
Docker 
Image 
Security Best 
Practices

https://snyk.io

In Snyk’s State of open source security report 2019, we found each of 
the top ten docker images to include as many as 580 vulnerabilities in 
their system libraries.

Choose images with fewer OS libraries and tools lower 
the risk and attack surface of the container

Use multi-stage builds

A verbose image tag with which to pin both version and operating 
system, for example: FROM node:8-alpine 

Sign your images with the help of Notary

It’s easy to accidentally leak secrets, tokens, and keys into images 
when building them. To stay safe, follow these guidelines:

We put a lot of trust into docker images. It is critical to make sure the 
image we’re pulling is the one pushed by the publisher, and that no one 
has tampered with it. 

Scan your docker images for known vulnerabilities and integrate it as 
part of your continuous integration. Snyk is an open source tool that 
scans for security vulnerabilities in open source application libraries and 
docker images.

Use Snyk to scan a docker image:
$ snyk test --docker node:10 --file=path/to/
Dockerfile

Use Snyk to monitor and alert to newly disclosed vulnerabilities in a 
docker image:
$ snyk monitor --docker node:10

Create a dedicated user and group on the image, with minimal 
permissions to run the application; use the same user to run this process. 
For example, Node.js image which has a built-in node generic user: Docker image owners can push new versions to the same tags, which may 

result in inconsistent images during builds, and makes it hard to track if a 
vulnerability has been fixed. Prefer one of the following:

Arbitrary URLs specified for ADD could result in MITM attacks, or sources of 
malicious data. In addition, ADD implicitly unpacks local archives which may 
not be expected and result in path traversal and Zip Slip vulnerabilities.

Use COPY, unless ADD is specifically required.

Labels with metadata for images provide useful information for users. 
Include security details as well.

Use and communicate a Responsible Security Disclosure policy by adopting a 
SECURITY.TXT policy file and providing this information in your images labels.

Use multi-stage builds in order to produce smaller and cleaner images, thus 
minimizing the attack surface for bundled docker image dependencies.

Enforce Dockerfile best practices automatically by using a static code analysis tool 
such as hadolint linter, that will detect and alert for issues found in a Dockerfile.

Don’t leak sensitive information to docker 
images

Prefer minimal base images

Sign and verify images to mitigate MITM attacks

Find, fix and monitor for open source 
vulnerabilities

Least privileged user

Use fixed tags for immutability

Use COPY instead of ADD

Use labels for metadata

Use multi-stage builds for small secure images

Use a linter

5.1.

3.

4.

2.

6.

7.

8.

9.

10.

Prefer alpine-based images over full-blown system OS images

Use the Docker secrets feature to mount sensitive files without 
caching them (supported only from Docker 18.04).

An image hash to pin the exact contact, for example: 
FROM node:<hash>

Use a .dockerignore file to avoid a hazardous COPY instruction, 
which pulls in sensitive files that are part of the build context

Verify the trust and authenticity of the images you pull

FROM node:10-alpine
USER node
CMD node index.js

@omerlh

Authors: 

DevSecOps Engineer at Soluto by Asurion

@liran_tal
Node.js Security WG & Developer Advocate at Snyk

https://snyk.io/blog/top-ten-most-popular-docker-images-each-contain-at-least-30-vulnerabilities/
https://docs.docker.com/notary/getting_started/
https://snyk.io/container-vulnerability-management/
https://snyk.io/research/zip-slip-vulnerability
https://github.com/hadolint/hadolint
https://snyk.io/
https://twitter.com/liran_tal
https://twitter.com/omerlh

