2.5

Exact Buoyancy
for Polyhedra

Erin Catto, Crystal Dynamics
erincatto@gphysics.com

Rigid body simulation brings many new capabilities and challenges. For example,
imagine an impromptu raft created from the remnants of a collapsed building
near a body of water. The player identifies a suitable chunk of wall and expects it to
float in a believable manner. For this to happen, the game must simulate buoyancy
realistically. It is obvious that increased realism in dynamic simulation naturally leads
to increased expectations of emergence. Therefore, buoyancy is an important ingredi-
ent in a well-rounded rigid-body simulation system for games that include water in
playable levels.

This gem describes an efficient method for computing buoyancy and drag forces on
rigid bodies. The algorithm determines an exact buoyancy force for a polyhedron in a
water volume. The central equations are in vector form to allow for SIMD optimization.

[Fagerlund] and [Gomez00] have provided similar investigations of real-time
buoyancy. Fagetlund uses embedded spheres to approximate the submerged portion
of an object. This requires an additional authoring step, and many spheres may be
required. Gomez distributes points on the object’s surface and attributes a portion of
the surface area to each point. He computes vertical columns of displaced water at
each surface point. His method also requires an additional authoring step and may
require many points to be placed on the surface (e.g., 20 to 30 for a cube).

In contrast, the algorithm presented here requires no additional authoring step.
In terms of geometric data, the algorithm only needs the vertices and triangles of the
polyhedron; however, it is limited to flat water surfaces.

This algorithm is exact in the hydrostatic sense, because we neglect the inertia of
water. This leads to somewhat unrealistic bobbing, but the approach is far simpler
than a fully dynamic water simulation.

Buoyancy
Archimedes’ principle states that the buoyancy force on a body immersed in water is
equal to the weight of the water displaced by the body:

175

176

Section 2 Mathematics and Physics

F, = pVgn, (2.5.1)

where p is the density of water, V is the volume of the submerged portion of the body,
g is the acceleration due to gravity, and n is the up vector.

As shown in Figure 2.5.1, the buoyancy force counteracts the force due to grav-
ity—for example, the weight of the object:
F =-mgn. (2.5.2)

g

Here, m is the body’s mass. The center of mass is x, and the center of buoyancy is
c. If the body’s average density is larger than the density of water, then the body will
sink. On the other hand, if the body’s average density is smaller than the density of
water, then the body will float.

F,=-mgn

T“ A

i

water plane

F,= P Vgll
FIGURE 2.5.1 Buoyancy and gravity forces acting on a body.

The buoyancy force can also lead to oscillation or bobbing. If a body is dropped
into water, its inertia force is added to Fg, and it can displace a volume of water that
exceeds the weight of the body. After dipping in too far, the body will accelerate back
up, and the process will repeat until the kinetic energy is dissipated.

As shown in Figure 2.5.2, the buoyancy force may produce a torque about the
center of mass. This happens because the center of buoyancy is at the center of the
displaced volume, which doesn’t necessarily coincide with the center of mass. The
torque about the center of mass due to buoyancy is:

T,=r,xpVgn, (2.5.3)
where X is the cross product and r, is the radius vector directed from x to c.

r,=c—x (2.5.4)

2.5 Exact Buoyancy for Polyhedra 177

F,=-mgn

water plane

F,=pVgn

FIGURE 2.5.2 Buoyancy torque.

Buoyancy torque is the reason objects have some orientations that are more stable
than others. Consider the set of all positions and orientations of the object where the
displaced water has a weight equal to the weight of the body. A stable equilibrium
configuration is an element of this set where the center of mass is at a (local) mini-
mum height. This is why thin sheets of wood are more stable lying flat on the water
than standing up on edge.

Polygon Area

The buoyancy computation for a polyhedron builds from the simpler problem of
computing the area of a polygon, which builds on the notion of signed area. There-
fore, we will discuss these simpler problems first.

Consider the triangle shown in Figure 2.5.3. The signed area of a triangle has a
magnitude equal to the usual triangle area. The ordering of the vertices determines
the sign. A Counterclockwise (CCW) order yields a positive sign, while a Clockwise
(CW) order yields a negative sign. The edge vectors are defined as a = v, — v, and
b = v; —v,. Recall that the length of the cross product a X b is the area of the associ-
ated parallelogram. The area of the triangle is half the area of the parallelogram. If the

plane of the triangle has the unit normal k, then the signed area is:

A=~ (axb)-k (2.5.5)

Thus, A4 is positive if the vertices have a CCW order and negative if the vertices
have a CW order.

178 Section 2 Mathematics and Physics

V1 a

FIGURE 2.5.3 A triangle.

According to [O’Rourke98], the area of a polygon is the sum of the signed areas
of all the triangles formed from each edge and an arbitrary point p. Thus, the area of
the quadrilateral in Figure 2.5.4 is the sum:

A=A+ A, + A+ A,
= A(v,v,p)+ Alvy, v p) + A(v,,vy,p) + A(v,,v5,p). (2.5.6)

\Z

% equals minus

FIGURE 2.5.4 Area of a polygon as a sum of signed triangle areas. The area of
the original polygon is equal to the unsigned areas of triangles 1 and 2, minus the
unsigned areas of triangles 3 and 4.

Note that the first two triangles have positive area (CCW order), while the last
two have negative area (CW order), and the overall sum is positive. Also note that each
triangle is formed by connecting the CCW ordering of an edge with p as the last vertex.

2.5 Exact Buoyancy for Polyhedra 179

The centroid of a single triangle is simply the average of the vertices, for example:
1
¢, =5(v1+v2+p). 2.5.7)

The polygon centroid is the area-weighted sum of the component triangles’ cen-
troids. Therefore, the centroid of the polygon in Figure 2.5.4 is:

1
c=z(A1cl+A2c2+A3c3+A4c4). (2.5.8)

Since we are using signed areas, some of the centroids have a negative weighting.

Polyhedron Volume

Assume for now that the polyhedron is fully submerged. Later, we will deal with the
general case of a partially submerged polyhedron. The method for computing a poly-
hedron’s volume is similar to the method for computing a polygon’s area. A polygon’s
area is the sum of signed areas of triangles, while a polyhedron’s volume is the sum of
the signed volumes of tetrahedron. Each tetrahedron consists of a triangular face of
the polyhedron and an arbitrary point p. The sign of the volume is positive if p is
behind the face and negative if p is in front of the face, as shown in Figure 2.2.5.

p

FIGURE 2.5.5 Two tetrahedra. The tetrahedron on the left has a positive
signed volume (p in back), while the one on the right has a negative signed
volume (p in front).

180 Section 2 Mathematics and Physics

The formula of [Weisstein] is extended to obtain the signed volume of a tetrahedron:
1
V=—6—(b><a)-r, (2.5.9)

where a = v, —v,, b = v5—v;, and r = p — v;. Like a triangle, the centroid of a tetra-
hedron is simply the average of its vertices:

1
C:Z(v1+vz+v3+p). (2.5.10)

See [Weisstein] for more details.

Similar to the two-dimensional case, the polyhedron volume is the sum of signed
tetrahedron volumes, and the polyhedron centroid is the weighted average of all the
tetrahedron centroids.

V=%Z(bl.><al.)-ri (2.5.11)

c:éZVici (2.5.12)

Since these formulas are in vector form, they are easy to optimize on SIMD hard-
ware, as shown in Listing 2.5.1.

Listing 2.5.1 Code to Compute the Volume and Centroid of a Tetrahedron

float Tetrahedronvolume(Vec3& c, Vec3 p, Vec3 vi, Vec3 v2, Vec3 v3)

{
Vecd a = v2 - vi1;
Vec3 b = v3 - vi;
vecd r =p - vi;
float volume = (1.0f/6.0f)*dot(cross(b, a), rj;
c += 0.25f*volume*(vl + v2 + v3 + p);
return volume;
}

Partial Submersion

Overview

First, consider the two-dimensional case of partial submersion, as shown in Figure
2.5.6. Vertices v, v,, and v are submerged, while vertex v, is above the water line. To

2.5 Exact Buoyancy for Polyhedra 181

compute the submerged area, it is necessary to clip the polygon against the water line.
Clipping yields the new polygon shown in Figure 2.5.7.

T ;
/\‘ water line

Vi
FIGURE 2.5.6 A partially submerged polygon.

T s V4 P water line

\ /) V3

\!

FIGURE 2.5.7 Clipping the polygon along the water line.

The area of the polygon in Figure 2.5.7 is the submerged area of the original
polygon. To compute the submerged area, choose a point p that will form triangles
with all the polygon edges. By placing p on the water line, the area of triangle
(v4Vs,p) becomes zero. This eliminates a term from the area sum, making the algo-
rithm more efficient.

Since edges on the water line do not contribute to the submerged area, we can
simplify the clipping algorithm. Clip each edge independently. An edge is either
above the water line, below the water line, or crosses the water line. Edges above the
water line do not contribute to the submerged area. Edges below the water line con-
tribute directly to the submerged area. And finally, edges crossing the water line only
contribute the portion that is below the water line.

In the three-dimensional case, clip each triangular face of the polyhedron against
the water plane. The clipping process leaves a complex shape on the water plane; it
may be several polygons, and the polygons may have holes. By placing p on the water

182

Section 2 Mathematics and Physics

line’s plane, it is not necessary to consider the faces on the water plane. This greatly
simplifies the three-dimensional algorithm.

Clipping
Each triangle belongs to one of three categories:

1. Above the water plane.
2. Below the water plane.
3. Intersecting the water plane.

Category 1 triangles do not contribute to the submerged volume. Category 2 tri-
angles add directly to the volume computation. Category 3 triangles must be clipped
against the water plane, resulting in one or two Category 2 triangles.

[Eberly01] presents an algorithm for clipping triangles against a plane. He pre-
sents the algorithm in the context of view frustum clipping for graphical rendering,
but the algorithm also is well suited for buoyancy calculations. We use a modified ver-
sion of the algorithm that is optimized for our buoyancy calculation.

Consider a triangle that intersects the water plane. There may be two configura-
tions, as shown in Figure 2.5.8.

Case A Case B
n
T ﬁ /\\ water plane
AN
AN

FIGURE 2.5.8 Clipping configurations Case A and Case B.

A. One vertex is below the water plane. This results in one Category 2 triangle.
B. Two vertices are below the water plane. This results in a quadrilateral with
two Category 2 triangles.

For Case A, identify the two clipping points and process the resulting Category 2
triangle. For Case B, again identify two clipping points and process the resulting
quadrilateral as two Category 2 triangles.

A typical graphics pipeline clips triangles against the view frustum and then adds
the resulting triangles to the list of rendered triangles. In contrast, the buoyancy algo-
rithm clips the triangles against the water plane and uses the resulting triangles imme-
diately in the volume calculation. The algorithm does not update the list of triangles.
This simplifies the code and uses less memory.

2.5 Exact Buoyancy for Polyhedra 183

At the beginning of the volume calculation, the code computes the depth & of
each vertex and stores them in an array. The main loop processes each triangle and
examines the depths of the triangle vertices. If the code determines that the triangle is
Category 2, then the vertices and their depths are passed to the triangle clipper, shown
in Listing 2.5.2. The clipper determines the triangle configuration (Case A or B), per-
forms the clipping via linear interpolation, and passes the resulting triangles to the
tetrahedron volume function.

Listing 2.5.2 Code for Triangie Clipping

float ClipTriangle(Vec3& ¢, Vec3 p,
Vec3 v1, Vec3 v2, Vec3 v3,
float di1, float d2, float d3)

Vecd vel = vi + (d1/(d1 - d2))*(v2 - vi);
float volume = 0;

if (d1 < 0)

{
if (d3 < 0)
{

Vec3d ve2 = v2 + (d2/(d2 - d3))*(v3 - v2);
volume += TetrahedronVolume(c, p, vcl, vc2, v1);
volume += Tetrahedronvolume(c, p, vc2, v3, vl);

}
else
{
Vec3 vc2 = v1 + (dt/(d1 - d3))*(v3 - v1);
volume += TetrahedronVolume(c, p, vci, vc2, vi);
}
}
else
{
if (d3 < 0)
{
Vec3 ve2 = v1 + (d1/(d1 - d3))*(v3 - v1);
volume += TetrahedronVolume(c, p, vcl, v2, v3);
volume += TetrahedronVolume(c, p, vcl, v3, vc2);
}
else
{
Vec3 vc2 = v2 + (d2/(d2 - d3))*(v3 - v2);
volume += TetrahedronVolume(c, p, vcl, v2, vc2);
}
}

return volume;

184 Section 2 Mathematics and Physics

Robustness

Consider the case where a polyhedron is just barely submerged. The triangles pro-
duced by clipping may be thin slivers. Due to round-off errors, the sum of the tetra-
hedron volumes could produce a negative total volume. Also, the centroid may lie
outside of the submerged portion of the polyhedron. While these errors may be
minor, we consider it good hygiene to avoid spurious results.

The accuracy of the tetrahedron volume formula depends on the quality of the
tetrahedrons. High-quality tetrahedrons have balanced interior angles. Low-quality
tetrahedrons have interior angles that vary greatly in magnitude.

Consider the two-dimensional case shown in Figure 2.5.9. Notice that the trian-
gle is of low quality, because the interior angles differ greatly. The area formula is:

A= —;—(a xb)-k
= %(axby - aybx)
%[(Lz +Le)- (1 - Le) (2.5.13)
(L, L+¢)
y (L, L-g)
b
a
X

FIGURE 2.5.9 A slender triangle.

The exact area is L&. Now, assume that L is large and € is small. Then the cross
product involves the difference of two large numbers, leading to a relatively small
result. This computation is prone to a round-off error, since the L? terms dominate.

It is obvious that the tetrahedron quality depends on the placement of p. We have
already made the decision to place p on the water plane, but did not specify where p
is located on the plane. An improvement in tetrahedron quality is possible by placing
p directly above the submerged portion of the polyhedron. To achieve this improve-
ment, project a submerged vertex up to the water plane. In our implementation, the
projected vertex is chosen arbitrarily from the set of submerged vertices.

2.5 Exact Buoyancy for Polyhedra 185

p
\ [

FIGURE 2.5.10 Example of how the choice of p affects triangle quality in two
dimensions. The choice p, leads to a high quality triangle because the interior
angles are well balanced. The choice p, leads to a lower quality triangle because
the interior angles are unbalanced. The choice of p in three dimensions has a
similar effect on tetrabedron quality.

P2 .
e water line

Even with an optimal placement of p, the tetrahedron volume formula may still
be inaccurate. Guards in the code can help to avoid erroneous results. First, abandon
the buoyancy calculation if the submerged portion the polyhedron is small. Second,
abandon the buoyancy calculation if the total computed volume is negative.

Drag Force

Recall that buoyancy forces coupled with gravity lead to oscillations. In nature, oscil-
lations diminish due to drag forces. Drag forces also allow water currents to move
objects.

The drag forces exerted by water on a rigid body are quite complicated. They
depend on the surface characteristics and shape of the body. An accurate model of the
drag forces requires a full dynamic water simulation. It is questionable whether such
accuracy will add significantly to the visual realism, given the computational cost.
Therefore, we use an approximate drag-force model that is inexpensive and uses the
results of the buoyancy calculation.

Consider the following formula for drag force:

F,= ﬂlml(vw -v.) (2.5.14)
VT

Here, B, is a linear drag coefficient in units of one over time, 7 is the mass of the
polyhedron, Vis the volume of the submerged portion of the polyhedron, V7 is the total
volume of the polyhedron, v, is the velocity of the water current, and v, is the velocity
of the center of buoyancy. For simplicity, F, is applied at the center of buoyancy.

The drag force F,; opposes the motion of the center of buoyancy relative to the
water current. Equation 2.5.14 is one of many possible formulas, but it works well in
practice.

The drag force F,alone is not sufficient to dissipate angular velocity, particularly
when the center of buoyancy is directly below the center of mass, and so it is useful to
add a drag torque:

186 Section 2 Mathematics and Physics

T, =—ﬁamV1L2m. (2.5.15)

T

Here, 3, is an angular drag coefficient in units of one over time, and L is the aver-
age width of the polyhedron. These parameters ensure that the units of torque are
produced.

You can select the drag coefficients ; and 8, through numerical experiments.
First, set the drag coefficients to zero and run a buoyancy simulation with a represen-
tative polyhedron, such as a box. The box should oscillate in a stable manner. If not,
then reduce the time step in your numerical integrator until the box is stable. Then
begin increasing f3; until the bobbing dissipates after a few cycles. Next, drop the box,
with an initial angular velocity, about the vertical axis. The box should continue to
rotate after the bobbing has ceased. Finally, increase 3, until the rotation dissipates
after a few rotations.

Source Code

<« The source code and a demonstration program are available on the CD-ROM. The
onmveco code emphasizes clarity over efficiency, so several optimizations are possible. Figure
2.5.11, Color Plate 4, and Color Plate 5 show screenshots from the demo.

FIGURE 2.5.11 Buoyancy simulation of a concave
polyhedron.

2.5 Exact Buoyancy for Polyhedra 187

Conclusion

This article has shown how to compute the exact hydrostatic buoyancy force for a
polyhedron submerged in a water volume with a flat surface. Additionally, approxi-
mate models of drag force and drag torque were presented to simulate energy dissipa-
tion and current coupling. The algorithm is efficient, requires no extra authoring
steps, is easy to implement, and integrates well into a physics engine.

Acknowledgment

The author would like to thank the team at Crystal Dynamics for supporting this
effort.

References

[Eberly01] Eberly, David H., 3D Game Engine Design. Morgan Kaufmann, 2001.

[Fagerlund] Fagerlund, Mattias, “Buoyancy Particles or Bobbies.” Available online at
http:/fwww.cambrianlabs.com/Mattias/DelphiODE/BuoyancyParticles. asp.

[Gomez00] Gomez, Miguel, “Interactive Simulation of Water Surfaces.” Game Pro-
gramming Gems, Chatles River Media, 2000.

[O’Rourke98] O’Rourke, Joseph, Computational Geometry in C, 2nd Ed. Cambridge
University Press, 1998.

[Weisstein] Weisstein, Eric W., “Tetrahedron.” Available online at hzep:/imathworld.
wolfram.com/Tetrabedron. hrml.

2.6

Real-Time Particle-
Based Fluid Simulation
with Rigid Body
Interaction

Takashi Amada,
Sony Computer Entertainment, Inc.

taka.am@gmail.com

Realistic, real-time rendering of the motion of fluids is one of the ways to immerse
the user into an interactive application, such as a computer game. The interac-
tion of fluids with rigid bodies is important, because in real life, the motion of fluids
and rigid bodies is affected by their influences on each other. Fluid simulation based
on Computational Fluid Dynamics (CFD) is useful for rendering a visually plausible
behavior for the fluid. However, the computational cost of many CFD techniques is
often too great for real-time rendering of fluids, which requires fast simulation. Fur-
thermore, many traditional techniques do not enable an easy simulation of fluids
interacting with rigid bodies.

This article describes a way to use the smoothed particle hydrodynamics tech-
nique to simulate fluids that interact with rigid bodies, and vice versa. We also provide
a fast implementation. The proposed method enables real-time simulation of water
with rigid body interaction.

Fluid Simulation and Smoothed
Particle Hydrodynamics

Basic Approaches to Fluid Simulation

You may have heard of the Naviér-Stokes equation that describes motion for general-
ized fluid flow. A version of this equation that is valid for incompressible fluids, such
as water, is shown in Equation 2.6.1. This partial differential equation describes the
conservation of momentum of the incompressible fluid and is equivalent to Newton’s
second law of motion.

189

