
DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Working Group
OSGi Compendium

Release 8.1
December 2022

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Copyright © 2000, 2024 Eclipse Foundation

OSGi Compendium Release 8.1 Page 3

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Table of Contents

104 Configuration Admin Service Specification 5
104.1 Introduction. 5

104.2 Configuration Targets. 7

104.3 The Persistent Identity. 8

104.4 The Configuration Object. 11

104.5 Managed Service. 14

104.6 Managed Service Factory. 17

104.7 Configuration Admin Service. 21

104.8 Configuration Events. 26

104.9 Configuration Plugin. 27

104.10 Meta Typing. 29

104.11 Coordinator Support. 30

104.12 Capabilities. 30

104.13 Security. 31

104.14 org.osgi.service.cm. 33

104.15 org.osgi.service.cm.annotations. 53

Page 4 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Configuration Admin Service Specification Version 1.6 Introduction

OSGi Compendium Release 8.1 Page 5

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104 Configuration Admin Service
Specification

Version 1.6

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi framework.
It allows an Operator to configure deployed bundles. Configuring is the process of defining the con-
figuration data for bundles and assuring that those bundles receive that data when they are active in
the OSGi framework.

Figure 104.1 Configuration Admin Service Overview

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration
data

Configuration
Admin

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service spec-
ification:

• Local Configuration - The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection - The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy - The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented - The Configuration Admin service must support the creation and deletion of in-
stances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices - The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

Introduction Configuration Admin Service Specification Version 1.6

Page 6 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Remote versus Local Management - The Configuration Admin service must allow for a remotely
managed OSGi framework, and must not assume that con-figuration information is stored local-
ly. Nor should it assume that the Configuration Admin service is always done remotely. Both im-
plementation approaches should be viable.

• Availability - The OSGi environment is a dynamic environment that must run continuously
(24/7/365). Configuration updates must happen dynamically and should not require restarting of
the system or bundles.

• Immediate Response - Changes in configuration should be reflected immediately.
• Execution Environment - The Configuration Admin service will not require more than an environ-

ment that fulfills the minimal execution requirements.
• Communications - The Configuration Admin service should not assume "always-on" connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability - The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs - Bundles in need of configuration data should have a simple way of obtain-
ing it. Most bundles have this need and the code to accept this data. Additionally, updates should
be simple from the perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle implementing the Config-
uration Admin service and in favor of bundles that need configuration information. The reason
for this choice is that normal bundles will outnumber Configuration Admin bundles.

• Regions - It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

• Shared Information - It should be possible to share configuration data between bundles.

104.1.2 Entities

• Configuration information - The information needed by a bundle before it can provide its intended
functionality.

• Configuration dictionary - The configuration information when it is passed to the target service. It
consists of a Dictionary object with a number of properties and identifiers.

• Configuring Bundle - A bundle that modifies the configuration information through the Config-
uration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target - The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

• Configuration Admin Service - This service is responsible for supplying configuration target bun-
dles with their configuration information. It maintains a database with configuration informa-
tion, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

• Managed Service - A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

• Managed Service Factory - A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

Configuration Admin Service Specification Version 1.6 Configuration Targets

OSGi Compendium Release 8.1 Page 7

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services - Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dictio-
nary, which is passed to the Configuration Target.

Figure 104.2 Overall Service Diagram

Configuration
Admin Impl.

Configuration
Admin

Configuration
Listener

Managed
Service

Managed
Service Factory

Configuration
Plugin

104.1.3 Synopsis
This specification is based on the concept of a Configuration Admin service that manages the con-
figuration of an OSGi framework. It maintains a database of Configurat ion objects, locally or re-
motely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

• Managed Service - A service registered with this interface receives its configuration dictionary from
the database or receives nul l when no such configuration exists.

• Managed Service Factory - Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the Man-
agedService and ManagedServiceFactory classes. Both receive configuration information from the
Configuration Admin service and are treated similarly in most respects. Therefore, this specification
refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-
one relationship always exists between the configuration dictionary and the configurable entity in
the Managed Service. There can be multiple Managed Service targets registered with the same PID
but a Managed Service can only configure a single entity in each given Managed Service.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 8 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configurat ion object. Therefore, a Managed Service Factory
can have multiple associated Configurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

Framework Service
Registry ManagedService ManagedServiceFactory

Management layer

Service layer

A Configuration target updates the target when the underlying Configuration object is created, up-
dated, or deleted. However, it is not called back when the Configuration Admin service is shutdown
or the service is ungotten.

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when
its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it regis-
ters, depending on the current configuration. The Managed Service Factory is informed of config-
uration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID)
as defined in the Framework's service layer. Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is defined in the Frame-
work in org.osgi .f ramework.Constants.SERVICE_PID .

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are
to be shared between Bundles then the location of the Configuration must be a multi-location, see
Location Binding on page 11.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted
with a PID. For example, when installing an alarm system, the user needs to identify the different
components to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The fol-
lowing sections define some schemes for common cases. These schemes are not required, but bun-
dle developers are urged to use them to achieve consistency.

Configuration Admin Service Specification Version 1.6 The Persistent Identity

OSGi Compendium Release 8.1 Page 9

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a full stop ('.' \u002E) are re-
served for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description
USB USB.0123-0002-9909873 idVendor (hex 4)

idProduct (hex 4)

iSerialNumber (decimal)

Universal Serial Bus. Use the standard
device descriptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with : separators IEEE 802 MAC address (Token Ring,

Ethernet,...)
ONE ONE.06-00000021E461 Family (hex 2) and serial number in-

cluding CRC (hex 6)
1-wire bus of Dallas Semiconductor

COM COM.krups-brewer-12323 serial number or type name of device Serial ports

104.3.2 Targeted PIDs
PIDs are defined as primary keys for the configuration object; any target that uses the PID in its ser-
vice registration (and has the proper permissions if security is on) will receive the configuration as-
sociated with it, regardless of the bundle that registered the target service. Though in general the
PID is designed to ignore the bundle, there are a number of cases where the bundle becomes rele-
vant. The most typical case is where a bundle is available in different versions. Each version will re-
quest the same PID and will get therefore configured identically.

Targeted PIDs are specially formatted PIDs that are interpreted by the Configuration Admin service.
Targeted PIDs work both as a normal Managed Service PID and as a Managed Service Factory PID. In
the case of factories, the targeted PID is the Factory PID since the other PID is chosen by CM for each
instance.

The target PID scopes the applicability of the PID to a limited set of target bundles. The syntax of a
target pid is:

target-pid ::= PID
 ('|' symbolic-name ('|' version ('|' location)?)?)?

Targets never register with a target PID, target PIDs should only be used when creating, getting, or
deleting a Configuration through the Configuration Admin service. The target PID is still the prima-
ry key of the Configuration and is thus in itself a PID. The distinction is only made when the Config-
uration Admin must update a target service. Instead of using the non-target PID as the primary key
it must first search if there exists a target PID in the Configuration store that matches the requested
target PID.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 10 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

When a target registers and needs to be updated the Configuration Admin must first find the Con-
figuration with the best matching PID. It must logically take the requested PID, append it with the
bundle symbolic name, the bundle version, and the bundle location. The version must be formatted
canonically, that is, according to the toStr ing() method of the Version class. The rules for best match-
ing are then as follows:

Look for a Configuration, in the given order, with a key of:

 <pid>|<bsn>|<version>|<location>
 <pid>|<bsn>|<version>
 <pid>|<bsn>
 <pid>

For example:

 com.example.web.WebConf|com.acme.example|3.2.0|http://www.xyz.com/acme.jar
 com.example.web.WebConf|com.acme.example|3.2.0
 com.example.web.WebConf|com.acme.example
 com.example.web.WebConf

If a registered target service has a PID that contains a vertical line (' | ' \u007c) | then the value must
be taken as is and must not be interpreted as a targeted PID.

The service.pid configuration property for a targeted PID configuration must always be set
to the targeted PID. That is, if the PID is com.example.web.WebConf and the targeted PID
com.example.web.WebConf|com.acme.example|3.2.0 then the property in the Configuration dic-
tionary must be the targeted PID.

If a Configuration with a targeted PID is deleted or a Configuration with a new targeted PID is added
then all targets that would be stale must be reevaluated against the new situation and updated ac-
cordingly if they are no longer bound against the best matching target PID.

104.3.3 Extenders and Targeted PIDs
Extenders like Declarative Services use Configurations but bypass the general Managed Service or
Managed Service Factory method. It is the responsibility of these extenders to access the Configura-
tions using the targeted PIDs.

Since getting a Configuration tends to create that Configuration it is necessary for these extenders
to use the l istConfigurat ions(Str ing) method to find out if a more targeted Configuration exists.
There are many ways the extender can find the most targeted PID. For example, the following code
gets the most targeted PID for a given bundle.

String mostTargeted(String key, String pid, Bundle bundle) throws Exception {
 String bsn = bundle.getSymbolicName();
 Version version = bundle.getVersion();
 String location = bundle.getLocation();
 String f = String.format("(|(%1$s=%2$s)(%1$s=%2$s|%3$s)" +
 "(%1$s=%2$s|%3$s|%4$s)(%1$s=%2$s|%3$s|%4$s|%5$s))",
 key, pid, bsn, version, location);

 Configuration[] configurations = cm.listConfigurations(f);
 if (configurations == null)
 return null;

 String largest = null;
 for (Configuration c : configurations) {
 String s = (String) c.getProperties().get(key);

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Compendium Release 8.1 Page 11

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 if ((largest == null) || (largest.length() < s.length()))
 largest = s;
 }
 return largest;
}

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that con-
figure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configura-
tion target service with a PID service property. See The Persistent Identity on page 8 for more in-
formation about PIDs.

During registration, the Configuration Admin service must detect these configuration target ser-
vices and hand over their configuration dictionary via a callback. If this configuration dictionary is
subsequently modified, the modified dictionary is handed over to the configuration target with the
same callback.

The Configurat ion object is primarily a set of properties that can be updated by a Management
Agent, user interfaces on the OSGi framework, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the Man-
agedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same
as the PID given to a Managed Service.

104.4.1 Location Binding
When a Configurat ion object is created with either getConfigurat ion(Str ing) ,
getFactoryConfigurat ion(Str ing,Str ing) , or createFactoryConfigurat ion(Str ing) , it becomes
bound to the location of the calling bundle. This location is obtained with the getBundleLocation()
method.

Location binding is a security feature that assures that only management bundles can modify con-
figuration data, and other bundles can only modify their own configuration data. A Security Excep-
tion is thrown if a bundle does not have Configurat ionPermission[location, CONFIGURE] .

The two argument versions of getConfigurat ion(Str ing,Str ing) and
createFactoryConfigurat ion(Str ing,Str ing) as well as the three argument version of
getFactoryConfigurat ion(Str ing,Str ing,Str ing) take a location Str ing as their last argument. These
methods require the correct permission, and they create Configurat ion objects bound to the speci-
fied location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target's Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= '?' symbolic-name?

For example

?com.acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

The Configuration Object Configuration Admin Service Specification Version 1.6

Page 12 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

• Single-Location - If c. locat ion is not a multi-location then a Bundle only has visibility if the
Bundle's location exactly matches c. locat ion . In this case there is never a security check.

• Multi-Location - If c. locat ion is a multi-location (that is, starts with a question mark):
• Security Off - The Bundle always has visibility
• Security On - The target's Bundle must have Configurat ionPermission[c . locat ion, TARGET]

as defined by the Bundle's hasPermission method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ? . The TARGET action is only ap-
plicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a mul-
ti-location (starting with a ?).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration's location changes then it must immediately
be deleted from the perspective of that target. That is, the target must see a deletion (Managed Ser-
vice Factory) or an update with nul l (Managed Service). If a configuration target gains visibility then
the target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

104.4.2 Dynamic Binding
Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bun-
dles to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must
at least have Configurat ionPermission[?, CONFIGURE] when security is on, it is also possible to
use Configurat ionPermission[?*, CONFIGURE] to not limit the management agent. See Regions on
page 24 for some examples of using the locations in isolation scenarios.

A nul l location parameter can be used to create Configurat ion objects that are not yet bound. In
this case, the Configuration becomes bound to a specific location the first time that it is com-
pared to a Bundle's location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configurat ion object's the bundle location
must be set to nul l again so it can be bound again to another bundle.

104.4.3 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of Primary Property Types specified in ??? Filter Syntax.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

property-name ::= public | private

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Compendium Release 8.1 Page 13

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

public ::= symbolic-name // See General Syntax in Core Framework
private ::= '.' symbolic-name

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbol ic-name production uses a very minimal character set.

Bundles must not use nested lists or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See ???.

Property values that are collections may have an ordering that must be preserved when persisting
the configuration so that later access to the property value will see the preserved ordering of the col-
lection.

104.4.4 Property Propagation
A configuration target should copy the public configuration properties (properties whose name
does not start with a '.' or \u002E) of the Dictionary object argument in updated(Dict ionary) into the
service properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service reg-
istry more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration prop-
erties.

104.4.5 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the config-
uration dictionary. If these properties are also set by a configuring bundle or a plug-in, they must
always be overridden before they are given to the target service, see Configuration Plugin on page
27. Therefore, the receiving bundle or plug-in can assume that the following properties are de-
fined by the Configuration Admin service and not by the configuring bundle:

• service.pid - Set to the PID of the associated Configurat ion object. This is the full the targeted PID
if a targeted PID is used, see Targeted PIDs on page 9.

• service.factoryPid - Only set for a Managed Service Factory. It is then set to the PID of the associ-
ated Managed Service Factory. This is the full the targeted PID if a targeted PID is used.

• service.bundleLocation - Set to the location of the Configurat ion object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the get-
Propert ies method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi .f ramework.Constants and the Con-
figurat ionAdmin interface. These service properties are all of type Str ing .

Managed Service Configuration Admin Service Specification Version 1.6

Page 14 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.4.6 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configurat ion object must implement the equals and hashCode methods in such a way
that two Configurat ion objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one or more configuration dictionaries. It there-
fore registers the Managed Service with one or more PIDs and is thus associated with one Configu-
rat ion object in the Configuration Admin service for each registered PID. A bundle can register any
number of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton - A single entity in the bundle that needs to be configured.
• Externally Detected Devices - Each device that is detected causes a registration of an associated

ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

A Managed Service may be registered with more than one PID and therefore be associated with mul-
tiple Configuration objects, one for each PID. Using multiple PIDs for a Managed Service is not rec-
ommended. For example, when a configuration is deleted for a Managed Service there is no way to
identify which PID is associated with the deleted configuration.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local config-
uration information. A Printer service needs to be configured for its local role: location, access list,
and so on.

Configuration Admin Service Specification Version 1.6 Managed Service

OSGi Compendium Release 8.1 Page 15

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the config-
uration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive ap-
propriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally im-
plements the MetaTypeProvider interface to provide information about the property types. See Meta
Typing on page 29.

When this registration is detected by the Configuration Admin service, the following steps must oc-
cur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion ob-
ject for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dict ionary) with a
nul l parameter.

• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible according to the prior rules. For this rea-
son, a Managed Service must always get a callback when it registers and the Configuration Ad-
min service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 11.

If the Managed Service is registered with more than one PID and more than one PID has no configu-
ration information available, then updated(Dict ionary) will be called multiple times with a nul l pa-
rameter.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initial-
ization in a synchronized method without interference from the Configuration Admin service call-
back. Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Figure 104.4 Managed Service Configuration Action Diagram

Client Bundle Framework

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread

Configuration
Admin

Managed Service Configuration Admin Service Specification Version 1.6

Page 16 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The updated method may throw a Configurat ionException . This object must describe the problem
and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry
for a short period before they are replaced by the properties of the actual configuration dictionary.
Care should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use
of a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Figure 104.5 PIDs and External Associations

Configuration
Admin Impl

16.1

com.
acme

name=Erica
size=8
name=Elmer
size=42

database pid=com.acme

4.102 name=Christer
size=2

Managed Service

PID configuration

pid=4.102

no associated PID registered

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin
service will retrieve the properties name=Elmer and size=42 from its database. The properties are
stored in a Dictionary object and then given to the Managed Service with the updated(Dict ionary)
method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the net-
work name on which it should register.

class SampleManagedService implements ManagedService{
 Dictionary properties;
 ServiceRegistration registration;
 Console console;

 public void start(
 BundleContext context) throws Exception {
 properties = new Hashtable();

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Compendium Release 8.1 Page 17

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 properties.put(Constants.SERVICE_PID,
 "com.acme.console");

 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 properties
);
 }

 public synchronized void updated(Dictionary np) {
 if (np != null) {
 properties = np;
 properties.put(
 Constants.SERVICE_PID, "com.acme.console");
 }

 if (console == null)
 console = new Console();

 int port = ((Integer)properties.get("port"))
 .intValue();

 String network = (String) properties.get("network");
 console.setPort(port, network);
 registration.setProperties(properties);
 }
 ... further methods
}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a nul l argument on a thread that is different from that on
which the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated and visible Configurat ion object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instan-
tiate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined
by a bundle that registers a Managed Service Factory.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 18 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external enti-
ty associated with the configuration information but can potentially be instantiated multiple times.

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has - a function likely to be re-
quired for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration in-
formation for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Con-
figuration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to partici-
pate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Man-
aged Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory
PID, which is the PID of the associated Managed Service Factory. It is used to group all Managed Ser-
vice Factory configuration dictionaries together.

When the Configuration Admin service detects the registration of a Managed Service Factory, it
must find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first ar-
gument is the PID of the Configurat ion object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Compendium Release 8.1 Page 19

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Config-
uration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin ser-
vice should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

Client bundle Framework

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration
for a new
instance

get pid

for each found pid

MUST be on another thread

Configuration
Admin

A Managed Service Factory has only one update method: updated(Str ing,Dict ionary) . This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which
case it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(Str ing,Dict ionary) method may throw a Configurat ionException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking or-
der.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(Str ing)
method is called. The argument is the PID for this instance. The implementation of the Managed
Service Factory must remove all information and stop any behavior associated with that PID. If a
service was registered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 20 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds
three Configurat ion objects for which the factory PID is equal to com.acme.emai l . It must call
updated(Str ing,Dict ionary) for each of these Configurat ion objects on the newly registered Man-
agedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a EMail-
Fetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer (PID=16.2).

• The EMailFetcher objects are registered under the Topic interface so their results can be viewed
by an online display.

If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object be-
cause the Configuration Admin service must guarantee its suitability for this purpose.

Figure 104.7 Managed Service Factory Example

Configuration
Admin

MailFetchFactory
pid=com.acme.email

pid=16.1
name=erica

OSGi Service
Registry

registration
events

pid=16.1
name=erica
pid=16.2
name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service
Factory

factory pid
= com.acme
.email

factory pid
= eric.mf

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can
run simultaneously. This approach is very similar to the example for the Managed Service, but high-
lights the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory{
 Hashtable consoles = new Hashtable();
 BundleContext context;
 public void start(BundleContext context)
 throws Exception {
 this.context = context;
 Hashtable local = new Hashtable();
 local.put(Constants.SERVICE_PID,"com.acme.console");
 context.registerService(
 ManagedServiceFactory.class.getName(),

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8.1 Page 21

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 this,
 local);
 }

 public void updated(String pid, Dictionary config){
 Console console = (Console) consoles.get(pid);
 if (console == null) {
 console = new Console(context);
 consoles.put(pid, console);
 }

 int port = getInt(config, "port", 2011);
 String network = getString(
 config,
 "network",
 null /*all*/
);
 console.setPort(port, network);
 }

 public void deleted(String pid) {
 Console console = (Console) consoles.get(pid);
 if (console != null) {
 consoles.remove(pid);
 console.close();
 }
 }
}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configurat ion objects as-
sociated with specific configuration targets. Configurat ion objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or the bundles configuring
their own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configurat ion objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConfigurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfigurat ion method must atomically create and persistently store an ob-
ject if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) - This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to configure an-
other bundle. Therefore, this management bundle needs the right permission. The first argument

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 22 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

is the PID and the second argument is the location identifier of the targeted ManagedService ob-
ject.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l be-
cause the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two sets of methods to create a new Configuration for a
Managed Service Factory. The first set delegates the creation of the unique PID to the Configuration
Admin service. The second set allows the caller to influence the generation of the PID.

The Configurat ionAdmin class provides the following two methods which generate a unique PID
when creating a new Configuration for a Managed Service Factory. A new, unique PID is created for
the Configuration object by the Configuration Admin service. The scheme used for this PID is de-
fined by the Configuration Admin service and is unrelated to the factory PID, which is chosen by
the registering bundle.

• createFactoryConfigurat ion(Str ing) - This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the target-
ed ManagedServiceFactory object. This factory PID can be obtained from the returned Configura-
t ion object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to
configure another bundle's ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.

The Configurat ionAdmin class provides the following two methods allowing the caller to influence
the generation of the PID when creating a new Configuration for a Managed Service Factory. The
PID for the Configuration object is generated from the provided factory PID and the provided name
by starting with the factory PID, appending a tilde (' ~ ' \u007e), and then appending the name. The
getFactoryConfigurat ion methods must atomically create and persistently store a Configuration ob-
ject if it does not yet exist.

• getFactoryConfigurat ion(Str ing,Str ing) - This method is used by a bundle with a given location
to configure its own ManagedServiceFactory objects. The first argument specifies the PID of the
targeted ManagedServiceFactory object. This factory PID can be obtained from the returned Con-
figurat ion object with the getFactoryPid() method. The second argument specifies the name of
the factory configuration. The generated PID can be obtained from the returned Configurat ion
object with the getPid() method.

• getFactoryConfigurat ion(Str ing,Str ing,Str ing) - This method is used by a management bun-
dle to configure another bundle's ManagedServiceFactory object. The first argument is the PID,
the second argument is the name, and the third is the location identifier of the targeted Man-
agedServiceFactory object. The factory PID can be obtained from the returned Configurat ion ob-
ject with getFactoryPid method. The generated PID can be obtained from the returned Configu-
rat ion object with the getPid() method.

Creating a new Configuration must not initiate a callback to the Managed Service Factory updated
method until the properties are set in the Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(Str ing) . The argu-
ment is a Str ing object with a filter expression. This filter expression has the same syntax as the
Framework Fi l ter class. For example:

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8.1 Page 23

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

(&(size=42)(service.factoryPid=*osgi*))

The Configuration Admin service must only return Configurations that are visible to the calling
bundle, see Location Binding on page 11.

A single Configurat ion object is identified with a PID, and can be obtained with
l istConfigurat ions(Str ing) if it is visible. nul l is returned in both cases when there are no visible
Configurat ion objects.

The PIDs that are filtered on can be targeted PIDs, see Targeted PIDs on page 9.

104.7.4 Updating a Configuration
The process of updating a Configurat ion object is the same for Managed Services and
Managed Service Factories. First, l istConfigurat ions(Str ing) , getConfigurat ion(Str ing) or
getFactoryConfigurat ion(Str ing,Str ing) should be used to get a Configurat ion object. The properties
can be obtained with Configurat ion.getPropert ies . When no update has occurred since this object
was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration Admin ser-
vice must first store the configuration information and then call all configuration targets that
have visibility with the updated method: either the ManagedService.updated(Dict ionary) or
ManagedServiceFactory.updated(Str ing,Dict ionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility. Each update of the Configuration properties must update a counter in
the Configuration object after the data has been persisted but before the target(s) have been updated
and any events are sent out. This counter is available from the getChangeCount() method.

The update methods in Configurat ion objects are not executed synchronously with the related tar-
get services updated method. The updated method must be called asynchronously. The Configura-
tion Admin service, however, must have updated the persistent storage before the update method
returns.

The update methods must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

Invoking the update(Dict ionary) method results in Configuration Admin service blindly updating
the Configurat ion object and performing the above outlined actions. This even happens if the updat-
ed set of properties is the same as the already existing properties in the Configurat ion object.

To optimize configuration updates if the caller does not know whether properties of a Configura-
t ion object have changed, the updateIfDifferent(Dict ionary) method can be used. The provided dic-
tionary is compared with the existing properties. If there is no change, no action is taken. If there is
any change detected, updateIfDifferent(Dict ionary) acts exactly as update(Dict ionary) . Properties
are compared as follows:

• Scalars are compared using equals

• Arrays are compared using Arrays.equals

• Collections are compared using equals

The boolean result of updateIfDifferent(Dict ionary) is true if the Configuration object has been up-
dated.

If the Configurat ion object has the READ_ONLY attribute set, calling one of the update methods re-
sults in a ReadOnlyConfigurat ionException and the configuration is not changed.

104.7.5 Using Multi-Locations
Sharing configuration between different bundles can be done using multi-locations, see Location
Binding on page 11. A multi-location for a Configuration enables this Configuration to be deliv-

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 24 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

ered to any bundle that has visibility to that configuration. It is also possible that Bundles are inter-
ested in multiple PIDs for one target service, for this reason they can register multiple PIDs for one
service.

For example, a number of bundles require access to the URL of a remote host, associated with the
PID com.acme.host . A manager, aware that this PID is used by different bundles, would need to
specify a location for the Configuration that allows delivery to any bundle. A multi-location, any lo-
cation starting with a question mark achieves this. The part after the question mark has only use if
the system runs with security, it allows the implementation of regions, see Regions on page 24. In
this example a single question mark is used because any Bundle can receive this Configuration. The
manager's code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:

service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;
public void updated(Dictionary d) {
 if (d.get("service.pid").equals("com.acme.host"))
 this.url = new URL(d.get("host"));
 if (d.get("service.pid").equals("com.acme.system"))

}

104.7.6 Regions
In certain cases it is necessary to isolate bundles from each other. This will require that the configu-
ration can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration's location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 11,
and security it is possible to limit access to a Configuration by using a location name. A Bundle can
only receive a Configuration when it has Configurat ionPermission [location name, TARGET] . It is
therefore possible to create region by choosing a region name for the location. A management agent
then requires Configurat ionPermission [?region-name, CONFIGURE] and a Bundle in the region re-
quires Configurat ionPermission [?region-name, TARGET] .

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configura-
tion. With a multi-location, the Configuration is delivered to any bundle that has the appropriate
permission. Therefore, if regions are used, no manager should have Configurat ionPermission[*,
CONFIGURE] because it would be able to configure anybody. This permission would enable the
manager to set the location to any region or set the location to nul l . All managers must be restrict-
ed to a permission like Configurat ionPermission[?com.acme.region.*,CONFIGURE] . The resource

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8.1 Page 25

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

name for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can
be used to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme . It has the following permission:

Configurat ionPermission[?com.acme.*,CONFIGURE]

The manager requires multi-location updates for com.acme.* (the last full stop is required in this
wildcarding). For the CONFIGURE action the question mark must be specified in the resource name.
The bundles in the region have the permission:

Configurat ionPermission["?com.acme.alpha",TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration c = admin.getConfiguration("com.acme.host", "?com.acme.alpha");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

Another, similar, example with two regions:

• system
• appl icat ion

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system,CONFIGURE]
ConfigurationPermission[?application,CONFIGURE]

A Bundle in the appl icat ion region can have the following permissions:

ConfigurationPermission[?application,TARGET]

This managed bundle therefore has only visibility to configurations in the appl icat ion region.

104.7.7 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the tar-
get service's updated or deleted method is called. Only services that have received the configuration
dictionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configura-
t ion object by a call to ManagedServiceFactory.deleted(Str ing) method. It should then remove the
associated instance. The ManagedServiceFactory.deleted(Str ing) call must be done asynchronously
with respect to Configurat ion.delete() .

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default
values, or to unregister a service. This method is called asynchronously from the delete method.

The delete method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

If the Configurat ion object has the READ_ONLY attribute set, calling the delete method results in a
ReadOnlyConfigurat ionException and the configuration is not deleted.

104.7.8 Updating a Bundle's Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).

Configuration Events Configuration Admin Service Specification Version 1.6

Page 26 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service's updated method.

As a rule, to update its own configuration, a bundle's user interface should only update the config-
uration information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation's perspective, appear similar for internal updates, remote
management updates, and initialization.

104.7.9 Configuration Attributes
The Configurat ion object supports attributes, similar to setting attributes on files in a file system.
Currently only the READ_ONLY attribute is supported.

Attributes can be set by calling the addAttr ibutes(Configurat ionAttr ibute. . .) method and
listing the attributes to be added. In the same way attributes can be removed by calling
removeAttr ibutes(Configurat ionAttr ibute. . .) . Each successful change in attributes is persisted.

A Bundle can only change the attributes if it has Configuration Permission with the ATTRIBUTE ac-
tion. Otherwise a Security Exception is thrown.

The currently set attributes can be queried using the getAttr ibutes() method.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where Configuration Listener services are registered with the service
registry.

There are two types of Configuration Listener services:

• Configurat ionListener - The default Configuration Listener receives events asynchronously from
the method that initiated the event and on another thread.

• SynchronousConfigurat ionListener - A Synchronous Configuration Listener is guaranteed to be
called on the same thread as the method call that initiated the event.

The Configuration Listener service will receive Configurat ionEvent objects if important changes
take place. The Configuration Admin service must call the configurat ionEvent(Configurat ionEvent)
method with such an event. Configuration Events must be delivered in order for each listener as
they are generated. The way events must be delivered is the same as described in Delivering Events of
???.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the
factory PID is nul l , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configurat ion object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED - The Configurat ion object is deleted.
• CM_UPDATED - The Configurat ion object is updated.
• CM_LOCATION_CHANGED - The location of the Configurat ion object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must be delivered asynchronously via the Event Admin service, if present. The
topic of a configuration event must be:

Configuration Admin Service Specification Version 1.6 Configuration Plugin

OSGi Compendium Release 8.1 Page 27

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

org/osgi/service/cm/ConfigurationEvent/<eventtype>

The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

• cm.factoryPid - (Str ing) The factory PID of the associated Configurat ion object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid - (Str ing) The PID of the associated Configurat ion object.
• service - (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id - (Long) The Configuration Admin service's ID.
• service.objectClass - (Str ing[]) The Configuration Admin service's object class (which must in-

clude org.osgi .service.cm.Configurat ionAdmin)
• service.pid - (Str ing) The Configuration Admin service's persistent identity, if set.

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must on-
ly be called when an update takes place while it is registered and there is a valid dictionary. The plu-
gin is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method:
modifyConfigurat ion(ServiceReference,Dict ionary) . This method inspects or modifies configura-
tion data.

All plug-ins in the service registry must be traversed and called before the properties are passed to
the configuration target service. Each Configuration Plugin object gets a chance to inspect the exist-
ing data, look at the target object, which can be a ManagedService object or a ManagedServiceFac-
tory object, and modify the properties of the configuration dictionary. The changes made by a plug-
in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly intend-
ed to provide functions that leverage the Framework service registry. The changes made by the plug-
in should normally not be validated. However, the Configuration Admin must ignore changes to the
automatic properties as described in Automatic Properties on page 13.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the
general requirement that the service should propagate the public properties it receives from the
Configuration Admin service to the service registry.

Configuration Plugin Configuration Admin Service Specification Version 1.6

Page 28 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Figure 104.8 Order of Configuration Plugin Services

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

modifyConfiguration()update()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value
is the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a Configurat ionPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the list of the target ser-
vice be updated. The bundle which registered the Configuration Plugin service, therefore, wants
to set the service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even ob-
tain the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions
in the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the up-
date method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The Configurat ionPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configura-
tion Admin service must call updated on the target service with the new service.to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

Configuration Admin Service Specification Version 1.6 Meta Typing

OSGi Compendium Release 8.1 Page 29

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The Configurat ionPlugin interface must also allow plugins to detect configuration updates to the
service via the callback. This ability allows them to synchronize the configuration updates with
transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appro-
priate Configurat ion object from the Configuration Admin service and call the update() method
(the no parameter version) on this object. This call forces an update with the current configuration
dictionary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.
In the event of more than one plugin having the same value of service.cmRanking , then the order in
which these are called is undefined.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description
< 0 The Configuration Plugin service should not modify properties and must

be called before any modifications are made. Any modification from the
Configuration Plugin service is ignored.

>= 0 && <= 1000 The Configuration Plugin service modifies the configuration data. The
calling order should be based on the value of the service.cmRanking prop-
erty.

> 1000 The Configuration Plugin service should not modify data and is called af-
ter all modifications are made. Any modification from the Configuration
Plugin service is ignored.

104.9.6 Manual Invocation
The Configuration Admin service ensures that Configuration Plugin services are automati-
cally called for a Managed Service or a Managed Service Factory as outlined above. If a bundle
needs to get the configuration properties processed by the Configuration Plugin services, the
getProcessedPropert ies(ServiceReference) method provides this view.

The service reference passed into the method must either point to a Managed Service or Managed
Service Factory registered on behalf of the bundle getting the processed properties. If that service
should not be called by the Configuration Admin service, that service must be registered without a
PID service property.

104.10 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration Ad-
min service.

When a Managed Service or Managed Service Factory is registered, the service object may also im-
plement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

Coordinator Support Configuration Admin Service Specification Version 1.6

Page 30 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification cannot describe nested arrays and lists or arrays/lists of mixed type.

This specification does not address how the metatype is made available to a management system
due to the many open issues regarding remote management.

104.11 Coordinator Support
The ??? defines a mechanism for multiple parties to collaborate on a common task without a priori
knowledge of who will collaborate in that task. The Configuration Admin service must participate
in such scenarios to coordinate with provisioning or configuration tasks.

If configurations are created, updated or deleted and an implicit coordination exists, the Configura-
tion Admin service must delay notifications until the coordination terminates. However the config-
uration changes must be persisted immediately. Updating a Managed Service or Managed Service
Factory and informing asynchronous listeners is delayed until the coordination terminates, regard-
less of whether the coordination fails or terminates regularly. Registered synchronous listeners will
be informed immediately when the change happens regardless of a coordination.

The intend of this integration is that multiple events are collapsed into one as updating a Managed
Service or Managed Service Factory might result in services being updated or unregistered what can
trigger other service changes what might be a costly operation and therefore result in an unwanted
intermediate states until the system has setled again. Collapsing here means, that multiple updates
inside a coordination are combined into exactly one update that reflects the final outcome, the fol-
lowing list gives some examples for clarification:

• If a configuration exists and it has currently the values {key: value} and a coordination starts
where it is first updated to {key: something else} and later again to {key: value} , then after the
coordination terminates one update is delivered with {key: value} even though the configura-
tion has not changed, see Updating a Configuration on page 23.

If no configuration exists and a coordination starts where it is first updated to {key: something
else} and later is deleted, then after the coordination terminates one update is delivered with nul l
even though the Managed Service or Managed Service Factory has not changed this is a special
case of the blindly update case described in Updating a Configuration on page 23.

104.12 Capabilities

104.12.1 osgi.implementation Capability
The Configuration Admin implementation bundle must provide the osgi . implementation capabil-
ity with the name osgi .cm . This capability can be used by provisioning tools and during resolution
to ensure that a Configuration Admin implementation is present to manage configurations. The ca-
pability must also declare a uses constraint for the org.osgi .service.cm package and provide the ver-
sion of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.cm";
 uses:="org.osgi.service.cm";

Configuration Admin Service Specification Version 1.6 Security

OSGi Compendium Release 8.1 Page 31

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 version:Version="1.6"

This capability must follow the rules defined for the ???.

Bundles relying on the Configuration Admin service should require the osgi . implementation capa-
bility from the Configuration Admin Service.

Require-Capability: osgi.implementation;
 filter:="(&(osgi.implementation=osgi.cm)(version>=1.6)(!(version>=2.0)))"

This requirement can be easily generated using the RequireConfigurat ionAdmin annotation.

104.12.2 osgi.service Capability
The bundle providing the Configuration Admin service must provide a capability in the
osgi .service namespace representing this service. This capability must also declare a uses constraint
for the org.osgi .service.cm package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.cm.ConfigurationAdmin";
 uses:="org.osgi.service.cm"

This capability must follow the rules defined for the ???.

104.13 Security

104.13.1 Configuration Permission
Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . For all other situations the Configuration Admin
must verify that the configuring and to be updated bundles have a Configuration Permission that
matches the Configuration's location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actu-
al configuration location using the OSGi Filter sub-string matching. The question mark for multi-lo-
cations is part of the given resource name. The Configure Permission has the following actions:

• CONFIGURE - Can manage matching configurations
• TARGET - Can be updated with a matching configuration
• ATTRIBUTE - Can manage attributes for matching configuration

To be able to set the location to nul l requires a Configurat ionPermission[*, CONFIGURE] .

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin's
deny model.

104.13.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]

Security Configuration Admin Service Specification Version 1.6

Page 32 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]
ConfigurationPermission[... , TARGET]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]
ConfigurationPermission[... , TARGET]

Configuration Plugin:

ServicePermission[..ConfigurationPlugin,REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener,REGISTER]

The Configuration Admin service must have ServicePermission[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService | Man-
agedServiceFactory | Configurat ionPlugin, GET] . No other bundle should be allowed to
have GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService | Man-
agedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermission[Configurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Configurat ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also reg-
istered under another interface, it is possible, although inappropriate, for a bundle other than
the Configuration Admin service implementation to call the updated method. Security-aware
bundles can avoid this problem by having their updated methods check that the caller has
Configurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need ServicePermission[Configurat ionAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE] is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires Configurat ionPermission[location,CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

104.13.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not de-
fine specific values but allow a range of values. For example, a bundle could listen to ports above
1024 freely. All these ports could then be used for configuration.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 33

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1. Stop the bundle.
2. Update the appropriate Configurat ion object via the Configuration Admin service.
3. Update the permissions in the Framework.
4. Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

104.14 org.osgi.service.cm

Configuration Admin Package Version 1.6.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,1.7)"

104.14.1 Summary

• Configurat ion - The configuration information for a ManagedService or ManagedServiceFacto-
ry object.

• Configurat ion.Configurat ionAttr ibute - Configuration Attributes.
• Configurat ionAdmin - Service for administering configuration data.
• Configurat ionConstants - Defines standard constants for the Configuration Admin service.
• Configurat ionEvent - A Configuration Event.
• Configurat ionException - An Exception class to inform the Configuration Admin service of

problems with configuration data.
• Configurat ionListener - Listener for Configuration Events.
• Configurat ionPermission - Indicates a bundle's authority to configure bundles or be updated by

Configuration Admin.
• Configurat ionPlugin - A service interface for processing configuration dictionary before the up-

date.
• ManagedService - A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory - Manage multiple service instances.
• ReadOnlyConfigurat ionException - An Exception class to inform the client of a Configurat ion

about the read only state of a configuration object.
• SynchronousConfigurat ionListener - Synchronous Listener for Configuration Events.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 34 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.2 Permissions

104.14.2.1 Configuration

• setBundleLocation(Str ing)
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l or if location is nul l

• getBundleLocation()
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l

• addAttr ibutes(Configurat ionAttr ibute. . .)
• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

• removeAttr ibutes(Configurat ionAttr ibute. . .)
• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

104.14.2.2 ConfigurationAdmin

• createFactoryConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if location is nul l

• getConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getConfigurat ion(Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• getFactoryConfigurat ion(Str ing,Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getFactoryConfigurat ion(Str ing,Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• l istConfigurat ions(Str ing)
• Configurat ionPermission[c. locat ion,CONFIGURE] - Only configurations c are returned for

which the caller has this permission

104.14.2.3 ManagedService

• updated(Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 35

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.2.4 ManagedServiceFactory

• updated(Str ing,Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.14.3 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Con-
figuration Admin service uses this interface to represent the configuration information for a Man-
agedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case must be preserved from the last set key/value.

A configuration can be bound to a specific bundle or to a region of bundles using the location. In
its simplest form the location is the location of the target bundle that registered a Managed Ser-
vice or a Managed Service Factory. However, if the location starts with ? then the location indi-
cates multiple delivery. In such a case the configuration must be delivered to all targets. If securi-
ty is on, the Configuration Permission can be used to restrict the targets that receive updates. The
Configuration Admin must only update a target when the configuration location matches the lo-
cation of the target's bundle or the target bundle has a Configuration Permission with the action
ConfigurationPermission.TARGET and a name that matches the configuration location. The name
in the permission may contain wildcards ('* ') to match the location using the same substring
matching rules as Filter. Bundles can always create, manipulate, and be updated from configura-
tions that have a location that matches their bundle location.

If a configuration's location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term "factory configura-
tion" is used.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.3.1 public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to add.

□ Add attributes to the configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.2 public void delete() throws IOException

□ Delete this Configurat ion object.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 36 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Removes this configuration object from the persistent store. Notify asynchronously the correspond-
ing Managed Service or Managed Service Factory. A ManagedService object is notified by a call to its
updated method with a nul l properties argument. A ManagedServiceFactory object is notified by a
call to its deleted method.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_DELETED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If delete fails.

I l legalStateException– If this configuration has been deleted.

104.14.3.3 public boolean equals(Object other)

other Configurat ion object to compare against

□ Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.

104.14.3.4 public Set<Configuration.ConfigurationAttribute> getAttributes()

□ Get the attributes of this configuration.

Returns The set of attributes.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.5 public String getBundleLocation()

□ Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or nul l if it is not yet bound to a bundle location or region. If the location starts with ? then the con-
figuration is delivered to all targets and not restricted to a single bundle.

Returns location to which this configuration is bound, or nul l .

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l

104.14.3.6 public long getChangeCount()

□ Get the change count. Each Configuration must maintain a change counter that is incremented
with a positive value every time the configuration is updated and its properties are stored. The
counter must be incremented before the targets are updated and events are sent out.

Returns A monotonically increasing value reflecting changes in this Configuration.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.5

104.14.3.7 public String getFactoryPid()

□ For a factory configuration return the PID of the corresponding Managed Service Factory, else return
nul l .

Returns factory PID or nul l

Throws I l legalStateException– If this configuration has been deleted.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 37

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.3.8 public String getPid()

□ Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws I l legalStateException– if this configuration has been deleted

104.14.3.9 public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)

reference The reference to the Managed Service or Managed Service Factory to pass to the registered Configu-
rationPlugins handling this configuration. Must not be nul l .

□ Return the processed properties of this Configurat ion object.

The Dictionary object returned is a private copy for the caller and may be changed without influenc-
ing the stored configuration. The keys in the returned dictionary are case insensitive and are always
of type Str ing .

Before the properties are returned they are processed by all the registered ConfigurationPlugins han-
dling this configuration.

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the processed properties for the caller or nul l . These properties must not contain
the "service.bundleLocation" property. The value of this property may be obtained from the get-
BundleLocation() method.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.10 public Dictionary<String, Object> getProperties()

□ Return the properties of this Configurat ion object. The Dictionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the re-
turned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the getBundle-
Location() method.

Throws I l legalStateException– If this configuration has been deleted.

104.14.3.11 public int hashCode()

□ Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID's are the same.

Returns hash code for this Configuration object

104.14.3.12 public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to remove.

□ Remove attributes from this configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 38 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.13 public void setBundleLocation(String location)

location a location, region, or nul l

□ Bind this Configurat ion object to the specified location. If the location parameter is nul l then the
Configurat ion object will not be bound to a location/region. It will be set to the bundle's location be-
fore the first time a Managed Service/Managed Service Factory receives this Configurat ion object via
the updated method and before any plugins are called. The bundle location or region will be set per-
sistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with nul l . If this configuration becomes
visible then they must be updated with this configuration.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_LOCATION_CHANGED
event.

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l or if location is nul l

104.14.3.14 public void update(Dictionary<String, ?> properties) throws IOException

properties the new set of properties for this configuration

□ Update the properties of this Configurat ion object.

Stores the properties in persistent storage after adding or overwriting the following properties:

• "service.pid" : is set to be the PID of this configuration.
• "service.factoryPid" : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration oc-
curs.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_UPDATED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– if update cannot be made persistent

I l legalArgumentException– if the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

104.14.3.15 public void update() throws IOException

□ Update the Configurat ion object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 39

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its Configurat ionPlugin object.

Throws IOException– if update cannot access the properties in persistent storage

I l legalStateException– If this configuration has been deleted.

See Also ConfigurationPlugin

104.14.3.16 public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

properties The new set of properties for this configuration.

□ Update the properties of this Configurat ion object if the provided properties are different than the
currently stored set. Properties are compared as follows.

• Scalars are compared using equals
• Arrays are compared using Arrays.equals
• Collections are compared using equals

If the new properties are not different than the current properties, no operation is performed. Other-
wise, the behavior of this method is identical to the update(Dictionary) method.

Returns If the properties are different and the configuration is updated true is returned. If the properties are
the same, fa lse is returned.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If update cannot be made persistent.

I l legalArgumentException– If the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.4 enum Configuration.ConfigurationAttribute
Configuration Attributes.

Since 1.6

104.14.4.1 READ_ONLY

The configuration is read only.

104.14.4.2 public static Configuration.ConfigurationAttribute valueOf(String name)

104.14.4.3 public static Configuration.ConfigurationAttribute[] values()

104.14.5 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configurat ion objects. The actual configuration data is a Dictionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 40 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about "things/services" whose existence is de-
fined externally, e.g. a specific printer. Factories are intended for "things/services" that can be created
any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persis-
tent storage for a configuration object whose service.pid property matches the PID service property
(service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dictionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks
its storage for configuration objects whose service.factoryPid property matches the PID ser-
vice property of the Managed Service Factory. For each such Configurat ion objects, it calls the
ManagedServiceFactory.updated method asynchronously with the new properties. The calls to
the updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other
bundles requires Configurat ionPermission[location,CONFIGURE] , where location is the configura-
tion location.

Configurat ion objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configurat ion object must be unbound, that is
its location field is set back to nul l .

If target's bundle location matches the configuration location it is always updated.

If the configuration location starts with ? , that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle
must have Configuration Permission[location,TARGET], where location matches given the configu-
ration location with wildcards as in the Filter substring match. The security must be verified using
the org.osgi.framework.Bundle.hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and securi-
ty is active then the Configuration Admin service must not do the normal callback.

The method descriptions of this class refer to a concept of "the calling bundle". This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of Configurat ionAdmin must use a org.osgi.framework.ServiceFactory to support
this concept.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.5.1 public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"

Configuration property naming the location of the bundle that is associated with a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for se-
curity reason. The property's value is of type Str ing .

Since 1.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 41

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.5.2 public static final String SERVICE_FACTORYPID = "service.factoryPid"

Configuration property naming the Factory PID in the configuration dictionary. The property's val-
ue is of type Str ing .

Since 1.1

104.14.5.3 public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only
see the factory configurations that they are bound to or have the proper permission.

Returns A new Configurat ion object.

Throws IOException– if access to persistent storage fails.

104.14.5.4 public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is nul l it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper per-
mission.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

Returns a new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if location is nul l

104.14.5.5 public Configuration getConfiguration(String pid, String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

□ Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 42 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

104.14.5.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

□ Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object
for this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l .
Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

104.14.5.7 public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws
IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

location The bundle location string, or nul l .

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 43

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Since 1.6

104.14.5.8 public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion object for this PID does not exist, create a new Configurat ion object for that PID,
where properties are nul l . Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

Since 1.6

104.14.5.9 public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

□ List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- nul l properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned Configura-
t ion objects.

When there is no security on then all configurations can be returned. If security is on, the caller
must have ConfigurationPermission[location,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can test any configuration
properties including the following:

• service.pid - the persistent identity
• service.factoryPid - the factory PID, if applicable
• service.bundleLocation - the bundle location

The filter can also be nul l , meaning that all Configurat ion objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren't any.

Throws IOException– if access to persistent storage fails

Inval idSyntaxException– if the filter string is invalid

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – Only configurations c are returned for which
the caller has this permission

104.14.6 public final class ConfigurationConstants
Defines standard constants for the Configuration Admin service.

104.14.6.1 public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"

The name of the implementation capability for the Configuration Admin specification

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 44 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Since 1.6

104.14.6.2 public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"

The version of the implementation capability for the Configuration Admin specification

Since 1.6

104.14.7 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered Configurat ionListener service objects.
ConfigurationEvents must be delivered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Additional event types may be defined in the future.

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no
sensitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2

Concurrency Immutable

104.14.7.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This Configurat ionEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configuration.delete() successfully deletes a configuration.

104.14.7.2 public static final int CM_LOCATION_CHANGED = 3

The location of a Configurat ion has been changed.

This Configurat ionEvent type that indicates that the location of a Configurat ion object has been
changed. An event is fired when a call to Configuration.setBundleLocation(String) successfully
changes the location.

Since 1.4

104.14.7.3 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

This Configurat ionEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configuration.update(Dictionary) successfully changes a
configuration.

104.14.7.4 public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid,
String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.

type The event type. See getType().

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedSer-
viceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 45

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

pid The pid of the associated configuration.

□ Constructs a Configurat ionEvent object from the given ServiceReference object, event type, and
pids.

104.14.7.5 public String getFactoryPid()

□ Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Man-
agedServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

104.14.7.6 public String getPid()

□ Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.

104.14.7.7 public ServiceReference<ConfigurationAdmin> getReference()

□ Return the ServiceReference object of the Configuration Admin service that created this event.

Returns The ServiceReference object for the Configuration Admin service that created this event.

104.14.7.8 public int getType()

□ Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Returns The type of this event.

104.14.8 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.

104.14.8.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

□ Create a Configurat ionException object.

104.14.8.2 public ConfigurationException(String property, String reason, Throwable cause)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

cause The cause of this exception.

□ Create a Configurat ionException object.

Since 1.2

104.14.8.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 46 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

Since 1.2

104.14.8.4 public String getProperty()

□ Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem

104.14.8.5 public String getReason()

□ Return the reason for this exception.

Returns reason of the failure

104.14.8.6 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

104.14.9 public interface ConfigurationListener
Listener for Configuration Events. When a Configurat ionEvent is fired, it is asynchronously deliv-
ered to all Configurat ionListeners.

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configurat ion object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermission[Configurat ionListener,REGISTER] to register a Configurat ionListener service.

Since 1.2

Concurrency Thread-safe

104.14.9.1 public void configurationEvent(ConfigurationEvent event)

event The Configurat ionEvent .

□ Receives notification of a Configuration that has changed.

104.14.10 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle's authority to configure bundles or be updated by Configuration Admin.

Since 1.2

Concurrency Thread-safe

104.14.10.1 public static final String ATTRIBUTE = "attribute"

Provides permission to set or remove an attribute on the configuration. The action string "attribute".

Since 1.6

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 47

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

104.14.10.2 public static final String CONFIGURE = "configure"

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string "configure".

104.14.10.3 public static final String TARGET = "target"

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The ac-
tion string "target".

Since 1.4

104.14.10.4 public ConfigurationPermission(String name, String actions)

name Name of the permission. Wildcards ('* ') are allowed in the name. During implies(Permission), the
name is matched to the requested permission using the substring matching rules used by Filters.

actions Comma separated list of CONFIGURE, TARGET, ATTRIBUTE (case insensitive).

□ Create a new ConfigurationPermission.

104.14.10.5 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Determines the equality of two Configurat ionPermission objects.

Two Configurat ionPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermission ; fa lse otherwise.

104.14.10.6 public String getActions()

□ Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present Configurat ionPermission actions in the following order: "configure", "tar-
get", "attribute".

Returns Canonical string representation of the Configurat ionPermission actions.

104.14.10.7 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

104.14.10.8 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a Configurat ionPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

104.14.10.9 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermissions.

Returns A new PermissionCol lect ion object.

104.14.11 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before
they reach the Managed Service or Managed Service Factory. The Configuration Admin service will

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 48 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

detect registrations of Configuration Plugin services and must call these services every time before
it calls the ManagedService or ManagedServiceFactory updated method. The Configuration Plug-
in service thus has the opportunity to view and modify the properties before they are passed to the
Managed Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.

The Integer service.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Inte-
ger zero. The service.cmRanking property determines the order in which plugins are invoked. Low-
er ranked plugins are called before higher ranked ones. In the event of more than one plugin having
the same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with service.cmRanking < 0 or service.cmRanking > 1000 should not make
modifications to the properties. Any modifications made by such plugins must be ignored.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entire-
ly implementation defined.

A plugin may optionally specify a cm.target registration property whose value is the PID of the
Managed Service or Managed Service Factory whose configuration updates the plugin is intended
to intercept. The plugin will then only be called with configuration updates that are targeted at the
Managed Service or Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

Concurrency Thread-safe

104.14.11.1 public static final String CM_RANKING = "service.cmRanking"

A service property to specify the order in which plugins are invoked. This property contains an In-
teger ranking of the plugin. Not specifying this registration property, or setting it to something oth-
er than an Integer , is the same as setting it to the Integer zero. This property determines the order in
which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2

104.14.11.2 public static final String CM_TARGET = "cm.target"

A service property to limit the Managed Service or Managed Service Factory configuration dictio-
naries a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configu-
ration Admin service must call a Configuration Plugin service only when this property is not set, or
the target service's PID is listed in this property.

104.14.11.3 public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the "service.bundleLocation" proper-
ty. The value of this property may be obtained from the Configurat ion.getBundleLocation method.

□ View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing
order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 . Any modification from this plugin is ignored.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it. Any modifications made by the plugin before the exception is thrown are applied.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 49

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

A Configuration Plugin will only be called for properties from configurations that have a location
for which the Configuration Plugin has permission when security is active. When security is not ac-
tive, no filtering is done.

104.14.12 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a
PID.

If the Configuration Admin service has a Configurat ion object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that Configura-
t ion object.

If it has no such Configurat ion object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is
called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configu-
ration information.

 class SerialPort implements ManagedService {

 ServiceRegistration registration;
 Hashtable configuration;
 CommPortIdentifier id;

 synchronized void open(CommPortIdentifier id,
 BundleContext context) {
 this.id = id;
 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 getDefaults()
);
 }

 Hashtable getDefaults() {
 Hashtable defaults = new Hashtable();
 defaults.put("port", id.getName());
 defaults.put("product", "unknown");
 defaults.put("baud", "9600");
 defaults.put(Constants.SERVICE_PID,
 "com.acme.serialport." + id.getName());
 return defaults;
 }

 public synchronized void updated(
 Dictionary configuration) {
 if (configuration == null)
 registration.setProperties(getDefaults());

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 50 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

 else {
 setSpeed(configuration.get("baud"));
 registration.setProperties(configuration);
 }
 }
 ...
 }

As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on,
a Managed Service can have Configuration Permission to also be updated for other locations.

If a Managed Service is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

104.14.12.1 public void updated(Dictionary<String, ?> properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

□ Update the configuration for a Managed Service.

When the implementation of updated(Dict ionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can al-
low a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that ini-
tiated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by
deleting the configuration if the configuration is no longer visible and updating when it becomes
visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configura-
tion, then the bundle must be called back with a nul l to signal that CM is active but there is no data.

Throws Configurat ionException– when the update fails

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.13 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-
menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin
service, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8.1 Page 51

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

tory instance based on these configuration properties. When called with a PID that it has seen be-
fore, it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are de-
fined by the Managed Service Factory. However, if the factory instance is registered as a service ob-
ject with the service registry, its PID should match the PID of the corresponding Configurat ion ob-
ject (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

 class SerialPortFactory
 implements ManagedServiceFactory {
 ServiceRegistration registration;
 Hashtable ports;
 void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,
 "com.acme.serialportfactory");
 registration = context.registerService(
 ManagedServiceFactory.class.getName(),
 this,
 properties
);
 }
 public void updated(String pid,
 Dictionary properties) {
 String portName = (String) properties.get("port");
 SerialPortService port =
 (SerialPort) ports.get(pid);
 if (port == null) {
 port = new SerialPortService();
 ports.put(pid, port);
 port.open();
 }
 if (port.getPortName().equals(portName))
 return;
 port.setPortName(portName);
 }
 public void deleted(String pid) {
 SerialPortService port =
 (SerialPort) ports.get(pid);
 port.close();
 ports.remove(pid);
 }
 ...
 }

If a ManagedServiceFactory is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

104.14.13.1 public void deleted(String pid)

pid the PID of the service to be removed

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 52 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

□ Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(String, Dictionary).

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.

104.14.13.2 public String getName()

□ Return a descriptive name of this factory.

Returns the name for the factory, which might be localized

104.14.13.3 public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation"
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

□ Create a new instance, or update the configuration of an existing instance. If the PID of the Config-
urat ion object is new for the Managed Service Factory, then create a new factory instance, using the
configuration propert ies provided. Else, update the service instance with the provided propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should
be copied to its registry properties. This is not mandatory and security sensitive properties should
obviously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new ConfigurationException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place
during registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflect-
ed by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

Throws Configurat ionException– when the configuration properties are invalid.

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.14 public class ReadOnlyConfigurationException
extends RuntimeException
An Exception class to inform the client of a Configurat ion about the read only state of a configura-
tion object.

Since 1.6

104.14.14.1 public ReadOnlyConfigurationException(String reason)

reason reason for failure

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm.annotations

OSGi Compendium Release 8.1 Page 53

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

□ Create a ReadOnlyConfigurat ionException object.

104.14.15 public interface SynchronousConfigurationListener
extends ConfigurationListener
Synchronous Listener for Configuration Events. When a Configurat ionEvent is fired, it is synchro-
nously delivered to all SynchronousConfigurat ionListeners.

SynchronousConfigurat ionListener objects are registered with the Framework service registry and
are synchronously notified with a Configurat ionEvent object when an event is fired.

SynchronousConfigurat ionListener objects can inspect the received Configurat ionEvent object to
determine its type, the PID of the Configurat ion object with which it is associated, and the Configu-
ration Admin service that fired the event.

Security Considerations. Bundles wishing to synchronously monitor configuration events will re-
quire ServicePermission[SynchronousConfigurat ionListener,REGISTER] to register a Synchronous-
Configurat ionListener service.

Since 1.5

Concurrency Thread-safe

104.15 org.osgi.service.cm.annotations

Configuration Admin Annotations Package Version 1.6.

This package contains annotations that can be used to require the Configuration Admin implemen-
tations

Bundles should not normally need to import this package as the annotations are only used at build-
time.

104.15.1 Summary

• RequireConfigurat ionAdmin - This annotation can be used to require the Configuration Admin
implementation.

104.15.2 @RequireConfigurationAdmin
This annotation can be used to require the Configuration Admin implementation. It can be used di-
rectly, or as a meta-annotation.

Since 1.6

Retention CLASS

Target TYPE , PACKAGE

org.osgi.service.cm.annotations Configuration Admin Service Specification Version 1.6

Page 54 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Compendium Release 8.1

OSGi Compendium Release 8.1 Page 55

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

OSGi Compendium Release 8.1

Page 56 OSGi Compendium Release 8.1

DR
AF
T

Lic
en

sed
 un

de
r th

e E
clip

se
Fo

un
da

tio
n S

pe
cif

ica
tio

n L
ice

ns
e –

 v1
.0. C

opy
rig

ht
© Contr

ibu
tors

to th
e E

clip
se

Fo
un

da
tio

n.

End Of Document

	OSGi Compendium
	Table of Contents
	Chapter 104. Configuration Admin Service Specification
	104.1. Introduction
	104.1.1. Essentials
	104.1.2. Entities
	104.1.3. Synopsis

	104.2. Configuration Targets
	104.3. The Persistent Identity
	104.3.1. PID Syntax
	104.3.1.1. Local Bundle PIDs
	104.3.1.2. Software PIDs
	104.3.1.3. Devices

	104.3.2. Targeted PIDs
	104.3.3. Extenders and Targeted PIDs

	104.4. The Configuration Object
	104.4.1. Location Binding
	104.4.2. Dynamic Binding
	104.4.3. Configuration Properties
	104.4.4. Property Propagation
	104.4.5. Automatic Properties
	104.4.6. Equality

	104.5. Managed Service
	104.5.1. Singletons
	104.5.2. Networks
	104.5.3. Configuring Managed Services
	104.5.4. Race Conditions
	104.5.5. Examples of Managed Service
	104.5.5.1. Configuring A Console Bundle

	104.5.6. Deletion

	104.6. Managed Service Factory
	104.6.1. When to Use a Managed Service Factory
	104.6.1.1. Example Email Fetcher
	104.6.1.2. Example Temperature Conversion Service
	104.6.1.3. Serial Ports

	104.6.2. Registration
	104.6.3. Deletion
	104.6.4. Managed Service Factory Example
	104.6.5. Multiple Consoles Example

	104.7. Configuration Admin Service
	104.7.1. Creating a Managed Service Configuration Object
	104.7.2. Creating a Managed Service Factory Configuration Object
	104.7.3. Accessing Existing Configurations
	104.7.4. Updating a Configuration
	104.7.5. Using Multi-Locations
	104.7.6. Regions
	104.7.7. Deletion
	104.7.8. Updating a Bundle's Own Configuration
	104.7.9. Configuration Attributes

	104.8. Configuration Events
	104.8.1. Event Admin Service and Configuration Change Events

	104.9. Configuration Plugin
	104.9.1. Limiting The Targets
	104.9.2. Example of Property Expansion
	104.9.3. Configuration Data Modifications
	104.9.4. Forcing a Callback
	104.9.5. Calling Order
	104.9.6. Manual Invocation

	104.10. Meta Typing
	104.11. Coordinator Support
	104.12. Capabilities
	104.12.1. osgi.implementation Capability
	104.12.2. osgi.service Capability

	104.13. Security
	104.13.1. Configuration Permission
	104.13.2. Permissions Summary
	104.13.3. Configuration and Permission Administration

	104.14. org.osgi.service.cm
	104.14.1. Summary
	104.14.2. Permissions
	104.14.2.1. Configuration
	104.14.2.2. ConfigurationAdmin
	104.14.2.3. ManagedService
	104.14.2.4. ManagedServiceFactory

	104.14.3. public interface Configuration
	104.14.3.1. public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.2. public void delete() throws IOException
	104.14.3.3. public boolean equals(Object other)
	104.14.3.4. public Set<Configuration.ConfigurationAttribute> getAttributes()
	104.14.3.5. public String getBundleLocation()
	104.14.3.6. public long getChangeCount()
	104.14.3.7. public String getFactoryPid()
	104.14.3.8. public String getPid()
	104.14.3.9. public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)
	104.14.3.10. public Dictionary<String, Object> getProperties()
	104.14.3.11. public int hashCode()
	104.14.3.12. public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.13. public void setBundleLocation(String location)
	104.14.3.14. public void update(Dictionary<String, ?> properties) throws IOException
	104.14.3.15. public void update() throws IOException
	104.14.3.16. public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

	104.14.4. enum Configuration.ConfigurationAttribute
	104.14.4.1. READ_ONLY
	104.14.4.2. public static Configuration.ConfigurationAttribute valueOf(String name)
	104.14.4.3. public static Configuration.ConfigurationAttribute[] values()

	104.14.5. public interface ConfigurationAdmin
	104.14.5.1. public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"
	104.14.5.2. public static final String SERVICE_FACTORYPID = "service.factoryPid"
	104.14.5.3. public Configuration createFactoryConfiguration(String factoryPid) throws IOException
	104.14.5.4. public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException
	104.14.5.5. public Configuration getConfiguration(String pid, String location) throws IOException
	104.14.5.6. public Configuration getConfiguration(String pid) throws IOException
	104.14.5.7. public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws IOException
	104.14.5.8. public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException
	104.14.5.9. public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

	104.14.6. public final class ConfigurationConstants
	104.14.6.1. public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"
	104.14.6.2. public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"

	104.14.7. public class ConfigurationEvent
	104.14.7.1. public static final int CM_DELETED = 2
	104.14.7.2. public static final int CM_LOCATION_CHANGED = 3
	104.14.7.3. public static final int CM_UPDATED = 1
	104.14.7.4. public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid, String pid)
	104.14.7.5. public String getFactoryPid()
	104.14.7.6. public String getPid()
	104.14.7.7. public ServiceReference<ConfigurationAdmin> getReference()
	104.14.7.8. public int getType()

	104.14.8. public class ConfigurationException extends Exception
	104.14.8.1. public ConfigurationException(String property, String reason)
	104.14.8.2. public ConfigurationException(String property, String reason, Throwable cause)
	104.14.8.3. public Throwable getCause()
	104.14.8.4. public String getProperty()
	104.14.8.5. public String getReason()
	104.14.8.6. public Throwable initCause(Throwable cause)

	104.14.9. public interface ConfigurationListener
	104.14.9.1. public void configurationEvent(ConfigurationEvent event)

	104.14.10. public final class ConfigurationPermission extends BasicPermission
	104.14.10.1. public static final String ATTRIBUTE = "attribute"
	104.14.10.2. public static final String CONFIGURE = "configure"
	104.14.10.3. public static final String TARGET = "target"
	104.14.10.4. public ConfigurationPermission(String name, String actions)
	104.14.10.5. public boolean equals(Object obj)
	104.14.10.6. public String getActions()
	104.14.10.7. public int hashCode()
	104.14.10.8. public boolean implies(Permission p)
	104.14.10.9. public PermissionCollection newPermissionCollection()

	104.14.11. public interface ConfigurationPlugin
	104.14.11.1. public static final String CM_RANKING = "service.cmRanking"
	104.14.11.2. public static final String CM_TARGET = "cm.target"
	104.14.11.3. public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

	104.14.12. public interface ManagedService
	104.14.12.1. public void updated(Dictionary<String, ?> properties) throws ConfigurationException

	104.14.13. public interface ManagedServiceFactory
	104.14.13.1. public void deleted(String pid)
	104.14.13.2. public String getName()
	104.14.13.3. public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

	104.14.14. public class ReadOnlyConfigurationException extends RuntimeException
	104.14.14.1. public ReadOnlyConfigurationException(String reason)

	104.14.15. public interface SynchronousConfigurationListener extends ConfigurationListener

	104.15. org.osgi.service.cm.annotations
	104.15.1. Summary
	104.15.2. @RequireConfigurationAdmin

