
Product Documentation

EnOcean GmbH

Copyright © 2021 EnOcean GmbH

Table of contents

41. Product Description

41.1 EnOcean IoT Connector

51.1.1 Features

61.1.2 The API

91.1.3 End-points

121.1.4 Technical Requirements

121.1.5 Used 3rd party components and libraries, OSS Components

131.1.6 License Agreement and Data Privacy

131.1.7 Disclaimer

141.2 Support

141.2.1 Debugging

152. Deploy the IoTC

152.1 Deployment Notes

152.1.1 Overview of Environment Variables

152.1.2 Overview of required Secrets

152.1.3 Ports

162.1.4 License key

172.2 Deploy and Connect Devices

172.2.1 1. Step by step deployment

192.2.2 2. Connect Ingress Gateways

192.2.3 3. Onboard devices using the API

213. Additional Notes

213.1 Generating self-signed certificates

213.1.1 Generate private key for CA authority:

213.1.2 Generate root certificate

213.1.3 Generate a key for the certificate going into the connector

213.1.4 Generate a CSR for the connector

213.1.5 Create the .ext file

223.1.6 Generate a certificate from CSR for the connector

233.2 Notes for Aruba APs

233.2.1 Required Hardware and Software

233.2.2 Adding root certificates

233.2.3 Configure Aruba AP to forward data to the IoTC

243.2.4 Debugging & Troubleshooting

264. Release Notes

Table of contents

- 2/30 - Copyright © 2021 EnOcean GmbH

264.1 Documentation Changes

264.1.1 18.06.2021

264.1.2 14.06.2021

264.1.3 10.05.2021

274.2 EnOcean IoT Connector - Beta 0.2.0 Not released

274.2.1 General

274.2.2 API Container

274.2.3 Engine Container

274.2.4 Ingress Container

294.3 EnOcean IoT Connector - Version Beta 0.1.0

Table of contents

- 3/30 - Copyright © 2021 EnOcean GmbH

1. Product Description

1.1 EnOcean IoT Connector

The EnOcean IoT Connector (IoTC) allows for the easy processing of the super-optimized EnOcean radio telegrams. The IoTC is distributed as a group of Docker

containers. All containers are hosted in the Docker Hub.

INGRESS ENGINE

API

WEBSOCKETS

The IoTC is composed of the following containers:

enocean/iotconnector_ingress

enocean/iotconnector_engine

enocean/iotconnector_api

Redis

NGINX

Deploying the IoTC is simple using docker compose . For convenience, docker-compose.yml files are provided to easily deploy locally (i.e. with Docker) or to

Azure Containers Instances (Microsoft Azure cloud account and subscription required).

The IoTC can either be deployed in:

a public cloud (eg. Azure)

private cloud

on-site

1.

2.

3.

4.

5.

•

•

•

1. Product Description

- 4/30 - Copyright © 2021 EnOcean GmbH

https://iot.enocean.com/
https://www.enocean.com
https://docs.docker.com/get-started/overview/
https://hub.docker.com/u/enocean
https://hub.docker.com/repository/docker/enocean/iotconnector_ingress
https://hub.docker.com/repository/docker/enocean/iotconnector_engine
https://hub.docker.com/repository/docker/enocean/iotconnector_api
https://hub.docker.com/_/redis
https://hub.docker.com/_/nginx
https://docs.docker.com/get-docker/
https://azure.microsoft.com/services/container-instances/
https://azure.microsoft.com/free/

IoTC containers are built for linux/arm/v7 , linux/arm64 and linux/amd64

This guide will explain the basic functionality and cover the basic deployment steps and configuration options.

DOCUMENTATION VERSION/TAG

1.0.4 / 2021-07-03 10:42:25+02:00

1.1.1 Features

Ingress

The ingress controls all incoming traffic from ingress gateways.

The IoTC currently supports Aruba Access Points as ingress gateways.

Communication is executed via secure web sockets only. Secure web sockets use SSL encryption. A manual how to add a certificate to an Aruba AP is

listed here.

It detects duplicates - i.e. filter if two or more ingress gateways received the same radio signal, and makes sure each signal is processed only once.

Processes the ESP3 Protocol. Only Packet Type 01 is currently supported.

Engine

The IoTC engine completely supports the EnOcean radio protocol standards as defined by the EnOcean Alliance. Including:

addressing encapsulation

chaining

decryption & validation of secure messages

EEP processing

Additionally the IoTC evaluates sensor health information:

information included in signal telegram

telegram statistics

See the Output format description for more details on what the engine can provide.

BUILT-IN END-POINTS

Available end-points are MQTT and the Azure IoT Hub. The output data format is JSON, in accordance to the key-value pairs defined by the EnOcean Alliance

IP Specification.

SUPPORTED ENOCEAN EQUIPMENT PROFILES (EEP)

The following EEPs are supported:

•

•

•

•

•

•

•

•

•

•

F6 Profiles A5 Profiles D2 Profiles D5 Profiles

F6-03-02 A5-02-05 D2-14-40 D5-00-01

A5-04-01 D2-14-41

A5-04-03 D2-15-00

A5-06-02 D2-32-00

A5-06-03 D2-32-01

A5-07-01 D2-32-02

A5-07-03 D2-B1-00

A5-08-01

1.1.1 Features

- 5/30 - Copyright © 2021 EnOcean GmbH

https://www.enocean.com/en/applications/iot-solutions/
https://www.enocean.com/fileadmin/redaktion/pdf/tec_docs/EnOceanSerialProtocol3.pdf
https://www.enocean.com/en/support/knowledge-base/
https://www.enocean-alliance.org/specifications/
https://www.enocean-alliance.org/st/
http://tools.enocean-alliance.org/EEPViewer/
http://tools.enocean-alliance.org/EEPViewer/
https://www.enocean-alliance.org/wp-content/uploads/2020/07/EnOcean-Equipment-Profiles-3-1.pdf

A complete description and a list of all existing EEPs can be found here: EEP Viewer.

If you are missing an EEP for your application please let us know.

API

The API is used to onboard EnOcean Devices into the IoTC.

The most important features are:

most recent data and signal telegrams from a device

get past telegrams to get past health

telegram statistic (e.g. count, last seen) for a device and per gateway

list of connected ingress gateways

persistent storage of onboarded device - if volume is selected.

Include friendlyID , location or any custom parameter for each onboarded device

All onboarded devices can be retrieved via GET /backup or uploaded via POST /backup .

Open API Standard 3 supporting the automatic generation of clients in several languages.

Active flag to enable/disable telegram processing for a particular device.

The API exposes a UI interface for your convenience. Once the IoTC connector has been deployed, the full API specification is available via the UI web

Interface.

NGINX

NGINX is used as a proxy to protect the interface of the IoTC. The user is required to provide a certificate for usage.

A Dockerfile and corresponding dependencies (start.sh and nginx.conf) in enocean/proxy is provided incase the proxy needs to be rebuilt or

customized.

redis

Redis is used as a message broker & cache for communication between different containers.

1.1.2 The API

The API is OpenAPI compliant, supporting the automatic generation of clients in several languages. The full API Specification is available here or via the web

Interface, once the IoTC has been deployed.

If you specified a volume storage at deployment then all changes done in the API will be persistent even after containers are restarted or updated.

F6 Profiles A5 Profiles D2 Profiles D5 Profiles

A5-08-02

A5-08-03

A5-09-04

A5-09-09

A5-12-00

A5-14-05

•

•

•

•

•

•

•

•

•

1.1.2 The API

- 6/30 - Copyright © 2021 EnOcean GmbH

http://tools.enocean-alliance.org/EEPViewer/
https://bitbucket.org/enocean-cloud/iotconnector-docs/issues
https://editor.swagger.io/
https://www.nginx.com/
https://redis.io/
https://editor.swagger.io/

Web UI of management API

Opening the API url on a browser will display the API reference. The URL is https://<hostname of the container group or IP address>:443 . Example:

https://192.167.1.1:443 or https://myiotc.eastus.azurecontainer.io:443

If you used a self-signed certificate and did not add it to your browser you will see a warning, please continue according to your web browser.

Login using the BASIC_AUTH_USERNAME & BASIC_AUTH_PASSWORD you specified in environmental variables.

The API complies with Open API Standard 3.

Download the API Specification as JSON

Go to the editor e.g. online here and generate your client code.

You can use the Try it out function to execute any of the available commands.

1.

2.

3.

4.

a.

b.

5.

1.1.2 The API

- 7/30 - Copyright © 2021 EnOcean GmbH

https://swagger.io/

Telegram statistics - sensor & gateway statistics

The API provides telegram statistics of the individual devices and per ingress gateway.

1.1.2 The API

- 8/30 - Copyright © 2021 EnOcean GmbH

The stats section is defined as:

1.1.3 End-points

Available end-points are MQTT or Azure IoT Hub.

Gateway statistics

Calling GET /gateways/metadata/statistics/telegrams returns the statics per gateway

EnOcean Device statistics

Calling GET /devices/metadata/statistics/telegrams?sourceID=051b03c9&destinationID=FFFFFFFF returns statistics for a individul EnOcean device

sourceID=051b03c9&destinationID=FFFFFFFF .

[
 {
 "device": {
 "hardwareDescriptor": "AP-305",
 "mac": "d01546c204a2",
 "softwareVersion": "8.7.1.1-8.7.1.1"
 },
 "stats": {
 "lastSeen": "1619210924",
 "notProcessed": 0,
 "succesfullyProcessed": 78662,
 "totalTelegramCount": 78662
 }
 },
 {
 "device": {
 "hardwareDescriptor": "AP-305",
 "mac": "24f27f551bf4",
 "softwareVersion": "8.7.1.0-8.7.1.0"
 },
 "stats": {
 "lastSeen": "1619210928",
 "notProcessed": 0,
 "succesfullyProcessed": 91526,
 "totalTelegramCount": 91526
 }
 }
]

[
 {
 "device": {
 "activeFlag": "true",
 "customTag": "",
 "destinationEurid": "ffffffff",
 "eep": "a5-09-09",
 "friendlyID": "co2_Hardware2",
 "isPTM": "false",
 "location": "Hardware 2",
 "sourceEurid": "051b03c9"
 },
 "stats": {
 "lastSeen": "1619210854",
 "notProcessed": 0,
 "succesfullyProcessed": 1057,
 "totalTelegramCount": 1057
 }
 }
]

TelegramStatistics:
 properties:
 lastSeen:
 description: Timestamp of last valid telegram from device in UTC seconds.
 type: string
 notProcessed:

description: Count of not processed telegrams due to various reasons & NOT forwarded on egress.
 type: integer
 succesfullyProcessed:
 description: Count of succesfully processed telegrams & forwarded on egress.
 type: integer
 totalTelegramCount:
 description: Total count of received telegrams.
 type: integer

1.1.3 End-points

- 9/30 - Copyright © 2021 EnOcean GmbH

Output Format

The data is included in a JSON file as key-value pairs following the EnOcean Alliance IP Specification. Example JSON outputs from selected devices are

available below.

All timestamps in IoTC are in the Unix epoch (or Unix time or POSIX time or Unix timestamp). It is the number of seconds that have elapsed since January 1, 1970. It can

be converted into human-readable version quite easy. e.g. use an online convertor.

timestamp = 1624367607 equals to GMT: Tuesday, June 22, 2021 1:13:27 PM

Note

1.1.3 End-points

- 10/30 - Copyright © 2021 EnOcean GmbH

http://tools.enocean-alliance.org/EEPViewer/
https://www.epochconverter.com/

Multisensor

EnOcean IoT Multisensor

CO2 sensor

{
 "sensor": {
 "friendlyId": "Multisensor 1",
 "id": "04138bb4",
 "location": "Cloud center"
 },
 "telemetry": {
 "data": [{
 "key": "temperature",
 "value": 23.9,
 "unit": "°C"
 }, {
 "key": "humidity",
 "value": 29.0,
 "unit": "%"
 }, {
 "key": "illumination",
 "value": 67.0,
 "unit": "lx"
 }, {
 "key": "accelerationStatus",
 "value": "heartbeat",
 "meaning": "Heartbeat"
 }, {
 "key": "accelerationX",
 "value": -0.13,
 "unit": "g"
 }, {
 "key": "accelerationY",
 "value": 0.08,
 "unit": "g"
 }, {
 "key": "accelerationZ",
 "value": -0.97,
 "unit": "g"
 }, {
 "key": "contact",
 "value": "open",
 "meaning": "Window opened"
 }],
 "signal": [],
 "meta": {
 "security": [],
 "sensorHealth": [],
 "stats": [{
 "egressTime": "1611927479.169171"
 }]
 }
 },
 "raw": {
 "data": "d29fce800863b502a620",
 "sender": "04138bb4",
 "status": "80",
 "subTelNum": 0,
 "destination": "ffffffff",
 "rssi": 77,
 "securityLevel": 0,
 "timestamp": "1611927479.166352"
 }
}

{
 "sensor": {
 "friendlyId": "co2_Hardware2",
 "id": "051b03c9",
 "location": "Hardware 2"
 },
 "telemetry": {
 "data": [{
 "key": "co2",
 "value": 627.45,
 "unit": "ppm"
 }, {
 "key": "learn",
 "value": "notPressed",
 "meaning": "Data telegram"
 }, {
 "key": "powerFailureDetected",
 "value": "False",
 "meaning": "Power failure not detected"
 }],
 "signal": [],

"meta": {
 "security": [],
 "sensorHealth": [],
 "stats": [{
 "egressTime": "1611927535.0731573"
 }]
 }
 },
 "raw": {
 "data": "a500005008",
 "sender": "051b03c9",
 "status": "01",
 "subTelNum": 0,
 "destination": "ffffffff",

1.1.3 End-points

- 11/30 - Copyright © 2021 EnOcean GmbH

https://www.enocean.com/en/products/enocean_modules/iot-multisensor-emsia-oem/
https://www.enocean.com/en/products/enocean_modules/ptm-210ptm-215/

Each output JSON consist of three sections:

sensor - stored information about the sensor provided at onboarding via the API

telemetry - information interpreted by the engine

data - sensor data included in the message and encoded via the EEP

signal -raw sensor health data included in the message and encoded as signal telegram

meta - meta information about the message added by the engine

raw - raw message information

rssi - radio signal strength information. Important to track radio quality

Sensor Health Information

Signal telegrams include information about the:

percentage of remaining energy available in the energy storage

how much energy is provided via the energy harvester

availability and status of a back up energy store

for additional information see the signal telegrams specification and data sheet of your EnOcean product

The rssi radio signal strength information provides important information about connectivity. We recommend to track it and raise and alarm if the level drops or

changes significantly.

General operation can be checked by the lastSeen parameter provided by the API. Some devices have a periodic communication pattern. Checking deviations

/ fluctuations in the pattern can help to detect issues before quickly.

1.1.4 Technical Requirements

The different containers of the IoTC require the Docker environment to run. Specific requirements (i.e. RAM, CPU) depend on the number of connected end

points to the IoTC at runtime and their communication frequency. Typical installations (e.g. 100 connected AP, 500 EnOcean end points) can be run at common

embedded platforms on the market e.g. RPi gen 4.

For Azure Cloud deployments we recommend to use the docker-compose.yml file listed in azure_deployment directory.

1.1.5 Used 3rd party components and libraries, OSS Components

Components:

Redis Community(https://redis.io/)

Python 3.8 (https://www.python.org/)

Docker Community (https://docs.docker.com/get-docker/)

NGINX Community (https://www.nginx.com/)

Mosquitto (https://mosquitto.org/)

Python Libraries:

Async Redis (aioredis,https://github.com/aio-libs/aioredis-py, MIT License)

HIREDIS (hiredis,https://github.com/redis/hiredis,BSD License)

Licensing (licensing,https://github.com/Cryptolens/cryptolens-python,MIT License)

Protobuf (protobuf,https://developers.google.com/protocol-buffers/,https://github.com/protocolbuffers/protobuf/blob/master/LICENSE)

•

•

•

•

•

•

•

•

•

•

•

EnOcean plans to provide a more automated Sensor health tracing and issue detection and reporting. Please see product roadmap.

Note

•

•

•

•

•

•

•

•

•

1.1.4 Technical Requirements

- 12/30 - Copyright © 2021 EnOcean GmbH

http://tools.enocean-alliance.org/EEPViewer/
https://www.enocean-alliance.org/st/
https://www.enocean-alliance.org/st/
https://www.enocean-alliance.org/st/
https://iot.enocean.com
https://docs.docker.com/get-started/overview/

Pydantic (pydantic,https://github.com/samuelcolvin/pydantic/,MIT License)

Redis (redis,https://github.com/andymccurdy/redis-py,MIT License)

Tornado (tornado,https://github.com/tornadoweb/tornado,Apache License 2.0)

Flask (flask,https://flask.palletsprojects.com/en/1.1.x/,BSD=https://flask.palletsprojects.com/en/0.12.x/license/)

Conexion (conexion,https://github.com/zalando/connexion,https://github.com/zalando/connexion/blob/master/LICENSE.txt)

Azure (azure,https://github.com/Azure/azure-sdk-for-python,MIT)

Bitstring (bitstring,https://github.com/scott-griffiths/bitstring,MIT)

crc8 (crc8,https://github.com/niccokunzmann/crc8,MIT)

paho-mqtt (paho-mqtt,http://www.eclipse.org/paho/,BSD=https://projects.eclipse.org/projects/iot.paho)

pycryptodome (pycryptodome,https://github.com/Legrandin/pycryptodome,https://github.com/Legrandin/pycryptodome/blob/master/LICENSE.rst)

pyinstaller (pyinstaller,https://github.com/pyinstaller/pyinstaller,https://github.com/pyinstaller/pyinstaller/blob/develop/COPYING.txt)

1.1.6 License Agreement and Data Privacy

Please see the License agreement here.

Please see the Data privacy agreement here.

1.1.7 Disclaimer

The information provided in this document describes typical features of the EnOcean software products and should not be misunderstood as specified operating

characteristics. No liability is assumed for errors and / or omissions. We reserve the right to make changes without prior notice.

•

•

•

•

•

•

•

•

•

•

•

1.1.6 License Agreement and Data Privacy

- 13/30 - Copyright © 2021 EnOcean GmbH

1.2 Support

For bug reports, questions or comments, please submit an issue here.

Alternatively, contact support@enocean.com

We will aim to provide fast support for alpha customers. The current release of EnOcean IoT Connector is currently in beta, meaning testing, bug hunting &

optimization is still ongoing. We thank you for you understanding.

1.2.1 Debugging

Console Log Messages

Main debug & info messages from the IoTC can be viewed in the log of the engine container. Other containers post messages to the console as well. To see

these: e.g. open Docker Desktop -> go to Containers/Apps, find local_deployment , click on the line of interest. e.g. local_deploment_proxy_1 .

The main engine log messages are:

a gateway was added

an onboarded sensor transmitted messages for the first time

licensing information

device transmitted with an unsupported EEP

•

•

•

•

 ______ ____
| ____| / __ \
| |__ _ __ | | | | ___ ___ __ _ _ __
| __| | '_ \| | | |/ __/ _ \/ _` | '_ \
| |____| | | | |__| | (_| __/ (_| | | | |
|______|_| |_|____/ ______|__,_|_| |_|

 _____ _______ _____ _
|_ _| |__ __| / ____| | |
 | | ___ | |______| | ___ _ __ _ __ ___ ___| |_ ___ _ __
 | | / _ \| |______| | / _ \| '_ \| '_ \ / _ \/ __| __/ _ \| '__|
 | || () | | | |___| (_) | | | | | | | __/ (__| || (_) | |
|________/|_| ________/|_| |_|_| |_|___|___|_____/|_|

Version: 0.1.0 0.1.0 0.1.0
...
INFO::2021-04-19 14:03:29,500::dedupper::Adding gateway with mac='1c28afc2950a' to approved list.
INFO::2021-04-19 14:03:41,505::dedupper::Adding sensor with eurid='04138bb4' to approved list.
INFO::2021-04-19 14:04:41,525::dedupper::Adding sensor with eurid='feee14ab' to approved list.
INFO::2021-04-19 14:07:47,597::dedupper::Adding sensor with eurid='0412d7ef' to approved list.
INFO::2021-04-19 14:08:05,605::dedupper::Adding sensor with eurid='0412d7c3' to approved list.
INFO::2021-04-19 14:08:32,616::dedupper::Adding sensor with eurid='0412d7ab' to approved list.
INFO::2021-04-21 08:16:54,861::dedupper::Adding gateway with mac='d015a6ce04a2' to approved list.
...

1.2 Support

- 14/30 - Copyright © 2021 EnOcean GmbH

https://bitbucket.org/enocean-cloud/iotconnector-docs/issues
mailto:support@enocean.com

2. Deploy the IoTC

2.1 Deployment Notes

2.1.1 Overview of Environment Variables

To deploy the IoTC certain environment variable must be specified, these are listed below:

2.1.2 Overview of required Secrets

2.1.3 Ports

The following ports are used:

Environment Variable Usage Required?

IOT_LICENSE_KEY IoTC license key. Contact your EnOcean sales partner. Yes

IOT_ARUBA_USERNAME Username used for the Aruba AP authentication. Yes

IOT_ARUBA_PASSWORD Password used for Aruba AP authentication. Yes

IOT_AUTH_CALLBACK Authentication callback for APs. The

hostname of the container group instance + :

8080 .

Example: 192.167.1.1:8080 or

myiotc.eastus.azurecontainer.io:8080

Yes

BASIC_AUTH_USERNAME User name for basic authentication on the API interface. Yes

BASIC_AUTH_PASSWORD Password for basic authentication on the API interface. Yes

IOT_AZURE_CONNSTRING The Connection String to be use for sending data to the

Azure IoT Hub.

This variable is required if the variable

IOT_AZURE_ENABLE is set.

IOT_AZURE_ENABLE This variable enables the Azure IoT Hub end-point. If this

variable is set, the IOT_AZURE_CONNSTRING variable

must also be set.

If you do not wish to send data to the Azure IoT Hub,

don't set this variable, simply leave it out.

No

MQTT_CONNSTRING The Connection String to be use for publishing data to an

MQTT broker.

This variable is required if the variable

MQTT_LOCAL_EGRESS_ENABLE is set.

MQTT_LOCAL_EGRESS_ENABLE This variable enables publishing of telemetry into an

MQTT broker.

If you do not wish to send data to an MQTT broker,

don't set this variable, simply leave it out.

No

Secret Usage Required?

secret-proxy-certificate Certificate for the NGINX proxy to protect IoTC interfaces. Yes

secret-proxy-key Private key of the certificate for the NGINX proxy. Yes

Service Description Port

Management API Used to commission EnOcean devices into the IoTC. A Swagger UI is available on the

root. Supported protocols: https

443 (requests on port 80 will be

redirected)

2. Deploy the IoTC

- 15/30 - Copyright © 2021 EnOcean GmbH

mailto:info@enocean.com
https://docs.microsoft.com//azure/iot-hub/tutorial-connectivity

2.1.4 License key

To deploy the IoTC a license key is required. Please contact EnOcean for a license key for a trial or commercial usage.

Each license is specified for a defined usage. The usage is defined by a maximum number of sensor/gateways which will be processed by the IoTC. If the

consumption is reached additional sensors or gateways will be dropped at processing.

You can see the allowed usage of each of your licenses after you log in to the licensing portal. After EnOcean has assigned a license you will receive an

invitation e-mail.

Debug information about the license status and consumption limit is posted to the console.

There is a license activation limit. If you deploy the IoTC several times within a very short period (e.g. during testing, debugging), you might experience license

activation failed. Please wait for couple of minutes and try again.

Service Description Port

WebSocket Ingress WebSocket end-point for IoTC compatible gateways. Supported protocols: wss 8080

MQTT (Optional

deployment)

Mosquitto MQTT broker. Supported protocols: mqtt 1883

Should different ports mapping be needed please contact EnOcean support for detailed instructions.

Note

2.1.4 License key

- 16/30 - Copyright © 2021 EnOcean GmbH

mailto:support@enocean.com
https://iot.enocean.com/#trial-version
https://app.cryptolens.io/Account/Login

2.2 Deploy and Connect Devices

2.2.1 1. Step by step deployment

Preparation

Clone this repository git clone https://bitbucket.org/enocean-cloud/iotconnector-docs.git or download the repository files. This should be

downloaded to a directory in which you have edit and execute files rights.

Prepare your certificate. If do not have one, you can generate a self-signed certificate, in this case prepare the "myCA.pem" file for the Aruba AP.

Prepare the *.crt and *.key file from your CA for the NGINX proxy. If you do not have one, you can generate a self-signed certificate.

Find and note the EnOcean ID - EURID (32bit e.g. 04 5F 69 4E) and EEP (e.g. D2-14-41) of the EnOcean sub-gigahertz enabled devices you like to use with

the IoTC.

This information is available:

On the product label - in text and QR code format

In NFC memory (check availability with manufacturer)

In the teach-in telegram.

Optionally find and note also the encryption parameters AES Key & SLF to use encryption with EnOcean devices. Confirm with manufacturer of the device

how to operate the device in secure mode in advance.

Deployment

Decide if you want to deploy the IoTC in a locally installed Docker or deploy in the Microsoft Azure Container instances. Deployment on other cloud platforms is

also possible but has not been tested.

1.

2.

3.

4.

•

•

•

2.2 Deploy and Connect Devices

- 17/30 - Copyright © 2021 EnOcean GmbH

https://www.enocean-alliance.org/wp-content/uploads/2020/07/EnOcean-Equipment-Profiles-3-1.pdf
https://www.enocean-alliance.org/sec/
https://docs.docker.com/get-docker/
https://azure.microsoft.com/services/container-instances/

Local Deployment

To deploy the IoTC locally. For example on an PC or Raspberry Pi:

Go to the /deploy/local_deployment/ directory

Open the docker-compose.yml file and add the following environment variables:

IOT_LICENSE_KEY

In ingress and engine . See License key notes for details.

IOT_AUTH_CALLBACK

The IOT_AUTH_CALLBACK is formed by taking the IP address or hostname of your instance + :8080 . If you are working on a local network with DHCP

make sure the IP address stays static.

IOT_ARUBA_USERNAME & IOT_ARUBA_PASSWORD

Create a IOT_ARUBA_USERNAME and IOT_ARUBA_PASSWORD . These two environment variables are needed for the connection between Aruba AP and

IoTC.

BASIC_AUTH_USERNAME & BASIC_AUTH_PASSWORD

The selected username and password will be used to access the API and its web UI.

PROXY_CERTIFICATE & PROXY_CERTIFICATE_KEY

Configure the secrets for the NGINX proxy with the .crt, .key files you have prepared.

Select the end-point for the IoTC.

Azure IoT Hub or MQTT client is available. At least one end-point must be enabled.

1.

2.

a.

ingress:
 image: enocean/iotconnector_ingress:latest
environment:
 - IOT_LICENSE_KEY= #enter license here, be sure not to have empty space after "=" e.g. IOT_LICENSE_KEY=LBIBA-BRZHX-SVEOU-ARPWB

engine:
 image: enocean/iotconnector_engine:latest
 environment:
 - REDIS_URL=redis
 - IOT_LICENSE_KEY= #enter license here, be sure not to have empty space after "=" e.g. IOT_LICENSE_KEY=LBIBA-BRZHX-SVEOU-ARPWB

b.

ingress:
 image: enocean/iotconnector_ingress:latest

 environment:
 - IOT_AUTH_CALLBACK= #enter URL here e.g. 192.167.1.1:8080 or myiotc.eastus.azurecontainer.io:8080

c.

ingress:
 image: enocean/iotconnector_ingress:latest

 environment:
 - IOT_ARUBA_USERNAME= #enter new username for Aruba AP connection to IoTC. e.g. user1
 - IOT_ARUBA_PASSWORD= #enter new password for Aruba AP connection to IoTC. e.g. gkj35zkjasb5

d.

proxy:
 image: enocean/testing_proxy:latest

 environment:
 - BASIC_AUTH_USERNAME= #enter new username for API connection of IoTC. e.g. user1
 - BASIC_AUTH_PASSWORD= #enter new password for API connection to IoTC. e.g. 5a4sdFa$dsa

e.

#secrets are defined by docker to keep sensitive information hidden
secrets:
 secret-proxy-certificate:
 file: ../nginx/dev.localhost.crt # specify path to .crt
 secret-proxy-key:
 file: ../nginx/dev.localhost.key # specify path to .key

For advanced users, if you need to make changes to the NGINX proxy the Dockerfile , start.sh and nginx.conf are available in the /deploy/nginx

folder and can be changed and rebuilt as necessary.

Note

f.

Azure IoT Hub

List IOT_AZURE_CONNSTRING & IOT_AZURE_ENABLE.

 engine:
 image: enocean/iotconnector_engine:latest
 environment:
 # Comment this section out, should Azure egress not be desired.

- IOT_AZURE_ENABLE=1

2.2.1 1. Step by step deployment

- 18/30 - Copyright © 2021 EnOcean GmbH

https://azure.microsoft.com/services/iot-hub/
https://docs.microsoft.com/azure/iot-hub/tutorial-connectivity
https://hub.docker.com/_/eclipse-mosquitto
https://docs.microsoft.com/de-de/cli/azure/install-azure-cli
https://stackoverflow.com/questions/44143981/is-there-an-api-to-list-all-azure-regions
https://azure.microsoft.com/free/

2.2.2 2. Connect Ingress Gateways

After you have deployed the IoTC connect some APs to it with attached EnOcean USB Dongles.

Connect Aruba AP

Check that the Aruba AP corresponds to the required SW and HW.

Upload to the Aruba APs the *.pem file you have prepared.

Connect the Aruba AP.

You can check if the AP got connected via the management API by using GET /gateways . You can use the build in Web UI or your HTTPS client.

Response body example:

Or check the engine console.

2.2.3 3. Onboard devices using the API

To see any outputs at the End-points an EnOcean device needs to be onboarded to the IoTC, this can be done with the management API web UI.

Open URL in browser https://<hostname of the container group or IP address>:443

Login using BASIC_AUTH_USERNAME & BASIC_AUTH_PASSWORD . Specified in environmental variables.

Use POST /device to add the devices one by one or POST /backup all at once.

Have the EnOcean ID -> sourceEurid and eep prepared.

Additionally specify a friendlyID and location of the sensor.

Minimum parameters are:

Check the API Documentation for the complete schema.

Check the return code to see if the operation was successful or use GET /backup and check if all of your sensors are present.

After adding a device you should see any received telegrams from it on the selected end-points. When the first message is received from a new sensor, a

message will be logged to the console.

1.

2.

3.

[
 {
 "hardwareDescriptor": "AP-305",
 "mac": "24f27fca1ba4",
 "softwareVersion": "8.7.1.0-8.7.1.0"
 },
 {
 "hardwareDescriptor": "AP-505",
 "mac": "1c28afc2950a",
 "softwareVersion": "8.8.0.0-8.8.0.0"
 }
]

In general APs will be visible in the list & console only when any EnOcean radio traffic is present. Aruba APs from AOS 8.8.x.x will send an empty hello message

after few minutes which makes the AP also visible in the list.

Note

1.

2.

3.

{
 "eep": "A5-04-05",
 "friendlyID": "Room Panel 02",
 "location": "Level 2 / Room 221",
 "sourceEurid": "a1b2c3d4"
}

4.

5.

If you have specified to deploy the mosquitto broker as part of the docker-compose.yml you can reach it at PORT :1883 and should see now some messages

incoming. The URL will be e.g. mqtt://192.167.1.1:1883 or mqtt://myiotc.eastus.azurecontainer.io:1883

To connect to the broker you can use any kind of MQTT client. e.g. MQTT Explorer.

Note

2.2.2 2. Connect Ingress Gateways

- 19/30 - Copyright © 2021 EnOcean GmbH

https://hub.docker.com/_/eclipse-mosquitto
http://mqtt-explorer.com/

2.2.3 3. Onboard devices using the API

- 20/30 - Copyright © 2021 EnOcean GmbH

3. Additional Notes

3.1 Generating self-signed certificates

For Windows users: Use the openssl Docker image to generate a CA, CSR and finally a certificate. Create a dedicated folder for the process.

For Linux users: Since most Linux distributions already include openssl there is no need to use docker for this step. Simply run the command directly by

removing the initial call to docker: docker run -it --rm -v ${PWD}:/export frapsoft/ . Create the export directory at root to simplify the process.

3.1.1 Generate private key for CA authority:

For Windows users:

For Linux users:

Complete the fields with the information corresponding to your organization.

3.1.2 Generate root certificate

For common name enter the hostname of the deployment or localhost for local test deployments.

3.1.3 Generate a key for the certificate going into the connector

3.1.4 Generate a CSR for the connector

For common name enter the hostname of the deployment or localhost for local test deployments.

3.1.5 Create the .ext file

Create a new localhost.ext file with the following contents:

Edit the localhost.ext file to match your domain. Make sure the DNS.1 matches the hostname of your deployment.

Self-signed certificates are inherently insecure (since they lack a chain of trust). Please contact your IT Admin if you are unsure/unaware of the consequences of generating

& using self-signed certificates. These instructions should be used for development environments only.

Warning

docker run -it --rm -v ${PWD}:/export frapsoft/openssl genrsa -des3 -out /export/myCA.key 2048

$ mkdir /export
$ cd /export
$ openssl genrsa -des3 -out /export/myCA.key 2048

docker run -it --rm -v ${PWD}:/export frapsoft/openssl req -x509 -new -nodes -key /export/myCA.key -sha256 -days 1825 -out /export/myCA.pem

docker run -it --rm -v ${PWD}:/export frapsoft/openssl genrsa -out /export/dev.localhost.key 2048

docker run -it --rm -v ${PWD}:/export frapsoft/openssl req -new -key /export/dev.localhost.key -out /export/dev.localhost.csr

authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:FALSE
#keyUsage = digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment
subjectAltName = @alt_names
subjectKeyIdentifier = hash

[alt_names]
DNS.1 = localhost

3. Additional Notes

- 21/30 - Copyright © 2021 EnOcean GmbH

3.1.6 Generate a certificate from CSR for the connector

Keep the generated files safe and without access of 3rd parties.

docker run -it -v ${PWD}:/export frapsoft/openssl x509 -req -in /export/dev.localhost.csr -CA /export/myCA.pem -CAkey /export/myCA.key -CAcreateserial -out /export/
dev.localhost.crt -days 825 -sha256 -extfile /export/localhost.ext

3.1.6 Generate a certificate from CSR for the connector

- 22/30 - Copyright © 2021 EnOcean GmbH

3.2 Notes for Aruba APs

3.2.1 Required Hardware and Software

Aruba AP: Aruba AP with USB port.

Check the energy requirements of our Aruba AP to properly operate the USB port.

Aruba OS: version 8.7.0.0 or newer (most likely requires update to latest).

EnOcean USB Stick: USB 300, USB 300U, USB 500 or USB 500U

3.2.2 Adding root certificates

By default the Aruba APs won't be able to connect to the IoT connector using a self-signed certificate. To fix this, it is possible to add an additional certificate by

following these steps:

Log in into the AP's admin portal.

Go to the Maintenance Section.

Navigate to the Certificates sub-menu.

Click on Upload New Certificate.

Choose your root certificate, type in a name, select Trusted CA and click Upload Certificate.

3.2.3 Configure Aruba AP to forward data to the IoTC

It is highly recommended to set-up the IoT Transport profile on Aruba AP through SSH.

Login into the AP using the same credentials from the web interface:

Replace yourUser , accesspointIP with your AP's credential's & IP-Address.

After login:

Replace myProfile with your desired profile name.

•

•

•

1.

2.

3.

4.

5.

$ ssh <yourUser>@<accesspointIP>
<youruser>@<accesspointIP>s password: <enter password>

show tech-support and show tech-support supplemental are the two most useful outputs to collect for any kind of troubleshooting session.

aa:bb:cc:dd:ee:ff# configure terminal
We now support CLI commit model, please type "commit apply" for configuration to take effect.
aa:bb:cc:dd:ee:ff (config) # iot transportProfile myProfile

3.2 Notes for Aruba APs

- 23/30 - Copyright © 2021 EnOcean GmbH

https://www.enocean.com/en/products/distributor/

Now configure the profile:

Then activate the profile:

3.2.4 Debugging & Troubleshooting

In case the Aruba AP (instant) is not connected to the IoTC i.e. the device is not listed in the gateway list or no EnOcean telegrams are visible on the egress of

the IoTC. Try the following steps. Please consider that the commands syntax might change with new Aruba OS releases. The commands were tested with Aruba

OS 8.8.x.

Show the IoT configuration. Get show and confirm the showed information correspond with the inputs provided before.

Show & check connected USB devices. Example output is attached. For proper communication an EnOcean USB device must be connected to the AP.

Check the configured IoT Configuration status. ... represents omitted information.

If TransportContext displays an error message, please follow up on the meaning of the message. Please consider it can take few seconds to build the

connection.

Aruba OS 8.8.0.0 and newer

Aruba OS 8.7.0.0

aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # endpointType telemetry-websocket
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # endpointURL wss://myiotconnector:8080/aruba
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # payloadContent serial-data
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # authenticationURL https://myiotconnector:8080/auth/aruba
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # transportInterval 30
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # authentication-mode password
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # username <aruba_username set using IOT_ARUBA_USERNAME>
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # password <aruba_password set using IOT_ARUBA_PASSWORD>
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # endpointID 1111
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # end
aa:bb:cc:dd:ee:ff# commit apply
committing configuration...

aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # endpointType telemetry-websocket
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # endpointURL wss://myiotconnector:8080/aruba
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # payloadContent serial-data
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # authenticationURL https://myiotconnector:8080/auth/aruba
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # transportInterval 30
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # username <aruba_username set using IOT_ARUBA_USERNAME>
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # password <aruba_password set using IOT_ARUBA_PASSWORD>
aa:bb:cc:dd:ee:ff (IoT Transport Profile "myProfile") # end
aa:bb:cc:dd:ee:ff# commit apply
committing configuration...

aa:bb:cc:dd:ee:ff # configure terminal
We now support CLI commit model, please type "commit apply" for configuration to take effect.
aa:bb:cc:dd:ee:ff (config) # iot useTransportProfile myProfile
aa:bb:cc:dd:ee:ff (config) # end
aa:bb:cc:dd:ee:ff # commit apply
committing configuration...
configuration committed.

1.

aa:bb:cc:dd:ee:ff # show iot transportProfile myProfile

2.

aa:bb:cc:dd:ee:ff # show usb devices

USB Device Info

DeviceID APMac Vendor ID Product ID Manufacturer Product Version Serial Class Device Driver Uptime
-------- --------------- ---------- ------------ ------- ------- ------- ----- ------ ------ ------
d3adas.. aa:.. 0403 6001 EnOcean GmbH EnOcean USB 300 DC 2.00 FT55W4A9 tty ttyUSB0 ftdi_sio 24m34s

3.

aa:bb:cc:dd:ee:ff # show ap debug ble-relay iot-profile

ConfigID : xx

---------------------------Profile[myProfile]---------------------------

authenticationURL : ...
serverURL : ...
...

TransportContext : Connection Established
Last Data Update : 2021-06-14 15:01:20
Last Send Time : 2021-06-14 15:01:19
TransType : Websocket

3.2.4 Debugging & Troubleshooting

- 24/30 - Copyright © 2021 EnOcean GmbH

To check if EnOcean telegrams are being received and forwarded via the established connection please use the following command and watch if the

Websocket Write Stats increases after a known EnOcean telegram transmission. Also check for changes in Last Send Time represents omitted

information.

If there are any issues you can get additional log messages by running the following command.

If you struggle with the connection of an Instant Aruba AP please contact the Aruba technical support.

For debugging enterprise connected Aruba AP, via an Aruba Controller please use these commands instead.

4.

aa:bb:cc:dd:ee:ff # show ap debug ble-relay report

---------------------------Profile[myProfile]---------------------------

WebSocket Connect Status : Connection Established
WebSocket Connection Established : Yes
Handshake Address : ...
Refresh Token : Not Configured
Access Token : ...
Access Token Request by Client at : 2021-06-14 14:18:32
Access Token Expire at : 2021-06-14 15:18:32
Location Id : ...
Websocket Address : ...
WebSocket Host : ...
WebSocket Path : ...
Vlan Interface : Not Configured
Current WebSocket Started at : 2021-06-14 14:18:42
Web Proxy : NA
Proxy Username&password : NA, NA
Last Send Time : 2021-06-14 14:30:35
Websocket Write Stats : 8278 (1454156B)
Websocket Write WM : 0B (0)
Websocket Read Stats : 0 (0B)

5.

aa:bb:cc:dd:ee:ff # show ap debug ble-relay ws-log myProfile

#Show profiles
show iot transportProfile myProfile

#Show USB devices
show ap usb-device-mgmt all

#Show status and report
show ble_relay iot-profile
show ble_relay report <iot-profile-name>

#Show Log
show ble_relay ws-log <iot-profile-name>

3.2.4 Debugging & Troubleshooting

- 25/30 - Copyright © 2021 EnOcean GmbH

https://www.arubanetworks.com/en-gb/products/wireless/gateways-and-controllers/

4. Release Notes

4.1 Documentation Changes

4.1.1 18.06.2021

change style to mkdocs and moved to rtd domain

added tabs for styles

added download section

added full API Documentation in swagger

4.1.2 14.06.2021

update for debug and troubleshooting information on Aruba APs.

4.1.3 10.05.2021

depends on correction in docker compose files

Specific documentation for RPi / Linux users

Specific commands for AOS 8.7.x.x included

Updated information on licensing

Updated information on generation for API Source code

Updated energy profiles of Aruba APs

•

•

•

•

•

•

•

•

•

•

•

4. Release Notes

- 26/30 - Copyright © 2021 EnOcean GmbH

4.2 EnOcean IoT Connector - Beta 0.2.0 Not released

4.2.1 General

Features

New structure of the technical product documentation

Processing Aruba Health messages. Showing status of connected USB and AP Status.

Create HTML from markdown

Technical documentation is now available on: https://iotconnector-docs.readthedocs.io/

Added UI with extra container to simulate the incoming traffic and gateways

Solution now available on Azure Marketplace https://azuremarketplace.microsoft.com/de-de/marketplace/apps/enoceangmbh1606401683119.iotc-saas

Automated build scripts

Persistent storage all configuration & runtime enable. After IoTC

Bugs

Some logging messages where using root logger instead of instance logging

Deleted devices are removed from licensing count at runtime

Workaround for arm/v7 platform, because it does not correctly hash ca-certificates

Introduced Technical Documentation Versioning

4.2.2 API Container

Bugs

UI redirect includes a slash /api.beta/v1/ui/ at the end to avoid unnecessary redirect

Sanitized string outputs / inputs

4.2.3 Engine Container

Bugs

Unknown EEPs handled gracefully

Features

EEP D2-14-52 supported

Console Debug Output/Log

4.2.4 Ingress Container

Bugs

Support & Documentation extended for older Aruba OS Versions (8.7.x)

Aruba APs will appear in the gateway list even without EnOcean traffic (3-5 min delay) - feature based on Aruba AP.

Features

Change password for from IOT_ARUBA_ to INGRESS_

Support for ESP3 Packet Type 10 - required for Japan region

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.2 EnOcean IoT Connector - Beta 0.2.0 Not released

- 27/30 - Copyright © 2021 EnOcean GmbH

Support for generic APs on ingress•

4.2.4 Ingress Container

- 28/30 - Copyright © 2021 EnOcean GmbH

4.3 EnOcean IoT Connector - Version Beta 0.1.0

Bug

Switched fields friendlyID and location on output.

Features

Cryptolens Licensing added.

Optimize web sockets and use Secure web sockets.

Allow users to provide a certificate + key for NGINX.

Allow APs to connect using secure web sockets.

Receive respective sensor health data (parsed signal telegram) triggered by signal telegram

Add, remove & update sensors via API.

Add tags to onboarded sensors

Enable activated flag for devices

Authenticate with the API.

Get Gateways list via the API.

Add CT Clamp EEPs

Query last 5 data telegrams incl. RSSI

Get telegram statistics per Gateway / per Device.

Container Hotfixes Version Beta 0.1.0

API HOTFIXES

API - Hotfix 0.1.3

PUT devices fixed

API - Hotfix 0.1.2

Source ID forced conversion to lowercase

Boolean correction from Redis without quotes

API - Hotfix 0.1.1

REDIS save of device configuration on new device interaction

ENGINE HOTFIXES

Engine - Bugfix 0.1.3

Removing of deleted devices at runtime

Additional debug messages

Engine - Hotfix 0.1.2

Additional debug messages for device onboarding

Rehashing of user certificates after update forced

Processing empty message as hello to complete onboarding

Engine - Hotfix 0.1.1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.3 EnOcean IoT Connector - Version Beta 0.1.0

- 29/30 - Copyright © 2021 EnOcean GmbH

Improved licensing performance

INGRESS HOTFIXES

Ingress - Bugfix 0.1.3

Rehashing of user certificates after update forced

Ingress - Hotfix 0.1.2

Processing empty message as hello to complete onboarding

Support for AOS 8.7.x.x - Client ID is optional

Ingress - Hotfix 0.1.1

Improved licensing performance, retry on fail

•

•

•

•

•

4.3 EnOcean IoT Connector - Version Beta 0.1.0

- 30/30 - Copyright © 2021 EnOcean GmbH

	1. Product Description
	1.1 EnOcean IoT Connector
	DOCUMENTATION VERSION/TAG
	1.1.1 Features
	Ingress
	Engine
	BUILT-IN END-POINTS
	SUPPORTED ENOCEAN EQUIPMENT PROFILES (EEP)

	API
	NGINX
	redis

	1.1.2 The API
	Web UI of management API
	Telegram statistics - sensor & gateway statistics

	1.1.3 End-points
	Output Format
	Sensor Health Information

	1.1.4 Technical Requirements
	1.1.5 Used 3rd party components and libraries, OSS Components
	1.1.6 License Agreement and Data Privacy
	1.1.7 Disclaimer

	1.2 Support
	1.2.1 Debugging
	Console Log Messages

	2. Deploy the IoTC
	2.1 Deployment Notes
	2.1.1 Overview of Environment Variables
	2.1.2 Overview of required Secrets
	2.1.3 Ports
	2.1.4 License key

	2.2 Deploy and Connect Devices
	2.2.1 1. Step by step deployment
	Preparation
	Deployment

	2.2.2 2. Connect Ingress Gateways
	Connect Aruba AP

	2.2.3 3. Onboard devices using the API

	3. Additional Notes
	3.1 Generating self-signed certificates
	3.1.1 Generate private key for CA authority:
	3.1.2 Generate root certificate
	3.1.3 Generate a key for the certificate going into the connector
	3.1.4 Generate a CSR for the connector
	3.1.5 Create the .ext file
	3.1.6 Generate a certificate from CSR for the connector

	3.2 Notes for Aruba APs
	3.2.1 Required Hardware and Software
	3.2.2 Adding root certificates
	3.2.3 Configure Aruba AP to forward data to the IoTC
	3.2.4 Debugging & Troubleshooting

	4. Release Notes
	4.1 Documentation Changes
	4.1.1 18.06.2021
	4.1.2 14.06.2021
	4.1.3 10.05.2021

	4.2 EnOcean IoT Connector - Beta 0.2.0 Not released
	4.2.1 General
	Features
	Bugs

	4.2.2 API Container
	Bugs

	4.2.3 Engine Container
	Bugs
	Features

	4.2.4 Ingress Container
	Bugs
	Features

	4.3 EnOcean IoT Connector - Version Beta 0.1.0
	Bug
	Features
	Container Hotfixes Version Beta 0.1.0
	API HOTFIXES
	ENGINE HOTFIXES
	INGRESS HOTFIXES

