

Hotel Reservation System

Object Design Document

V:1.0

23.12.2016

Cabir Sonay MERAL

Arda YAZKAN

Ecem Naz KILIÇ

Orçun TEZ

Prepared for

SE301 Software Engineering

HRS

i

Table of Contents

1. Introduction ... 1

1.1. Object Design Trade-offs ... 1

1.2. Interface Documentation Guidelines .. 1

1.3. Definitions, Acronyms, and Abbreviations .. 2

1.4. References .. 2

2. Packages .. 2

3. Class Interfaces .. 3

HRS

1

OBJECT DESIGN DOCUMENT

1. Introduction

1.1. Object Design Trade-offs

Firstly, our project name is Hotel Reservation System (HRS). This website is about booking.

People can search any type of hotel and they can reserve using whit HRS. The purpose of this

document is to describe design and architecture of the HRS site. All code in this system is own

original work. It including data and user interfaces. We use the database to keep information.

And the other side the objective of HRS is to be simple. But also it cover every detail and

function needed by HRS. Therefore, database increase security in the system. Because of this

reason people can use this site without any doubt. System keep some information like address,

password, hotel name, room type… etc. securely. There is some trade-off in this project. First

of all, HRS is used database. Because database increase performance in this system. System

make register, log-in and search. These are main functionality. So; Database is most important

thing in this project. When user want to search hotel, every user want to see quickly. Database

provide fast response time, more secure than file storage and easy to use. MySQL can handle

almost any amount of data, up to as much as 50 million rows or more. No need in this project.

However, MySQL provide high scalability.

1.2. Interface Documentation Guidelines

In this system, object design principle had applied. There are two groups of graphical design

in this project. First, graphical design for User –Who is Client, Guest or Visitor- side, and other

for Admin side. User panel has also three groups which are Client, Guest and Visitor. These

three designs similar to each other but every page have their own privileges.

On the user side, there are some criteria’s. For example; Users easily understand the site

structure, and they can take easily actions on the site and with this they can easily make them

reservations. On the other hand, HRS site easy to understand for all users (Admin, Client, Guest

and Visitor). In addition, Guest can see reservations that done before, they can make a new

reservation, they can search a hotel room and so on. And Client side, Client can see reservations

and they can see who reserve hotel room. By the way, Client can add new hotel to system but

in this step client have to get admin permissions to add new hotel into the HRS. Visitor side,

Visitor can search to hotel room but when s/he try to reserve hotel room they have to be register

into the HRS:

The admin panel, is more complex according to user-side. However, it also easy to useable

for admin. Menus are clearly identified on the panel. Admin can check all users’ information,

can approve/reject Client create hotel request, also admin can delete guest, hotel and client

anytime. By the way when client try to register into the HRS, admin see their register request,

if admin accept their register request Client can enter into the HRS. This step increases the

confidence of the system in terms of user who is using HRS.

Coding standards are important in any development project, but they are particularly

important when many developers are working on the same project. Coding standards help

ensure that the code is high quality, has fewer bugs, and can be easily maintained. Function

names must always start with a lowercase letter. When a function name consists of more than

HRS

2

one word, the first letter of each new word must be capitalized. Any file that contains PHP code

should end with the extension ".php", with the notable exception of view scripts.

1.3. Definitions, Acronyms, and Abbreviations

No: Terms/Acronyms Definitions

1. ODD Object Design Document.

2. UI User Interface

3. DB Database is a collection of information that is organized

so that it can easily be accessed.

4. PHP Hypertext Preprocessor

5. HTML Hyper Text Markup Language

6. SDD System Design Document

1.4. References

 http://searchsqlserver.techtarget.com/definition/database

 http://dioscuri.sourceforge.net/docs/ODD_Dioscuri_KBNA_v1_1_en.pdf

2. Packages

Packages are so important because, medium and large scale projects do not coding by one

person, everyone who involves the coding side of project can see very easily. Before packaging

we separate our system to subsystems in our SDD. Also subsystems must be relative with each

other, when coding is finish, subsystems attach the code packages. Before the coding process

first of all we create empty package, in this package we have necessary statements which is

including in our use case. Inside our package hotel, and Client information’s stored. After that

our package connect to the DB then retrieval data from DB. Our second package is about

creating hotel. Primarily entering information to GUI. Another .php page these information’s

taken and stored in DB. In this package we can edit anything room and hotel. The last package

provide user needs. Finally last package includes Log-in, Sign-up, Search and homepage.

http://searchsqlserver.techtarget.com/definition/database
http://dioscuri.sourceforge.net/docs/ODD_Dioscuri_KBNA_v1_1_en.pdf

HRS

3

Figure 2.1- HRS packages

3. Class Interfaces

In class interfaces all classes’ attributes are private. Some necessary part of methods have

get and set methods. Guest and Client classes are extends from user class. Because every Client

and Guest is a user. Both of their information are stored in DB and both of them must be log-in

for make reservation, update their information, change hotel information or room type. Also

user is abstract class.

Database

/**

 *Invariants:

 * These information cannot be null

 *@invariant db_name!=null

 *@invariant server_password!=null

 * @invariant server_username!=null

 * @invariant host!=null

 *

 * PostConditions:

 * start(host,server_username,server_password,db_name)

 * @post isConnected==true

HRS

4

 *

 *

 *

 *PreConditions:

 * start(host,server_username,server_password,db_name)

 * @pre getServerUsername()!=null && getHost!=null && getServerPassword!=null &&

getServerUsername!=null && getDbName!=null

*/

Figure 3.1- Database UML

HotelRoom

/**

 *Invariants:

 * roomid cannot be null because of each room belong any room type

 *@invariant roomid!=null

 *@invariant roomname!=null

*@invariant roomprice!=null

*@invariant roomsize!=null

*@invariant roomtype!=null

*@invariant roomdescription!=null

*@invariant roomhotel!=null

*@invariant isreserved!=null

*@invariant outdate!=null

*@invariant indate!=null

 *

 * Preconditions:

 * user_login(ssn, password)

 * @pre getpassword()!=null

 * @pre getusertype_id()!=null

 *

 * PostConditions:

 * isLogin(ssn, password)

HRS

5

 * @post isLogin == true

 *

 *

Figure 3.2- HotelRoom UML

Hotel

/**

 *Invariants:

 * hotelid cannot be null because of each hotel belong any hotel type

 *@invariant hotelid!=null

 *@invariant hotelname!=null

*@invariant hotelinfo!=null

*@invariant address!=null

*@invariant hotelphone!=null

*@invariant budget!=null

*@invariant status!=null

*@invariant hotelemail!=null

*@invariant hotelownerssn!=null

*@invariant hotelsituation!=null

HRS

6

*@invariant hoteltype!=null

*@invariant state!=null

*@invariant town!=null

 *

 * Preconditions:

 * login(userssn, password)

 * @pre getpassword()!=null

 *

 * PostConditions:

 * Login(userssn, password)

 * @post Login == true

 *

 *

Figure 3.3- Hotel UML

User

/**

 *Invariants:

 * id cannot be null because of each user belong any user id

HRS

7

 *@invariant id!=null

 *@invariant username!=null

*@invariant password!=null

*@invariant firstname!=null

*@invariant lastname!=null

*@invariant birthdate!=null

*@invariant email!=null

*@invariant gender!=null

*@invariant telephone!=null

*@invariant ssn!=null

*@invariant usertype_id!=null

*@invariant address!=null

*@invariant situation!=null

 *

 * Preconditions:

 * login(userssn, password)

 * @pre getpassword()!=null

 * @pre getusertype_id()!=null

 *

 * PostConditions:

 * Login(userssn, password)

 * @post Login == true

 *

 *

HRS

8

Figure 3.4- User UML

