
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/215699797

NK-Sorting Algorithm

Article · January 2010

CITATIONS

0
READS

1,149

2 authors:

Some of the authors of this publication are also working on these related projects:

Single image de-hazing View project

Underwater Image Enhancement View project

Nidhal Khdhair El abbadi

University Of Kufa

81 PUBLICATIONS 284 CITATIONS

SEE PROFILE

Zaid Abdi Alkareem Alyasseri

Universiti Kebangsaan Malaysia

59 PUBLICATIONS 366 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nidhal Khdhair El abbadi on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/215699797_NK-Sorting_Algorithm?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/215699797_NK-Sorting_Algorithm?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Single-image-de-hazing?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Underwater-Image-Enhancement?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nidhal_El_abbadi?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nidhal_El_abbadi?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kufa_University?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nidhal_El_abbadi?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zaid_Alyasseri2?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zaid_Alyasseri2?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Kebangsaan_Malaysia?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zaid_Alyasseri2?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nidhal_El_abbadi?enrichId=rgreq-1f059581bee3239c68c6c07edb8436b4-XXX&enrichSource=Y292ZXJQYWdlOzIxNTY5OTc5NztBUzoxMDQ0NTIxOTExNjIzNzJAMTQwMTkxNDc1MTQwMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Journal of Kufa for Mathematics and Computer

Vol.1, No.4, Nov. , 2011, pp.27- 35

27

NK-SORTING ALGORITHM

Assist .Prof. Dr. NIDHAL K. EL ABBADI, ZAID YAHYA A. KAREEM
University of Kufa, Iraq

nidhalka@it.kuiraq.com zaidak@it.kuiraq.com

 ABSTRACT
Sorting has been a profound area for the
algorithmic researchers and many
resources are invested to suggest more
works for sorting algorithms. For this
purpose, many existing sorting algorithms
were observed in terms of the efficiency
of the algorithmic complexity.

Many algorithms are very well known
for sorting the unordered lists.

In this proposed algorithm, we
suggested a new algorithm for sorting
integers number depending on dividing
the input array to many sub-arrays (which
represents a vector or array with one
dimension), according to the number of
digits in each integer number, the relation
between sub-array elements is determined,
and this relation used to determines the
right location of each element in sub-
arrays.

 Collision may happen, which is solved
by moving elements in sub-array to next
location. Finally, all ordered sub-arrays
will be merged together to rebuild the
origin array. The proposed algorithm
compared with many famous algorithms
gives promising results.

Key Words: Sorting, Time complexity,
Integers, Comparison, Time analysis,
Space analysis.
1. Introduction

Sorting is the process of rearranging a
sequence of objects so as to put them in
some logical order, such as an alphabetic
or numeric order. In the early days of

 computing, the common wisdom was that up to
thirty percent of all computing cycles were
spent in sorting. If that fraction is lower today,
one likely reason is that sorting algorithms are
relatively efficient; not that sorting has been
diminished in relative importance. Indeed, the
ubiquity of computer usage has put us awash in
data, and the first step to organize data is often
to sort it. All computer systems have
implementations of sorting algorithms, for use
by the system and by the users.

Sorting has been a profound area for the
algorithmic researchers and many resources are
invested to suggest more working sorting
algorithms. For this purpose, many existing
sorting algorithms were observed in terms of
the efficiency of the algorithmic complexity [7].
Sorting plays a major role in commercial data
processing and in modern scientific computing.
Applications abound in transaction processing,
combinatorial optimization, astrophysics,
molecular dynamics, linguistics, genomics,
weather prediction, and many other fields. As
stated in [1], sorting has been considered as a
fundamental problem in the study of
algorithms, that due to many reasons:

• The need to sort information is inherent in
many applications.

• Algorithms often use sorting as a key
subroutine.

In algorithm design, there are many essential
techniques represented in the body of sorting
algorithms.

NIDHAL K. EL ABBADI, ZAID YAHYA A. KAREEM

28

Many algorithms are very well known for
sorting the unordered lists. Most
important of them are:
Bubble sort [5], the idea is to make
repeated passes up the array; “bubbling”
the light (“light” means “large” or
“small”) key values to the top. On each
pass the next lightest value will appear in
the proper place. Assuming the array is
indexed [0...n-1], we require (n − 1)
passes to guarantee that the array is
sorted. The bubbling process compares
adjacent values and insures that the larger
of the two is on top.
Quick sort [8], fundamentally, is based
on a simple idea: Pick some key. Put all
the records that have a smaller key than
the selected key at the beginning of the
array, and put all the records with larger
keys at the end, then apply the same
procedure recursively to each group of
records, continuing until you get down to
groups of size zero or one. However,
organizing all this and doing it efficiently
requires some cleverness.

Insertion sort [4], The algorithm that
people often use to sort bridge hands is to
consider the cards, one at a time, inserting
each into its proper place among those
which are already considered (keeping
them sorted). In a computer
implementation, we need to make space
for the element being inserted by moving
larger elements one position to the right,
and then inserting the element into the
vacated position

Selection sort [7], one of the simplest
sorting algorithms works as follows: First,

 find the smallest element in the array, and
exchange it with the element in the first
position, then find the next smallest element
and exchange it with the element in the
second position. Continuing in this way until
the entire array is sorted.

Efficient sorting is important to optimize
the use of other algorithms that require sorted
lists to work correctly. It is also often in
producing human-readable output [6].
Formally, the output should satisfy two major
conditions: The output is in non-decreasing
order, and it is a permutation or reordering of
the input.

In this paper, a new sorting algorithm is
presented, called NK-Sort (the author's first
name). The study shows that the proposed
algorithm is more efficient and faster
compared with many standard sorting
algorithms when dealing with a large size (n)
of the input integer array.

Section 2 presents the proposed algorithm,
its concept, and steps. Section 3 introduces
the detailed time and space analysis of the
proposed algorithm. It also presents a
comparison between the proposed algorithm
and other sorting algorithms. Finally,
conclusions were presented in section 4.
2. Proposed Algorithm
 The main concept of the proposed algorithm
is distributing the elements of the input array
(unordered list of integers) on many
additional temporary sub-arrays according to
a number of digits in each number. The size
of each of these sub-arrays are decided
depending on a number of elements with the
same number of digits in the input array.

Journal of Kufa for Mathematics and Computer

Vol.1, No.4, Nov. , 2011, pp.27- 35

29

2.1 The steps of proposed algorithm
Algorithm consists of many steps to
accomplish the sorting of all integers in
input array as follow:

A. Step 1:
The first step is to build many temporary
sub arrays from input array, the input array
scan and distribute their elements on sub
arrays according to a number of digits in
each element. Therefore, the integers with
one digit (0..9) puts in sub array (1), and
integers with two digits (10..99) puts in sub
array (2), and the integers with three digits
(100..999) puts in sub array (3), and so on.
The number of sub arrays depends on
number of elements with different number
of digits. The size of each sub array depends
on the number of elements with the same
number of digits.

Let (A) set (input array) of (N) integer
numbers, so

A = Υ
j

i 1=

A ij = number of sub-array (Ai) .(1)

Where Ai is a subset (sub-array) of A, such
that each element (integer number) in (Ai)
consists of (i) digit. And size of (Ai)
(number of elements in Ai) equals (mi),
where

∑=
j

i
imN (2)

B. Step2:

For each (Ai), find a maximum and
minimum element value and a number of
elements in sub array (i).

 C. Step3:
 Imagine the sub-array (Ai) as two dimension
graphs as shown in figure (1):

Figure (1): relation between array values and its
location in sub array

 Where: X-coordinate, represent the elements
(integer) values.

 Y-coordinate, represent the locations
in sub-array start from location (0) to location (mi-
1) OR (mi) if we start with location (1),

From figure 1, find the slope (S) which will be use
to find the relation between elements value and its
locations in the sub array .In this case, each
element between (Xmax, and Xmin) can project on
graph (figure 1) with assistance of (S) to find the
corresponding location in the sub array.

 S = DY / DX (3)

Where: DY = m-1 And
DX = Xmax - Xmin

Now for each sub-array find (Si).

(Note: always check Dx not equal zero, when Dx
equal zero that mean all the sub array elements are
equal (or may be one element) and not need to
sort.).

NIDHAL K. EL ABBADI, ZAID YAHYA A. KAREEM

30

 Step4:

For each sub-array, its elements are ordered by
finding the locations of elements in the sub array
according to their values, with assistance of
equation:

location = element value * S (4)

E. Step5:
If the determined location for an element, was
occupied or assigned to other element, the location
would increase or decrease by one (according to
sorting way ascending, or descending), and check
the new location if it was assigned or not .If it is
empty it will be assigned to an element. Otherwise,
it should compare the values to decide which one
appropriate to this location, and the other element
move to the next location, and so on.

D. Step6:
When each sub array now is sorted, the final step is
to append all sub arrays with each other according
to the number of digits for sub array elements (i.e.
sub array with one digit element at first, and sub
array with two digit elements append to it, and so
on).

A = A1 Υ A2 Υ A3 ΥΥ A j (5)

Let’s take an example to clarify the above steps:

Example:

As example: let take set A (42) of integer’s numbers
as follow:

A = 816, 657, 243, 453, 76, 98, 4567, 123, 25, 3, 7,
1, 3456, 157, 23, 0, 2345, 678, 4, 12, 7, 1, 90, 111,
1234, 678, 2345, 10, 23, 45, 456, 123, 9870, 345, 1,
6, 4, 15, 234, 3456, 3111, 98.

Step1: Build sub-arrays (OR sub-sets) from set (A)
according to the number of digits:

• Sub-array with one digit…

 A1 = {3, 7, 1, 0, 4, 7, 1, 1, 6, 4}
(10 elements)

• Sub-array with two digit…
A2 = {76, 98, 25, 23, 12, 90, 10, 23, 45, 15,
98} (11 elements)

• Sub-array with three digit …
A3 = {816, 657, 243, 453, 123, 157, 678, 111,
678, 456, 123, 345, 234} (13 elements)

• Sub-array with four digit …
A4 = {4567, 3456, 2345, 1234, 2345, 9870,
3456, 3111} (8 elements)

� We will process the first sub-array
(A1) to sort its elements, and the rest
sub-arrays follow the same way

The first sub-array consists of (10 element,
each with one digit). Then,

Max number in the A1 = 7

Min number in the A1 = 0

Therefore, DY =10 – 1 = 9,
and DX = 7 – 0 = 7

S = DY / DX = 9 / 7 = 1.285

Let us check locations of elements in A1
(location= S × value of element):

9 8 7 6 5 4 3 2 1 0 Locations
 Elements

Location of element (3) in A1 =

1.285 × 3 = 3.8 ≈ 4

9 8 7 6 5 4 3 2 1 0 Locations
 3 Elements

 Location of second element (7) in A1 = 1.285× 7= 9

Journal of Kufa for Mathematics and Computer

Vol.1, No.4, Nov. , 2011, pp.27- 35

31

9 8 7 6 5 4 3 2 1 0 Locations
7 3 Elements

 Location of third element (1) in A1 =

 1.285× 1 = 1.285 ≈ 1

9 8 7 6 5 4 3 2 1 0 Locations
7 3 1 Elements

Location of fourth element (0) in A1 = 1.285× 0= 0

9 8 7 6 5 4 3 2 1 0 Locations
7 3 1 0 Elements

Location of fifth element (4) in A1 = 1.285× 4 =
5.142 ≈ 5

9 8 7 6 5 4 3 2 1 0 Locations
7 4 3 1 0 Elements

 Location of sixth element (7) in A1= 1.285× 7 = 9

In this case, the location (9) is occupied with element
(7), the new element (7) is compared with the
element in location (9), in this case they are equal,

and so program put it in the next location (8)

The location of the seventh element (1) in A1 =
1.285× 1 = 1.285 ≈ 1

In this case, the location is occupied with
element (1) and it is compared with the new
element, they also are equal, and so program put
it in the next location, here, location (2)

9 8 7 6 5 4 3 2 1 0 Locations
7 7 4 3 1 1 0 Elements

9 8 7 6 5 4 3 2 1 0 Locations

7 7 4 3 1 0 Element

The location of the eighth element (1) in A1 =
1.285× 1 = 1.285 ≈ 1

The same case as above so the element moves to
next location (2), it is also occupied and the same
thing is done, compare and move it to next location
(3).

9 8 7 6 5 4 3 2 1 0 Locations
7 7 4 3 1 1 1 0 Elements

The location of the ninth element (6) in A1= 1.285×
6 = 7.714 ≈ 8

Location (8) is occupied with element (7), it
compared with new element (6), it is found that the
new element is less than element in location (8),
and due to ascending order, then, the small element
should be on left side of the largest one ,then, the
location is (7).

9 8 7 6 5 4 3 2 1 0 Locations
7 7 6 4 3 1 1 1 0 Elements

 The location of last element (4) in A1= 1.285× 4 =
5.142 ≈ 5

The location (5) is occupied and at the same way its
new location is (6)

9 8 7 6 5 4 3 2 1 0 Locations
7 7 6 4 4 3 1 1 1 0 Elements

 By the same way all the other sub-arrays (A2, A3,
and A4) are sorted to get

A2

1
0

9 8 7 6 5 4 3 2 1 0 L

9
8

9
8

9
0

7
6

4
5

2
5

2
3

2
3

1
5

1
2

1
0

E

NIDHAL K. EL ABBADI, ZAID YAHYA A. KAREEM

32

A3

A4

Now all sub-arrays are connected with each
other according to the number of digits in each
sub-array that begin with the smallest number of
the digit: A1+A2+ A3+ A4

The final result becomes:

A = 0, 1, 1, 1, 3, 4, 4, 6, 7, 7, 10, 12, 15, 23,
23, 25, 45, 76, 90, 98, 98, 111, 123, 123,
157, 234, 234, 345, 453, 456, 657, 678, 678,
816, 1234, 2345, 2345, 3111, 3456, 3456,
4567, 9870.

3. Analysis of Proposed Algorithm
Comparisons are the heart of sorting, we
could ask: “How many comparisons does
this algorithm make in the process of
sorting?” We could then suggest that the
algorithm that required fewer comparisons
was the fastest. There are some factors that
make it only a rough estimate:

 • We did not include relocation overhead—
somehow items must be repositioned to
obtain the sorted list.

• We did not include miscellaneous overhead
such as initialization and subroutine calls. We
will ignore such problems and just look at the
number of comparisons. Even so, there are
problems:

• Using the parallel processing capabilities of
supercomputers or special purposed devices
will throw time estimates off because more
than one comparison can be done at a time.
The amount of parallelism that is possible can
vary from one algorithm to another.

• The number of comparisons needed may
vary greatly, depending on the order of the
items in the unsorted list. Some studies ignore
these factors in the discussion, except for
parallelism in sorting networks, where it is of
a major importance.

Besides all these problems with estimating
running time, there is another problem:
Running time is not the only standard that can
be used to decide how good an algorithm is.
Other important questions include

• How long will it take to get an error free
program running?

• How much storage space will the algorithm
require?

All studies ignore these issues and focus on
running time.

1

2
1

1
1

0
9 8 7 6 5 4 3 2 1 0 L

8

1

6

6

7

8

6

7

8

6

5

7

4

5

6

4

5

3

3

4

5

2

4

3

2

3

4

1

5

7

1

2

3

1

2

3

1

1

1

E

7 6 5 4 3 2 1 0 L

9

8

7

0

4

5

6

7

3

4

5

6

3

4

5

6

3

1

1

1

2

3

4

5

2

3

4

5

1

2

3

4

E

Journal of Kufa for Mathematics and Computer

Vol.1, No.4, Nov. , 2011, pp.27- 35

33

3.1. Time Analysis

The goal of proposed program is to get the sub-arrays,
maximum and minimum value and the number of
elements in each sub-array needed to sort it. This
requires scanning the array and reaching each element
one

time in a single pass in the worst case; this takes O (n)
time complexity, see table 1.

Table (1): Comparing Time Complexity of
proposed algorithm with many standard sort

algorithms.

Time Complexity
Best Case Worst Case

The
Algorithms

O(n) O(n2) Bubble Sort
O(n) O(n2) Insertion

Sort
О(n²) О(n²) Selection

Sort
O(n) depends on

gap sequence
Shell Sort

O(n log n)
typical, O(n)

natural variant

O(n log n) Merge Sort

O(n log n) O(n2) Quick Sort
O(n log n) O(n log n) Heap Sort

O(n) O(n) Proposed
Algorithm

3.2 Comparison of proposed algorithm with other
algorithms

The proposed algorithm compared with many
standard algorithms, like (Bubble sort, Selection sort,
Insertion sort, Quick sort, Shell sort, Merge sort, and
Heap sort). Note: all algorithms execute at the same
computer (fixed environments for all), the proposed
algorithm gave good time better than the other sort
algorithms, the difference in time between algorithms
increased with increasing the number of integers
sorted. Figure 2, and table 2 show the difference in
time for sort algorithms.

Table 2: Time elapsed for sorting integers for

different sort algorithms

Figure (2): Graph shows the time elapsed for sorting
different sets of integers, for different algorithms

3.3 Space Analysis of the proposed
algorithm

The algorithm creates many sub-arrays from
the original array; the size of all these sub-
arrays is equal to the size of the original array.
When creating sub-arrays the original array is
not needed any more space. In all cases, the

NIDHAL K. EL ABBADI, ZAID YAHYA A. KAREEM

34

algorithm does not need the space more than
space of the original array. So, in any case the
algorithm needs O (n) space. And may need (3
additional spaces for max, min, and S for each
sub-array), which can neglect it with increasing
number of integers in array. Additional feature,
all the sub-arrays can be stored in the secondary
storage and only one of the sub-arrays can be
put in an active memory in one time to sort its
elements, and after that the sort can be swapped
with other one (in case of very large input
array).

3.4 Number of comparisons

The proposed algorithm is compared with
the other algorithms to see number of
element comparisons in execution time,
figure 3 showed the result.

Figure (3): Number of comparisons for many
sort algorithms.

Note new algorithm and merge sort are almost
had the same number of comparison.

4. Conclusion
In this paper a new sorting algorithm is presented,
called the NK-algorithm, the algorithm divided
the input array to many sub-arrays, that will
reduce the comparison process (number of
comparisons of its elements) see figure 3, (merge
sort typically makes almost equal number of
comparisons with proposed algorithm, but merge
sort requires more writing because the inner loop
can require shifting large sections of the sorted
portion of the array, and that caused increase in
the elapsed time for sorting. In general, merge sort
will write to the array O (n logn) times [10],
whereas proposed Algorithm will write only O (n)
times).

 Proposed algorithm compared with many
algorithms (Bubble sort, Insertion sort, Selection
sort, Quick sort, Shell sort, Merge sort, and Heap
sort), it was more efficient and faster. The more
array size increases, the more execution time
increases with a specific number of unit times for
all algorithms, but this amount of time decreases
with the increasing size more than 600 elements
for the Proposed algorithm, see figure 2, this mean
the Proposed algorithm more efficient with large
array size (n) of the input array.

Algorithm is very suited for external sorting,
because it divides the array to many sub arrays
which can be saved externally, and sort one of
them each time, that means one partition each
time in memory. It is possible to process all the
sub arrays in parallel, and that will reduce sorting
time in the significant amount (sort time in this
case depends on the size of larger sub-array).

The maximum and minimum value for each sub-
array can be relocated initially in the first and last
locations of the sub-array without determining its
locations .This may decrease the sort time a little
bit.

Journal of Kufa for Mathematics and Computer

Vol.1, No.4, Nov. , 2011, pp.27- 35

35

References

[1] Aho A., Hopcroft J., and Ullman J., The
Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

[2] Box R. and Lacey S., “A fast, easy
sort,” Byte Magazine, vol.16, no.4,
pp.315-ff, April 1991.

[3] Cormen T., Leiserson C., Rivest R., and
Stein C., Introduction to Algorithms, 2nd
edition, McGraw-Hill Book, 2001.

[4] Donald Knuth. The Art of Computer
Programming, Volume 3: Second
Edition. Addison-Wesley, 1998. ISBN
0-201-89685-0. Section 5.2.1: Sorting
by Insertion, pp.80–105

[5] Kruse R., and Ryba A., Data Structures
and Program Design in C++,
International Edition, Prentice Hall,
1999.

 [6] Levitin A., Introduction to the Design &
Analysis of Algorithms, 2nd Edition,
Section 3.1: Selection Sort, pp 98-100,
2007.

[7] Moller F., Analysis of Quicksort,
Department of Computer Science,
University of Wales Swansea, 2001.

[8] Nyhoff L., An introduction to Data
Structures, 2nd edition, pp: 581-585.

[9] Thomas H. , et at. Introduction to
Algorithms, Second Edition. MIT Press
and McGraw-Hill, 2001. ISBN 0-262-
03293-7. Section 2.1: Insertion sort,
pp.15–21.

[10] Weiss M., Data Structures and Problem
Solving using Java, Addison-Wesley,
2002.

View publication statsView publication stats

https://www.researchgate.net/publication/215699797

