uz6UP6YsmSJQ5bdP+7775zYc7LLrvMP9p9Zrr+tNNOc9dhF8GZ8cmYRR+ixizXkSoA7thcxj36h3ene/fuLqcLz/urr74q6ChlIjfddJM88cQTLk+Z8F5YqOePP/6YPQ6wC7nt8/xsS926dV1VweOTTz5xbcAOoIfePp933nmy8847h5uU4390aYDmXb/++utuXIIZOO2zzz7OFtSvXz/7esbLhx9+6GwI6SnoEPaod+/eLpyN/QzjRb+lEsY7dv2LL76QbbbZRv7v//7P2Thvc8D5tttuy7b79Bn6RttvvfVWN4+mKjuqHkG7Q54wcy06S7uYZ+lb7CJji3aS4gSWe+65pzCnNGnSxD0ujq75/uGGpHMB7Uxn81O1eUs8Xmikjk4gD4x8tI8++sgZekgbhgIlOP300x2Jw7iVLVvW/c25N954w13LZImivPfee85oADZkDqXH4DEgMMRMUHvvvbcbHEwyTKicZ3XJwKIekEkMD3Vh4vFCngkTI4MQw00Ig0mYwcl9//znP125TH78UFeUkXMMfv7HSGK4q1at6vLzeMb999/vyiNBHvEDAeNOvZj4KGPYsGFuAkHZ2QiRROKWidEAF9qN8eL5GBEMF+1/+eWXXbuvvvpqZ0xoFz8ffPCBM97UCcxpI/3JRAeWDFb6DYyZPDEq4EF5PIPryQGB5IJZ0vsxVuAIoaZ/mAAh2UwO6A/1p2w+0Yso4bkQEAwNeHEdhIc+HjhwoNvE8MADD7iJNm6f7rvvvo4EQIDAE32j7xHaOHLkSKdvWVlZjoxxHToBFv4a8jnBjsnzueeec+0jTAvhu+KKK1x+GW3GGNJu7mXS/Oqrr+SRRx5x+sOzIEDoOu2jP9Bh2hjWYTDCyIEFxpa2Ui7jkfwaJnDGCMSKMQDOYEe9mTDQF9rNuaFDh4rXFV8GbaQdLIweeughh0dcPCE64MEEgqCvjDXKTidx9J/FGRPrs88+K6NGjXJ6i6GnHd98840M0ImYhQ3J5+gs/clE1E8nKzDzYxWMwR6MWIR27tw5NhZgyTgDI34QyvX2AgJJ+ykb0gaJpB+8UCfGVdSGLvoozvWMJfodSTdmeQYkhnqif9QRQoduQXrIz6McdClYH+w2kio/GSzB0I8D+jo3fc4z8rMtkGvwZYFGn9Nm2su4oM1ff/21jB8/3o05yHeU0C42o7Ago1/RJzDmfhZmLJDQP8YmdcfeYCMRruN56DJzDraNhRdzWhCvqOdyjGtYLPAcnouNh1gNHjw4B9bYbd9fjC+/gPJjLlX54X7jOm93sBt9dcFHm2gDbQGrG2+8UUg1YbyBh28LdoM6+LbH0TX6B+EZcecCnhnH5qfqT/fALezX3+OehdCANm3aOKPAxI/nB68EHQUZwJuBwcSYnnzyyW6Q4Q1CuIYBgWHEQLNixasBSezUqZMjfXhfEBScCYV76DAGKoYb0tWnTx9ncFhhegPkbtJfrG6YuCBc1I/VLRMSA5oBkEowqJzHo8CggqDxySRFuxjkCGVBIKg717722mtuYuRZJBozOBjoTOhxJUmZ1IXVPoMRLwGDa8iQIQ5Dng9xxpgEBQypJytMvEAQiubNm7tLaDMTyaWXXupWf5T1v//9z02CGHsIVzqJcz/GBiIKoYMAYyioI8YKrBi4cQRs8YbRHjyJYM4P+sNqEsMLcfcSp0/RXbw1kEP6gTp5ARf0DQNOAnm6elInxkK7du1cm6gnXkk2DFA25AGdgXCxGua5TISPPfaYf5z7BE9+4ugw7eMHbzhjg7F0++23O92AyEPeKJ+xwGKKutEmxicCOcGrTV3wfLOzl/bTDnQFkgnp9BIHTzxojHd0DLx22GEHR4z9+PFlBT/j6j/1xTOADkPk0E085ZATQuIsSMj7RBcQrmeChlBCYsEI/Wb8tG3bNnus+muTYME9tA/bxIIJu8UPi1swxv5BAHqqx5PnMkGjR3hVwBmvSlioZ9zrIWjpxizkhugGhA4PCeMfG8hYwa6iY4xvsGcRSr9j69BVMKMt4ehEuL7+/9z0ub+Xz/xqC+2BiGK3wRqPNNhDYJk/6CvsJ3+nEvoOjMCBsfSF2pePP/44e97iGeg3No3+hdRAGi+//HJn05g3iDZAjCA6LI7iCLYNvabu9Bc2Iiriw/zG+KROzKMNGjRwdWTsQwBzKxA+7ABRGPTE44UeQe7AEluIJ5y6oT+MLzzBcXUN7JLOBUltfm7bX5zuizcb5mONWUFgQFE8jBpKBSHDo4BSQbgYUBhYJhuUhYGEcD3hEjYo4EZGiRCUk2MoCl4J7mH1wYDkepS9cePG7lqey+qTZzFwYPFeeCbhU2/UIRDUh+dSNpN+OmESJIwMWWOVR9tOOumkbAXmXkgkA5Vr8T62atXKFcmzeaUKz8awpJvEwnVIWibGH7zOP/98R5IoDwwJK4Bd1AqbSZqVEq8lgdCBCUJZTPa8EoY20yeEpjCADEAGbTqJc78nPNSxW7du2ZMF96I755xzTrpHuHMQCowkkw86QTiCVSNCPxHiYnKgj1lVeonTp+gRYSZP4vy9THhMbvQti5B0gv6DI6FcQluMAf7m3hNOOEH2339/dzv4Eh7Fg8fzMMZ+fHBBEh2mv5hQIcmU6/sOvadNhGYJE9PXHKONjAMWHJD/L3TCYvHEShyvEtfRDhZtkA7aDwnCaHuJg6e/Nu5nEv33OoNXgboTimIcgiVEjRQRhLpDoNE9dJ/20Ce0MUu9rrxOAkzAgYkjN1igh5SLhxlB/1hEgjnPpf8LQuKMOcYLGIAJNpDxjOCBYTHIWMRW4FUqSimItmC3aBv6AflH0AHCnkcccYTzzKdrM2MkOF/4MUEoFDtAP2NjsaeMOWwYZB7dAl8wxzZzXdBLG/VM+glyRNmQJsYzCykIdmEKY4E5ANuPUHcfesfOkmLC3Et7WQTDA8AIopZE15LMBbm1+YWJW0E8q2xBFJquTIyBJzJcx8SCAmAwmbC9oOCsYIKCEWQlQGdB3pgwCP8R5oHAMSAQvFCEYymDe1jtB4UBihfEC5M9Qnhr991394fdJ/Vi1eUVj7qmEtoWHEzUhzAa9/qJjbpBHJg0mZCZDLxgQAg1cS0emriSpEwGHgYAwWjj8WLFSNgHPKMEDCASDMqw0GZePREUjBgkGoPEpJdO4txP+/BKgRmh9aBwjPwTPFPphDIIW6JvtBtvQ1A45vsJD4Un9nH6FCJFaJ1VN/oIyQAzPFUQLkgwE6GfIILP9X+j6z7sxzHqy4SJrrK4CQp6CvHzXjXCKeg5EkeH0WeECdFP0O6A/gIfygALvItewuORttA+xHsJ/LV8eqJJ/7Nw4llIHDzdhQl+JdF/imUMk4eJxwsPMJ4EiBVEn3YilEm9wYLd7kxGXtBvdN6PF/o7CRaUQxn0bdAWchxdgkzjzaFfC0LijDnajaeNH0gO4eDRo0c7vFioeHtWEPVLUmZ+twV7QoiehR3eLNqKLYBo490nPSedgBu2ErtOxMIv0ri/Z8+e2WMZMoM94nlsvAsKtgP95AdJZzcYe3iIGW/ch330BDxYZpy/IZqEe/EWBoU6QuzRy1RCP0BOvXh74W0MpM8LNoYy/dyQRNcYl3HnAq5NYvPJ7S8JUqikjs70RjMIHsf9ZBI8Hv6bTmLCJRQV9LBxL0bSCysA8jU4xoogrnC9997EvcdfRx0gcVHt89f4lQn/4xkgjBMl1INVYhxJWiaTNaE1PBQ+jMZz0uFPuyAmUUJ7PUmIOp/pWJz7WTWzGmXwe/Liy6XeTISZhImJMBvtB1vCSVGCscFQInH6lOtoA6QAgoSxxqAT+iBsE2W0uScsGD8f/vDt5Rp0gdV3WHgmus2YYCHgcUmiw7SP68PCcQS8Uwl48lz0jwUUP1FCW/Ds0Ya4eEaVk+pYUv335UDsmKggdWDAIiS4aKF9eJk5B/lKJ0mxoCz6z/dZsGyeRz28pyh4Lr/+jjPmeBZeEXKXyGumjUgqnXEni+BXfrcFYsTiin4gBQBbALnjhzFKhIMUITYrRQmeaCJR5GoSgkSHSBvhh/F04IEHOmLo9ZZjUeM7quyoY+gJcwmkioUp9cQbiLcvqWBLIO8scoKCDZusYfh0kkovOE7dMklcXfO2Mc5cgM4mtfmZ6rklnC9UUpcXQJiMUSx2ZjIgYNXE6VFejCA5KCSJIgx0VgZe4cPPpSyUiNVmOs9b+L68/o+h8CQTg96vX7/ISZX6k/sQR5KWCTm68sor3cBlsuIbHvA6ZGVlOQ8i4dWwBJ8RPlcY/2MY6CdWrOFwjx/kmepBG2gv2JJXlWrF7b2r6EcSgVhiTPEAEgbB40u+ove8ZCqLevlJ3usv99A+vNL+nC+H49QRgxtXV/y9+fEJnow7DDZeCCbCKMHDhaccAlgQEtTNuGOK8U992FiFYPzxVj/zzDPSV8OyiO8DcPZeR3fiz18cZ8Lnk2vjYgHxRy+4Dw9fWDhOv6LzEIyiEupAvipkBB3GThBJYXEHXuQ7U9ctQZK2BdxpL+kweHpY/JK2QUSIPExSH9jIQB9FCcQO2064lggI3j5sAotp5in0jw1V4AqW1C8sHMfWod/hiFXwWuwV9pv0EWwapIx0I3LPg97l4D2p/sah8d///jd7UeuvQ79pU0FJkv5JMhcksfmpSHpBtbkgy91iSB0EjJ2ETOx4NFBalA3B6OIh8YKiZylJgfwRAoTIBCdFjpE7x/2EIjNtUffl5scnkyCEE+VkoARdvrSRPB6MAK7+uG70uGWyjZz3pBEqYgcrCbmEhxGMSBDDcFtTGbDwdQXxPytk6kn4BwNLeMQLq1QMZiahDCYkJiL0AkMYnDQJPZDriG6QLB9ndRl8JuSKcCWeDbw/TADoJSv7oO4F7wn+Db5BjKkbRp/VN20OhmBZUeOp5hyGmHYVdjjMexY9noScgsKEBGniurh6HLw/yd9x9d+PKUgy3n50h/4hfE/yNv0PGYeEenIPruGNQ+gP/cvmEPIxCVlhk+JgQV8hlMEuVlIxGItefH/z/EweQn9PQXxSDzzO6BcbKoKbHvA+QWiDIbWCqEN+lZmkLXjxGcPoFO0mPM4PBI9wOwtirpmsDgbfl76e9D8kkMUB+kCeHHaGH3SFctmcBzGkf/EOk67BBqjgpgb0klfEsEAkXzXdZgn6h5Qa7COkjpxMwvako4RfeePrmeqT+RBblcpepQsDpyozzvEk/ZNkLkhi89HvvHhM47SzsK7ZzIoK62l5eA4DBkbPxIfysdpBMI6sTlB8jkFOGDAMOFbPGHA8eFyHMGDYIeTzniA6hSlM/iSQ+onFe56oO65idl+ykvf1jVO3uGWCjfc6eBwpn2djqL2nE6yLk0BuIFrkYLBihvQiPhwfJ6EcnfEhUjAP6gTGih2eJBizc8t7U5NiQBgafaJ8v5syXR5KuvLpU0I16Ck7UMkjQegbJhRW1D7pOC/h73R1SHcO0slEhO7gjWBMeWGc8h5JjpEbmpvJH/2k7DgTSVz9Z0wxgVAvcnDpZzYq8PogErxZ/DH+uIb2kbfIPXhY2DHoBUIDkcMTAKljQs0NFtgA8qF8bhH6DFlkdzxt8q9A4rne5vlrfV1SfSa9PlwOegYOCPbUC4SGV+9AdukfbApCf/k+i1tHX6b/9PfH6XN/T5zPJG2h7thfdCSo0/Q18wkCtlHEx9efTW7YJJ9nyT1eV7iX8UD/sqOa+Yg0Db85C0xZWELqCDHiBY8jlIsXmE1j2HjqzrjMJDwvt/2Vqey455P0T5K5AEwK2ubHbWNhXvfXaC3Mp+biWayc2DWDArAaIkzIiprcOTwjXjCKTIJ9NYxCqBYjzRZzVttZ6r2DADJREs6DnTPAvPHyZRTkJ8/DtU+dGHQYbtpBHQgBYRgIDzLg40rcMtlBiVHmejwE7KokuRUSAobe28PkxrvH+CkOQt/jZaGu9CP9yoQMVngXMZgM4EwC+WEXFitYXmWB8cYQ4jGBKDGRE2JiBR00yJnK9ecxOBAEPGsYVvpx79DGDn9tpk/6CB1mMw1kn/Am+k+bIUpMphAKvAlFIdSDlS0eCN5V1q9fP0d0aDMvtkanwJvzSYX+xIvNhEOuHhiyozbVZpi4+k85eEbwIHIPrwmhvtgUQmWMBwgcr+RgRzDeFhYT6AqLADbCoHdEDMCfiR1dyi0WkBe8P4xL2se4wwNLeTzbkzrw4FlMvhA+no93EV2OklTXY3fiCmOO1BYWOWwggXggeMshtQifbNah78GFNABynnlvJaQGfMObANyNEb+S9nlEESkPJWkLu5oZw5B28o7JvaUv6BvahvcHm4H+hIV+AwcWCMxDvPkATzC4oFdgx7yDHmJr6Hc8d9gexgkebYg9OkpZvEXBvzA6/Kyo/7E/RKDoK8pkwUA7ogR7iZePeYDcUl64zQLHR26i7imoY0n6B11LMhcksfkF1b7CLjfzTFjANUJ5UTD/GfU4zjPoCR3yygGuZZCQFMrkS8gETx1KzcoHdzaKgpcEA45BRHnZUQahQ5nZMo7RiSM8OzdCPaPuZbCy8sctD5mDqECqMBiEFnHTM+iTSNwywYKcC4wSRhnSAEmAyPDtEez0g9yxcmRS9fX3n3HqlK4vc3s/xpLkYwwlOSaQOYgDoXPvYaTsoFch/CzwJUxIAjQrOHSCSQsDSJmU7XcGh+/1/6fqU87jOWP3M9iyygZL9DCdBLEKE1MMLESCOkMimFTQFe5hRx4TJ/0eR+L2H2Xzg4TrEx6njDfGEPk8tHOy4ogXFQ8UhI/3l3likqqOPCtcN44ReuT1EQgTKuM9ncTRf8YahIPn8foYnwdIu8ipob5cw7u0aAf9yMIGm8M9EEz6ABKYpQtEyvK73ZNigS5CmvDGgheeQ2wZesOClYWpx59jPXv2dIs/PIcsQtLhkfR6cAVz/zz+ZzIEDwgMZBI8WKxwDSFIXguFTrLgYBxBVsATbxZklTrSb3ElN32equy8tIX5A4IFmaKtOAF4jyBzCraF/gram3AdsK8QXby82FHmHO7HvoMpIVk/74AVpAtyB5aQPggdusELrbF32L0kwvUsSBB0BI95lKDb1ANdYQFKpMYv6qOuz80xP66DekU5wf7hmqS6lmQuyA+bn5u2F+U9pXTidnFMP0AJWxZ3YeDhoaPqGFc/cWKQMSasvv0x2sJ1kDmUnEHHhINiFQdhZYZhRJjImBzyKnHK9P3NgGZCZJAjHCeJnIEG+S0OQv/Rt0wWGCH6lokGY4FRIEeFsAP5JyR2xxWvR5SJTmAAiqv4/vKEwhvM4lJf+ohFAq8HwstGnlhRjbE4+p8UN3CHvLCYYEGAHUkl6bBg4iRZnoUVi1G8j+RzYgMYg5RdVLhFtYd206e0G8+wz//zePBJnbcESdoW9Ij5hOgGiz7aGZxXMrXZkyVsF0QEGxMmOL4MyDo6gF1jMZcf84Ave0v5jNM/YJiXuWBLsvmp+s3PBam42hZJ6lI11o6XTAQwjnhi8bCxgmUi9MaRyYaQCaFrVrxMliaGQHFFIIrUFde6Wr0MgeKGgM0Fmx0vLABSkbqyxa3TrD6GQBgBn7ROgjbhDPJGSExngPOiTLy2eBD4mjMTQ8AQMAQMgZKJgM0FmfvVSF1mjOyKIkYArxyvFWCLP7s+eTmmf0EmYUg2mrAhhrC7iSGwJSBAiDVd/ueW0AaroyFQ2AjYXJAZcQu/ZsbIrihGCJB3QVIvuS5sTMAF7fMBi1E1rSqGQEoEyLlDjyF2Po0g5cV2whAwBCIR2Frngkw5deapi1QXO1hcEWASZKcuPyaGwJaIAGSuuG102RJxtDpv3QjYXBDd/0X+SpPoatlRQ8AQMAQMAUPAEDAEDIEkCBipS4KWXWsIGAKGgCFgCBgChkAxRcBIXTHtGKuWIWAIGAKGgCFgCBgCSRAwUpcELbvWEDAEDAFDwBAwBAyBYoqAkbpi2jFWLUPAEDAEDAFDwBAwBJIgYKQuCVp2rSFgCBgChoAhYAgYAsUUASN1xbRjrFqGgCFgCBgChoAhYAgkQcBIXRK07FpDwBAwBAwBQ8AQMASKKQJG6oppx1i1DAFDwBAwBAwBQ8AQSILAVv+NEvPmzZOzzjrLfdXUM888U6Rf27NmzRr54osv5Ouvv3ZfUl+/fn3ZZZdd5LDDDnNfiZWkY9euXStDhw6V1157Tc455xzZddddI29funSpfPPNN9nPbNGihRx00EGy8847R14fPshzfvrpJ1fvCRMmSI0aNdy9Rx55pFStWjV8uf1vCBgChoAhYAgYAgWEwFZP6tatWyd//PGHNGrUqIAgjlfsokWL5LrrrnPkKnjHBx98IC+//LI8/PDDUq9eveCptH8vWbJEHn30UZkzZ45MnTr1b6SO75+cNGmSI3wQWy8//PCDvPfee9K3b193zh+P+oQQ/u9//5O33norx+nPPvtMnn32WbnjjjukY8eOOc7ZP4aAIWAIGAKGgCFQMAhs9eHXypUry1FHHSW9e/d2X7BdMDCnL3XlypXy+uuvO0JXrVo1ueiii+TFF1+U66+/XipUqCCTJ0+W//73v+kL0bMQtYULF8rHH3/syhg3blzKeyB7F198sUAmd9xxR/nPf/4jDzzwgPTq1UuWL18ur776qiN9qQrAqwh5g9DhkTvvvPMc+bz11lsFD+PcuXPlX//6l6xYsSJVEXbcEDAEDAFDwBAwBPIRgS3CU7dx48ZEYdGo66OOgWPNmjWlX79+GSFNdX+qGzds2BD7S7shUW+88YZUqVJFTjjhhGwPWevWraVhw4aOfP3666+OKKXy1kEMX3rpJbnvvvtSVSn7OITs22+/lZkzZ8p2220njz/+uAs/c8EOO+wgY8eOFcojLMv5KMFLN2DAAFfn448/Xi644AJ3Gfe3bNnStWPZsmUyZswY2W233aKKsGOGgCFgCBgChoAhkI8IFIqnbvbs2XL44YfLiSeeKGHv0apVqxwZ4TzhOgRC9Pvvv7tctz333NOFDskru/vuuwUygUCyRo8e7fLN8DLNmDFDrrjiCtlnn33k2muvFYjLwIED3Xnyw/iBXOBRGjFihCuDX4QejzjiCBduxNPlBQ8TZOeQQw5x95KTxnWEQckj84JnjJy1U045xXnULrnkEunatavLhevRo4fceeedri7++vAnz4TUQbDweJGL5qVcuXLSpk0b5/lavXq1I2L+XPizbNmyjoDttddewk/nzp2ziVr4Wtr24Ycfuucdd9xxOa6rU6eOPPnkk44c7rfffuFbs/9fv369C+1CRIN1LlWqlFAGZJDQNiFeE0PAEDAEDAFDwBAoeAQKxVMH4ShfvrzLXSNHbPvtt89uGQTjzTfflAULFkjz5s0dYSLB/+qrrxaIA8SGkCQhyOeee05+/vlneeihh5yHCEI4ffp0oXw8QvwQroTQvf/++9JPPXCQDEKslEFIkE0I48ePl0ceecTVwxMPcuogWFw/f/58RxAhf/xfsWJFVw8IyhNPPCFfffWVu7969eqOuEBUyWE7++yz3TMqVarkvHSENgmrUs9//vOf2W0O/gGBhZAitLVx48bB0w63Vq1auXbT1lQCvoRO+UF4NuFbiG9YIKWjRo1ypG6PPfYQvIDDhw+XWbNmORK5++67/y0HL1wGmHAveDdo0CDHadoE1mXKlHGENMdJ+8cQMAQMAUPAEDAECgSBQvHU4c05+OCDHbkZNmxYdkMgUZAPvHIQr/3339+ROzxvkJQzzjhDSNwfPHiw8+aRqwWBgpB5gfix63LixInOq8a5yy67TN59912BXB177LEujPjJJ584ogehhEhC+qKEsOPbb7/tvHmEZvEefvfddzJo0CDnKaRePOuxxx7LcTtEhh88eYQ2v9BdrKeddpprM0SSc1HCcQhh6dKlHckKX8Px2rVrO8+k91KGr0n6P15OMIBssjuW8Ckexeeff15uuOEGOfroo/+2+SH8jFq1ajlvHvhARr2AH9gvXrzYEb6ddtrJn7JPQ8AQMAQMAUPAEChABAqF1EGuevbs6ZoBicMzhEAqhgwZ4ib/9u3bOyIHGYLkkE8GOYPU4PEhDEkSvr8Hb5wXCOExxxwjt9xyi3Tq1MmFEyF7kBfK8uFSSCHeK8KovLojSsgDg9z4/DaIJgKZI6xKiBfiwiYBiJEXrqcOhD4RvHh9+vRx9Ye44blKJdQTwSsYFo550uTbEb4myf8QaV9vSCIbMsAaXK666irnvQQzNk34fopbPuU+/fTT7l5CyYR2t9lmm7i323WGgCFgCBgChoAhkAcECiX8Sv14fxmk6McffxS8Zuy4hKDhAYOU4cmDtPicOzw9N998c46meTJCfhneOS+EVvvqKzi8UB65dYQY2Qn65ZdfOrJFuLBLly4u585fG/4kHEueHASQPL6gEHLs3r273H777S7sOmXKFJc/xjWcI2wZFMgs3j6IFG1NJZxPJZyDoCIQ3LwK5dFGBLLcrl076d+/v/ubYwceeKBceOGFLhcOgnbXXXdxOK1AWuk3wt1ssoDgkj955plnpr3PThoChoAhYAgYAoZA/iFQaKSOif7QQw91BIsQ7KWXXupCdOTBNW3a1BE+vGTkl0ESeHccP1GCZ4u8N8gcgierbt262ZdCpvASQVrIgYMgQu744doOHTq41200a9Ys+x7+oFxy+xDuZedpWHw4FGJEXdkUgHA9xDWp4IkjLw2yBVkNiz/urwufT/o/9ceLiOBNw7tI3b2AKdjddNNN7v12/niqT4g2nk3C3tSVnMAbb7zRkedU99hxQ8AQMAQMAUPAEMh/BAqN1BG+hExBGgjBkphPEj8erm7dujmyBbmAnEFy8KpBLqKEsgjHkosHSYHEhYVj7EjFY8QGBzY3kJvHRgu+AYEwKpsYghIkPBA86ulJm7+O45BPvIH5EVqkzWw08OQNkgQB9oKXDnLrsfHH8/JJWWwu4TPcPk9aaSe7ctMJYVpy8cihAw/66/zzz3d9mu4+O2cIGAKGgCFgCBgC+Y9A3uN5CerExM9rMvxmBPLSIDC8NgTBi8arMCAUeOsI1wZ/CNkSusXjxnkvkJOgQDYI3ZLEDyli92hfDc/iteMbECifaybrjtqwQAapE+FSiGBQ8M4R9uUcdWW3bl6FuvPuOUgWeYKEp71A9Mh7g5TyvOCuYX9Nbj4hxWBJe3y425fDMcgy9UpHWsGAb56A0EHEH3zwQbn88suN0Hkg7dMQMAQMAUPAEChkBAqV1PkQLISAV5uQiA9xaNu2rWs2hIp3u0FmfvnlF0cYPB54x5566il3jFeN+BCiPx/8JIzJa1EgHPx4gaj4MC0eqbCXiusgnuSVQabY4cpOVwQiCAnkmx0gRezqJF8uPwRvJd/xSpiY17WADwLx5Ku+IKbUi00g1AOSx6aR+++/P7t+SeoBznvvvbfzxPEVZNOmTXO3UzbtHaAvFeYaPKgI9WGXLCSZ6xHqRsiVXbDXXHONq5s7Yb8MAUPAEDAEDAFDoEgQKLTwK62DVJFzRS4bBImcrn333Te74eSNkcfGq0x48S+J97wIt0mTJo4AsoEBIsX5dOLJI/fedtttjpDgASRfjrAvXi++9QBiGA4xcqyvevXwIkJ2CClC4KgbZBKCRbiUnMD8EnLxeCnyWWedJb/99psjtllZWe75hGOpE69HgUziSaNefHsEhIowdKqdvKnqB0Ekv5E2EgLnFSa0EVJHG/kEL0LXCHXgXYLUjZ2y5OGRTwjxxcN47733OoIZfh7tuvLKKx1hDZ+z/w0BQ8AQMAQMAUMgfxEoVE8dVfeEy//NrtegcB5yw/vSyK2D/LF7lfw2CB+v3fD3QCgQCFdQIIsQP4gQHjnICJ5B3jfHPXjiyAVLJWzcwCNF6BcSBxEkLMpzeGUJGwO23XbbVLfnOA6RzSRcwytd7rnnHheKxdNInSFTkFgIJO/bQ6gDbfLiMfD/Bz8hr6kEjyXf0OG9cd9//71rI/fwGpcB6q2jL8LCs9mlTP0Q8OGlyFOnTv3bD8QPD6uJIWAIGAKGgCFgCBQ8AqU01Onep8HkjAcoP/LE8qvaVI2QJF8+j1eK3LMwgcv0LDxbfAUX4UI2afDNEZDFuOJxwXuVpd6zOCQtbtlR1/k2Q5R4rUqq73qNuje3x8hPBCMIG/gkxTi3z7X7DAFDwBAwBAwBQyA+Ap6TpOJqxZrUxW+mXWkIGAKGgCFgCBgChkDJRiATqfsrjleycbDWGQKGgCFgCBgChoAhUKIRMFJXorvXGmcIGAKGgCFgCBgCWwsCRuq2lp62dhoChoAhYAgYAoZAiUbASF2J7l5rnCFgCBgChoAhYAhsLQgYqdtaetraaQgYAoaAIWAIGAIlGgEjdSW6e61xhoAhYAgYAoaAIbC1IGCkbmvpaWunIWAIGAKGgCFgCJRoBIzUlejutcYZAoaAIWAIGAKGwNaCgJG6raWnrZ2GgCFgCBgChoAhUKIRMFJXorvXGmcIGAKGgCFgCBgCWwsCRuq2lp62dhoChoAhYAgYAoZAiUbASF2J7l5rnCFgCBgChoAhYAhsLQgYqdtaetraaQgYAoaAIWAIGAIlGgEjdSW6e61xhoAhYAgYAoaAIbC1IGCkbmvpaWunIWAIGAKGgCFgCJRoBIzUlejutcYZAoaAIWAIGAKGwNaCgJG6raWnrZ2GgCFgCBgChoAhUKIRKJtvrZsxRaR7Vr4VZwUZAoaAIWAIGAKGgCGwxSDQuJnI0MlFWl3z1BUp/PZwQ8AQMAQMAUPAEDAE8gcBI3X5g6OVYggYAoaAIWAIGAKGQJEiYKSuSOG3hxsChoAhYAgYAoaAIZA/CORfTl24PsUgthyukv1vCBgChoAhYAgYAoZAviBQDPcSmKcuX3rWCjEEDAFDwBAwBAwBQ6BoETBSV7T429MNAUPAEDAEDAFDwBDIFwSM1OULjFaIIWAIGAKGgCFgCBgCRYuAkbqixd+ebggYAoaAIWAIGAKGQL4gYKQuX2C0QgwBQ8AQMAQMAUPAEChaBIzUFS3+9nRDwBAwBAwBQ8AQMATyBQEjdfkCoxViCBgChoAhYAgYAoZA0SJgpK5o8benGwKGgCFgCBgChoAhkC8IGKnLFxitEEPAEDAEDAFDwBAwBIoWgSIndWvXrpVZc+bJhg0bihaJInr6xo0bZf6CRTJt+gxZt25dEdXCHrs1ILBp0yZZtnyFjJ/whyxesjRHk9Ody3Gh/WMIGAKGgCFQbBEouK8JS9FkJo/Zc+fJ08+/KjNmzZLVq1a7K0uVKiVVq1aR1q1aymknHi1VKlXKLmH5ipXywqtvydhx46Rblz2kz6EHZp+L+mPlylXy+sAPZfjPI6RL585yXJ9Doy4rsmPr16+X0b+Nk9ffel8J7RwBEy/Vq1WTXt33kkMP6C2lSxc55/bVKtLP1WvWyMeDhsrHnw2Wpk0ayXWXXxRZHwjLU8+/IpMm/SE7d2gnZ5x0nCzXY/1fel3GjP3tb/eU0iOlSpWW6tWqyPYtW8gxRxwi1VQHEXTotXc/kO9//ElabtdcLr/gLHe8OPzKrX4vX7FCnnjmJZmg+Ozfu6ccftB+2c1Jdy77omL0B4vAseMnycNP9JdGDRvIDf+4pBjVzqpiCBgChkDRIFCopG6dkpmfR46Wp597WdZ6r5SSuXJlyzov1bJly+XHn0bI5ClT5dzTT5YWzZs5VPBmLVy4SAngGlmyNKeHIQq2DRs3yLx582X16jWyKOSRiLo+L8dWrFwpL73+rvyg9d5phzZy0bl90xYHBj/9PEoef+bFzWRO21++fDnZuGGjrNeJaumyZfL+x5/J1GnT5eJzT3dlMYH9+tsEue/RJ6V+vbry3xuvTvuMknZyg2KzQL2Zq9eslWXLVqRsHjjNn7dAVmm/L1m8bDN2qjtLFi+RtXpvKlm9erXM1ft+VaJ95cXnScP6dWWD1znKWrq5rFT3F/bx3Or32rXr5LdxE6RG9Wqy397dc1Q73bkcFxaTf1gHrV+7xo3xFbroMzEEDAFDwBAQKTRSBzH7Y/I0eaz/847MVK9eXU7oc5jsoh6VcuXKOY/K0G++lzfVwzZ/wUJ55Kln5borLpY6tWsm7ifK26F1K1m/foO0adUi8f1JbmBy2aBEbZO2b72SyUwCcR3w8uvussaNGsgl550ldevU0rrivRsv7334qUyaPEXGTZwk3/7wk+zReReHF94qMOQ5JskRwOvZbNsmcuFZp2XfDAmcNHmqfPbFlw5zQpL9n39Zrr/y4uxriuMfudFv9Ad9EtkkTRo1kkoVK2Y3Ld257IvsD0PAEDAEDIFij0ChkTpCYy++9pYjKNvUrq0ekXOc18kjROh1/717SFbTxnLvI0+px2q5C7lect5mb5W/LvgJyYkKUVasUEEO2reX+wleH/471f3h6/gfAlCmTJmoU7GPEWZdrp69Ner9qV6tqpxwzJGO0FFAWfVW7txuB9m2SUPpd+s9smbNahk5eqwjdbEf8OeFSdrFLanaRo4fBCKOJH1m0uvj1CHTNeXKlZXatXIuEupuU0fabN9S7n34SZmi3tGC9solabcPy5OaEJS4+h28hzSHIV99K5U1rWHfXt2Cp1wKRKpz/sJUOuLPBz+TtJH7uB6JGsvuROBXknpwWxIdDjwm8s+k7crPZ0dWyA4aAoaAIRBCoFBIHeGzmbNmy1TdDICHoFuX3XMQOl+nMmVKS9a2TaXL7p1kqE5Ak6dOkzmaf1cpkF+3bPlyuevBJ2TCxIlCyAgyVK/eNnLUIQc6rx9lrVy1St589yP5YcRI2Wu3TnLskYe4RzAhjJv4hwzQfL5Fixe7EBtlt9Z8qtNOOErwHnrBczbil7Hy8pvvyFL14BAahdTV19Bcn0MPknY7tpYRo8ZoDtfLziO4Uc+P/vU3uejqG6Xt9q3k/LNO9UVlfzIpLFq0OXy8UQke5C4slSpUlL326CQ//jxSKlasIAu1nv9WkkeIEJmjYeXzr7xe6tfdRvpde4U7tkZDi0zKH3w6yHk8eQ4Tf7OmTeT0k4+VenotskjDkDfdca9UrlxJrr3sQs1rfEV+Hz/R5ZHd/u/rNby5RgYN/Upz14YIOVaOVCihIM+s+145cxkJn38/fIS8+8EnsljLJVxZrXpV2aV9e4fttJkz5cQ+R2T3yRrdEDNMPbEDP/jUlU19atasIR3bt5OTjjlCc9tyEhfOF5YQ/m63Q2tH6jyRinq214mnnn/JYYjO7aW6mk7i9o0vw3lyX3xN88UmOP2gPlW0vzp2aC8nHH2YGz8up07z/X4a+Yt03WM3Ofrwg9wi6OEnnpGpivu2mndI/3pBHxYsWiwLNIWhQYN6smObVv6UI1RR53jujFlzNAfvRZk9Z64jR5Cu6hq63adHVzlov72zy1BntYa958vjz77sNvyw+Ylra9Wq4ernc/fAYvCX38iHqqft2+0otXS88f9KXeggtZRwH3fkodJ5lw7uf35R98nTZshTz7zgNhSRvlC2bBlp2qixdNr1r+v8DUl02N+T7nPe/AWaKvGSS4eApFUoX17HVSM5XPt+B10MgNPM2XPklrsflMYN68t+vXrKi6+/JUvUZri+q1JFeqi9O/qIg8WnaowYPVpaNd9OLj3/jByPZnz++/Z7XDrGGScfX+BRhhwPt38MAUOgRCBQKKRu7bq1mqg+zgFWpUplOWCfHinBg3DgZRv29Xead7dWRo8dr0a+vbseIjFKiRbGEimvXiSOzZw5W5567iUlgPvKgfv2dJ6nOfPmqQdilSxctGTzvTrRfPntD877x/2QCHL5mFBG/DLaGebrLj/fETsmhk80Mf+d9z/OfpbL+9MJhWc9rUTu6MMPlVIaygrmajEB4RFZsjw6BwtS2KRRfTfhkcD/zEuvqfFfpiRu12yPWKVKFd3ExuSGMBFnEyz9n7pDBlf9ucGEcwNeeF0n+FHuetoFLrTh9wkT5Zb/PSCn6YaBjjvt6CZIPKbUsb8SupG/jHH3VNU+If/wQ92IMFDDv38W5CYXQtgQjcFDvnLkbr9e3V3ZYXx45lJtyxfDvnLY4hGibojb6PLKm/Ld8J/d/6UVh9Jaz0VKNIbopD5XCQEbEYqK2K1bt14mTJ7s+qVGjb+Ivats4BfYr1IPKvhT/2VLlwfO/v3PJH3D3fT1zXfeJ0v/zOEDD35W6KaNr777XqbPmCn/94+LlUBrzqiSjVWq3+ycRliwzJ2veaTat+F6QQI/+GSQIyQdd2rnrve/os5R1thxE+WBR58SSBRCnxH6h8BD5Gfr+GIjCmR+/IRJztPp82RZaDkiqXV776PP3Pl/XHKeu3bRokVuB+73P/6cvdvbjy3yZl987W1poIu0pk0au5SEEeqtfvTp5zTndHNqA9eywPpj6lQle9N8M9xnEh3OcWPEPxs3blKSP01uu+fhzfXUfsBrTRvHTZzs0kjOPvVETfNo6cbOKsV44qQp8ugfz7q2gwE4rtAxMHjY11JBF2hEIsgT/vq7H2TajBkuf5aNUQgL1FHaVvoe7/H2LZpH1MoOGQKGgCGQHoFCIXUQg+nqqWOCgrRkCulhECF3TLbskO0sm0kdTaGM7bK2lSsuOkc9WRVlrnry7n74Cd0YsUC9TF+qF7BzZIuXKDF55c2BztvWcae2cs7pJ7nrftMddA89MUAn1AXSX8kRq2cMK5MRz2quz7r8wrOlknq+/pg6XR58vL87/8mgL9yGhV123kleUMIyfMQo2VG9PZedf2bk8/1ByE7vnl3lUyWNPOfZl1+TF157U2oqmWixXTPZvdOuLgzLs5E6tWvJY/feJj+P+lXzDJ/RCa+u3PKva905cB2vuXcQOjD7q12l3PEHtV1LlcS9/vZAV6a7SX/hNRs5+lctu7YjwW1atXLezUFDv5Yy6mFpqRPKZUqy8Erg0bzt7oedx3D0mLHqieju6v2ukj+8MW1abScXn3emlNVJf7Lic9cDj2V7FXkeE9vEP6Y6QodX9PCD9tUk/R6uDkO/+k5efuMdPT9FPh081B33dSyIz1W60WbW7Ll/Fq2EXPGbOWO2DP36W0eA8SK3b7tDykfT3hrVqks1DZ2zOGHyTSVJ+2alkrF31IuJTlRV784xRx0i3dQLB3n/ePAQeff9Txxp++LL72S3Xf8aD/75LBjwwiF1//TM+nP095ixv7t6hxdUUedcqsSrbzhCR6rExef2lSaNGyuBXCAD8CL+Pl7G/Pp79mtRnlP9h+zUUs8rHqa2O2zvvFIvvzFQvvr2e6cXn34xTL2af45NJcfoBeP4Uh0vjAlPIvGyf/T5EDn7tBMd+Xv5jbcdoaunWJN/2qhhPXf8Rd0N7xcJvp3cG1eH/T2pPpfpwqz/8685YsmO60vPP8u1D3vzwGMDdBE426WT3HzDVdlFQPrrqLfx3DNO1bY1lRkzZ8n9j/V3ZB3P+6EH7KP61cYtuqjr4GHfZO9AxhM/TBedjOMs9bCjayaGgCFgCCRFoFAsB6v2Reoxg6hA6jJJ6dKlpHLFSrri3eDuC14Pybnq0vNdGAraw27Qf1x0riMVeEbe+2hQ8HL39yo1mIOHfuMMdN26dVxolEmQH0jJuaef4kKo0zV0RT0/1xAkoTbyr65SDwOvV8HINlPvwWnH93HPwnNAuUmF9vc57CA3+W1Tp7bDhAkOL833P45w3pGLrv6nErH3MxZNOOft9z5xZTTUCZ2Q7+Z2lZZWLbeTi87uq95EUaKw3IU+fYH0Q4P69eS2ftfK3vr6FCZKjlXQMCTh5WOPOswROq4vV668ZDVr6jyEK5RgQD4+H/Klm2hra19cdsHZbpICH8J+Z556vH+M+8RL9/Z7H7rJql2b7bOJG4SR0GWPrns6EviNS+LPcWu+/oMO8i7A/7v59j9/7tCw9v/kiWdfcISuQoXy0nXP3d3Em+rBYNu+bWu577Z/yy03XiO7dtwp1aWO1CTpGzyr3+nrU8orLp133dkROgpHX3p17SLbNdtW+7KUW+REPZQczasvOV/uvuVfORYWkLafdMc5HrWGDeo7wujvjzoHTuwEnj13vnpmq8qpJxztvGasMSCxfU88xhFadVIrEZvgrp2l4UdILq+EgdAhVSpXdmFh6s04IT0gKBDAS847wz0DXAlpttZwJs8ndEnKBuUuXLjYkdFTjj/a6SllkA5wvG6yatyoYbDI2Dqc46aIf/DS4TXEHrDYuvicM6S21tfbG/J88RguU3sDtl7A4Cgd2y2aa18pYKQ9HLBPTzd2vEefUP/2rVo4zxwLKy94RKdOm64Et6L07N7FH7ZPQ8AQMAQSIVAonjoMXNWqlTeHDtO8WsLXnHyzVTrJ8Q6xatUq+8OOGDRq0MCRiOyD+kcF9aI118ljkr4Khfe+hQWPH6EUhBDh7RpSCYoPMZELNEo9GoS5mGgIA0E+vJDLs7PmgD123+3+kAstZv8T8w9ClV337Ox+WLH/8NMo5zlj1yuemlVK1vBczdeJ5bwzTk5ZKmSQnDsISYd2bXNch8cNwks4kRDbFM1LaqukCiHfjl21tNELk+xd/7nR9dECnUg/13DrxEmTZYoSIXKq6EMEsjt5ynTtizLSqH79HGU4L4PmRDJxeaGOtIPJerJOWkHsNykzWLlytXsm4eiCFohnuUDd8Ky4V8lomwh/jf19nAulkcuYV0naN+RnkbMFidinZ86NDLyC5IarL82uEnmlcQVP3yAl4XjDwuVGnWOsoIcI3nJyR4MCsXvgjpvdIXLkBmloEamsJA6dCgoEpVePvWTSsy/lSFNAlyBAPvTIPWXKlHWvkuG1Mus2rFcv4Trn4eUcdfdkkf+Rilo2nkxyXr3E1WGni+pVZkNWWNhtf+WF57gQK+d4XcpTWv+gYC9IAMFe/PLrb9Jdc+YQxlUwH5DxQF4rAqlGKlfS9JPePVz+LakXS/UVTXiwIciElcEFXWA84BUlBzgojPU9O+8qRx16QPCw/W0IGAKGgEOgUEidIwBKxgjbkPOTSTbpSpl8OCbgRvUbZF+OB69mzb/nPDFZMxlu3LTRJYxn3/DnHxhxVt5M4ni3yDWLEgzvQn2dCrlelFldy8xvwXDzChQMPqSKCavHXru7H+oJ+XpAQ7zkLo1Xg47RZ8KMEtrDxArxrFu39t8uoQ21atTQCWK583j4C3h2cyVfQYFQ/KAh5Jf1nXtcHxRP6DhGHZcuW+YIN7l4YYH64d1TsN0pV0f11HAfeWD8RInrG+3z4Eun/XWUSQ6bK/PPcv258Cd9yKW0PSj837JFVo4NBJxnYh76zQ/y4qtvKvlcqJtNBufLhJmkb0gdmD1nvquuX0wE657bv6nD4iVLZI5izrv3CP15SXUO/ZypIWr6HAKRTiCu5ENyLQuVsGwmNY3dYa7132IRt+x5Gu5NWbaOnfrqbQ5KXB2m7Xicw3pOWeV1hzQezBmaLoIQVk5lL2hfcDFCXYMLJVdA6BebwQiTV1Uv6KrVqzQq8I30VuJLDjEYttFNVgj9MEtDvOE6rl5dVuboIsvEEDAEDIEoBAqF1GGsttdw4OdDhrlXerBhoesef+bXhGpFGOqr737cvGotV9mFEf0lhEVW6so5LJuUzBEaZOIn9y0skMFqmpA8TwlbQ92htne3ruFL3P+Qo22bNnSr702bFiux/PvuVMjJ/AWL9fqNLscmsqAUB3ldxgOaY0OYJSr/DuKRpe9Su0RfOnzT7fc6wkGieJfddo0skUmEicURrYikfXBh0gl7PJlY6mjo1wuT3HTN/3lady/yd51ataSL9k/bNi11Z3Fd+XzwV7qJYnNYm2cSWmPHJKHVsHD/Wu1DwoiIq6OS81LrS0uHnXZQL0ROz4+7RgNblSpX0JB7RXdP+BcTZT0NmyPOS6LPoNywgAMheNpbKaa3jXruunM7+eTzL9zu4MlTpoSLzdX/SfqmRo2qukFn8zdZgB8LD/LqvHAMjyZ5XuSR0n9xhA0WH376hSP9HdrumOOWVOcYK9U1vIngtQsLdYGcQYbL6rgm7MsxFiphgcixWxtBt7k2rpQpXcaNL5YG3pMevBfyvkQJqxfqEFeH0afWLZvLNfrNJIyRoBBWxUNJagSCl/Swg6K9Yo60asoBXsUkUrF8BenUsb2GpL+RXzRPtXuX3WSKeg4r6yIJLx4CVpdoagMLzKDgga+t49PEEDAEDIEoBAqF1GH8WuomgNoa2iBn7eNBQ1yYIhja9JVjW/9HOsEyCRDqIT+Fd9YhhP4w3GFh8pk8dareU0Zq18n5HjKuLauhnSaNG2o4Z7LLh+vVbY8cRSxUw/nIU8+5V4hs2/QwISmbUCGvKggKq+cxY36T+x57Wj2DNeTayy9I6UUL3uf/ZsLYtmljF97iVS14BKIwAC+ECZZJJZWAUQ01/oQ3x/z2uxwces0EYdcFhGdDHk+lWkqA/yoVb9+IX3515JAk+1v/eY3DnysIP+HB8sKGiHrq9SHUPTsU6sZT8pu+IoVJ2JM66oi3cIGWUUnzJIPYg+dv+sLlN977SBoqedxdc8mihPfLbdc8y51ih+OXunuQ0FtQIHToDruZIT5ZzTaHvYLXpPq7nOpH08aNdKf0Yrc4SHVdkuNJ+qZxg4aOxHEP7fv6++FuQ4p/HouBO+97WDdKLNTXkWwvZ4XyFv114U/0a+ToMa7sA/frleN0qnPoHjoKSSIXDs8q49ALLwYnL5HNTvv37qW5fs3cKa6dpC8XZ4OAFxZo336/ecczCzvaF1fK0ud4k6mHLtimTp+uOZt/9Sk4fTf8p+zikugwN1F/iF2UkM/X8s9vs3ItqMgAAEAASURBVAGP3Tp1yOFBZuHw/Ctvy+KlS9TT3s1FCaLKSXWMPMnemss6RHd+M7bIyyPkXFNf8eKxBqv6ijs/JoaAIWAIxEUgvpWNW2KK60huPvaIw9xkwWtB/nPHfdnhGG5hUubt/v+9634XouX64446/G+lQWCeUo+SFzwOb+vOQAgMOTy9e3Tzp7I/MaI+7wUy9dZ7H2efw5P1vO7eg/DN/zNM1ZUcGZ1M2PnJV4B5IYH71bcHOi8RZZII7biReo3wKPAKlnRCOGuXDpuT65ks2SnqQ1L+Pv5/vP+L7l9yBXfasY37u9SfLGyD1ssLuzV7duvidhJOnTpDPtE8PC+LFKdHnn7BbWjAs9at6+a8H38++EnYevnyzV43FAIPCwLpmqAh4B905x75b4TFyf/ZV8NFeKIWKol6vP8L7lr6b9qMWfLcK2+4//0vcOqpmyHIWRupxHGUkmIvvCrlqRdecTmMi5ct9Yf/9skEV2+b2lJe8cOL9c7Ajxx59Bdu9tLMloeefMbpF1463usWV3hdxzb6rR6UA9lJJXiH2Kl71/2PyUOPPyPjJkxMdanbyJOkbyAPjfU7TMmx/Fy/4cKHqVnIjJvwh+aKznPh0J31/W5Rwn2vvvme3P3g47qjeKDDm1dkQFDYMc2mBy/+9RlR51h4bKeEhrxI8juf1K/0g6wjYD/ww8/cpqKK+j7FnnvtppsolJDqWGXh1V/7knQBhHt+HjnG7cxm4QIZTSIsHpoquayiHkvC/XxXNGQKof7DR/yiX3n2F/5JdDhTPYIhUsbjY/rtNh4Dnk0O7PdKKOdon2yjC9Wkwtghd47NStif194aKHjvdlXvnYkhYAgYAnlBoFA8dVSQSWsn3Tl40L57u/ehkbNy5f/dpGG3ihrO22y4/ct4MXiHHbif89KFG4dx/er7H2W4vni1pnqxmEyY0Ci/RfMszRVromGqv+eE1dVwym67dnQ7DN/76FPNZfnShZnYFECZEKQuu3d2OTHs4uT9U2N/n6BfITXUvVcKcsIOVSZ+QmOH/fll6KUJZeouWYjQ7zrJXHzVjW4CO//MU8JVd2XjyYB4EopmI8JVN/7H5QlWVQxWaDvI/YMg8by9u+3lvBtMAnyVGMJ32p532bUujPyvay7XV6B01BX/12634itvvOveR1ZZSY1rlxICyuml5ZCrliqfEa9ae02IHzzsK5d/dfn1/XSy2kaWKNGCyHrBc8n77dh56LH8VndskotXQT0feGvAB5LkhQmd9wx+NniYhr8XuO+vJUG+fNlyzovILuIa6qE44k88/X3hT14jcsaJx8mj/Z9zZPLO+x5xIfXqSlZWrl6pOYhLHW4kq++pu2o9XuFyov7HI0reInVnlyL4Rwl1nan5TL/qhgpw5Z1j2+uLq6MEAp+kbzZW2Cgn687q2/QlthC662+63b2cGU8pr7twOqBem57d9swmN8Hn4qn69sfhbpGAnvLqEsih0yN9WXBQPHGMOsd15EoevN8+uvj50L1j7pJr/qljpZp+j/JiR+jwcrFxgZd1M3aO1Xcqohe8wuOqf/5Xd4rWktX6vaxOd1R38dAfoy8A5zUvSYRxdtShB+qi6w1NWZghV9xws3p9q7u0iPAYT6LDLArDu7TD9aqmzz7m8IN1s8Kr+q7MceIw0PbiCaZPCOE2bdzA7Qz+Y8q08O0Z/8fesNB85c133eKJDU1470wMAUPAEMgLAoXmqaOSGLIjDjlAX2VwuntNAcdWrljliIp7oasSJL6X8qpLzpVeEdv6IW4tm2e5cAcT3Wz1ujFBMZHjDbronL4UGSkQxVNP6KOTVW/3LjZy82brSptJiVyW/TSX5dAD93H3ks9ygX5HaNc9d3OTKR4Kwk5M+rxR/yj9RgkfKqRN3XSjA8c5D7FhR2oqYWNEn8MP1NeaHOJW65BBvqyer6jCU0gZhGCOP/pwOWDfnq4YJvRaNWu6b77gb5K3mVgQNohc/49L1APY3tUV7wqvo1in5XLPaSce695F5y7WX3S4FqHE6y8+j1ekpeY88koPPI/kbxHuoixeG3Hp+We7sDVYEZb2WB56wL7uparkU9EPeIO677WnIwV4FqvoTj+EUPX/XXWxkl3Np1NHI5M9BI+X2dZRD9wpSmZSkSNXgP7Cg9RRc9/OP+MUR3bACa8Qr53gtRcQMcJXxynh7KNEwAvtAbN04rxTf4YR6euPPx+a4/K/btccxj89prxepHTZ9MMnSd/gjeT1H1fr63rQpc16sdAROggEnq5L9X2AmdpC57J7fKkubNgJDjnh+5W9ONxSnPPXMJ72791dTjyuj/PYQRjpL0gZ3mO+Eeb0k451l0Pw9ui0i8sDxatGKgQv/qaPCZu333EHufGqyyI3Uvjn8en6KZQriLeQ3NuzTzvB6dl69ZKxqQRCR7t4HY6/N6kOuxvT/HLt2m0X3X1+ittp6zDQBRXjjlAyHveLzz0jTQmb9S5V/iOkn7w6bBr9yzfE5Meu67QVspOGgCFQ4hEopUbexfMI80zT1340b948d42eMUWke9Zf9zZuJjJ08l//R/zl3s6ub6OfNXuey8XhZaQZJy0thwkcb8RsNbJ11CvAe9aCgtF/TEOY4ydO1K+haq+G+aTgaUecFuqb7WcqqatVo6aGvTa/py3HRX/+w7Mgf0xUvIA1iQcoqrzgMcqeq0Rukq70l+tGB1brWds2jvwKteB9qf6mvFm6i5KXxLLTM2onaap7/XG+m3batJkubNeqRTM3iXOOMPcM9xVUTeANuuFFdyfra03wupE0T9gSUoeX6Tr1MkGMr7v8wuwcIV8+ZIWvn6KPGtSrpy9ATh6+QmXZ1UkOF+H0Wpo43kI9oP7r0PyzitNn0r7BIzRR21exQjnNcWsSmXuZqn1OZxWXHzVMiDcx+DqQdOeiynNYK7mfrDqK7kPy041R6j1B612zepUcOXBRZSc5Rj3QmemaukHYkvfGpZI4OpyUQFHmdPUWltMwKSFniJ2JIWAIbOUI5IL35BWxTFytSEldXhuX6n7yYO68/1FH/PC2nXzskakuteMJEQhuFuHlzDdcdWl2oji7YZ976XWXg8eGi9v7XZewdLvcEDAEDAFDwBDYQhAohqTurxjcFoJhumriBRqrX/v14GNPuWRqcrV66OsCTPIPAZ/Azstf2S2KV65VlibWazhpioZsCSUTku6q+YkmhoAhYAgYAoaAIVB4CKRPCiq8euTLkwgkr1u72hG6KvquqZ3bt3WJzPlSuBWSjQA5ctfo16fV0XDcGs0hHK2vU/lJN65A6MgZPGCfXtn5idk32R+GgCFgCBgChoAhUKAIlChPHd9c0bH9TvLUg3elzfspUES3gsLZLdpM3yF2x7//z4W4/9CvDVuv79nK0mN8c4GJIWAIGAKGgCFgCBQ+AiWK1Hn40iVy+2vsM+8IgDNv3vdv3897iVaCIWAIGAKGgCFgCOQWgRIVfs0tCHafIWAIGAKGgCFgCBgCWzoCRuq29B60+hsChoAhYAgYAoaAIaAIGKkzNTAEDAFDwBAwBAwBQ6AEIGCkrgR0ojXBEDAEDAFDwBAwBAwBI3WmA4aAIWAIGAKGgCFgCJQABIzUlYBOtCYYAoaAIWAIGAKGgCFgpM50wBAwBAwBQ8AQMAQMgRKAgJG6EtCJ1gRDwBAwBAwBQ8AQMASM1JkOGAKGgCFgCBgChoAhUAIQMFJXAjrRmmAIGAKGgCFgCBgChoCROtMBQ8AQMAQMAUPAEDAESgACRupKQCdaEwwBQ8AQMAQMAUPAEDBSZzpgCBgChoAhYAgYAoZACUCgRJO6VatWy7TpM2TDhg0loKusCYZAyUdg3fr1Mm7CJJk1Z17Jb6y10BCIgcCWMCa2hDrGgLpEXFK2OLRi1erVMvCjz2TY19/Jzu3aypmnHp+ram3cuFGmzZglz7zwmsycO0fWrlm7uZxSpaRypYrSboc2csoJfaRKpUrZ5S9fsVJeePUtGTtunHTrsof0OfTA7HNRf6xcuUpeH/ihDP95hHTp3FmO63No1GW5PrZ02XJ56MlnZN78+XL4gftLj6575LqsgrgRgjx2/CR5+In+0qhhA7nhH5cUxGMKvcz1SiZ+GvWrPPPiK9J826byj0vOK/Q65PWBK1Q3X3nrPRn5y2jpuntnOebIQ/JaZKHev3btWhn6zQ/yyhvvSOuW220RfVDcx2t+deCSpcvkvkeflqXLlspJxxwlHdu3za+irZw0CGwJY2JLqGMaiEvcqWJB6iBjS5Ysk9Wr18iSpUtyBbIjhh9+Lp8M+sLdX6/eNtK82bbSsF499dbNlPF//CHfD/9Zxv4+Xo467EDpsddmssSzFy5cJKtX8eylGZ+9YeMGmTdvvqvroiWZr89YYOiCjVr+osVLZM3qtbJ0+fLQ2cz/LtY63X7vI7JM7z3swH1kv717ZL4pwRWbNomsX7vGtX+FEuKkAin89bcJOkE8KfXr1ZX/3nh10iIK5PoNqgdLtf+dDuYC9wKpVMJCne4sUl3WRdKCRbkbRwkfma+Xr1TP+uAhw6SSLsB6ddsrX8suqMLyOl4Lql75XS52b/6ChbJp00ZZsTL5uM/v+hTX8sDmpdfflR9+GiE7qRPhonP75qmqW8KY2BLqmKdO2MJuLhakLq+YrVy1St4a+LF8rhNCrRrV5dQTj5EO7XbMUewa9dp9PvQreVO9bG+//7E0adhQWmzXLMc1cf4pV66c7NC6laxfv0HatGoR55bCvUZZ14YN653x3bBBGVgxk01av9Vr1ghkepP+FBcpU6aMLgDqSousLMnKalpcqrXV1AO9YEEye+58aaD9sGvHnbaatm8JDS1frry037GNLNFIQsP69baEKhdJHVn0blCvP7ZtvRLhvMiWMCa2hDrmpQ+2xHuLlNThtWEyjSOproUcTJ0+SwYN/VK2qVNbbrjqEilbpqw8+/Ib8vOo0YI3qWHD+nLc4YfI2N/GS4O6dWXmnDny1PMvyy3/vCbloym3dOm/pxxWrFBBDtq3l/tJebOeSHV/1D0MDH6inhd1PcfWrVsnEMy8SJIyUuGf6vlJyk5VBpiAYyYdSYpfVFvKqh623bG1+0lVH44n6Veuj4sDbUBKaapAJuHaONelKidunfz9UXglxSHT9YSOP/7sCymvOt12h9b+0X/7jKrL3y7680CmZ4bvi4tLUn3jeuqSSY/D9cn0f5L2cS2SxMYEn1+1SmU567QTgodS/h3VR0nq6guO2x9cn6r8qLr48sOfqcoIX8f/ecUzjg7FGROUg8S1B0na6ArO8CtOHTMU8bfTqfosiT78rdCt6EChkrq1SkS+/3GEvDHwA1mmKz4UrELFCs47UrlixRywk+M0YvRYefXNd2WBhkdRXgxS1apVNDTTRQ4/aD93PTktz7zwilTS+/ft3V3L3CR3PPiIEr0ZaLqUK1tWpk2bIXc/8qSU0fu3b9lcSpUuJcuXr9BrpkvNGjWzn0vI8q4Hn5AJEyfK2rXrpKzeSxj3qEMOlF06tHPXuZy6dz+Qn0b+Il332E2OPvwgd9y1bfgIefeDT2Sxhk8J51WrXlV2ad9ew6mLZdrMmXJinyP+Kke9i2+++5F8N/wnoUyGZjVt2847ReeqQE5f1Fyj4T+PckQBPBjI9ZSk9tFw8o7qPXxDvZBfffeDrNO6c/7t9z6UTwYPkX16dpOD99vbecgGqbfy48+GyPIVK9w1YMRzu2s4OphPSN9MVtyeeuYFDbssEhJhy5YtI00bNZZOu3bIxsz/gfctU9kLFYd/33qPCw9y3xwNY59/5fVSv+420u/aK1x9Zs6eK8++9Jr8MWWaekPXu+KZDLOaNZWzTjnehWw5SC7kc0rcR/wyxuHBMfqrRfMsOenYo6RJo/occkJo/iMlDIOHfaMkf3O7y5cvL61aNJcTtE8aNazn2jdi5Bh55uXXpOV2zeWy88/0t2t+4wJ5/JmXZOq06e5ZFfTeZk0byeGqFzts39Jdt3jJErn1nodVR0vJOaedJE8//4rMmTvPtYFn0T/n9D1JKqq+e2EMDHjxNc1RnKDh9jWu/VUqV5KOHdrLCUcf5nTaX0tY5+U3BsrwkaPctYyF+vXrSq+ue0rvHl39ZZGfmXSnU8f26t3dqBsUJsqDms/ZIquZHHfUofJ4/xdkrvbRtts2lmsuvUCm6Jga8Pxr2q65gr5X1DHXarssaak4fqZe8i6dOmXnmGKYx038Q69/1ek/46GS5rK2btlCTjvhKKlevXqOupKX8/PoMUL7D1Jd9RKn7/y1vp0jVSfYJIVUVjKyU5vWctpJxwj9huSmr4gGxB2vjL24euwqFPNXHEyJSAz+8hv58NNB0l6jFbUUZ/5f+WfItFatmnLckYdK5106uHSTux98UpYsXyrd99xDjjr0gOyarCdNYux4eaT/s1Jvmzo6Hs6SBx7rL8t0/Jx2/NEuWpFOX669/CKZr7rz+LMvu81q9C86W6tWDWc3vf3ejNUcueXuB6WxLr7369VTXnz9LU3HWbp5PFSpIj267C5HH3Gwq1uw7848+QTpr7afdJj1ql81qlWVfXp1l+56ff8XXtU0j3Fqx9c6Mt24UQPpe9KxktW0SXYb1+i5Yd98LwM/+NTZQ07UrFlD8wXbad7gEc6+xsVzZ80xHDFqjHMWEMXZqPiN/vU3uejqG6Xt9q3k/LNOTWSzqEuqMRHHbvixMOa333UO2knmzl+Ydl5jPnj2pTddmtKBvXvkSNtZpnMl9myy2r/wuXAdZ82ZK7dqX4quTXdVO3baCUfTFDfXT1Kbfp/Ow2XLlZX9tZ9377Sz3HTHvVJZx/y1l13onvH7+IluPrr939c7h0y6OY85eeIfU+Xuhx+XGtWryaXnnaVe5Lruefyi7wYN+1rz9T+Vpo0byXWXX5h9riT/UaafCg1kEienqFatWrlr7zLN4el/71/3VleydPpl2f9jnCE8r739noK9eQJjVY5SMGmiDJCUuupt223XXdwEc78m5kJ4MAblK5TXgbLR5TxNmTpdVukkuGObVi6/4x3dZFGndk056egj5S0NrY4c/au2o6Zcdcn5m0mXMiZ21FWpXFknjN6ureyKrVGjhk7OjeUHJWPzFiyQuRr6wUAwwVE3iAwD6BcdnKVLlVESkOWI0bCvv3cTW43qNYQJEULz8edDdNJ9x9V3oxp17qfuk6dOcxNjadVySEQzNSpLl2nS8SP9lRhuJmi0u5wSFzCaqkSKCQmCwmRJwjjE9cHH+2sC/K9uJy94lCtfzuHBYByvk2frVi2dEZkxc1Y25vQp0kQ3NLRo3kw+/GywEr2PHOaQufJaBkaV/pihG0wYbFwHmfpZn3XPw09kk2/IMbgsUvJCXiJSVQ3uPj27uj6JUzZhm/c/+dwRXleA/tqgBhDSs2+vbg6nW+5+QGbrzkfqXkafyXOpD3mGY8aOcwTGJac/MUB+GTPWXQfWXMtKbsHChYIh23P3Tq4PIOqPKTn5Uo03ugbWeOXoW/SOhUOHdjtIBfXAQkLw7oLD3rpwYIFA/910x31KbBcI/Yp3lHsXLFwso8f+7oxFvbp1ZIX22fsff+7w+ubHnxyxB2OEyXie5iNNnjJV9tytkzvGQqXf7fcIukz7qBc/kCUWALS1656dne4Tlrz1fw/oZp7x7lowoS5LNXmdvmcCJhWA9g0f8YtbBDWsX9/pZhzdaa+bkyor4Zo1e7Z8/d2PTm+/1TZA6NCP6lWrSq2ateSeBx93/Q9Bow7gDTFnbG3UfqyhqQ+QBerBZPnY08+78cmChesZJxDdn3VDym67tHeYAwZt/mnEaNW50bJtk8ZOpzget+/Qw4WLFsvNd94n47Uu69atd7ixGIAsT581W37UHKdOHTs4Up20r5KOV3CLo8e0Ma7ExbSU2oYRqsNjx02U2bpA+m3cBNdP4E+/YVvQmbZqOytVqqzXTXA5x8tXrpC9u/+Vx4gHhlQVyqiniy7C4R98Olj1b50uerJ00dQwtb5Uq+YWakzujBv0H3uGLmETJ0yaLON08u6iY5Rj5OoNGvKVG+PDR4zKtn+co93T1aah79hC33fo/rc/DFdiusz1NTiSDwsp4PhkJRA8l3YzPrhunG7w8gsgtyh86XVd7A12zyitusKiH/KLQ2DCH1Nkj867qG6qcyEGnq1bbac6uETH3yjXJupD/alDlaqVpX3bHeWhmDaLe1ONibh2Y40u7IfoInbW7DkyZdr0jPMa8+mng4Y6DtCgbj1pp1ELL+D6+RdfOXtDjrr3pEfVsbTaMGzCJMWPujZQm4/dx4bd9cCjzplSR+f4M08+zs13738ySNYyRrWPWYxhC7FFu3faJeOc12Gndv/f3nkAWFVcffzssvTeu3RQUAQLKoqiKPYSe+/GEmsSY2JiYpIvMcbEJJpoNLZo7L33hhXsiooFBOm99/ad3yyz3H28t/t2l33sLv+jy769Ze7c38y9858zZ+YFAfjya2+Gsud9lAy7om2898FH/B20NHRUt/e2eqNbKbpno1/PEyxNq+XMU0ej/MKrb4QHsLu/FH5y3pnhpU4FQLxR+aIhbhBONAbtXHlf8bOLg9eCB/PmO+4OLyoaX3qWNK55/vC0dBFHb5rGu3GjRnba8Uf7LMbCXtmeuw/2F9Ir4YU+cNt+obF4119wNARJo1Ht3nUL+/H5PwxeiBneAF3rwmbmzNlheHfI4B2Thxd95gXzxLMvhnvb0h/uC845IwiH8d5g/+X6m7zCFXoNOIGK99kXX3kP47vgOdhtl0F2vPcKERD0fP9x023rZ+2uuwJeGl7EdV3YDt11sB19eOGsRh7WP137r9AjGePengvOPi2ICXq9nHPQvvvY/vsMDalwr6+MeDu8uBCLF8PfxRRexD9de4PhRRvtImm493Tpmd338GOht0kv/ULvAeHNYvs9PlN4pE84SRrcs037pr//KTTqN9763xA79cff/DwkRa/qI+/p0sNs7D1uvF39tuodGuj3fabxf9xTBkeWuqjjoouGgYD6A4fv7UJ9z/DyHO2ehetvvi30uke995HPZh4UhBo9ZgQsguqkYw4PDwVi7ubb7govsQcfe9rOOvX45C2FzwsXLbTb3TPFi6Zzpw52kXsrmntPnnpx/U13uDdmmt3z4KP2h8QwPi/yOgW13QN4aJiMgyCgB4yAJ++UPw3F4+4doN4gSI7y8hziXl8a3Ofds/rE0y94z3qWvfbmSM/zdsHrwnOCF+HMU463vu4dpHzvfvAxe3fUB/b6m+/aLt4AwSPVsqk773/0ie2/957hVPLPyxBB1NMF/l7u5W3r3uobb7kzNI5tPN7tx153aOjn+KSMv99wm7+Qp4R6Fa9N3NX9jzwZ0hjonucfnnZC2DXGG1UattlzZrsn5SHneXrYvtTrz0v+Ym5Qr74NdTGNwRyRnU3Zne4NBLPnmfCUrBMIAmbT0tniPXHnvQ97XT4tpM8/2ZQVx5XleS1LPU56FbhOSZYt06J6vE5Q8D67yL3ONJQIvev/fWt4Tz7nndDTTzzW9t1rd/vUO8E8d5MmT7NOHduFbFBPEet4lnfZYfuMWUtXX4iJ/M9/7wnChOeF6/AsUxfxNr/17ijvLE2yF197w4YlhCRp8R4/+/ST/T3c2eigXufeQcQBdfTg/fYulg88xWf680xHAmGIqKcTzk+/rba0E48+zJ/XZj56Mcq9+o/YEn9/cI/t27UOHh7eY3iPDz1gn+CZwnM34q2Rob6MdVHy4qsjvGO1U+E1S+HJ++8sfza3G7CN3X3/I0Hc9fUwgujx5x6yeWfRVmHpngnESbbvjR290xStvO1aPD/T73R5bOie8aMOPdDbq3E220d47veRNrxkDz/+dPC+Uh/OO+OUYqEIcMcR07JFi9Bebdmr0FlTWptHnWDUjnfMSO+00YFJGjpiurfdTbyTsd8+eyR31ejP+bm4O3pnvLRxSbfwh/anLprwjGAMvV3ijQTelvW21hsQ9zL5g7Rq1ZrwkLKviTf2uP7xSuFho0c+dvyEUEGae4XA20TPqIV77WJPg78nTZkejmnbumXwDE32nnttFwa88JLWskVzu/Sic4OAxMfC7Myfnn92EGg0dE8990ry8PCZmT8vv77u3vz8i887K9wL3rQtXAikLs/Cg/mM907Y37Fjex8q/EHw0NSqxdBwdzv/rPWNDhcg/7NnzwtCh97xkYcdUOTVaepDK42cCT1wBG9JxoNd14UNQ3ZHH35IEHQcX9sDoLv60CYvVHrBeOMQ2HO8EURcneS8EXQYw7THHnGIdfR8JC3btJPnpH5ew6w6b1gQLv369A6NAMdQTr179gi8uM85/qLAyC95ne3CAkOE9O7Z1Q52T2yv7t2DSx/WCKTA2vPMUACf8Rr07dPTl4sZHMTIwsUbzjJGZCMSECzN3AN1wQ9Ptxaet1gvEAd4ARiO+vCT0SEP/IMnb5t+WxbNruaFcvgh+4Uyw2Mwfcbs4LEa6Z4wPJQ7bj8gCDrODbM+PU/dfda2++1s8tSpQci+7g0NQxSH7Dc8CDqOxet89GEHeQPV1hvpJe4B3bBulrfuwKd/v63scl+uZpA3mMuXrwyNJs/fWScdFwQdeWjhXv0Lzj41PB/8jfEifXXEO0GUtfbnjWEnyoYfOjxnn3aS7+OZnBJ615QjnQXulbitnZwHVpayW+oeQDyMsCd8AZGPwXfXnbb3IaM9Q34It+A5jpZNWZX1eS1rPY55Kel3WZnGtGhALzzn9NDJhT8hA328Q0BPn+FN3jl4UnjO6VC88sZb4VTqDcPHdKIQg5k6s/E6qfWF0BXeIaGB9zqKoMOos4SrUL+5p9ffejcmUbjfy//wQw7w0QKv//6+ouOw395Dw7NetDzVujPokO7kHRkEHUY+t9u2cHIN93PGSceE9zedOTzRlDX3RWcJLx2hKeR76y17Fw01kuau7j3cw0MauPd33vtw3dUKf5XGs9jBaf7I5p3FaZmeCTzd2b43kpcvT7uWPD/d50x55Fjelz8685TwXkBs/+Gv1wVHQHiH7T+82BApx1PW1MM/Xfnz4C1u26Zl1m0e4Rr7ueOC9zI6A8cIRv164+33wuemTRt7W7x+2D1srMH/5MRTR2OG4OLFQuEVF3AWBEYPH9rEPY4RH8f6bB98/Elw31/+u6vDJIg+PsQ0aLsBPqx6dqgINOpdXDjxkmLY9FsfX2dojTizaOGl/PxL4RrbeIxJ7BUwm2ubdS8bjuUB79Cu3YZ5c/HJ0ijjfOhsqk+wSDU8CuMnTPLza1kHH/LiHqORZldf84wXS7T4QuUFkho/x7kd2rUJcYMMS2Js27pvb/vHn34bRAyN4aejv/L8TAhDg7ycabxKM15If/m/K8ILA6/Fyz7cMda9XcRJTVs39E0aK314hTgFjBdlfCGHDf5PPfcG4VW675HH46bgvcom7aIT0nygzI/wFz4/DG8y5P3lV2PDkOW4778PZRxPo4w7+Ozlyc7i1RFvBW8VnLfxYdQ9d9+lKF4L7+Qc9xCnY829neA9eX4w6kXSgqdi7PiwCbF56533JneHPOJJxhtEXrus8wpzLWKZkkYHhrrAi3DZsqXeofEhXPeE8PIj3jFpxIb86mcXFW1iiJhrrFlT4MLlvfBSjzt5rhhehRfL9qRaeesO4upIb4wxhlgY0vQHLng1UmeMU/dYrzB62uloTZg4MZy7wJcputrjDJNGXjHu6UsfKuvtz/0LPuxDo7tln15Fh9IAZ1t2DHfCk07Ofh4PlDTq1dAhO7un/uXQCRw3fqJ3Sgq9UdmUVYMG9YIASleH0j2vZanHyXyW9LmsTEmLhhJRRaciWi2fQIZ3kFizlT5DHsP7v+PAAR5v+pZ9lWgQX/OhO+osXhbusyRL1pfY0eb4Bi7iGMJMGuuF7rnHrjbOn6dUocYktCjSOIfrE66C0aFLGvkekHjO8vLzrFGDhuG+m/gzxLMVjQa/lr+fo1G3ZnmHjXcxcWLJOupT1lwcLAvPKnHX0bLlGY9P/Z3tO4vzGPlI90zgFMn2vcF7AYNhedq1cHIJ/2TKI6fAqoN3No898lD7n3staaPIRz+PbU237irlTj2J9aws7y2uxXOPrpjl78qXvUOJEwABzAgPaW8/oH9hWbt3+O833rrBXRG6dfmPzw/voA12VsMNORF1PDwMQ+ElaeQPeqrle4+xZSKWj0Lt4xMacNvf/+gTwYPDi5sfFijmoT3sgH39Zb1L6I2RPq5eYj14+InjwGiQCF799rvxQXgQ//aBx+7QSOOJIFg7Vn4C3Js1W/8iiHkkz7wg6IHHY+M+fsd7y8vze/OXaKrxQsEb5m+JsIuGnQaNCSItfGgg1bgeiyMnr0Wvg+ElYgd4qJNGpc7GOO+9jz+1+3wNpUUp67Al0+CFR3wh21LFN9fh5dTWH6CkZZt28px0n4mhuvmOe0KjA6doyfyxjditi33o7pa77nXB8V3olRFvxg9u/t4+vHzeD08NL+blzo5hGnr9ZbFV3ujh0cWoR7HBS02Dl1Xy5U/5tUhTj+J58J02fVb4k3rezoc2MxnHTpk2M+ym80A9TmfwSRWl8bjy1B3uKQ4NFtUHTzBd54FrIx6i8Tzg4aT8GG7LxI3ndJ6LboYr3/d6SY/7wOHDYjJZlx0dO7wBGB2rVC8y28kjohERPM07ZlHUlVZWnFue5zXbekz62VhZmZIm94zwKc0YftzLO0KIuiWLl3rnYLKXZ0MfyvomdK4Z3irNUusL72mun/b94XWLURaMukWsVTTOiQ173Jb5N2W6XqjF40iDci3JKFPeC3Cl08RPOgt12AUWli3PdOmwLdt3Fu/+dM9EWd4byTyUt11LppHuc7o8Jo/jXYHT4kF/HxPXSl3s753udEb9YcH3pJXlvUUHnc7xXfc9FBwdlCt1mSFvRgb38X2UJaNqqW0f1ySch/eIvyJqhOVE1BE82bBRIx8qmxcUdCq5tT7UlWwY2c9LmEDxwT58Mn3GLHtr1Pv22egxYdiGWKTHnnk+xDlRaLjbl7gHpE7tuqHwmGxw5Z/+ZnU9DRpCChTl/owPn7765tthNtdp7p5PGsNtS1zspVpYbNMrA/dQ31V/qvGwM6zAveHWTzWuvcKvHRtEji/wfIV79uDkVAt5ddEXjcb6TY8Les6DlHnhdfOh0l123MF69+rqvfAm9k+POSEQvCQjTQJRb/OZaHxGQA/eeUfvOfX02b2t7eVX3/JJFIXDd7XyawUBjKSKXpVk2jTG832yRLSypB3PSfebhpC4uc998gFlv7XHo2zvQyu9PK6L+77891cXO40hBWZkwufjjz+39zxmjYYouOA9FovYrTN9qJAAaAT5okUblg1ehVk+sQKhSkchaVyTJXIwvGeHHLBfcnfR58IXUvaufRqcJk3qhfNhh/Ahri4a2/AUEM9XKEYL80AdO+Sg4VaQv+GbhwDvVi03nOBU3rpDetHIbzPv/GArE/Uy7ucFmhz6pxFp7N4hJoawlNBeQ3aLhxb7jedryz7d7Rv3zuOx6eyhCPSYo4XGOYuyo5yiV4a6yYu8tceBJg2mCDpEBjFWZbGyPq9lrcfZ5KUsTHt038InHbyZTbLhGLqEeNSYWDPLYx1fdA/+YPea4IkhwD2GsZSUYGp9YZge5qzXlmqIE+JDsfAs+LHEW+fSQpn66EneqnzbdputfAZ7nw0uT/hD/QZ1Pc6z8Fnd4IBybMjmnXWJh+/gGU99JgrfG4XviWzeGxyPlbddS94e11u5cn2bRLuQLo/Jc2gLH3zUJ0W6oMNwpLA+bD8f7o7PazyeMAAmT0Qr63uLkTAmu93v75SlPgQ7wuPqJ3vsJAwYRYgrDuAousxnZdOmJ40wmmw6QMlzqvLnnIg6XN8Ez45zgcUsVxqCWOmAE4Z4fCgwGg3dA48+7T3+Obb/vsNCHNGRHmvBkhsTXLD93qdB01Ngpt8PDtrPp+gfFJaceOn110OcBcHj30+cFK7R0hu7GB8VBJ17RhhSoMKd6osUR8MTgvBJNRr+8T78l+9ip0XLDRsEBEEbH9JgeBYvQNLwYI3xISYegijquO/GjX22ng+Bfjb6izAxIZ7Dw4NHE9GK2xjjoRj5/keFExzcE3nZxefFw8NMxGy+dQJWH/tsVri3do/VVR7YH/nzsCFsojHzszu9Js8LcTbEISXjEZgJxTIs0cqSdjwn3W84fzOOySB1Q/B0XMKAY2moV/l+hAA9KgJoH3j0SQ/q7hDi5HYaNND4iQ0qwfWzfAo/L29Y820ln385xme+rfc6IP4eeOwpD4x+N9TN3/zix8WyVbugdpgowEaE26Adtk35ernFPrTwmM3zb0Bp1LC+bdGg0PtQLJE0f5AnRBz8Yfm211Ump0RDIF3zjxvCEgR9/QV48rFHhOszvNTSZ6DGpXU4nvNf9KVEPv3sy+B57typeKxjueuO5zEaL7wuXTqFRpre86TJUwL3uJ/YI4bvY8POGpGdXKCN9WedZ2NPH/pMGkPiN956V3jRdvRlZ57z5XWIJdzdv6IvaWUpu59cUBj3Sl7efPd9fyfsW5RUfAYZuiqMo+1StC+bD2V9XrOtx9lcOx5TFqZdvazKavBnWIwJJcywX+7PPQ1l7149sksqUV/C+6NLIWPqC8PdTHqIRuf63VEfhT8R2fE9FPfn4jfXbO4rHzBTvr5PzknWUcT/GF/P9GFfJYDFyLfxBZcraryzxnnsdzbvLN5L6Z6Jsr43zjjp2JDtsrRreLppKxcuKRy6jfdNZ4lQiFhWmfIYj6e9+8Jn7zMRhTi6YbvvZs+/8rrN9Wf/Bl8y6fKfXBAPXffbvavrXznlavOCZ9CH4z/wpcYY0UJDMNS/17qJJ1wIZwHCrqbb+i55Jd5poXt019DIMmPu5jvuLboa8B958jlX8uu9VgRST/bGg+n2j7u6R+xgVGwUNQ0NjQjDpbyomWJNDwBvDNPRz/MgzeN9eZPfXHax/fm3v7QrL7vEJywcH4K6ESqf+ouLNFKNOItb3ZsVjXi8xzzQnkpMBRm2x5C4q+g3wxf7eIwIeaPis7YXhoDie2jvuv/homP5QMzNXkN2DUMP330/yYhdiUaP9SafkRnvl+1M5edFGCJBEy9PtjFTq3DoqXDqPMevXfdwkEY4L6Sx3lNFgdNbxniBfesC6T2fRUQsCd5DGuLOPjzCEAwC87b/PVAUXE4ANEJ6jM+ii5b0gpWWdjwHgYKtXleufCa/LIvBLeJdi4bIoUzg6QfZqrU0zrVdNEywj/wB/sJfwNHwMgbvmieCEEMYEzzNi40JNXFCA9ea4Z6kd1xQcVy6IbsQRB7iGxuFIaKbbr2zaOgbDu99+Kl/7dyHNt1ntLZKeJhiXkr6Ha7pPUi8IbyA4vAP+fzah5OZJUs9J2YoNK4eI4L4Zjkg1gzEuIfpM2fa4089HyYZUJapVta6k3o+f5NXhkYYYqUsbvH1qlgCB6O+Xn/zHYVlE7YUTvZgnTCM5Use9fxFwxtPjA2Cj/gXnt3vJ08OIRmDBxWfYVmWskMc9PJJGIhcwjOYeYdRZyZ4rOHdPmM7NOTu1U96A2O+Svpd1uc123q8Yl1MW0nXjvsKRW92TFO9IDGNkn7TWaKzgNdzoT/zrCzAO7s8XzEY3h/euWA9UUJIWEeOpbIwBPZHn3weZoJzTTotm8LgOdQnQ/AcI2I//XxMUTaYOXur55nOy7yFhfku2pnFh/Bm8/cPLdaKdd4tPK3ZvrNoDzM9E2V5bySzmk27xvPBaAVlNG7chKJnmolF93vIDtujlZRHjuF6t919X6hPPbp1tYP2G2Ynrlt1YJK3iaynWpKV571VOGFiz5DvKT5yxbA+bVhyiZOSrlmT9m2obCrh7hA8rVq29IDcbW3Uhx/7z0f+IH3hwzqN3dPBd74uK3bV2HMfd+8Dwc17wU9/FTxMNFxxQVdeGkyawBr70C49k//8924Prv82BLVv4251GsZV/lVZn48Z45MLxoTxdkTDwP79w6zTYhf1P6i4DPOi9skbLyUaXh4mKmc3D4bHG5Q0HlgmZgzafmAIYmd9L2LXGPqlp8pLPilSyBMz/JgxiyBD9DGUzNAuQ7g07EmjwSJWkIqKy/snv/xdqKyIY8QmxsvpIxdbHdzzMciDnvEEkfbTz79kb7w70heo3dW/4qdPiJuZ7o3pJZdf6UKklX/lz4IQxBqvN8VnrCGgTnLv0OHuFf2f542h7B//6vfh69f4ftzU+6eHVJa0T/dh79brhgqZ3HLOxT8Pw3QX+TIwDCEiaJ598WVfV+wTzxbLzswPnlzyiEuf3u4R7p3FA0sc5bX/utlnOzcPwmCeNx4s/ByY9egaPED7+nffvj3ygzCDml4iQ/WUCd5QjCGRYw4/JHxO/aexc2R6/h33POBr0n1tF1726xCHyVpWiCwawc6+BETnTh1D2aWen+lvZhGf6Iz/5EvPIOiYCMSsX9LkWeB5YQiRmFHsOJ9x/Ftf0466/4vfXhWGLxDmiCwaDwKFh7PwdoqwK0vdYZHt9hniDqlPhx98QGF98I7Ij/x5ZEiDDhIsacijhbyHtSYLn4ennnvRg5ff9LXuGrpnZF54xhBKA7bZOsyID7Obe/UM9xzT4DfvgGzLjncBC3vjwWdxWr77mA5fvse54uUlj4gdFpouq5X1eS0cti+9HrPUQ2P3YrC8UGmWLdPBO+1YWlIZ9yM6WEeTNSjxzBBvHOMqM56UYQf1+2hf4Ph27wCwLMmlv/6Dx5k2t2Ur/Pu1iaHz+s0KBUf5CMumMAQlS3685EtsET/M91AzoaSOe+dn+9JOPEc8U4cdMLzM2SuMD28WOs5feef3gkuvCOKVVQNKe2d18HAFVonI9EyU5b3BjPJo2bRrtDssr8XyNtP8PXPujy8PC0XTBi7z55w6iNHmlJTH0An3uGjaJJbDOuuU44KgZXgUEc8knbd8eHTA1v38mSwe8hLzW5b3Fm3ePu5sIX8848Qoh06xlzGOns3RcK7kxJhEcIoPd+7j6yIVhKEnH7bxykOvn8KIvbY897ZQqIN8telDfBgFTwXrC7EmGy8IGjNidc457cRwXsw8abDq+eknHxdi1j5wTwq9xN//+W++EvyzwTvAQ3Xq8cfaOaefEE8r+o1w69mta0gzDCl53hB0eAzo1Z3/w1OLjk39gBfj5OOO8HWU9gkTIIgl4VzE5u677uIiq0H4FouGvtgnRgP+S18ugpcohsAgzoTGh5lKhd4mn7HlLHBfM8TcpVOn0AvBO0IvkpiLrfr0ttNczGIIyLFjJ4SA8/2HDwvc8FQQY4CHpKcvl8KaSzyaxGwxrMp18VJddO5ZoWHm4Wc2GMx385g7HkgmdKzyB5S1+hB0CB2m/GOkRYNelrR5+Ihr4psF+MzQO2KGlyprbDVyZgxXTJsxI3wPKIIYzw9rzMFnsd/L0hXL7ac/OjvknXvE6zP++4mFgs4f5kE7DLTTTzgm5JGYyyt8NikzmDmfRoX75trt3Vt2tn/LQ7p4NE6modvZ14k75/STwqxfhpoRouSXOooX8IKzTw/XKe0fv1yR0StmWYef+fI59I6p07NdhFPvEAU8C4hc8sgPL/srfnahi+GWoQ4gVOiJso9leS70YwmwTrWy1B1653n5hX28RFZDktSHIR7feu6ZpxaJYl7utZ01ywuxHhd5qVuvMDA/Pg9MfMCjTqwqC0pTv/iGh+E+Q3WfvYaELz0nnuugffdKzXr4O9uyK2L080vC80M5E94QvNh+MwzT//SCc71jtkXa66Ru9FspZmV5XstSj6fOLJwEU+xiGf7IhunB+++d4ezCzdxWnscvpTM8HcP3Ghp2IWQH+jcklGQwylRfwnOzw3Z2oa+bibeEIWm8yjx7CJb+fbeyKy69ODxDJV+DiRPp85t6HjFw+bUKC47451RjG1tjes18+PWXl17gz1ofd3tbyBsCj+9sbdmqRejY9vZ3VElGeqk86bAM2XWn8FxTD3kvswYo7VNp76zjjzysxGeiLO+NmG/ate7+DTFcv6R2jeNY/5IwCJ4nntUZM3whfh89oZ3i+84xRn/ec8dMuueWWLiRvj4ooUjU10MP3D84GDiPtpAlpfgSAYQfnjyM0qW48j1sI1pZ3lu0edGCB3bIruFP0thv3dqbcf/m8tvX7fWa54ZSnzhxonXr1q189z7Z4e7edf25HbuYjRi//u/EJxriGTPneOHOsy18yjoPQiaj10jMDqKiwBsXvh2BClqaIRa+/nqcjZ8yydq6V6qbN36ZGu9kWuSNRnOaN97EMMU12pLHpH5GmC6ikfOYBF7qzG6lglOR8cT8wj0xBA/zNSWpQdwMNU90geX+vLCOFI16OgsNlQs6lq5AWHXzOBUecvJLnNKChYt9+ZSORXEP6dJg2yL3Mk2cOCUIp149uoQYNrYz1MwSIcTPxcBStnNdxNykKdPCtHHWastkZU07XTrcDz0tvoqqvQvc6C2IQm+tC75OnTqEU6m4S3x44PtJ08LLs1XLpv5VQ+2DMEqXNqxZbmPpkuUhToyeb1mM+5vknsvadeq6d659qY1Stmnj+RvrsUf1fKkTngc8CZmMly3H0jFq16510Usz0/Fsr2jdCXXM6x71jfLnb3rwPId8w8hVf/XFrl24HbDvsPB1dMm8hGu7V3mKl2lz/0q+jr7mIY0GM9Fe8sVdm7vHhiVySrOylB3vsu9c5FNnevhzj8jYWJbt81qWelzWvGViWtZ0cnU89ftbr7PNmjQsFp+bq+uXdh06VZOnTg/vuXb+jQllHaIvLf3k/pLeWWV9Jkp6b/B8/uvmO4IzZNCOA+3U447Kul0rTPd7H4Jv4J3hTsXalLLmMXnvZf1c1vcWHU1m2xKCQXv/yw1i98qagyyOL4PuySK1rA4pTattElGXVc6ryUEMCX/uMRl8EwSehV9delGR6GS48C7/Khpi1pigcPWVv6gmd6VsisB6AnRyLrvyKu981fXvxPxB0dpjCMx3vWeOR5wZwhecfUaxoPj1KehTKgGGx/g+TWJDSzKEdJdOHe2SH51Z0mHaJwLFCKSKujhyUeygGvYHnvlf/eEa/8rNgjC0H2N7K/U2q6CoW+/zrNQ7r7mJx4kFLMqLxwyvXC93d+NmnuAeOOK+8ETuVoF4l5pLT3dWHQgwZMZw8bfjvgsCjoWrW3ksIt4NvgkC73LHDh0k6MpQmGEijsfiEh5RkoXjUtaFLOl47ROBzYkAM22Z7BK+d929/8TytWzbLITsbE4ckvcqUZekUc7PxGdcduE59k8PxEfEjR7zVVFKzCLbd9hQKy3epegEfRCBKkaAkIIfnXWK3fCf/4Z1H5m9yg+G4BvQv7/HMB4Z/tY/2RHgvXDMEQdnd7COEoHyEvBQB5bEqanGEC0LDeNQwZp5vDaxe5uzafh1I5Y+FYyhqu8mTPJZt6vCV4TFmLCNeBklJQKbjACTbr715WEWecxOR5+AsIWvSZcpDnSTZVIXFgERCLGvxAsyCYI41ppqxLR/6StDFPjEwl7d18eJ5+R+NfyaE8yb7CI8OMxcjd9EsMkyoguLQCURYPmQ5HduVtJllKwIiEAFCRCPyU9NNxasH9Av/VeQ1fR7T3d/Nb/E0921tomACIiACIiACIhADSMgUVfDClS3IwIiIAIiIAIisHkSkKjbPMtddy0CIiACIiACIlDDCEjU1bAC1e2IgAiIgAiIgAhsngQk6jbPctddi4AIiIAIiIAI1DACEnU1rEB1OyIgAiIgAiIgApsnAYm6zbPcddciIAIiIAIiIAI1jIBEXQ0rUN2OCIiACIiACIjA5klAom7zLHfdtQiIgAiIgAiIQA0jIFFXwwpUtyMCIiACIiACIrB5EpCo2zzLXXctAiIgAiIgAiJQwwhI1NWwAtXtiIAIiIAIiIAIbJ4EJOo2UrmvXr3avp84xcZ+9/1GSrH8yaxZs8amz5pt346bYMuXLy9/QjpTBERABERABESg2hAoqAo5XbpsmT353Ev2xtsjbcDW/eyMk4+tCtnKOg9r/cjpM2bab6++1tq0amlXXfmLYufOn7/A/nbjbda0cSO75EdnFttX0h+Is8lTp9vjz7xg06ZNs9Vr11qn9u1tyOCdrH+/LTOeOm/BAvvjNddZfq18+8l5Z1mnTh0yHltdd8ydN9+uvPpv1qBeXfvJ+edYq5bNq+utlJrv8tafdAkvc5H/yutv2ceffWHz5s+3Jk2a2JY9u9vBB+xjdevUSXeKtomACIiACFQTAlVC1CFe5s9faMuWLbf5C+ZXE3Trs7l0yVJ74dU3rHZBgfXq1X39Dv+0YsUKe+/jz9yLN9Fat25VbF9Jf3Dem+++Z3c/8KitdTEXbfr0mfbZF1/aLoN2sFOOOzJuLvqNx3DipGm2aPFi26Jzxxop6LhZ6szixUusVl6erVy1quj+a9qH8tafdBzmeefimn/cYFO9DkWbNXuOjftuvL334cd20blnWYf2beIu/RYBERABEahmBKqEqKtmzDbILt6P9z/6xBo0aGAHDR8W9uN9nPD9ZHvZvSIffvLpBueUtmHO3Hl2/8NPhMOaN29mh+6/r9WuXWDPvfSqTZw8xT78+FPrv3VfG7hN32JJLXaB+eyLL1s992DttP12xfbpj+pDoKL1J/VOl3i9eOyp54Ogq1Ontm0/YFsbtH1/++qbcaFDMtvr263/u9euuPSi1FP1twiIgAiIQDUhsElFHV6lWrVqZY0K70x+fvZhgJmOz/a6mc5PZniVe4mIXcPL2K5tG2vj3rjZc+baL377J2NfeYy03v3go+CBauGC7lfe0DZr2iQktWXvHvb7a/5hCxcuspdfe3MDUUcM3bffTbAWzZraXnsMLs/li50Dgzz3hvGTtJUrV7rIrJ3cVOmfsymPZCbwcKbmO7k/9XOm9DNtTz2fv8tybLrz2VbR+pMuXToeo9wbR8dgwDbb2FmnHBcO69unt7Vv385uv+s+m+vCbsrUGfLWpQOobSIgAiJQDQjkVNStcCEw6v2P7eEnnwmihAawrnuUenTt6rFR9TbAhfj6eux3dsf/HrC58+bZaj++fv361qdnDx96PDzEA9FwT5k23f547T+9MWpr+w7dw+5+6FFbsGBhSK9tm1Z2wjFHWMvmTe2G/9xl06ZPt1WeLoKEBu2Hpx1v9dddm0HOWTNn2c133udDmJPD0Ckisrmfu9vOg+zQA4ZvkEc8Yy+8/FrwjA3xY7ACH4btukUnW7RosQ+dmi1fucLmeQxYtrbch15Hf/6VC978MGQbBR3n44Hbbacd7annX7KZs2cXSxLvzoi3Rlm+C7BuW3S2pUuX2h+uud5mzpltW3hc3WUXnVckcohJu9qH4hjC7LtlHzvhqMPs37fe5cfOsSMPPdAmT55qr7/9rqeVb+eecaIP5XayV0a8Zc+/9HoY2g1Dwn6dxo0a2u677mxHHLy/l9F8+8NfrrM1ttYO3GcvG7bHbkX54/jvnenV/7jRmjZpHPKSvK+iA1M+kOYt/73Xxk6YYCuWrwj5b9Omte256y4pRxb+uXjJErvv4SftA/eOLndxTPm1bevH77ZLUX4olzvuedDGT5xkB+yzZ4gv+/rbcaG869eta9u4B/TU44+yZ90r+sqIt53R4nDd5i2a2eEH7m+Dd9q+6NrLPU+vv/WuPfPiK6G8qdP1PI0uzuu0E48OIp883fvQE/bx6NHWq1t3H+Y8veh8PnCPv/X4QDxop594rLX3zkFF6k+xxP0P2C/xurDM60dTj6E7cPjQokN4Dvr16WV16tYxhN9I70z84KB9i/brgwiIgAiIQPUhkDNRFyZDPPuiDx++VkSnjjcoNLxfjPkqNJpJL1xqTBkeF2LWlngD+fGv97WoAABAAElEQVRno4OQ+8Ul51qjRo2Cl4y4tnHuMbtx3J2hESNtYq2mefzQ32+4JZxLo0Y6iC48TZ+PGWM3335PaGQRjN94w86xiE+M42ikZ8+ea0/5RA72//TCc4ryzwcay+++n2itfILEkMGFog7RcvlPLgjHrV69xr7+dqxdc92/i51X0h9cc57HFhbUKrDOHdoXO7SOB7P33bJXEHVrXJwmvY54+N4cOcoaNqhv++69pzVwAbzPXkPsNvfCjJ8wyf7n8XknHXN4EB//u/8RmzFjljV3j95hB+7r97naZs2d62J7ob35zij7/MuvwnWbNm4c+D774qv2pJdfMGeIAFm1anUQ56/6EDPibqftBwbRMMHF0lsj3y8SUZyzZOkyH4p+O5R3nRYtijyPhQmm/3eaTz5BJCI8sfx1Xt3p02fYfY88vsFJxIxd/bd/2XQX5hj1hXKdMmWaPfzEMy5GlwRhzrYZM2fbHPeo3vfQ40Hkx/q11IUNQ+nffved758X0inw63LOHK8HDz3xtG3RsX2IVSRu8Y67HyoaXicN6h3i6Csv8z/+9Xo75YRjgmjq0a2LvT3yPR86n2wLnHET54qtWLHSPh39ZeiEtPY61LtHtyBEK1J/QsKJfyinST5kj+Gp69ypY2Kvc3Xh26p5i9BJmLmOXbED9IcIiIAIiEC1IJAzUYc3gskENCDdu3f1WZlnWl33aNAAX/fv22yqe9uSNt+HF+9/5MkwPDuw/9b2w1OPD7vHeAzQv265w4eoZtvt3qBecPapRafhaWvTqkUI+G7bumUYFv2ze6NWu7ir7Q3zAfvuZfu7B2mNC63b/ne/ffLZ5zbFPXcYw5l33fdIEHR45s444Vjru1Vvw8tyv3t+3nx3lI3/fpK9+Nobts/QIeEcBN0rLlQQf716dA33FnZU8B88K3iAYNV03bBrTLKWb2vZonCmZxB/PsGkpXuQEI/TXOzgoezsXrnuXTuHUwZs089jpwbYqA8+tg8++tS269/P5sydbx99OjrEAB6y/3D3DLUOMyE5AZGBoGvUsIEN3X1X27bvVp6HxvYf914ym7ZX9252MWXn4hLv6Z+uvcHm+O/Rn39pew0ZbPsOG2r/vu1On/iywGa5CIqzUvE+fjL6cy/zOjbAy7M0QzA98vizQdA1csF4/JGH2c47bmekM+Ktke6Ne7zYBBJEI94y6lMzF6pnnnK89e3dM5TfPQ8+Zu+M+sBef/Nd22XHgZ6H9V7hWl52e+85xI7+wcG2cNEiu8lFPp2Muc6onXt5TzruKPcMd7ex47+3a/5+Q/B2vf/JaGvXrq19M3ZcEHSUf1EddWGH+P/nf/7r6S22hx590gZc8TOPf9wyeIepM6++8U6R15eOxhs+IYY0urp3L9mxKY1RtvupJ3O9nmDpwh24ZsOG9V3orrEl3jGQiYAIiIAIVE8C2QeoVeD+CNJ+yeO/8CwRI/bT838YBB1JtvUYtEtcJODhiIZX79UR74SYtNYuzs4946TQGNEg0cCefcqJwUs0acqU4EWK5zXxxv/k448OIoWGqo2f27Z16+CdQwgdeciB1tC9V3iyDtq3cEIDeaLRm+6em6ku8Bq6mDnq0IOCoCPdhj754YhDD7DuXbYw8sVQWzQ8YyM/+DCkd8DehenFfRX9XTi86V4UH/5Mtdjwc0z0Ki5ZusSefuGVMPS343YDik5BnB1z+CE+hNzMFrhoue6m2+1/9z8cRES/LXvbHrvtXHRs/NCsaVO7/NIL7fCD9rMe3bsE9oixdm3a2NGeVlz6onbtOta1S6cgrha7qEKY9PTjGzhfxMtLLuKxICqCF3BR4Dl82O7xUhl/I2qDCHTxiAcQQYdx7V133sH2HLJrsXMLh55Hhmsfst/wIOg4gPI76rCDvE609TzB6NWi8+DYqUO7IOjY2KB+Ax+OHRr2169fzwXqnraVC8NQl9yL1s7TCPfiHRTE/mNPvRDqVvt2bdbXUU+zl9fR8888OaSzwDsLb7w9yut3HevTq6eL0pV+X1+EffyDN5mZ0Q38ekN3r3gMZFHCiQ9rfTiceo4Vj4xcfxBlR6dozepCL/X6PfokAiIgAiJQXQjkxFNHDBsxWogyJhMkBRygaKh7uKfra/fCYStXrrIJ3tBhC9zDcPXfbgif+YeGJ05AYIj2y2/GWjMf7sTC0KQ3wtEYDqvnYoRhuG4+/BWNRpoh0mhcb9z4CeFPZrBGARH30+DuuceuNu7Oe0NcF9sZ0vp+4iQfDl4alg7Z6EtBcKNuQdwVftzwX7+/AveeYYigr2HhXqq9h66PZWMfcVSIjD9c+68w7AyXDi5moveTY6JRRp18yLedi+FoDNH+5fe/CnmZ7UOSzOgdO268TfAYObyDpBeNeLJBLsJef/Md+/yrr8PmpS74XnrtrVD+eAUR1nF5jYWLl8ZTw+9GDRvasUccEjyuCB4EZur9MKw83IeVXxnxZtG5iBbqw5o1BWGYc+T7Hxbto/4haElv4qTCYUh2hnrhYj1afn6ex2kW1guusdsuO8Zdfo+F8YxxA8PeeCgRu9v62opJw5vaxus5XlbqB5x23XlH28/F7OgvvgzL9yzwtQSJD/3y6299+HdN6EwgICvL1q5dX0bprsH9YHl5tdLt1jYREAEREIFqQCAnog7vBnFEiKlGLppSjWG9ls0LhxTZx/HEOyFo8IgQn5TOiHOa5zP2oqhLd0xojb1FThWSyWNp0Gb4sF2MiUru4zNejC6+5hvGsQgSBMAzLxZOkNh1px3Cvo32j7e/xI+t8tg+PF5JC0zWbWNCBKKCGK63fXiRe92iY8ciT1o8j7y29Dg2hvcQr8SIdWjXLoiseEz8jahr48OOSSP+8D1fQuU+D/Zf5OIoaUlBx3a8dIgwRB3HMhmhSaNGNtqHdPF+DV3nYYPjTB+ejQI9pkls30z3mnrRB2OySFufGJFq5JP7wArLb3b4HGYj+7pr6Yy8MnxbZM65Vn5xEePzfIt2c41MRjkgpOmQtG7dYoPDEHbNXZDCgNg87qOde/SIAV26bKm97J7oYd5RYMFt6uaWvXttkMbG2sB9161b6AnnmUk17oVhd44r6Z5Tz9PfIiACIiACVYtATkQd4qOhN2ashYUASbW1a9aG4P24HRHS2APJZ/rCqO19RuteQ4p7nuJxNKj9tuoZYrfittTf65vo1D3r/0ZsNvFve6BxI/4u1RANMfg+HhsWbXWBxLDuUJ9ZuTGNIddGDerZrDnLwjdVJNPGqzh23HdhU2FeGofZkyNcHCCo9tt7j+Th4TOi7BMPxo/eSDxWX7oX7UOPDdtu2+LxbYiRpBcTJpOmTLXbPKaOz4jvwe516rdlTxd/re3lV9/yWaKvFLsmQ55bdOoYJrO88PII290nkDCDtJ0fH6/HzNdf/vSiIHCSJyPU2nmZL/AhTmyN1w28WnzzQapFgRKE6DphxbUPOWi4FeSvH86P53FvMcYvbivvbwQQYj90WBYUF7qkuXbtmlCn87wsGzcu7MjUq1PXdhjY34fw37HPPAYRLhM8TrOBD5HvN2zDcitv3lLPC0x96ByjLhOviEc0Gvcw24fHqU/Nmm3IOR6n3yIgAiIgAlWbQE5EXa0Cb6i9QWfl+qk+XEcjQgMSjbiwb3w4LxqzPjv5DMOxfjwN0p5Disd9sTDvjb78Bst7bNm7ezyt3L8LfEZg9y5dwvnEZo0bP7FoogEbEaLvjvoo7MergrfnNfdE4X3p3rUw5izs3Ej/cM/t3ZNGnB/LtSRt+YrlPsnhi0KvonvpYDlz1pywxhhDqj17dEseHoQYMz3vfuCRMPOxe9duQWARj/jAI0+ECR6NXXAnDcESDW8UXynFdfhGjKt+fVlR2TErdZYvgZJqiMv9ffbtv2+/Kww3rnQvELNl+ySGFxFiXTp3SD216O/lPmSLtzLEV7450icW7LN+n+fpvQ8/CfcWN1IuiKw8vJLNmheJR/YT+/ji62/Yp5996V+vtpV1dE4VNeovX/s2yz3Kn/vEigOH71WU5Fr/xLDrbIZn/b47tC28Hp7KYT75BC8m3BDVK1f7ELMLVma+VpbBun27wthS6vLI9z9xL2Fh/B5CfaGLPJZ5YciZpVRkIiACIiAC1ZPAemVVifmnsdh76K5BiMxxj8DNd9xbdDWGVx958rkgNOJGGr/d/ftNMb5T9dGnno+7QuPDchwIvln+pfXZrHVWdHKGD4iozp3a+9BYQx8mXuSzau8P3iEOx8v10Sefh1mOeAb7+uQCRALDncTfHejrnFXECgXiu/aX625yLncHwVjP183bbZcdgmhhQdiHn3w2XAIvy4SJU8LsVJam6NG1qw9PLw2zPhmG3WFA/w2ywrD3TbffbSvcO8cQ7MXnnR7W5uOe8c7ceMtdG5yT3LAmeJzWLSniO8gDRpzat76G4Hu+/AeB+HhboxGr1rOHrz3o5c4yIh9++llgxZpw2RrrpzEphtmhI3y9PIQ2hric6J7Dx55eXyfYjmjs7esXIjQffOypIu8tomX6zJn2uNehyVOnhnxzfEWNtQ2H+mxfeHz//WSf2T2iKMm5LvRuvO3uMDkBz+GQ3QrrMmKZiTjElSKiHvSZsXjvtnfvXWUbgreVzwwPk5Zefd0WrxvCp77fefeDoa7x3O20w8DKzorSFwEREAERqCQCOfHU0Zi1atnSdhy4bVjVftSHH9mnn38RYuHm+RIcNNxJ4/jWLVuEgHsC3p967kWPQXrTY7Ma+lIm84LQolEdvNP6QPbk+eX5zDprLGtxuy91MtlFw6W//oN/K0NzW+aeMZbnIF6tBYvPHrK/C8rvw/IXW3TqVOHvVsWL9dkXY+wLHw5lQsKiRUvCEiV4ADt16OBDn1Ps6edf9pmkI9wTVbtI/OLdOfrwg2yZe7S+HPN1CPDfd6/iQ3h4uV569c2QRmP3Kp1w5A8KY8C8LA4/5AB7wEUFa8o95env5jNK0xmTT/r37ePLcLxl011EX3L5ldaqRSubv3BBIZd1J+FRvNWHaM84+diwhQkTO2y3rS8/8m4Q88x6Los3qrA8DvJ16q4PXsirrr0+3CN1A6GLWEsaw4nH+QQLFvGlI/CL314VBD+ia77XMY5mwggzb1f5EHZFDRGNAHr9zbdt2oxZ4SvdnvHZxw3cexzqqItoRBKzdJkYEo16S4flfveSIoyZTIH3rrItLAtz+KF23c23h1CCiy/7TRiuZ31H8sH9bL9t/w3iMSs7X0pfBERABERg4xHIiaeO7LK0xim+Sv8+e+3u8U75QcixuCxfa4W3DQ8YlrcucB2PxsnHHeHDWsM8mD3flrgHhoWE8ZwRgzTcY5AO3n/vcE6mf8IgoosAfieHe5PHIxIwPEM777CdXXj2ae5NaejXWRU8PAg6vGL9fb22Ky69OGx/xkVQPV/rjDXPSjOSr+XDyRnN96dbtgQBcsE5p4V14VzBhKD8+M0GHX126o/OOsU51nKRXOgpQwAyHB0teKicL2u3cW/bbLWl9etbyJgGfJdB24dvPQjDm/6tCQzR1iKzKfnBo9fTPWa77bJT4LhkyTL/ZohJYT088sGXwHMM5cKkiGj1fQh2uK//Bl/ytcu6JUni/tJ+c15nn/Txy5+cH8Q04gwxxwSaKEC4LseFYVf/zTeKXPGzC71D0DJ49Pi6LSa1cEz3rlvYheecUUxgbZAHP87/z2B5XocKd8bf1NvLf3qhD/X2D9dgjUAE3krPa/Nmzby+H+3rIg4tlh55J66OPDMsypI+yXIrdrD/QX5KrD+pJ2T4G1Zb+TN20rFHhlni8GRtRgQdnuE9dxscOgkZTtdmERABERCBakAgzxv/4PJg1uBEX0akW7du5cv25Almu3ddf27HLmYjxq//O/GJIbQZM+e4B2Ve+Pqp+DVdiUOKfSSLDNtOcVHXvGkz69i+TWhEix20kf/gmyu+9SG/Zk0aetD/+jgjYszece/hMhc3w3xIGcFU2cZSHd9NnGwr/dqsGxd5MeFhzFff+tIqk207FwosF1KZtsiZTPThXxY67tWji4urQhHJEPBk9yjCKQoURMMXY761v91ws3tpW9hVv/l5EDHlzR/if7xfu6ELxE6+uHJphsgc6+VHB6Kdx5MlJwaUdm559lOnp06f5cO+s8PQc9I7V570KvOcwudpXhDnbVu31Xe9ViZspS0CIlBzCZRB92wsCKVptU0i6jbWzSmdqkuAIU++cm3K1Gk2YNtt7NzTT6y6ma2GOWPCwwuvjAiLepeWfYb1L73w7EoXtqXlQ/tFQAREoEYRqIKiroRxwRqFXjeTIwJ8HdxVf/tniFtj6JPFg484eL8cXX3zuQxD9s19+ZEOPumiJGPAuLEPEzN5RSYCIiACIlCzCehNX7PLN+d3xzDkbF9UmCE+homH+ULEbTxuTLZxCTDbd4jHOfIjEwEREAEREAEISNSpHmxUAixcfNkl5/ks3aW+5ErntIsGb9QLKjEREAEREAEREIFAQKJOFWGjEmBWZ+8e3TdqmkpMBERABERABESgdAI5W9Kk9KzoCBEQAREQAREQAREQgfISkKgrLzmdJwIiIAIiIAIiIAJViEDlDb8y1bcHc+9kIiACIiACIiACIiAClU1AnrrKJqz0RUAEREAEREAERCAHBCTqcgBZlxABERABERABERCByiYgUVfZhJW+CIiACIiACIiACOSAwMaLqeO7XseGr5HNQbZ1CREQAREQAREQAREQgSQBeeqSNPRZBERABERABERABKopAYm6alpwyrYIiIAIiIAIiIAIJAlI1CVp6LMIiIAIiIAIiIAIVFMCEnXVtOCUbREQAREQAREQARFIEpCoS9LQZxEQAREQAREQARGopgQk6qppwSnbIiACIiACIiACIpAkIFGXpKHPIiACIiACIiACIlBNCUjUVdOCU7ZFQAREQAREQAREIElAoi5JQ59FQAREQAREQAREoJoSkKirpgWnbIuACIiACIiACIhAkoBEXZKGPouACIiACIiACIhANSUgUVdNC07ZFgEREAEREAEREIEkAYm6JA19FgEREAEREAEREIFqSqAg1/lesnyVPffhRLvx6U9t0oy5tnr1GstbuzbX2dh8r5eXb3XrFNhW3drYBQdva4P7tLX8/LzNl4fuXAREQAREQARqCIGciropc5bYZXe8baM+n2T5depbXp2mVpBfq4agrC63sdZWrl5ln4ybY+dd96IdsHMv+93xg6xObTltq0sJKp8iIAIiIAIikI5AzkTdzPlLXdC9Y++NmWK16jc1k5hLVx452JZnebVq+09BEHfPjhpr5o66P564kzx2OaCvS4iACIiACIhAZRHIiXtm2crV9spnk23UF3joGkvQVVZplildxF2BrbC69vpH4+3tr6aX6WwdLAIiIAIiIAIiULUI5ETULVi8wm557nPLr11fgq5Klb8Lu/wCW7Qi3/7z3OgqlTNlRgREQAREQAREoGwEciLqVvlkiMkz54dhv7JlT0dXOoG8PFtttWzyjHmVfildQAREQAREQAREoPII5ETUrbW1PsvVZ7gqjq7ySrLcKefZ2vz8MAu53EnoRBEQAREQAREQgU1OICeijrvUsiWbvKxLzIDKp0Q82ikCIiACIiACVZ5AzkRdlSehDIqACIiACIiACIhANSYgUVeNC09ZFwEREAEREAEREIFIQKIuktBvERABERABERABEajGBCTqqnHhKesiIAIiIAIiIAIiEAlI1EUS+i0CIiACIiACIiAC1ZiARF01LjxlXQREQAREQAREQAQiAYm6SEK/RUAEREAEREAERKAaE5Coq8aFp6yLgAiIgAiIgAiIQCQgURdJ6LcIiIAIiIAIiIAIVGMCEnXVuPCUdREQAREQAREQARGIBCTqIgn9FgEREAEREAEREIFqTKCgGuc9ZL1F47r2f8cPtNoF+TZ64jz7xxNfVNtbqlunlu3dv70dObiLzVuy0q578kv7bvpCa9mkrl110na2ctVae2zURHvxo8nV9h6VcREQAREQAREQgcohUK1FXb77Gds2rWdD+7WxlavXuuhZUzmUMqRaUCvPtunW0s7fv7ctXrbK7n1jgr0zZnqGo0vfXCs/z9q3aGA79WxpsxYut6YN61gtv0bXNo1ttz6tbaFfY+Q3s0pPSEeIgAiIgAiIgAhsdgQ0/FqBIs/Ly7MWjWrbLr1a2Y49Wlq75vUqkJpOFQEREAEREAEREIHyE5CoKz87nSkCIiACIiACIiACVYZAtR5+LSvFOrXzbZuuLa1uQZ7Hqi22qXMWp02CYd2WjepZpzaNrKHHuc1dssKPXWJzFiwvdnye/5Xn/xVZ4mPRNo7x7Q3r17FOLRtYK48BXL12rU2ft8zGTV2QPEyfRUAEREAEREAERKDcBGqkqKvr4m2fgR3tzycOtLmLVthfnhpjhw/qZNt0aWZ1ahU6J1etWWsfj59nV97/SZG4In6tV4em9rND+9qgXi0tHzW2zlasXmPvfDXLrntmjI2fttAO3bmL/frIreNua9qgtv3h2G3t98f0t88mzLfjrh1hiMPOrRrZJQdvZXv0bWvkK5rrOpviwu72V8baPa+PjZv1WwREQAREQAREQATKRWC9yijX6VX/pOaN6rjY6m/bd29RJOjIdYFPStiuW3P7y8kDw02g3zq1bGg3nj3Idu7dqpig4wDE4O5btbE/n7ydtWvR0Fa7KCzJSK9jy0Z23Rk72vBt2xcTdJwX9nsM3vn79bb9tu9UUlLaJwIiIAIiIAIiIAKlEqiRnrrUuy70ii2129wrNmn2UvfCtXLPXQdr3rCuT25oYPu7qHpt9FQb0q+dtW1Sz/Dijf5+vv37ha9s2rzl1m+LZnbWsB7WtXVDa+P7h/RtYw++9Z0x13a3Pq1sXxdtS1estmc/mWYfjZvt3sGVVr9OgQ3btp31at84CMCxMxbZQ+98b194ug3qFdipQ7vZYJ/RWq9Ovk+yaGXPfTApNdv6WwREQAREQAREQASyJrBZiLpp85baGf96176fsTCA+XDsTFuxcpWdO7xX8Nh18Fi32u6J6962Udi/ZPlqe/L9STZidOHyJN9OmW/fTJln910yxOr4enjbdG5md/oxT7w7weYtWhZE3QpfTuWDb2fZo+9MCGk0cw/h1n4cNseHgH98+wdFw7xsGzd1vr3w672tlo/RdmpRn00yERABERABERABESg3gRov6vCgvfjZ9CJBB6mly1fZSx9PCaIu34dhm9avHda4+3pK4cSFJvUL7Lx9e1tjXyfuxQ8nhwWAx0ycb4dePcJFmNmSZatLBb5o6Uq75aWx9uXkBbbAFxJOTopo6J66g3bcwmPu8my1r68nEwEREAEREAEREIGKEqjxom6lT3AY6xMbkrbGx03n+4zWpCH+Xvtsql18YG9r4jNVWzauYxf7osIXeszbrIXL7IOxc+31L6bbCx9NsWUrViVPTft5lYu1MRPnBo/cQB9evfCQfta3Y2Pr7jNqOzSvHwRd2hO1UQREQAREQAREQATKQaDGizoE3AL3mmVjM+Yv9Vmrb9llh29tu/hkido+G9adaSGObv+B7W2/Ae3tHPfg/ebej+29Ur7ZgZmv3ds2CRMrtuzYZIPLE+fHZAmZCIiACIiACIiACGwMAjVe1JUFEgKQ71o999/v+Fd01bXBPtt1h+4tbcdeLayHe9gQYV1aNbArj+5vR1wzwidAMFUivbVo5N9Je+IAQ9AxUXa6C8YXP51qn/pyJ+M9tm/R0lV20zk7B69d+hS0VQREQAREQAREQASyJyBRt44VCxPv0LO1bd+zlc10AXbfiHH2zHsTww/79ujX3v54wrbWsG6BNfE16bb0SRCfT5iTljTir0kDnyjRqWkQdN94rN6p179dbMi3vQ/BNm8k/GkBaqMIiIAIiIAIiECZCUhVrEPWuF5tO2ufnrZTz5Y2Y/4ye3vMzKLJFStW+szWsbPso+/m2m5btg7jpol1hIug812wWC2fTYFoY/FiZsWOm7G4mKBjosThg7tYk3p1jNi7vFpFSeiDCIiACIiACIiACJSLgETdOmzLXXx9NmFeEHWtmtS1f525o9322jj7YuI8/6ow1pxrbzv5+nYYEyU4Flvugg/Dg3f4zp2tXt18m+Fr2zHblbg5lkDZxdeyO3mvnvbe2Nm2hS+fsv92HWyfbdqH82p50F57X4S4T6dmNnHWorBN/4iACIiACIiACIhAWQlI1K0jtnjZSl8ceEKYDMF3tPZo1yh8E0Uq0MW+Pt1TH0wOwg7H3JTZS8LiwgU+qWK7rs1tgH8VGV8Tdv4tI/1ryObaQP/WimY+XPvzw/qmJhX+Jo0ebRrbDWftaEf99Y20x2ijCIiACIiACIiACJRGoMZ8Tdgan40wd90yJSz9Nnfh8nDvq91dNm/d55Jg4FWbPHuxnX/re/aCT2jgu16TxteCfTN9kV375Jf2D//BOGe6L2z8j2e/spkLlnv83FoXeH7txSv8WyWW26/u+dje/XpWOC6mxTFjPZ0r7vvUfvvgZ0a+o4V78IWKMT7P8jSTxjYWMpaJgAiIgAiIgAiIQCqBvLVubFy1apVNnDjRunXrlnpMhf+ePHuRDfvZQ5bfsEWF08pVAnjetnAPWsvGdW2pf/vEjLnLfFh1aZkvz9ImLRrVs/bu/WPh4u+mLiqKr2Nfy8b1rFOrhvalL26czfp3Zc5AFiesXbva2tdbYa9cc0wWR+sQERABERABERCBTUGgNK2m4dcMpcIEBuLixk3NcECWm1n1ZNaCZeEn9RT2zfRJGfzIREAEREAEREAERKAiBGrM8GtFIOhcERABERABERABEajuBCTqqnsJKv8iIAIiIAIiIAIi4AQk6lQNREAEREAEREAERKAGEJCoqwGFqFsQAREQAREQAREQAYk61QEREAEREAEREAERqAEEJOpqQCHqFkRABERABERABERAok51QAREQAREQAREQARqAAGJuhpQiLoFERABERABERABEZCoUx0QAREQAREQAREQgRpAQKKuBhSibkEEREAEREAEREAEJOpUB0RABERABERABESgBhDImahbm5dXA3DV3FtQ+dTcstWdiYAIiIAIbB4EciLq8izPatVyUbdm9eZBtVrd5VrLW7PGyycnVaFakVFmRUAEREAERKA6EchJS17ggqFD66a2dvXK6sRms8jr2rVrrZatto5tmm0W96ubFAEREAEREIGaSiAnoq5Jwzp21n79bM3KpfLWVamatNbLY5U1qrPGy2frKpUzZUYEREAEREAERKBsBHIi6urVrmV7bdPRBvXtZGtWLJSwK1sZVdLRa91zusrq2HLbY2BXG9ynbSVdR8mKgAiIgAiIgAjkgkBORB030rppffvzqYNtx6062Oql822tvHa5KN8010DMrXRxvcRqr1lq++/Uw353wiDLz9dEljSwtEkEREAEREAEqg2BglzmtH2L+nbTeUPtuQ8n2o1Pf2qTZsy11avXWJ7HdclyRCAv3+rWKbCturexCw7eNnjoJOhyxF6XEQEREAEREIFKJJBTUcd9NKhbYIfv0i38VOJ9KWkREAEREAEREAER2KwI5Gz4dbOiqpsVAREQAREQAREQgRwTkKjLMXBdTgREQAREQAREQAQqg4BEXWVQVZoiIAIiIAIiIAIikGMCEnU5Bq7LiYAIiIAIiIAIiEBlEJCoqwyqSlMEREAEREAEREAEckxAoi7HwHU5ERABERABERABEagMAhJ1lUFVaYqACIiACIiACIhAjglI1OUYuC4nAiIgAiIgAiIgApVBQKKuMqgqTREQAREQAREQARHIMQGJuhwD1+VEQAREQAREQAREoDIISNRVBlWlKQIiIAIiIAIiIAI5JiBRl2PgupwIiIAIiIAIiIAIVAYBibrKoKo0RUAEREAEREAERCDHBCTqcgxclxMBERABERABERCByiAgUVcZVJWmCIiACIiACIiACOSYgERdjoHrciIgAiIgAiIgAiJQGQQk6iqDqtIUAREQAREQAREQgRwTkKjLMXBdTgREQAREQAREQAQqg4BEXWVQVZoiIAIiIAIiIAIikGMCEnU5Bq7LiYAIiIAIiIAIiEBlEJCoqwyqSlMEREAEREAEREAEckxAoi7HwHU5ERABERABERABEagMAhJ1lUFVaYqACIiACIiACIhAjglI1OUYuC4nAiIgAiIgAiIgApVBQKKuMqgqTREQAREQAREQARHIMQGJuhwD1+VEQAREQAREQAREoDIISNRVBlWlKQIiIAIiIAIiIAI5JiBRl2PgupwIiIAIiIAIiIAIVAYBibrKoKo0RUAEREAEREAERCDHBCTqcgxclxMBERABERABERCByiAgUVcZVJWmCIiACIiACIiACOSYgERdjoHrciIgAiIgAiIgAiJQGQQk6iqDqtIUAREQAREQAREQgRwTkKjLMXBdTgREQAREQAREQAQqg4BEXWVQVZoiIAIiIAIiIAIikGMCEnU5Bq7LiYAIiIAIiIAIiEBlEJCoqwyqSlMEREAEREAEREAEckygIHm9lStX2ujRo5Ob9FkEREAEREAEREAERKAKEMjLy7MGDRpkzEkxUVdQUGCdO3fOeLB2iIAIiIAIiIAIiIAIbBoCq1evtpkzZ2a8uIZfM6LRDhEQAREQAREQARGoPgQk6qpPWSmnIiACIiACIiACIpCRgERdRjTaIQIiIAIiIAIiIALVh4BEXfUpK+VUBERABERABERABDISkKjLiEY7REAEREAEREAERKD6EJCoqz5lpZyKgAiIgAiIgAiIQEYCEnUZ0WiHCIiACIiACIiACFQfAhJ11aeslFMREAEREAEREAERyEhAoi4jGu0QAREQAREQAREQgepDQKKu+pSVcioCIiACIiACIiACGQlI1GVEox0iIAIiIAIiIAIiUH0ISNRVn7JSTkVABERABERABEQgIwGJuoxotEMEREAEREAEREAEqg8BibrqU1bKqQiIgAiIgAiIgAhkJCBRlxGNdoiACIiACIiACIhA9SEgUVd9yko5FQEREAEREAEREIGMBCTqMqLRDhEQAREQAREQARGoPgQk6qpPWSmnIiACIiACIiACIpCRgERdRjTaIQIiIAIiIAIiIALVh4BEXfUpK+VUBERABERABERABDISKMi4ZyPvWLlypX3yySc2evTotCnn5eVZ48aNrWvXrtajRw9r2rRp2uPKsnH+/Pn26KOPWv369W3YsGHWqlWrrE5ftmyZvfHGGzZjxgzbaqutbLvttrMVK1bYxx9/bGPGjLF27drZ8OHDs0oredCqVavs66+/tvfee89atGhhBx98cHJ3zj8vWLDAnnzySSsoKLA999zT2rRpU6Y8LF++3D766CP77LPPws/EiRNDuXXr1s123HHHwIi0q7LFevnll19ap06dAoeNnd94jUx1P/V6tWvXLqp3qfsq42/K8a233rKpU6fm9LqVcS9KUwREQAQ2ZwI5a3GXLFkSBMRzzz1XKu+GDRvaMcccY6eddprVqVOn1OPTHbB27VqbN2+e3Xjjjda8eXPr3Llz1qJu0aJFdvPNN9vMmTPtgAMOCKIOoffSSy+Fe+jVq1e5RB3CcOTIkfbvf//b2rdvv0lFHXymT59u1113XRCYCLFsRd2aNWts7Nix9qtf/crGjx9fDP+UKVMMgUQ533LLLXbhhRfa0KFDix1Tlf5YvHixPfjgg/bmm29a//79K0XUlaXuw6ZevXpF9S4XrBYuXBiek2R9z8V1N4drrF692saNG2fvvPOO8V474ogjNofb1j2KgAhsIgI5E3XJ+6tVq5a1bt3a8M5FW7p0qeE5QjDQ0N57773Gtosvvjgeot9VgADCdMSIEfa73/3O8PBQhnhVt9xyS+vdu7fNmTMneCIRjJMnT7Y//elPRnkPGTKkCuR+02chXd1PzRWeZbzBsupPgOfl/ffft3/961+hI3f44YcXe+9V/zvUHYiACFQlAptE1CHo7r///uCRSMLAG8Zw4N///vcg6PCM0bPFy7aprUGDBnbooYcG8YKXbXO1adOm2f/93/8FQYfn4bjjjrOzzjqrGA7K8YknnrC//vWvNnfuXLvmmmusb9++1rJly2LHbY5/ZKr7m5IFYQ8/+tGPjHCFPn36bMqs6NoiIAIiIAIVILBJRF2m/DLsdOCBBxrDnwxR0sv9/PPPq4SoIzasX79+4SdT/mv6dsqFoUo8qAiBs88+24466qgNbptyPOigg4xhPYaxGX589dVX7cgjj9zgWG3Y9ATq1q1bpYfINz0h5UAEREAEqgeBKiXqQEYDw8QEjIkFBN8zzMeQH949hqXwFCWN+LDvv//e/vCHPwSx8eMf/9g6dOiQPCQIi7vvvjvExX333XdhmLdnz56288472wknnBDiXYqdkPIHQgYv4ssvvxyGGX/yk5+EIxguJj3SJticIeT8/Pzgldppp52CJ6t79+4pqZmRZyZi/Oc//wn3xnkxQP6MM86wQYMGbXAOAfcffvih3XfffSFujWFqYuF22WUX22+//cLn1JPwvtx1111hSDTeN57PQw45xAYOHJh6eMa/ye+sWbPskUceCfeHt5KhpEyGZ3Pfffe1//73v0EEUn5JUce9MCz18MMP21dffRWGbYl9ZBiXSSjJiSgwJnbvj3/8Y4iPvPTSS0MMHHF7TDyhnmyxxRb2gx/8IFwjOaxP/uJEBbgx0YX7QJTCuKR7oFNBmXIeMYTwpmyZ5DJ48GA7+eSTrWPHjpkQVHh7ee579uzZ9utf/zpce/fddw+xqakZIXaOY+io0IniXhDfMN5rr70CEwT5HXfcEfjuv//+tttuu9kDDzwQYsMYYmc4kWeM5+Kpp56y1157LRzL3zyj2267rR122GG2zTbbFF2+PPfDycTGXnXVVaGTd9JJJ4X3Ae8COny8G6gz1GfuhfsnlpPJSEz8aNSoUZj8gTd56623LspL/IAnmeeDWNcJEyaE43kuuF+eKYbLMTo0PONMCtpjjz3CRCDqNhOF8F43adIkvLcuuOCCUCfwVlM/H3/88VDfSIO88WyTJ7z+TN6SiYAIiMDGJFDlRB0vfhoUjAaUIT6CjSdNmhReqDTIqcY5bGd2LTNc4/nxOAQTQ4A0DkmjUSConwaJ2C+EQSZDGHz77bf26aefhoaM4xATXPOSSy4JjUs8l/wQU8YQJAHSf/7zn8PwY9zPbxrW008/PfyO22mgmGHLBASEKY1KNBqV2267LTQscRu/EUT8PPPMM+EeaeAw8oAQufzyy4PgDRvX/UPg9vXXXx/ESXJ7SZ+5f9LjnmnAEFCxwct0HrNJ8dBRfkmhRfncdNNNweuXPBcm/IwaNSrMPv75z38eyh9Byf3ToFIfaLRpLJNG3v75z3+GoPTLLrusaBdeQuIzES1Jo04wvP/KK6+ERja5j88IuNtvvz00+Ml9cEWMc/0PPvggiJu2bdsmD9lon8tz31F8I1B4JhDSyXKijiFg6BwwHI4oRbyyDfbxGWAb90c6HMNEEjo0GEPIcOCZpCNFWkmjI8YPzxXC95RTTgm7y3M/nEieEWnUI65L/eB3NJ5BBCkC7bHHHgv5ivvo1Lz77rvh2SUcID4fpMXzz7PGsxqNNKgTb7/9dhBsv/jFLwI/6j/Hcy3Y3HrrreF68TyuQ13/4osvQj1E+NPR5O9onEca1OGydKji+fotAiIgAqURqHKijsYb7w2GJwFPVEWNFziCjpcps2rxIvDypifNCx8PFi93GvFkA1jadaM3g0aH3jdeBLxmeCsQDAxVch28GvwkjTyxD+8BcWkMWb744ov2wgsvBFGK9yCKOtInPTwFcRj42GOPDV4rRCPbERqIGTx/zGIlbYQqDQsziLfffvswo5JJDXjI7rnnnmKCMpm3dJ8Rc6SFkV46r0e68+CZZBo9nrBB6OGdw3vBMjaIZu6bRhbPHkyTAo30EVuIZbxBiAWEI2XINsqDpWhOPPHEIERoiBEcUdBx73hlie9jEsfzzz8f9iPw4BqNssGjR17Ie5cuXYIniHvm+g899FC4DnUK4UKdytaisOEamQwueDqTlu19w5MZ2zfccEPwGiOEBwwYUJQU/MkzHSaOxZOWrqMUT8DjRJ3k+niS8W6THnWAzgp8YUT5Uf8RimyDXfRu4dVNel5JO9v7SXpCyQtlTTmeeuqpwQOHaOJeEVWIejz9eCiJxaVM6ew8/fTTIS+UG885hrcRbyV1jXp2/PHHB08bf1M3WX4GEcu18L5FQ5gh7OIMZTybcXYzwjN6xumQ4OHEI8zzxg+dIeoseeQdJBMBERCBjU1gfUu2sVMuIT1ejAxbMMsvGi9GPEgIrW+++SY0+M2aNdtoLz8aG4bvkg0cQywseYKIZAiFRp4GMVvjPmj8aexIl4YmGo0fDSfDRHg0aJCSxjk77LBDmEwQRQ8NLB6IKOwQZjS8NLo0WJzDkCEeh+j5YhkOhpAJdEfU4KlgKRgaJX5oQPbee2+74ooris7hutw7jRWCMRtLijoay9Th7WzS4Jg4PEb+SQMRGidQ4L2gQWZomzqAsCNmD1EVLZ6HAKfBxWDAkDIiFiFHmSAGEGt49TA8uCzfgvjAWEePBvnaa6+1Z599NmyL/1BW0fuEVwpRSOMcjeF02CKQGP4tiyEaGCYsycg7w9xJy/a+uaehvoQMMankD2GSrPNsw9PFs8expRn1kWcT8fz73/8+CGLqAl48BHSsx3jC+YzF4UtiLikDyoo8xXrOMdneT1LUcR7lyEQqlhXCmHGNuL7zzjuD0GSWNd7DaF193Uu88Xgc+cG4HzoBDM9S9xjaTYosnie2IX7x2tHpSBqdQwQsz1k0QkY4Dm8nnnPulTzCDQGIqOM8OhXcu0wEREAEKoNAfmUkWlqa9JJZqoSXfvxhCJMhQRpzDEF30UUXbeCxKC3tdPvxKvDSTjZuHEdDTQ+dBo4XPd6wshjiBjGBkMAjQmwRDR7GC5yXPKLi6quvLtagsZ9eO8OvyYYO7wwCDMOTg5gjbYQDgg0Rc+655xZrFDgfAYknhHugEafhfv3110M6nEM8UbIh4RyECXFI2RqNexy+Ji0aqrIaIhjPCl4a2DM0FwVdTIu/4zI2UZTEffyGK4s2R0HHNvKCSENEww2vJQYPGnT2EzcWBV3Y6f+QB8og6aVjH+IEocg+2CUFHZ42ygLhx2fKJxeW7X1TNtQteJBHPLnRKwh/hvcR8tS16AkuLf+w5lnEw4lRLogdLD6nUdCxjXJAiFO+MKLe8HwkLdv7SZ5DBwWPcxR07OO6ccZuTDN5Dvt5PrBYVtQLhkrjeyEp6DiO+z3nnHP4GDx8eNCTxn7EWdJ4hyBceU7wUMpEQAREYFMQ2CSeukw3itigJ474Quyl9tIznVfadl64u+66a9rDaAi4HjFFeFHKYnEyAHEyDLvgycBjgceNxodrMmQXBVVsVLgGjQ1ehqTRGCYFBI0x5+DBxPB6kD7HJY3jiGGiAaUhx8PH8CI8EUnplmCBCV4xhpqyMdKKa6chXGFV1vLhvOgtiUIr9dpRKCNMEB/cV9KSjXhyO+fR6MOAhpVr4X3FMl2LcmHoDbGSjH2isWeSCz+kw7AwQ250OBDYCEWuwfXKatRvyrCkc7l+qmV735xHnWbojzqNgMYrjncWMfOae59ghejKpvxghHCjrkSDCd5n6iECJ12IBMwJRcATy/EM3Sc7VWW5n3hdzkm9FvnjWhj3lVrX2c95SeN5YZFsni2GTKOASx6DAMY4hvCMeP/xHZVaRqnPbjItfRYBERCBXBHYJKIOcZBunbrKumlexAyjpTP2McRJI00DWBZDGDHDDyH2j3/8I3gkEFU0FPzQoNF44nlCICQt2RgltyNKkhYbULbR0CAuSjIaLDx8DAPR0CCO0hn3XZYAfxpMhpIwrsHQVWmiAI8WDBh6osyvvPLKojg+rp/pGyxi3hCzUZjFe8i28SSP8dxYxjGN5O+Yj6SoYz8CiFmvxB5yHxvL4IiXNAqRbNPN9r5JD8HBcCDijvvAq4aoo24i9OiM7LPPPlldGj6pzw5s8YaSJ56ddMY+JgvwmzqMiEpaWe4n9bzk36mfea5KM4RafNYpW0RvJuO9wMhCNPIN11RLfW5T9+tvERABEcgFgU0i6jb2jfFCLSk2jBczXq50xrkMJ9EY0OCW1fC4EIfH8h2IEIY9icdCfNGYse23v/2t/eUvf7GuXbuWNfkibxsnItCI5SnJaHAQS3hXEDU05OmsJCbpjodNXAQaocCQFEKhJIMrcYoMR+HRoUHEM4bBnQY16ZmMaZE3PJ8cz3nlMc6NgoP0yEs6Y1/qcBkNPjFad9xxR6gXeDuJP8Ojh6eIcvjlL39Z5EFNl+6m3kaHgyUzWIaHGDrunyFQfsM02+U0EHXUpaTxrFBulGEUR8n9fGYfdQ++lEVqGqnH5/Jv6nJ81pkNyxIlmYzj4vBupmO0XQREQASqCoGyq5gqkHMajGSPHPGUOkyXzGaM5UrnnWAfQ2o0XqnxXck00n2mx8+QHOfikSPWJ8b74C0jwJ6lL2hIieFJBlanSy/dNhqVKAbx7iAgGcJLGg0nExAYEkM0ITrwojEsjMcOEYZ3JmncN8H+2RpDWMQmkTYCmVgtrpmJGWzgSjwVQpO4Je4luWQGAeWpwjAKBfhxv/H4bPMZj+NaUYTGe2U4MNXIJ/lIGkKFcqNcafSZpJLkR94yicRkOpvyM8yJmWNCAPfDkiQxjozwgHRiOlN+EWVJgy1eW+oXXqx09SvJlbpT3nJMXndjfaZc8RxTjtRpYv9SLdZfvJI82zxjMhEQARGo6gSKv62raG6TXhc8csy8SxqeFjwSmYxGhwYN70/SeHEz7Eb8GUNWMRA8eUymz4gP4sMQaswijWt4xeMRXjQW5J0GgTi38hj5IvaOdLhPli9JNRrWCy+80M4777zwnax4D+MCzggwlnJINVhkG08Xz8XzFdccQ9AxozaTB5SYOyaIYHiNhnoQOfcS1wnjPGZFphreO9aVgxnHI0DKY4h+hBhDzJQ/s6pTvUrUJdYjSy0bRCDb4MiEg6Sgi0PPcXmX8uQtF+cgXBBS/HD/zPBlORDEXuryImXND1xifBzlhVcz1Shf1nLDyvpspaa1sf8m/8S64kmMnZPkNSh/3hdMlPnpT38ajknur8hnicOK0NO5IiACpRGoFqIuega4GRoRhsUQVAgrhhgJPI+zZjPdMCKDgOh4HA06L24W58XwXKTOaMuUFtsRDXit8FTRgDHLNRnvRj4REhtDnOBVIPCdxhkPEsuw8Jm0EReII4Z54+QHPFwsWYKgQQjS6BIbFofD8KBx34jZshjp4+0kxgrvKLFIzPBlyDkKZjxYCNwzzzwzxF0hiPAuIuYQpixjwpIenM9CzizuGkUVQpE1x7hHyhwPJWKwvEaZ0jBTT4gBpPwJesfgwnWi8Exeg2vT8FNHko0+jf1rPtGAhh72/JBOWYyOBMOgJf3gQS1r2aTLA+wRcJQ734xBncGTy0zgihj1i6VD8NYhlPmmCRbGhg9MYEy5UjfJA3U3k0e3Ivko77kwYNY79RFPNssBxZhK6i9eTZa6wRDBFamDvCeoSxjlQEwj9ZzPMhEQARHY2ASqxfBrbOAZ2kSUMQmBBV/xANDwxuGdkrwnNDYIHxam5WWOsQ1DnOGBSh3WDDtL+IfzEC8IAwLBmbFLnhA/CD3S51rEuFWkYUCc4PXjvglQR9TyFUXx/skinhkC8GPMHTFMiA8WW0VgMpGDddqS55Rwaxl3cS8MR1555ZVhFijMf/aznwWRS2OfHJakXBh2ZVmQaNwL3k0EMMPFBPEjrpPn0hAiSPk6sIoYacId0YlHDjHLQs+wQlRmMs5jPUDWYWNolu+xpXFHwMQy5T7givcLYRu9UpnSjNtp0M8///z4Z9rflBGzLX/3u9+l3Z/tRgQVsYBxrT7uC0HH81RRw2vLeoJ0DuDCN4QQbpAsR65DPFq64c2KXr8i5/NMMjTPs0ueEaHUydT3As8Qgi95T2W9LgziBCM6LyzdRF1KXeeurOnqeBEQARFIR6BQ3aTbU8W2MZOORq5fv34hZ3hfEHSxAWR1+6QhDKIRGM4MVIbSMBpmfqIQYqFRVqBPZ7EBJD2Oj785lpc9XiiC5hEhMU/EkZE+PXQmUCCmyAPnxvTSXSvTNs7r6l4rxBzpkUa8FucgIvkOUxYlJk8YgoolVWi0EMM0WPEczocji/WW1WJeEHZ8qwXCFiPtKOg4BvGHoGShWMooGvtoUBFBzByGUfJc7oW1+vA+xvXFOAf2GJ+5t2yNhpnvCsZjR2PKtRB0pEOZcA8Iv6RxDoIyWV8QcBgNNCI+fr8q5Ry9lMk0KvI53m/8TVplve94DuIrDsUj8kpbmy7b+slxxCjSuSD9WL+oA+SV5/XUU08N36QC95if8pZjPC/b/IULpvxDvqLBArGJl5+6iqW+F6i/cd3IZFnENLL5TX632mqrUNdj3kkrfs4mDR0jAiIgAtkSyPNGLqyhQUOH1yV1nadsE8rVcbx4iSGjd02jzIKy8YVfWh64VRpgzuUcYtWiCCrt3NL2ky+GchgORmzi9WOocWOln7w+1+I6eAcZ1mJSRFI4JY+Nnxnu4b45F5FX2vHxvNJ+wxTBw/AVQ5wINmaIZjvcRn7wXsW6V95vqigtn+xPXgtxhhAvybg3vCt4FPlMXUvO3mUf+YZnFC4lpVeT9xFryGQlnk3KP848ri73zNA0nnzug7qRbf2tLvenfIqACNQMAryj0Bq8Z9NZtRN16W5C20RABERABERABESgphMoTdRVm+HXml5Quj8REAEREAEREAERqAgBibqK0NO5IiACIiACIiACIlBFCEjUVZGCUDZEQAREQAREQAREoCIEJOoqQk/nioAIiIAIiIAIiEAVISBRV0UKQtkQAREQAREQAREQgYoQkKirCD2dKwIiIAIiIAIiIAJVhIBEXRUpCGVDBERABERABERABCpCQKKuIvR0rgiIgAiIgAiIgAhUEQISdVWkIJQNERABERABERABEagIAYm6itDTuSIgAiIgAiIgAiJQRQhI1FWRglA2REAEREAEREAERKAiBCTqKkJP54qACIiACIiACIhAFSEgUVdFCkLZEAEREAEREAEREIGKEJCoqwg9nSsCIiACIiACIiACVYSARF0VKQhlQwREQAREQAREQAQqQkCiriL0dK4IiIAIiIAIiIAIVBECEnVVpCCUDREQAREQAREQARGoCAGJuorQ07kiIAIiIAIiIAIiUEUISNRVkYJQNkRABERABERABESgIgQk6ipCT+eKgAiIgAiIgAiIQBUhIFFXRQpC2RABERABERABERCBihCQqKsIPZ0rAiIgAiIgAiIgAlWEgERdFSkIZUMEREAEREAEREAEKkJAoq4i9HSuCIiACIiACIiACFQRAhJ1VaQglA0REAEREAEREAERqAgBibqK0NO5IiACIiACIiACIlBFCEjUVZGCUDZEQAREQAREQAREoCIEJOoqQk/nioAIiIAIiIAIiEAVISBRV0UKQtkQAREQAREQAREQgYoQkKirCD2dKwIiIAIiIAIiIAJVhIBEXRUpCGVDBERABERABERABCpCQKKuIvR0rgiIgAiIgAiIgAhUEQISdVWkIJQNERABERABERABEagIgSJRl5eXZ/Xr17cFCxbY6tWrK5KmzhUBERABERABERABEdiIBFauXGkLFy60hg0bZky1SNTl5+dbgwYNbNmyZcaJEnYZmWmHCIiACIiACIiACOSMwKpVq2zFihVBn2Ul6vDUNW7cOCjA+fPn2+LFi3OWWV1IBERABERABERABERgbqKZxgAAAQlJREFUQwJr1qwJHjp0WZMmTUr01OWtdUsmwZ+49xYtWiRhlwSjzyIgAiIgAiIgAiKQYwLR6daoUaMSBR3Z2kDU5TivupwIiIAIiIAIiIAIiMBGIFAUU7cR0lISIiACIiACIiACIiACm4iARN0mAq/LioAIiIAIiIAIiMDGJCBRtzFpKi0REAEREAEREAER2EQEJOo2EXhdVgREQAREQAREQAQ2JgGJuo1JU2mJgAiIgAiIgAiIwCYiIFG3icDrsiIgAiIgAiIgAiKwMQlI1G1MmkpLBERABERABERABDYRAYm6TQRelxUBERABERABERCBjUlAom5j0lRaIiACIiACIiACIrCJCPw/EBa6ZhLLTQUAAAAASUVORK5CYII=" - } - }, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![image.png](attachment:image.png)" + "First, we are going to load the VGG16 Model." ] }, { @@ -593,11 +482,16 @@ "metadata": {}, "outputs": [], "source": [ - "# Creating a generic model artifact: \n", - "artifact = prepare_generic_model(model_path,\n", - " function_artifacts=False, \n", - " force_overwrite=True,\n", - " inference_conda_env='')" + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import GlobalAveragePooling2D\n", + "from tensorflow.keras.applications import VGG16, InceptionV3\n", + "from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Dropout, Flatten, BatchNormalization\n", + "from tensorflow.keras.metrics import Accuracy, Precision, Recall\n", + "from tensorflow.keras.optimizers import Adam\n", + "\n", + "vgg16_base_model = VGG16(input_shape=(180,180,3),\n", + " include_top=False, \n", + " weights='imagenet')" ] }, { @@ -606,14 +500,20 @@ "metadata": {}, "outputs": [], "source": [ - "simple_model2._make_predict_function()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A new version of `score.py`: " + "vgg16_model = Sequential([\n", + " vgg16_base_model,\n", + " GlobalAveragePooling2D(),\n", + " Dense(512, activation=\"relu\"),\n", + " BatchNormalization(),\n", + " Dropout(0.6),\n", + " Dense(128, activation=\"relu\"),\n", + " BatchNormalization(),\n", + " Dropout(0.4),\n", + " Dense(64,activation=\"relu\"),\n", + " BatchNormalization(),\n", + " Dropout(0.3),\n", + " Dense(1,activation=\"sigmoid\")\n", + " ])" ] }, { @@ -622,63 +522,29 @@ "metadata": {}, "outputs": [], "source": [ - "%%writefile {model_path}/score.py \n", - "\n", - "import json\n", - "import os\n", - "import keras \n", - "import numpy as np\n", - "from keras.models import load_model as klm \n", - "\n", - "model_name = 'xray_predictor4-march21.hdf5'\n", - "\n", - "def load_model(model_file_name=model_name):\n", - " \"\"\"\n", - " Loads model from the serialized format\n", - "\n", - " Returns\n", - " -------\n", - " model: a model instance on which predict API can be invoked\n", - " \"\"\"\n", - " model_dir = os.path.dirname(os.path.realpath(__file__))\n", - " contents = os.listdir(model_dir)\n", - " if model_file_name in contents:\n", - " modelpath = os.path.join(os.path.dirname(os.path.realpath(__file__)), model_file_name)\n", - " tmp = klm(modelpath)\n", - " tmp._make_predict_function()\n", - " return tmp \n", - " else:\n", - " raise Exception('{0} is not found in model directory {1}'.format(model_file_name, model_dir))\n", - "\n", - "\n", - "def predict(data, model=load_model()):\n", - " \"\"\"\n", - " Returns prediction given the model and data to predict\n", - "\n", - " Parameters\n", - " ----------\n", - " model: Model instance returned by load_model API\n", - " data: Data format as expected by the predict API of the core estimator. For eg. in case of sckit models it could be numpy array/List of list/Panda DataFrame\n", - "\n", - " Returns\n", - " -------\n", - " predictions: Output from scoring server\n", - " Format: {'prediction':output from model.predict method}\n", - "\n", - " \"\"\"\n", - " \n", - " from pandas import read_json, DataFrame\n", - " from io import StringIO\n", - " X = read_json(StringIO(data))\n", - " Xreshape = np.reshape(np.array(X['xrays'][0]),(1, 200, 300, 1))\n", - " return {'prediction': model.predict_classes(Xreshape[:1]).tolist()}" + "optimizer = Adam(learning_rate=0.001)\n", + "METRICS = ['accuracy', \n", + " Precision(name='precision'),\n", + " Recall(name='recall')]\n", + "\n", + "vgg16_model.compile(optimizer=optimizer,\n", + " loss='binary_crossentropy',\n", + " metrics=METRICS)\n", + "\n" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "Let's now test the artifact with a sample payload: " + "%%time\n", + "r = vgg16_model.fit(train,\n", + " epochs=10,\n", + " class_weight=class_weight,\n", + " steps_per_epoch=100,\n", + " validation_steps=25)" ] }, { @@ -687,17 +553,11 @@ "metadata": {}, "outputs": [], "source": [ - "from json import load, dumps\n", + "evaluation =vgg16_model.evaluate(test)\n", + "print(f\"Test Accuracy: {evaluation[1] * 100:.2f}%\")\n", "\n", - "with open(\"payload.json\", 'r') as f: \n", - " payload = load(f)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "and import the new `score.py` file we just created: " + "evaluation = vgg16_model.evaluate(train)\n", + "print(f\"Train Accuracy: {evaluation[1] * 100:.2f}%\")" ] }, { @@ -706,69 +566,68 @@ "metadata": {}, "outputs": [], "source": [ - "import sys\n", - "sys.path.insert(0, model_path)\n", - "\n", - "from score import load_model, predict\n", - "\n", - "_ = load_model()\n", - "predictions_test = predict(dumps(payload), _)\n", - "predictions_test" + "vgg16_model.save(\"./vgg16.tf\",save_format='tf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The file `runtime.yaml` does not need to be modified. ADS has already assigned values to all the parameters. " + "# Preparing a Model Artifact and Saving The Model to the Model Catalog \n", + "\n", + "The model catalog is a centralized and managed repository of model artifacts. A model artifact is a ZIP archive that contains the files (`score.py`, `runtime.yaml`, and other files) needed to load and run the model. The model catalog ensures that model artifacts are immutable. It allows data scientists to share models and reproduce them as needed. We are going to use `ADS` to prepare the model artifacts and save them to the model catalog. Within `ADS`, you can use the `.prepare()` method that will create the templated model artifacts. \n", + "\n", + "**Note:** For this example, we will have to change one of the templated model artifacts files to modify the data passed into the model.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Saving the model artifact to the model catalog using ADS" + "## TensorFlowModel " ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], "source": [ - "The next step is to take that model artifact and save it to the model catalog. To do so, you will need to assign a project and compartment OCID to your model. An [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) is an Oracle-assigned unique ID (Oracle Cloud Identifier -- OCID). It is included as part of the \n", - "resources information in both the Console and the API. Note that projects, notebook sessions and models are OCI resources and consequently they have OCIDs too. \n", + "import tempfile\n", + "from ads.catalog.model import ModelCatalog\n", + "from ads.common.model_metadata import UseCaseType\n", + "from ads.model.framework.tensorflow_model import TensorFlowModel\n", "\n", - "We have included those values as environment variables in your notebook session. In fact you can access the following four OCIDs as environment variables: \n", + "ads.set_auth(auth='resource_principal')\n", "\n", - "* `PROJECT_OCID`: Project OCID attached to this notebook session\n", - "* `NB_SESSION_OCID`: OCID of this notebook session\n", - "* `NB_SESSION_COMPARTMENT_OCID`: Compartment OCID of this notebook session \n", - "* `USER_OCID`: Your user OCID. \n", + "tensorflow_model = TensorFlowModel(estimator=vgg16_model, artifact_dir=\"./tensorflowmodel/\")\n", "\n", - "In the cell below we save the model in the same compartment as the notebook session and in the same project as the project associated with this notebook session. In principle, you can save your model into a different project and or compartment than the currently running notebook sessions: this allows you to isolate certain models in different compartments or use a dev-staging-prod approach to your models. " + "tensorflow_model.prepare(\n", + " inference_conda_env=\"tensorflow27_p37_cpu_v1\",\n", + " training_conda_env=\"tensorflow27_p37_cpu_v1\",\n", + " use_case_type=UseCaseType.BINARY_CLASSIFICATION,\n", + " force_overwrite=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Saving the Model to the Model Catalog\n", + "Stop and complete these instructions before proceeding.\n", "\n", - "The final step in this process is to save the model artifact to the model catalog. We will give it a name (\"xray_cnn_model\"). \n", + "**Important:** Before you can move to the next step, go to the `tensorflowmodel` folder, open the `score.py`, and add in the lines below in the `deserialize()` function: \n", "\n", - "After saving the model let's go to the model catalog UI to see if the model is there. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# using resource principal to authenticate to the model catalog: \n", - "ads.set_auth(auth='resource_principal')\n", + " if isinstance(data, bytes):\n", + " import pickle\n", + " return pickle.loads(data) \n", + " \n", + "and delete the lines:\n", "\n", - "compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']\n", - "project_id = os.environ[\"PROJECT_OCID\"]" + "if isinstance(data, bytes):\n", + " logging.warning(\n", + " \"bytes are passed directly to the model. If the model expects a specific data format, you need to write the conversion logic in `deserialize()` yourself.\"\n", + " )\n", + " return data " ] }, { @@ -777,29 +636,14 @@ "metadata": {}, "outputs": [], "source": [ - "mc_model = artifact.save(project_id=project_id, compartment_id=compartment_id, display_name=\"xray_cnn_model\",\n", - " description=f\"Simple CNN model to classify xray images as having pneumonia or not\",\n", - " training_script_path=f\"./ChestXrays_Train.ipynb\", \n", - " ignore_pending_changes=True)\n", - "mc_model" + "tensorflow_model.reload()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Deploy the Model with Data Science Model Deployment " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here you have a couple of options: \n", - "* you can deploy directly from the console **-or-** \n", - "* you can use the OCI Python SDK to deploy the model programatically without leaving the notebook environment. \n", - "\n", - "The code snippet below will show how you can deploy using the Python SDK: " + "Next, pass an image as a payload to the model endpoint. The image is an numpy narray that will be serialized as a pickle object " ] }, { @@ -808,19 +652,17 @@ "metadata": {}, "outputs": [], "source": [ - "import oci \n", - "from oci.data_science import DataScienceClient, DataScienceClientCompositeOperations\n", + "ndarray_image = test.next()[0]\n", "\n", - "from oci.data_science.models import ModelConfigurationDetails, InstanceConfiguration, \\\n", - " FixedSizeScalingPolicy, CategoryLogDetails, LogDetails, \\\n", - " SingleModelDeploymentConfigurationDetails, CreateModelDeploymentDetails" + "import pickle \n", + "image_as_bytes = pickle.dumps(ndarray_image)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "A couple of ways to authenticate against model deployment. First one is through resource principals. Second one is to use the config + pem files in your notebook session. Pick the one that you want to use. " + "Verify the prediction before you save the model to the catalog: " ] }, { @@ -829,20 +671,14 @@ "metadata": {}, "outputs": [], "source": [ - "# using resource principals\n", - "auth = oci.auth.signers.get_resource_principals_signer()\n", - "data_science = DataScienceClient({}, signer=auth)\n", - "\n", - "# OR the config + pem authn flow: \n", - "#oci_config = oci.config.from_file('~/.oci/config', \"DEFAULT\")\n", - "#data_science = DataScienceClient(oci_config)" + "tensorflow_model.verify(image_as_bytes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The cell below provides the necessary parameters for a model deployment. The first three parameters are standard to all the Data Science resources: " + "Saving the model to the catalog: " ] }, { @@ -851,68 +687,17 @@ "metadata": {}, "outputs": [], "source": [ - "# Configuration of the model: \n", - "# We deploy the sklearn model we saved to the model catalog in this notebook (catalog_entry.id)\n", - "# You can change the shape, instance_count, or the bandwidth of the load balancer (in Mbps)\n", - "model_configuration_details_object = ModelConfigurationDetails(model_id=mc_model.id,\n", - " instance_configuration=InstanceConfiguration(instance_shape_name='VM.Standard2.1'),\n", - " scaling_policy=FixedSizeScalingPolicy(instance_count=1),\n", - " bandwidth_mbps=10)\n", - "\n", - "# Single Model Deployment Configuration\n", - "# Includes info about the deployment type and the model configuration details: \n", - "# At the moment, only deployment+type='SINGLE_MODEL' is supported. \n", - "single_model_config = SingleModelDeploymentConfigurationDetails(deployment_type='SINGLE_MODEL',\n", - " model_configuration_details=model_configuration_details_object)\n", - "\n", - "\n", - "# OPTIONAL - Configuration of the access and predict logs. \n", - "# Make sure you have the proper policy in place to allow model deployment to emit predict/access logs. For example: \n", - "# allow any-user to use log-content in tenancy where ALL {request.principal.type = 'datasciencemodeldeployment'}\n", - "logging_config = False\n", - "if logging_config: \n", - "\n", - " access_log_group_id = \"\"\n", - " access_log_id = \"\"\n", - " predict_log_group_id = \"\"\n", - " predict_log_id = \"\"\n", - "\n", - " logs_configuration_details_object = CategoryLogDetails(access=LogDetails(log_group_id=access_log_group_id,\n", - " log_id=access_log_id),\n", - " predict=LogDetails(log_group_id=predict_log_group_id,\n", - " log_id=predict_log_id))\n", - "else: \n", - " logs_configuration_details_object = {}\n", - "\n", - "\n", - "# Wrapping all of these configs into a model deploy configuration: \n", - "# Replace with your own values for display_name, description, project, and compartment OCIDs \n", - "model_deploy_configuration = CreateModelDeploymentDetails(display_name='pneumonia-detection-v2',\n", - " description='Detection of pneumonia(1/0) in xray images of the chest area',\n", - " project_id=os.environ['PROJECT_OCID'],\n", - " compartment_id=os.environ['NB_SESSION_COMPARTMENT_OCID'],\n", - " model_deployment_configuration_details=single_model_config,\n", - " category_log_details=logs_configuration_details_object)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Creating a model deployment. This action takes a few minutes\n", - "\n", - "data_science_composite = DataScienceClientCompositeOperations(data_science)\n", - "model_deployment = data_science_composite.create_model_deployment_and_wait_for_state(model_deploy_configuration, \n", - " wait_for_states=[\"SUCCEEDED\", \"FAILED\"])" + "model_id = tensorflow_model.save()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Invoking the Deployed Model" + "# Deploying a model\n", + "\n", + "After a model is saved to the model catalog, it becomes available for deployment as a Model Deployment resource. Model deployment allows you to deploy machine learning models as web applications (HTTP endpoints). It provides real-time predictions and enables you to quickly productionalize your models.\n", + "We are going to deploy and invoke the model using `ADS`." ] }, { @@ -921,11 +706,7 @@ "metadata": {}, "outputs": [], "source": [ - "import requests\n", - "import oci\n", - "from oci.signer import Signer\n", - "import numpy as np\n", - "from json import dumps" + "tensorflow_model.deploy()" ] }, { @@ -934,39 +715,21 @@ "metadata": {}, "outputs": [], "source": [ - "# Insert your model deployment URI here: \n", - "uri = \"\"\n", - "print(uri)" + "tensorflow_model.summary_status()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Displaying the image that we submit as payload to the model /predict endpoint" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "with open('payload.json') as fp: \n", - " tmp = json.load(fp)\n", - " npa = np.asarray(tmp['xrays']).reshape((200,300))\n", - " plt.imshow(npa)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next is to setup authn. Two options are given in the cell below: \n", - "* you authenticate as the user (config+key flow) \n", - "* you authenticate as the resource (in this case a notebook session) via resource principal \n", + "# Invoking the Deployed Model with ADS\n", + "\n", + "At this point, typically an external application would interface with the Model Deployment to pass in data and receive back a prediction. In this case we are going to use `ADS` to invoke our model as an example:\n", "\n", - "By default, we use resource principal (`using_rps = True`) but you can change that value. We expect the oci config and pem files to be located under `~/.oci/`" + "1. Go to your Project page. \n", + "2. Under Resources, click on \"Model deployments.\"\n", + "3. Click on the name of the Model Deployment you have just created. \n", + "4. Under \"General Information\", copy the OCID and paste in the in the cell below, replacing \"your-model-deployment-id\".\n" ] }, { @@ -975,34 +738,14 @@ "metadata": {}, "outputs": [], "source": [ - "# using resource principals. You can alternatively use the config+key flow. \n", - "\n", - "# Using Resource principal to authenticate against the model endpoint. Set using_rps=False if you are using \n", - "# the config+key flow. \n", - "using_rps = True\n", - "endpoint = uri\n", - "\n", - "# payload: \n", - "#input_data = train[5:25].to_json()\n", - "#body = input_data\n", - "\n", - "if using_rps: # using resource principal: \n", - " auth = oci.auth.signers.get_resource_principals_signer()\n", - "else: # using config + key: \n", - " config = oci.config.from_file(\"~/.oci/config\") # replace with the location of your oci config file\n", - " auth = Signer(\n", - " tenancy=config['tenancy'],\n", - " user=config['user'],\n", - " fingerprint=config['fingerprint'],\n", - " private_key_file_location=config['key_file'],\n", - " pass_phrase=config['pass_phrase'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally let's invoke the predict endpoint of the model. " + "import ads \n", + "from ads.model.deployment import ModelDeployer\n", + "\n", + "ads.set_auth(auth='resource_principal')\n", + "\n", + "deployer = ModelDeployer()\n", + "#existing_deployment = deployer.get_model_deployment(model_deployment_id=\"your-model-deployment-id\")\n", + "existing_deployment = deployer.get_model_deployment(model_deployment_id=\"ocid1.datasciencemodeldeployment.oc1.iad.amaaaaaanif7xwiaceus7c6irzfcq6qpbo3ogpljqwvjnuruutxr46jvp5hq\")" ] }, { @@ -1011,9 +754,7 @@ "metadata": {}, "outputs": [], "source": [ - "%%time\n", - "# submit request to model endpoint: \n", - "requests.post(endpoint, json=dumps(tmp), auth=auth).json()" + "existing_deployment.predict(data=image_as_bytes)" ] }, { @@ -1026,9 +767,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:xray-with-deployv1_0]", + "display_name": "Python [conda env:tensorflow27_p37_cpu_v1]", "language": "python", - "name": "conda-env-xray-with-deployv1_0-py" + "name": "conda-env-tensorflow27_p37_cpu_v1-py" }, "language_info": { "codemirror_mode": { @@ -1040,7 +781,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.11" + "version": "3.7.12" }, "pycharm": { "stem_cell": { diff --git a/labs/xray-diagnostics/notebooks/training_jobs.ipynb b/labs/xray-diagnostics/notebooks/training_jobs.ipynb new file mode 100644 index 00000000..c4606881 --- /dev/null +++ b/labs/xray-diagnostics/notebooks/training_jobs.ipynb @@ -0,0 +1,244 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "40b7c3d6", + "metadata": {}, + "source": [ + "### OCI Data Science - Useful Tips\n", + "
\n", + "Check for Public Internet Access\n", + "\n", + "```python\n", + "import requests\n", + "response = requests.get(\"https://oracle.com\")\n", + "assert response.status_code==200, \"Internet connection failed\"\n", + "```\n", + "
\n", + "
\n", + "Helpful Documentation \n", + "\n", + "
\n", + "
\n", + "Typical Cell Imports and Settings for ADS\n", + "\n", + "```python\n", + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import warnings\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "import logging\n", + "logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.ERROR)\n", + "\n", + "import ads\n", + "from ads.dataset.factory import DatasetFactory\n", + "from ads.automl.provider import OracleAutoMLProvider\n", + "from ads.automl.driver import AutoML\n", + "from ads.evaluations.evaluator import ADSEvaluator\n", + "from ads.common.data import ADSData\n", + "from ads.explanations.explainer import ADSExplainer\n", + "from ads.explanations.mlx_global_explainer import MLXGlobalExplainer\n", + "from ads.explanations.mlx_local_explainer import MLXLocalExplainer\n", + "from ads.catalog.model import ModelCatalog\n", + "from ads.common.model_artifact import ModelArtifact\n", + "```\n", + "
\n", + "
\n", + "Useful Environment Variables\n", + "\n", + "```python\n", + "import os\n", + "print(os.environ[\"NB_SESSION_COMPARTMENT_OCID\"])\n", + "print(os.environ[\"PROJECT_OCID\"])\n", + "print(os.environ[\"USER_OCID\"])\n", + "print(os.environ[\"TENANCY_OCID\"])\n", + "print(os.environ[\"NB_REGION\"])\n", + "```\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "a3a822fb", + "metadata": {}, + "source": [ + "# Using Data Science Jobs to Train a CNN Model\n", + "

by the Oracle Cloud Infrastructure Data Science Team

\n", + "\n", + "***" + ] + }, + { + "cell_type": "markdown", + "id": "27e535fd", + "metadata": {}, + "source": [ + "# Introduction \n", + "\n", + "Data Science Jobs allow you to run customized tasks outside of a notebook session. You can have Compute on demand and only pay for the Compute that you need. With jobs, you can run applications that perform tasks such as data preparation, model training, hyperparameter tuning, and batch inference. When the task is complete, the compute automatically terminates. You can use the Logging service to capture output messages. In this notebook, we will use the Accelerated Data Science SDK (ADS) to help us define a Data Science Job to train a transfer learning model to detect pneumonia in patients with X-ray images. Transfer learning uses a pre-trained model as a starting point for training another model, and we are going to use the [VGG-16 model](https://www.robots.ox.ac.uk/~vgg/research/very_deep/). \n", + "\n", + "For more information on using ADS for jobs, you can go to our [documentation](https://docs.oracle.com/en-us/iaas/tools/ads-sdk/latest/user_guide/jobs/index.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8521abf3", + "metadata": {}, + "outputs": [], + "source": [ + "from ads.jobs import Job\n", + "from ads.jobs import DataScienceJob, ScriptRuntime\n", + "import ads \n", + "ads.set_auth('resource_principal')" + ] + }, + { + "cell_type": "markdown", + "id": "9a923c45", + "metadata": {}, + "source": [ + "## Infrastructure\n", + "\n", + "Data Science Job infrastructure is defined by a `DataScienceJob` instance. \n", + "Important: If you want to use logging for the job, fill in the `log_group_id` and `log_id` in the cell below. You need to have set up the policies for the logging service. For more information about setting up logs for a job, you can go to our [documentation](https://docs.oracle.com/en-us/iaas/data-science/using/log-about.htm#jobs_about__job-logs)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "149c2781", + "metadata": {}, + "outputs": [], + "source": [ + "infrastructure = (\n", + " DataScienceJob()\n", + " .with_shape_name(\"VM.Standard2.24\")\n", + " .with_block_storage_size(50)\n", + " .with_log_group_id(\"\")\n", + " .with_log_id(\"\")\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "6d5287b3", + "metadata": {}, + "source": [ + "## Job Runtime\n", + "\n", + "`ScriptRuntime` allows you to run Python, Bash, and Java scripts from a single source file (.zip or .tar.gz) or code directory. You can configure a Data Science Conda Environment for running your code." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d6a7546", + "metadata": {}, + "outputs": [], + "source": [ + "runtime = (\n", + " ScriptRuntime()\n", + " .with_source(\"./training_vgg16.py\")\n", + " .with_service_conda(\"tensorflow27_p37_cpu_v1\")\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "e7e2d826", + "metadata": {}, + "source": [ + "## Define Job\n", + "\n", + "With runtime and infrastructure, you can define a job and give it a name" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61209c2d", + "metadata": {}, + "outputs": [], + "source": [ + "job = Job(name='vgg16-training').with_infrastructure(infrastructure).with_runtime(runtime)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1bad5e87", + "metadata": {}, + "outputs": [], + "source": [ + "job.to_yaml('training-config.yaml')" + ] + }, + { + "cell_type": "markdown", + "id": "1a629ba7", + "metadata": {}, + "source": [ + "## Create and Run Job\n", + "\n", + "You can call the `create()` method of a job instance to create a job. After the job is created, you can call the `run()` method to create and start a job run. The `run()` method returns a `DataScienceJobRun`. You can monitor the job run output by calling the `watch()` method of the `DataScienceJobRun` instance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "88e50ec2", + "metadata": {}, + "outputs": [], + "source": [ + "job.create()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "88d0a3a1", + "metadata": {}, + "outputs": [], + "source": [ + "job_run = job.run()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "38f62d2f", + "metadata": {}, + "outputs": [], + "source": [ + "job_run.watch()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:tensorflow27_p37_cpu_v1]", + "language": "python", + "name": "conda-env-tensorflow27_p37_cpu_v1-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/labs/xray-diagnostics/notebooks/training_vgg16.py b/labs/xray-diagnostics/notebooks/training_vgg16.py new file mode 100644 index 00000000..7869ec5a --- /dev/null +++ b/labs/xray-diagnostics/notebooks/training_vgg16.py @@ -0,0 +1,155 @@ +import os +import ocifs +from ocifs import OCIFileSystem +from zipfile import ZipFile +import random +import shutil +from ads.dataset.factory import DatasetFactory + +import tensorflow as tf +from tensorflow import keras +import matplotlib.pyplot as plt + +fs = OCIFileSystem() + +# Creating the local directory +dirpath = f"./data/" +if not os.path.exists(dirpath): + os.makedirs(dirpath) + +# Downloading the data from Object Storage using OCIFS (https://github.com/oracle/ocifs) +if os.path.exists(os.path.join(dirpath, "chest_xrays.zip")): + with ZipFile(os.path.join(dirpath, "chest_xrays.zip"), 'r') as zipf: + zipf.extractall(dirpath) +else: + fs.download('oci://hosted-ds-datasets@bigdatadatasciencelarge/chest-xrays/ChestXRay2017.zip',os.path.join(dirpath, "chest_xrays.zip")) + with ZipFile(os.path.join(dirpath, "chest_xrays.zip"), 'r') as zipf: + zipf.extractall(dirpath) + +train_dir = "./data/chest_xray/train/" +test_dir = "./data/chest_xray/test/" +valid_dir = f"./data/chest_xray/validation/" +if not os.path.exists(valid_dir): + os.makedirs(valid_dir) + +normal_train = "./data/chest_xray/train/NORMAL/" +pneumonia_train = "./data/chest_xray/train/PNEUMONIA/" + +normal_images = os.listdir(normal_train) +pneumonia_images = os.listdir(pneumonia_train) + +valid_dir_normal = os.path.join(valid_dir,"NORMAL") +if not os.path.exists(valid_dir_normal): + os.makedirs(valid_dir_normal) + +valid_dir_pneumonia = os.path.join(valid_dir,"PNEUMONIA") +if not os.path.exists(valid_dir_pneumonia): + os.makedirs(valid_dir_pneumonia) + +# validation sample: +nb_validation_normal = 8 +nb_validation_pneumonia = 8 + +validation_normal_files = random.sample(normal_images, k=nb_validation_normal) +validation_pneumonia_files = random.sample(pneumonia_images, k=nb_validation_pneumonia) + +for x in validation_normal_files: + shutil.move(os.path.join(normal_train,x),os.path.join(valid_dir_normal,x)) + +for x in validation_pneumonia_files: + shutil.move(os.path.join(pneumonia_train,x),os.path.join(valid_dir_pneumonia,x)) + +f_pneumonia_training = len(os.listdir(pneumonia_train)) / (len(os.listdir(pneumonia_train)) + len(os.listdir(normal_train))) +f_normal_training = 1.0 - f_pneumonia_training +print(f'fraction pneumonia in training dataset : {f_pneumonia_training}') +print(f'fraction normal in training dataset : {f_normal_training}') + +from keras.preprocessing.image import ImageDataGenerator + +image_generator = ImageDataGenerator( + rotation_range=20, + width_shift_range=0.1, + shear_range=0.1, + zoom_range=0.1, + samplewise_center=True, + samplewise_std_normalization=True +) + +train = image_generator.flow_from_directory(train_dir, + batch_size=8, + shuffle=True, + class_mode='binary', + target_size=(180, 180)) + +validation = image_generator.flow_from_directory(valid_dir, + batch_size=1, + shuffle=False, + class_mode='binary', + target_size=(180, 180)) + + +test = image_generator.flow_from_directory(test_dir, + batch_size=1, + shuffle=False, + class_mode='binary', + target_size=(180, 180)) + + +from tensorflow.keras.models import Sequential +from tensorflow.keras.layers import GlobalAveragePooling2D +from tensorflow.keras.applications import VGG16, InceptionV3 +from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Dropout, Flatten, BatchNormalization +from tensorflow.keras.metrics import Accuracy, Precision, Recall +from tensorflow.keras.optimizers import Adam + +vgg16_base_model = VGG16(input_shape=(180,180,3), + include_top=False, + weights='imagenet') + +vgg16_model = Sequential([ + vgg16_base_model, + GlobalAveragePooling2D(), + Dense(512, activation="relu"), + BatchNormalization(), + Dropout(0.6), + Dense(128, activation="relu"), + BatchNormalization(), + Dropout(0.4), + Dense(64,activation="relu"), + BatchNormalization(), + Dropout(0.3), + Dense(1,activation="sigmoid") + ]) + + +optimizer = Adam(learning_rate=0.001) +METRICS = ['accuracy', + Precision(name='precision'), + Recall(name='recall')] + +vgg16_model.compile(optimizer=optimizer, + loss='binary_crossentropy', + metrics=METRICS) + +class_weight = {0: f_pneumonia_training, 1: f_normal_training} + +r = vgg16_model.fit(train, + epochs=10, + validation_data=validation, + class_weight=class_weight, + steps_per_epoch=100, + validation_steps=25) + +evaluation =vgg16_model.evaluate(test) +print(f"Test Accuracy: {evaluation[1] * 100:.2f}%") + +evaluation = vgg16_model.evaluate(train) +print(f"Train Accuracy: {evaluation[1] * 100:.2f}%") + +vgg16_model.save("./vgg16.tf",save_format='tf') + +print('uploading model to object storage') + +fs.upload("./vgg16.tf", "oci://ds-models@bigdatadatasciencelarge/vgg16.tf", recursive=True) + +print('uploaded the model to object storage') \ No newline at end of file