
EnOcean IoT Connector

The EnOcean IoT Connector (IoTC) allows for the easy processing of the super-optimized

EnOcean radio telegrams. The IoTC is distributed as a group of Docker containers. All

containers are hosted in the Docker Hub.

INGRESS ENGINE

API

WEBSOCKETS

The IoTC is composed of the following containers:

enocean/iotconnector_ingress

enocean/iotconnector_engine

enocean/iotconnector_api

Redis

NGINX

Deploying the IoTC is simple using docker compose . For convenience, docker-compose.yml

files are provided to easily deploy locally (i.e. with Docker) or to Azure Containers Instances

(Microsoft Azure cloud account and subscription required).

1.

2.

3.

4.

5.

https://iot.enocean.com/
https://www.enocean.com
https://docs.docker.com/get-started/overview/
https://hub.docker.com/u/enocean
https://hub.docker.com/repository/docker/enocean/iotconnector_ingress
https://hub.docker.com/repository/docker/enocean/iotconnector_engine
https://hub.docker.com/repository/docker/enocean/iotconnector_api
https://hub.docker.com/_/redis
https://hub.docker.com/_/nginx
https://docs.docker.com/get-docker/
https://azure.microsoft.com/services/container-instances/
https://azure.microsoft.com/free/

The IoTC can either be deployed in:

a public cloud (eg. Azure)

private cloud

on-site

IoTC containers are built for linux/arm/v7 , linux/arm64 and linux/amd64

This guide will explain the basic functionality and cover the basic deployment steps and

configuration options.

Documentation Version/Tag

1.0.4 / 2021-06-25 15:07:02+02:00

Features

Ingress

The ingress controls all incoming traffic from ingress gateways.

The IoTC currently supports Aruba Access Points as ingress gateways.

Communication is executed via secure web sockets only. Secure web sockets use SSL

encryption. A manual how to add a certificate to an Aruba AP is listed here.

It detects duplicates - i.e. filter if two or more ingress gateways received the same radio

signal, and makes sure each signal is processed only once.

Processes the ESP3 Protocol. Only Packet Type 01 is currently supported.

Engine

The IoTC engine completely supports the EnOcean radio protocol standards as defined by the

EnOcean Alliance. Including:

addressing encapsulation

chaining

decryption & validation of secure messages

EEP processing

Additionally the IoTC evaluates sensor health information:

information included in signal telegram

telegram statistics

•

•

•

•

•

•

•

•

•

•

•

•

•

https://www.enocean.com/en/applications/iot-solutions/
http://localhost:8000/setup-aruba-ap/#adding-root-certificates
https://www.enocean.com/fileadmin/redaktion/pdf/tec_docs/EnOceanSerialProtocol3.pdf
https://www.enocean.com/en/support/knowledge-base/
https://www.enocean-alliance.org/specifications/
https://www.enocean-alliance.org/st/

See the Output format description for more details on what the engine can provide.

Built-in end-points

Available end-points are MQTT and the Azure IoT Hub. The output data format is JSON, in

accordance to the key-value pairs defined by the EnOcean Alliance IP Specification.

Supported EnOcean Equipment Profiles (EEP)

The following EEPs are supported:

A complete description and a list of all existing EEPs can be found here: EEP Viewer.

F6 Profiles A5 Profiles D2 Profiles D5 Profiles

F6-03-02 A5-02-05 D2-14-40 D5-00-01

A5-04-01 D2-14-41

A5-04-03 D2-15-00

A5-06-02 D2-32-00

A5-06-03 D2-32-01

A5-07-01 D2-32-02

A5-07-03 D2-B1-00

A5-08-01

A5-08-02

A5-08-03

A5-09-04

A5-09-09

A5-12-00

A5-14-05

http://tools.enocean-alliance.org/EEPViewer/
https://www.enocean-alliance.org/wp-content/uploads/2020/07/EnOcean-Equipment-Profiles-3-1.pdf
http://tools.enocean-alliance.org/EEPViewer/

If you are missing an EEP for your application please let us know.

API

The API is used to onboard EnOcean Devices into the IoTC.

The most important features are:

most recent data and signal telegrams from a device

get past telegrams to get past health

telegram statistic (e.g. count, last seen) for a device and per gateway

list of connected ingress gateways

persistent storage of onboarded device - if volume is selected.

Include friendlyID , location or any custom parameter for each onboarded device

All onboarded devices can be retrieved via GET /backup or uploaded via POST /backup .

Open API Standard 3 supporting the automatic generation of clients in several languages.

Active flag to enable/disable telegram processing for a particular device.

The API exposes a UI interface for your convenience. Once the IoTC connector has been

deployed, the full API specification is available via the UI web Interface.

NGINX

NGINX is used as a proxy to protect the interface of the IoTC. The user is required to provide a

certificate for usage.

A Dockerfile and corresponding dependencies (start.sh and nginx.conf) in enocean/

proxy is provided incase the proxy needs to be rebuilt or customized.

redis

Redis is used as a message broker & cache for communication between different containers.

The API

The API is OpenAPI compliant, supporting the automatic generation of clients in several

languages. The full API Specification is available here or via the web Interface, once the IoTC has

been deployed.

If you specified a volume storage at deployment then all changes done in the API will be

persistent even after containers are restarted or updated.

•

•

•

•

•

•

•

•

•

https://bitbucket.org/enocean-cloud/iotconnector-docs/issues
https://editor.swagger.io/
https://www.nginx.com/
https://redis.io/
https://editor.swagger.io/
https://editor.swagger.io/
http://localhost:8000/api-documentation/
http://localhost:8000/deploy-the-iotc/#1-step-by-step-deployment

Web UI of management API

Opening the API url on a browser will display the API reference. The URL is https://

<hostname of the container group or IP address>:443 . Example: https://

192.167.1.1:443 or https://myiotc.eastus.azurecontainer.io:443

If you used a self-signed certificate and did not add it to your browser you will see a warning,

please continue according to your web browser.

Login using the BASIC_AUTH_USERNAME & BASIC_AUTH_PASSWORD you specified in

environmental variables.

The API complies with Open API Standard 3.

Download the API Specification as JSON

Go to the editor e.g. online here and generate your client code.

You can use the Try it out function to execute any of the available commands.

1.

2.

3.

4.

a.

b.

5.

http://localhost:8000/deployment-notes/#overview-of-environment-variables
https://swagger.io/

Telegram statistics - sensor & gateway statistics

The API provides telegram statistics of the individual devices and per ingress gateway.

Gateway statistics

Calling GET /gateways/metadata/statistics/telegrams returns the statics per gateway

EnOcean Device statistics

Calling GET /devices/metadata/statistics/telegrams?

sourceID=051b03c9&destinationID=FFFFFFFF returns statistics for a individul EnOcean device

sourceID=051b03c9&destinationID=FFFFFFFF .

[
 {
 "device": {
 "hardwareDescriptor": "AP-305",
 "mac": "d01546c204a2",
 "softwareVersion": "8.7.1.1-8.7.1.1"
 },
 "stats": {
 "lastSeen": "1619210924",
 "notProcessed": 0,
 "succesfullyProcessed": 78662,
 "totalTelegramCount": 78662
 }
 },
 {
 "device": {
 "hardwareDescriptor": "AP-305",
 "mac": "24f27f551bf4",
 "softwareVersion": "8.7.1.0-8.7.1.0"
 },
 "stats": {
 "lastSeen": "1619210928",
 "notProcessed": 0,
 "succesfullyProcessed": 91526,
 "totalTelegramCount": 91526
 }
 }
]

[
 {
 "device": {
 "activeFlag": "true",
 "customTag": "",
 "destinationEurid": "ffffffff",
 "eep": "a5-09-09",
 "friendlyID": "co2_Hardware2",
 "isPTM": "false",
 "location": "Hardware 2",
 "sourceEurid": "051b03c9"
 },
 "stats": {
 "lastSeen": "1619210854",

The stats section is defined as:

End-points

Available end-points are MQTT or Azure IoT Hub.

 "notProcessed": 0,
 "succesfullyProcessed": 1057,
 "totalTelegramCount": 1057
 }
 }
]

TelegramStatistics:
 properties:
 lastSeen:
 description: Timestamp of last valid telegram from device in UTC
seconds.
 type: string
 notProcessed:
 description: Count of not processed telegrams due to various
reasons & NOT forwarded on egress.
 type: integer
 succesfullyProcessed:
 description: Count of succesfully processed telegrams & forwarded
on egress.
 type: integer
 totalTelegramCount:
 description: Total count of received telegrams.
 type: integer

Output Format

The data is included in a JSON file as key-value pairs following the EnOcean Alliance IP

Specification. Example JSON outputs from selected devices are available below.

All timestamps in IoTC are in the Unix epoch (or Unix time or POSIX time or Unix timestamp). It is

the number of seconds that have elapsed since January 1, 1970. It can be converted into human-

readable version quite easy. e.g. use an online convertor.

timestamp = 1624367607 equals to GMT: Tuesday, June 22, 2021 1:13:27 PM

Note

http://tools.enocean-alliance.org/EEPViewer/
http://tools.enocean-alliance.org/EEPViewer/
https://www.epochconverter.com/

Multisensor

EnOcean IoT Multisensor

{
 "sensor": {
 "friendlyId": "Multisensor 1",
 "id": "04138bb4",
 "location": "Cloud center"
 },
 "telemetry": {
 "data": [{
 "key": "temperature",
 "value": 23.9,
 "unit": "°C"
 }, {
 "key": "humidity",
 "value": 29.0,
 "unit": "%"
 }, {
 "key": "illumination",
 "value": 67.0,
 "unit": "lx"
 }, {
 "key": "accelerationStatus",
 "value": "heartbeat",
 "meaning": "Heartbeat"
 }, {
 "key": "accelerationX",
 "value": -0.13,
 "unit": "g"
 }, {
 "key": "accelerationY",
 "value": 0.08,
 "unit": "g"
 }, {
 "key": "accelerationZ",
 "value": -0.97,
 "unit": "g"
 }, {
 "key": "contact",
 "value": "open",
 "meaning": "Window opened"
 }],
 "signal": [],
 "meta": {
 "security": [],
 "sensorHealth": [],
 "stats": [{
 "egressTime": "1611927479.169171"
 }]
 }
 },
 "raw": {
 "data": "d29fce800863b502a620",
 "sender": "04138bb4",

https://www.enocean.com/en/products/enocean_modules/iot-multisensor-emsia-oem/

 "status": "80",
 "subTelNum": 0,
 "destination": "ffffffff",
 "rssi": 77,
 "securityLevel": 0,
 "timestamp": "1611927479.166352"
 }
}

Switch Module

PTM215 battery-less switch module

{
 "sensor": {
 "friendlyId": "co2_Hardware2",
 "id": "051b03c9",
 "location": "Hardware 2"
 },
 "telemetry": {
 "data": [{
 "key": "co2",
 "value": 627.45,
 "unit": "ppm"
 }, {
 "key": "learn",
 "value": "notPressed",
 "meaning": "Data telegram"
 }, {
 "key": "powerFailureDetected",
 "value": "False",
 "meaning": "Power failure not detected"
 }],
 "signal": [],
 "meta": {
 "security": [],
 "sensorHealth": [],
 "stats": [{
 "egressTime": "1611927535.0731573"
 }]
 }
 },

"raw": {
 "data": "a500005008",
 "sender": "051b03c9",
 "status": "01",
 "subTelNum": 0,
 "destination": "ffffffff",
 "rssi": 80,
 "securityLevel": 0,
 "timestamp": "1611927535.0714777"
 }
}

{
 "sensor": {
 "friendlyId": "switch1",
 "id": "feee14ab",
 "location": "Entrance"
 },
 "telemetry": {
 "data": [
 [{
 "key": "energybow",
 "value": "released",

https://www.enocean.com/en/products/enocean_modules/ptm-210ptm-215/

Each output JSON consist of three sections:

sensor - stored information about the sensor provided at onboarding via the API

telemetry - information interpreted by the engine

data - sensor data included in the message and encoded via the EEP

signal -raw sensor health data included in the message and encoded as signal

telegram

meta - meta information about the message added by the engine

raw - raw message information

rssi - radio signal strength information. Important to track radio quality

 "meaning": "Energy Bow released"
 }]
],
 "signal": [],
 "meta": {
 "security": [],
 "sensorHealth": [],
 "stats": [{
 "egressTime": "1611927462.4711452"
 }]
 }
 },
 "raw": {
 "data": "f600",
 "sender": "feee14ab",
 "status": "20",
 "subTelNum": 0,
 "destination": "ffffffff",
 "rssi": 71,
 "securityLevel": 0,
 "timestamp": "1611927462.469978"
 }
}

•

•

•

•

•

•

•

http://localhost:8000/deploy-the-iotc/#3-onboard-devices-using-the-api
http://tools.enocean-alliance.org/EEPViewer/
https://www.enocean-alliance.org/st/
https://www.enocean-alliance.org/st/

Sensor Health Information

Signal telegrams include information about the:

percentage of remaining energy available in the energy storage

how much energy is provided via the energy harvester

availability and status of a back up energy store

for additional information see the signal telegrams specification and data sheet of your

EnOcean product

The rssi radio signal strength information provides important information about connectivity.

We recommend to track it and raise and alarm if the level drops or changes significantly.

General operation can be checked by the lastSeen parameter provided by the API. Some

devices have a periodic communication pattern. Checking deviations / fluctuations in the

pattern can help to detect issues before quickly.

Technical Requirements

The different containers of the IoTC require the Docker environment to run. Specific

requirements (i.e. RAM, CPU) depend on the number of connected end points to the IoTC at

runtime and their communication frequency. Typical installations (e.g. 100 connected AP, 500

EnOcean end points) can be run at common embedded platforms on the market e.g. RPi gen 4.

For Azure Cloud deployments we recommend to use the docker-compose.yml file listed in

azure_deployment directory.

Used 3rd party components and libraries, OSS Components

Components:

Redis Community(https://redis.io/)

Python 3.8 (https://www.python.org/)

Docker Community (https://docs.docker.com/get-docker/)

NGINX Community (https://www.nginx.com/)

Mosquitto (https://mosquitto.org/)

•

•

•

•

EnOcean plans to provide a more automated Sensor health tracing and issue detection and

reporting. Please see product roadmap.

Note

•

•

•

•

•

https://www.enocean-alliance.org/st/
https://www.enocean-alliance.org/st/
https://iot.enocean.com
https://docs.docker.com/get-started/overview/

Python Libraries:

Async Redis (aioredis,https://github.com/aio-libs/aioredis-py, MIT License)

HIREDIS (hiredis,https://github.com/redis/hiredis,BSD License)

Licensing (licensing,https://github.com/Cryptolens/cryptolens-python,MIT License)

•

•

http://localhost:8000/LA-IoTC.pdf
http://localhost:8000/DPA-IoTC.pdf

	EnOcean IoT Connector
	Documentation Version/Tag
	Features
	Ingress
	Engine
	Built-in end-points
	Supported EnOcean Equipment Profiles (EEP)

	API
	NGINX
	redis

	The API
	Web UI of management API
	Telegram statistics - sensor & gateway statistics

	End-points
	Output Format
	Sensor Health Information

	Technical Requirements
	Used 3rd party components and libraries, OSS Components
	License Agreement and Data Privacy
	Disclaimer

