Permalink
Fetching contributors…
Cannot retrieve contributors at this time
376 lines (316 sloc) 14.3 KB
# Copyright (c) 2008, Casey Duncan (casey dot duncan at gmail dot com)
# see LICENSE.txt for details
"""Perlin noise -- pure python implementation"""
__version__ = '$Id: perlin.py 521 2008-12-15 03:03:52Z casey.duncan $'
from math import floor, fmod, sqrt
from random import randint
# 3D Gradient vectors
_GRAD3 = ((1, 1, 0), (-1, 1, 0), (1, -1, 0), (-1, -1, 0),
(1, 0, 1), (-1, 0, 1), (1, 0, -1), (-1, 0, -1),
(0, 1, 1), (0, -1, 1), (0, 1, -1), (0, -1, -1),
(1, 1, 0), (0, -1, 1), (-1, 1, 0), (0, -1, -1),
)
# 4D Gradient vectors
_GRAD4 = ((0, 1, 1, 1), (0, 1, 1, -1), (0, 1, -1, 1), (0, 1, -1, -1),
(0, -1, 1, 1), (0, -1, 1, -1), (0, -1, -1, 1), (0, -1, -1, -1),
(1, 0, 1, 1), (1, 0, 1, -1), (1, 0, -1, 1), (1, 0, -1, -1),
(-1, 0, 1, 1), (-1, 0, 1, -1), (-1, 0, -1, 1), (-1, 0, -1, -1),
(1, 1, 0, 1), (1, 1, 0, -1), (1, -1, 0, 1), (1, -1, 0, -1),
(-1, 1, 0, 1), (-1, 1, 0, -1), (-1, -1, 0, 1), (-1, -1, 0, -1),
(1, 1, 1, 0), (1, 1, -1, 0), (1, -1, 1, 0), (1, -1, -1, 0),
(-1, 1, 1, 0), (-1, 1, -1, 0), (-1, -1, 1, 0), (-1, -1, -1, 0))
# A lookup table to traverse the simplex around a given point in 4D.
# Details can be found where this table is used, in the 4D noise method.
_SIMPLEX = (
(0, 1, 2, 3), (0, 1, 3, 2), (0, 0, 0, 0), (0, 2, 3, 1), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (1, 2, 3, 0),
(0, 2, 1, 3), (0, 0, 0, 0), (0, 3, 1, 2), (0, 3, 2, 1), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (1, 3, 2, 0),
(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0),
(1, 2, 0, 3), (0, 0, 0, 0), (1, 3, 0, 2), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (2, 3, 0, 1), (2, 3, 1, 0),
(1, 0, 2, 3), (1, 0, 3, 2), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (2, 0, 3, 1), (0, 0, 0, 0), (2, 1, 3, 0),
(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0),
(2, 0, 1, 3), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (3, 0, 1, 2), (3, 0, 2, 1), (0, 0, 0, 0), (3, 1, 2, 0),
(2, 1, 0, 3), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (3, 1, 0, 2), (0, 0, 0, 0), (3, 2, 0, 1), (3, 2, 1, 0))
# Simplex skew constants
_F2 = 0.5 * (sqrt(3.0) - 1.0)
_G2 = (3.0 - sqrt(3.0)) / 6.0
_F3 = 1.0 / 3.0
_G3 = 1.0 / 6.0
class BaseNoise:
"""Noise abstract base class"""
permutation = (151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 9, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180)
period = len(permutation)
# Double permutation array so we don't need to wrap
permutation = permutation * 2
def __init__(self, period=None, permutation_table=None):
"""Initialize the noise generator. With no arguments, the default
period and permutation table are used (256). The default permutation
table generates the exact same noise pattern each time.
An integer period can be specified, to generate a random permutation
table with period elements. The period determines the (integer)
interval that the noise repeats, which is useful for creating tiled
textures. period should be a power-of-two, though this is not
enforced. Note that the speed of the noise algorithm is indpendent of
the period size, though larger periods mean a larger table, which
consume more memory.
A permutation table consisting of an iterable sequence of whole
numbers can be specified directly. This should have a power-of-two
length. Typical permutation tables are a sequnce of unique integers in
the range [0,period) in random order, though other arrangements could
prove useful, they will not be "pure" simplex noise. The largest
element in the sequence must be no larger than period-1.
period and permutation_table may not be specified togther.
"""
if period is not None and permutation_table is not None:
raise ValueError(
'Can specify either period or permutation_table, not both')
if period is not None:
self.randomize(period)
elif permutation_table is not None:
self.permutation = tuple(permutation_table) * 2
self.period = len(permutation_table)
def randomize(self, period=None):
"""Randomize the permutation table used by the noise functions. This
makes them generate a different noise pattern for the same inputs.
"""
if period is not None:
self.period = period
perm = range(self.period)
perm_right = self.period - 1
for i in list(perm):
j = randint(0, perm_right)
perm[i], perm[j] = perm[j], perm[i]
self.permutation = tuple(perm) * 2
class SimplexNoise(BaseNoise):
"""Perlin simplex noise generator
Adapted from Stefan Gustavson's Java implementation described here:
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
To summarize:
"In 2001, Ken Perlin presented 'simplex noise', a replacement for his classic
noise algorithm. Classic 'Perlin noise' won him an academy award and has
become an ubiquitous procedural primitive for computer graphics over the
years, but in hindsight it has quite a few limitations. Ken Perlin himself
designed simplex noise specifically to overcome those limitations, and he
spent a lot of good thinking on it. Therefore, it is a better idea than his
original algorithm. A few of the more prominent advantages are:
* Simplex noise has a lower computational complexity and requires fewer
multiplications.
* Simplex noise scales to higher dimensions (4D, 5D and up) with much less
computational cost, the complexity is O(N) for N dimensions instead of
the O(2^N) of classic Noise.
* Simplex noise has no noticeable directional artifacts. Simplex noise has
a well-defined and continuous gradient everywhere that can be computed
quite cheaply.
* Simplex noise is easy to implement in hardware."
"""
def noise2(self, x, y):
"""2D Perlin simplex noise.
Return a floating point value from -1 to 1 for the given x, y coordinate.
The same value is always returned for a given x, y pair unless the
permutation table changes (see randomize above).
"""
# Skew input space to determine which simplex (triangle) we are in
s = (x + y) * _F2
i = floor(x + s)
j = floor(y + s)
t = (i + j) * _G2
x0 = x - (i - t) # "Unskewed" distances from cell origin
y0 = y - (j - t)
if x0 > y0:
i1 = 1
j1 = 0 # Lower triangle, XY order: (0,0)->(1,0)->(1,1)
else:
i1 = 0
j1 = 1 # Upper triangle, YX order: (0,0)->(0,1)->(1,1)
# Offsets for middle corner in (x,y) unskewed coords
x1 = x0 - i1 + _G2
y1 = y0 - j1 + _G2
# Offsets for last corner in (x,y) unskewed coords
x2 = x0 + _G2 * 2.0 - 1.0
y2 = y0 + _G2 * 2.0 - 1.0
# Determine hashed gradient indices of the three simplex corners
perm = self.permutation
ii = int(i) % self.period
jj = int(j) % self.period
gi0 = perm[ii + perm[jj]] % 12
gi1 = perm[ii + i1 + perm[jj + j1]] % 12
gi2 = perm[ii + 1 + perm[jj + 1]] % 12
# Calculate the contribution from the three corners
tt = 0.5 - x0 ** 2 - y0 ** 2
if tt > 0:
g = _GRAD3[gi0]
noise = tt ** 4 * (g[0] * x0 + g[1] * y0)
else:
noise = 0.0
tt = 0.5 - x1 ** 2 - y1 ** 2
if tt > 0:
g = _GRAD3[gi1]
noise += tt ** 4 * (g[0] * x1 + g[1] * y1)
tt = 0.5 - x2 ** 2 - y2 ** 2
if tt > 0:
g = _GRAD3[gi2]
noise += tt ** 4 * (g[0] * x2 + g[1] * y2)
return noise * 70.0 # scale noise to [-1, 1]
def noise3(self, x, y, z):
"""3D Perlin simplex noise.
Return a floating point value from -1 to 1 for the given x, y, z coordinate.
The same value is always returned for a given x, y, z pair unless the
permutation table changes (see randomize above).
"""
# Skew the input space to determine which simplex cell we're in
s = (x + y + z) * _F3
i = floor(x + s)
j = floor(y + s)
k = floor(z + s)
t = (i + j + k) * _G3
x0 = x - (i - t) # "Unskewed" distances from cell origin
y0 = y - (j - t)
z0 = z - (k - t)
# For the 3D case, the simplex shape is a slightly irregular tetrahedron.
# Determine which simplex we are in.
if x0 >= y0:
if y0 >= z0:
i1 = 1
j1 = 0
k1 = 0
i2 = 1
j2 = 1
k2 = 0
elif x0 >= z0:
i1 = 1
j1 = 0
k1 = 0
i2 = 1
j2 = 0
k2 = 1
else:
i1 = 0
j1 = 0
k1 = 1
i2 = 1
j2 = 0
k2 = 1
else: # x0 < y0
if y0 < z0:
i1 = 0
j1 = 0
k1 = 1
i2 = 0
j2 = 1
k2 = 1
elif x0 < z0:
i1 = 0
j1 = 1
k1 = 0
i2 = 0
j2 = 1
k2 = 1
else:
i1 = 0
j1 = 1
k1 = 0
i2 = 1
j2 = 1
k2 = 0
# Offsets for remaining corners
x1 = x0 - i1 + _G3
y1 = y0 - j1 + _G3
z1 = z0 - k1 + _G3
x2 = x0 - i2 + 2.0 * _G3
y2 = y0 - j2 + 2.0 * _G3
z2 = z0 - k2 + 2.0 * _G3
x3 = x0 - 1.0 + 3.0 * _G3
y3 = y0 - 1.0 + 3.0 * _G3
z3 = z0 - 1.0 + 3.0 * _G3
# Calculate the hashed gradient indices of the four simplex corners
perm = self.permutation
ii = int(i) % self.period
jj = int(j) % self.period
kk = int(k) % self.period
gi0 = perm[ii + perm[jj + perm[kk]]] % 12
gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]] % 12
gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]] % 12
gi3 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]] % 12
# Calculate the contribution from the four corners
noise = 0.0
tt = 0.6 - x0 ** 2 - y0 ** 2 - z0 ** 2
if tt > 0:
g = _GRAD3[gi0]
noise = tt ** 4 * (g[0] * x0 + g[1] * y0 + g[2] * z0)
else:
noise = 0.0
tt = 0.6 - x1 ** 2 - y1 ** 2 - z1 ** 2
if tt > 0:
g = _GRAD3[gi1]
noise += tt ** 4 * (g[0] * x1 + g[1] * y1 + g[2] * z1)
tt = 0.6 - x2 ** 2 - y2 ** 2 - z2 ** 2
if tt > 0:
g = _GRAD3[gi2]
noise += tt ** 4 * (g[0] * x2 + g[1] * y2 + g[2] * z2)
tt = 0.6 - x3 ** 2 - y3 ** 2 - z3 ** 2
if tt > 0:
g = _GRAD3[gi3]
noise += tt ** 4 * (g[0] * x3 + g[1] * y3 + g[2] * z3)
return noise * 32.0
def lerp(t, a, b):
return a + t * (b - a)
def grad3(hash, x, y, z):
g = _GRAD3[hash % 16]
return x * g[0] + y * g[1] + z * g[2]
class TileableNoise(BaseNoise):
"""Tileable implemention of Perlin "improved" noise. This
is based on the reference implementation published here:
http://mrl.nyu.edu/~perlin/noise/
"""
def noise3(self, x, y, z, repeat, base=0.0):
"""Tileable 3D noise.
repeat specifies the integer interval in each dimension
when the noise pattern repeats.
base allows a different texture to be generated for
the same repeat interval.
"""
i = int(fmod(floor(x), repeat))
j = int(fmod(floor(y), repeat))
k = int(fmod(floor(z), repeat))
ii = (i + 1) % repeat
jj = (j + 1) % repeat
kk = (k + 1) % repeat
if base:
i += base
j += base
k += base
ii += base
jj += base
kk += base
x -= floor(x)
y -= floor(y)
z -= floor(z)
fx = x ** 3 * (x * (x * 6 - 15) + 10)
fy = y ** 3 * (y * (y * 6 - 15) + 10)
fz = z ** 3 * (z * (z * 6 - 15) + 10)
perm = self.permutation
A = perm[i]
AA = perm[A + j]
AB = perm[A + jj]
B = perm[ii]
BA = perm[B + j]
BB = perm[B + jj]
return lerp(fz, lerp(fy, lerp(fx, grad3(perm[AA + k], x, y, z),
grad3(perm[BA + k], x - 1, y, z)),
lerp(fx, grad3(perm[AB + k], x, y - 1, z),
grad3(perm[BB + k], x - 1, y - 1, z))),
lerp(fy, lerp(fx, grad3(perm[AA + kk], x, y, z - 1),
grad3(perm[BA + kk], x - 1, y, z - 1)),
lerp(fx, grad3(perm[AB + kk], x, y - 1, z - 1),
grad3(perm[BB + kk], x - 1, y - 1, z - 1))))