

Secure Supply Chain Consumption
Framework (S2C2F) Simplified
Requirements

This document is provided “as-is.” Information and views expressed in this document, including URL and other Internet Web site references,

may change without notice. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be

inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this

document for your internal reference purposes.

Licensed under Community Specification License 1.0

https://github.com/CommunitySpecification/Community_Specification

Table of Contents
Document Change Record .. 3

Introduction .. 4

About the Secure Supply Chain Consumption Framework ... 4

What is the Secure Supply Chain Consumption Framework? .. 6

Common OSS Supply Chain Threats.. 6

Secure Supply Chain Consumption Framework Practices .. 8

Target Audience .. 8

Secure Supply Chain Consumption Framework Practices .. 8

The Secure Supply Chain Consumption Framework Implementation Guide ... 12

Target Audience .. 12

Secure Supply Chain Consumption Framework Levels of Maturity .. 12

How to Assess Where Your Organization is in the Maturity Model? ... 14

Secure Supply Chain Consumption Framework Requirements .. 16

Secure Supply Chain Consumption Framework Tooling Availability .. 18

Implementing the Supply Chain Consumption Framework by Level .. 19

Conclusion ... 26

Appendix: Relation to SCITT .. 27

Appendix: Mapping Secure Supply Chain Consumption Framework Requirements to Other Specifications

 .. 27

Appendix: References ... 29

Document Change Record

Date Author Version Change Reference

8/1/2022 Adrian Diglio

(Microsoft)

1.0 Initial release

10/19/2022 Jasmine Wang

(Microsoft)

1.1 Resolving GitHub issues #5, #6, #7, #9, #1.

Replaced references to "Microsoft OSS SSC

Framework" with "Secure Supply Chain

Consumption Framework."

https://github.com/microsoft/oss-ssc-framework/issues/5
https://github.com/microsoft/oss-ssc-framework/issues/6
https://github.com/microsoft/oss-ssc-framework/issues/7
https://github.com/microsoft/oss-ssc-framework/issues/9
https://github.com/ossf/s2c2f/issues

Introduction

The purpose of this paper is to illustrate the core concepts of the Secure Supply Chain Consumption

Framework (S2C2F) to outline and define how to securely consume OSS dependencies, such as NuGet

and NPM, into the developer’s workflow. Open Source Software, as adopted from The Free Software

Definition, is software that ensures that the end users have freedom in using, studying, sharing and

modifying that software. For more details about the definition of Open Source Software (OSS), see The

Open Source Definition. This framework is applicable to OSS dependencies consumed into the

developer's workflow, such as any source code, language package, module, component, container,

library, or binary. This guide provides a dedicated framework to enhance any organization’s OSS

governance program to address supply chain threats specific to OSS consumption.

OSS has become a critical aspect of any software supply chain. Across the software industry, developers

are using and relying upon OSS components to expedite developer productivity and innovation.

However, attackers are trying to abuse these package manager ecosystems to either distribute their

own malicious components, or to compromise existing OSS components.

This paper is split into two parts: a solution-agonistic set of practices and a maturity model-based

implementation guide. The practices section should be utilized by individuals like Chief Information

Security Officers (CISOs) and security, engineering, compliance/risk managers while the implementation

guide should be utilized by software developers and other security practitioners.

This paper presents:

• An overview of the Secure Supply Chain Consumption Framework (S2C2F) Practices.

• Common supply chain threats with examples and how the S2C2F can help.

• An overview of the S2C2F Implementation Guide and Maturity Model.

• A process for assessing your organization’s maturity.

• Detailed walkthrough of the S2C2F implementation requirements and tools.

• A mapping of the S2C2F requirements to other specifications.

The guidance provided in this paper is targeted toward organizations that do software development,

that take a dependency on open source software, and that seek to improve the security of their

software supply chain.

About the Secure Supply Chain Consumption Framework

The Secure Supply Chain Consumption Framework (S2C2F) is a security assurance and risk reduction

process that is focused on securing how developers consume open source software. As a Microsoft-wide

initiative since 2019, the S2C2F provides security guidance and tools throughout the developer inner-

loop and outer-loop processes that have played a critical role in defending and preventing supply chain

attacks through consumption of open source software across Microsoft. Using a threat-based risk-

reduction approach, the goals of the S2C2F are to:

1. Provide a strong OSS governance program

2. Improve the Mean Time To Remediate (MTTR) for resolving known vulnerabilities in OSS

https://en.wikipedia.org/wiki/The_Free_Software_Definition
https://en.wikipedia.org/wiki/The_Free_Software_Definition
https://opensource.org/osd
https://opensource.org/osd
Melba-Lopez

Melba-Lopez

3. Prevent the consumption of compromised and malicious OSS packages

The S2C2F (described later in this document) is modeled after three core concepts—control all artifact

inputs, continuous process improvement, and scale.

• Control All Artifact Inputs: There are a myriad of ways that developers consume OSS today: git clone,

wget, copy & pasted source, checking-in the binary into the repo, direct from public package

managers, repackaging the OSS into a .zip, curl, apt-get, git submodule, and more. Securing the

OSS supply chain in any organization is going to be near impossible if developer teams don’t follow

a uniform process for consuming OSS. Enforcing an effective secure OSS supply chain strategy

necessitates standardizing your OSS consumption process across the various developer teams

throughout your organization, so all developers consume OSS using governed workflows.

• Continuous Process Improvement: To help guide organizations through continuous process

improvement, we have organized the S2C2F into a maturity model. This helps organizations

prioritize which requirements they should implement first. Since security risk is dynamic and new

threats can emerge at any time, the S2C2F places heavy emphasis on understanding the new threats

to the OSS supply chain and requires regular evaluation of S2C2F controls and introduction of

changes in response to new technology advancements or new threats.

• Scale: The S2C2F Framework tools were designed with scale in mind. Some organizations may

attempt to secure their OSS ingestion process through a central internal registry that all developers

within the organization are supposed to pull from. However, what if one developer chooses to pull

straight from pypi.org or npmjs.com? Is there anything preventing them from doing so? A central

internal registry also has the problem of requiring a team to manage the process and workflow,

which is extra overhead. As such, the S2C2F tools were developed to secure how they consume OSS

today at scale without requiring a central internal registry or central governance body.

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez
JFROG Artifactory can help with this

What is the Secure Supply Chain Consumption Framework?

The S2C2F is a combination of requirements and tools for any organization to adopt. The Framework

includes a capability maturity roadmap to help establish a secure OSS ingestion process to protect

developers from OSS supply chain threats and to establish a strong governance program to manage your

organization’s use of OSS.

Common OSS Supply Chain Threats

The S2C2F was designed based on known threats (i.e. tactics and techniques) used by adversaries to

compromise OSS packages. The table below is a comprehensive compilation of OSS supply chain threats

with links to real examples. It also identifies which S2C2F requirements mitigate the threat. To see the

full list of requirements and their benefits, please see the Secure Supply Chain Consumption Framework

Requirements later in this document.

For other sources of OSS threats, please see the following links:

• Threats, Risks, and Mitigations in the Open Source Ecosystem

• Taxonomy of Attacks on Open-Source Software Supply Chains

• Software Supply Chain Threats

OSS Supply Chain Threat Real Example Mitigation via S2C2F
Requirement

Accidental vulnerabilities in
OSS code or Containers that
we inherit

SaltStack UPD-2
UPD-3

Intentional
vulnerabilities/backdoors
added to an OSS code base

phpMyAdmin SCA-5

A malicious actor
compromises a known good
OSS component and adds
malicious code into the repo

ESLint incident ING-3
ENF-2
SCA-4

A malicious actor creates a
malicious package that is
similar in name to a popular
OSS component to trick
developers into downloading
it

Typosquatting AUD-1
ENF-2
SCA-4

A malicious actor
compromises the compiler
used by the OSS during build,
adding backdoors

CCleaner REB-1

https://github.com/ossf/wg-identifying-security-threats/blob/main/publications/threats-risks-mitigations/v1.1/Threats%2C%20Risks%2C%20and%20Mitigations%20in%20the%20Open%20Source%20Ecosystem%20-%20v1.1.pdf
https://arxiv.org/pdf/2204.04008.pdf
https://cloud.google.com/software-supply-chain-security/docs/attack-vectors
https://www.helpnetsecurity.com/2020/05/04/saltstack-salt-vulnerabilities/
https://arstechnica.com/information-technology/2012/09/questions-abound-as-malicious-phpmyadmin-backdoor-found-on-sourceforge-site/
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes
https://www.securityweek.com/checkmarx-finds-threat-actor-fully-automating-npm-supply-chain-attacks
https://blog.morphisec.com/morphisec-discovers-ccleaner-backdoor
Melba-Lopez

Dependency confusion,
package substitution attacks

Dependency
Confusion

ENF-1
ENF-2

An OSS component adds new
dependencies that are
malicious

Event-Stream
incident

SCA-4
ENF-2

The integrity of an OSS
package is tampered after
build, but before
consumption

How to tamper
with Electron
apps

AUD-3
AUD-4

Upstream source can be
removed or taken down
which can then break builds
that depend on that OSS
component or container

left-pad ING-2
ING-4

OSS components reach end-
of-support/end-of-life and
therefore don’t patch
vulnerabilities

log4net and CVE-
2018-1285

SCA-3

Vulnerability not fixed by
upstream maintainer in
desired timeframe

Prototype
Pollution in
Lodash

FIX-1

Bad actor compromises a
package manager account
(e.g. npm) with no change to
the corresponding open
source repo and uploads a
new malicious version of a
package

Ua-parser-js AUD-1
ENF-2
SCA-4

https://www.bleepingcomputer.com/news/security/copycats-imitate-novel-supply-chain-attack-that-hit-tech-giants/
https://www.bleepingcomputer.com/news/security/copycats-imitate-novel-supply-chain-attack-that-hit-tech-giants/
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
https://github.com/jonmest/How-To-Tamper-With-Any-Electron-Application
https://github.com/jonmest/How-To-Tamper-With-Any-Electron-Application
https://github.com/jonmest/How-To-Tamper-With-Any-Electron-Application
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://github.com/apache/logging-log4net/
https://nvd.nist.gov/vuln/detail/CVE-2018-1285
https://nvd.nist.gov/vuln/detail/CVE-2018-1285
https://hackerone.com/reports/712065
https://hackerone.com/reports/712065
https://hackerone.com/reports/712065
https://www.truesec.com/hub/blog/uaparser-js-npm-package-supply-chain-attack-impact-and-response
Melba-Lopez

Melba-Lopez
If we go into “admin” rights type of examples, may want to also include removing branch protections/checks in the OSS repo???

Melba-Lopez

Melba-Lopez
Overlap with SLSA

Melba-Lopez

Melba-Lopez

Secure Supply Chain Consumption Framework Practices

Target Audience
This section is a solution-agonistic description of what should be implemented to secure your

organization’s OSS supply chain. The guidance is useful to compliance/risk managers, security managers,

engineering managers, and Chief Information Security Officers (CISOs).

Secure Supply Chain Consumption Framework Practices
Practice 1: Ingest It

I can ship any existing asset if external OSS sources are compromised or unavailable.

Sample threat scenarios addressed by this job:

• The Docker Hub repository becomes compromised

• A team might be targeted by a dependency confusion attack

• Azure itself is unavailable and we need access to OSS assets to restore it

• A package becomes permanently unavailable (i.e. left-pad is removed)

The first step towards securing a software supply chain is ensuring you control all the artifact inputs. To

satisfy this practice, there are two ingestion mechanisms: one for packaged artifacts and one for source

code artifacts.

For packaged artifacts, we require ingestion into an artifact stores – Linux package repositories, artifact

stores, OCI registries – to fully support upstream sources, which transparently proxy from the artifact

store to an external source and save a copy of everything used from that source. When using a mix of

internal and external packaged artifacts, it is important to secure your package source file configuration

to protect yourself from dependency confusion attacks (CVE-2021-24105).

For source code artifacts, we require mirroring external source code repositories to an internal location.

Mirroring the source in addition to caching packages locally is also useful for many reasons:

• Business Continuity and Disaster Recovery (BCDR) purposes, so that your organization can take
ownership of code if a critical dependency is removed from the upstream

• Enables proactive security scans to look for backdoors and zero-day vulnerabilities
o Enables your organization to contribute fixes back upstream

• Enables your organization to perform fixes if needed (in extreme circumstances)

Practice 2: Scan It

I know if any OSS artifact in my pipeline has vulnerabilities or malware.

Sample threat scenarios addressed by this job:

• A team tries to use an OSS package with a known vulnerability

• A team is already using an OSS package believed to be secure, but a new vulnerability in that package is

later publicly disclosed

• A team tries to use an OSS package that is known to steal bitcoins (i.e. the event-stream scenario)

• A team tries to use an OSS package with a backdoor

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-24105
Melba-Lopez
As this is now OSSF, we may want to be cloud agnostic

Melba-Lopez

Once we control all artifact inputs, we must scan all inputs to trust them. This trust is built using

scanners that look for vulnerabilities, malware, malicious or anomalous behavior, extraneous code, and

other known or previously undiscovered issues (i.e. zero-day vulnerabilities).

Practice 3: Inventory It

I know where OSS artifacts are deployed in production.

Sample threat scenarios addressed by this job:
• A critical vulnerability is discovered in log4j, and the incident response team wants to know all the

production services using log4j so they can appropriately staff and coordinate a response effort

Once we have ingested and scanned the artifacts entering the software supply chain, we must ensure

that we have an inventory where each artifact is used, by knowing in which services it is deployed and in

which products it was released. This is required for incident response scenarios so that teams affected

by a compromised package can be contacted so the appropriate actions can be taken to remove the

affected package.

Practice 4: Update It

I can deploy updated external artifacts soon after an update becomes publicly available.

Sample threat scenarios addressed by this job:

• A team is currently using three different vulnerable NuGet packages and upgrading each package will be a

substantial amount of work for the team. The team chooses to start by upgrading the most widely

deployed package.

Once we have ingested, scanned, and inventoried where each artifact is used, we can enable developers

to fix issues with artifacts that have already been used by knowing the supply chain processes that

released the product/service that needs the fix.

Given the SaltStack incident, where a vulnerability was exploited within 3 days after announcement,

every organization should aspire to patch vulnerable OSS packages in under 72 hours so that you patch

faster than the adversary can operate. Using tools such as Dependabot to auto-generate Pull Requests

(PRs) to update vulnerable OSS become critical capabilities for securing your supply chain.

Practice 5: Audit It

I can prove that every OSS artifact in production has a full chain-of-custody from the original artifact

source and is consumed through the official supply chain.

Sample threat scenarios addressed by this job:

• A well-meaning but misguided developer bypasses the official engineering pipeline to update an OSS

package directly in a release; however, this new version contains a known vulnerability

https://www.helpnetsecurity.com/2020/05/04/saltstack-salt-vulnerabilities/
Melba-Lopez
EOL/Unmanaged/outdated?

• An attacker with network access intentionally bypasses the official engineering pipeline to deploy

malware to a service

Now that we have ingested, scanned, inventoried, and provided the ability to update any artifact that

has come through the software supply chain properly, you must have the ability within your

organization to audit OSS consumption to see if it’s coming through the standardized consumption tools

(such as a package repository solution) established by your organization.

Practice 6: Enforce It

I can rely on secure and trusted OSS consumption within my organization.

Sample threat scenarios addressed by this job:

• A developer bypasses the official engineering pipeline to consume an OSS package with a known

vulnerability

All OSS artifacts must be consumed from trusted sources and through the official OSS consumption

channels. The next step is to enable enforcement of the supply chain so that all artifacts that in any way

impact a production service/release must come through the full supply chain. An example of

enforcement is to reroute DNS traffic or configure builds to break if they try to consume OSS from

untrusted sources.

Practice 7: Rebuild It

I can rebuild from source code every OSS artifact I’m deploying.

Sample threat scenarios addressed by this job:

• A team uses a malicious OSS package with a hidden backdoor (which could happen via traditional

exploitation, political influence, blackmail or even threats of violence); as a result, the package’s binaries

do not match its source code.

• An attacker gains access to build infrastructure and modifies generated binaries during the build process;

as a result, illicit changes can be injected in a manner that is essentially invisible to its original authors and

users alike.

Until now, we have assumed that we took our inputs at the beginning of the supply chain as-is: as the

package, container, or other delivery vehicle provided by the author. For key artifacts that are business-

critical and for all artifacts that are inputs to High Value Assets, this assumption may not be sufficient.

Hence, the next step to secure the supply chain is creating a chain of custody from the original source

code for every artifact used to create a production service/release.

The baseline REBUILD IT requirement is to enable developers who have a critical dependence on certain

OSS components to ingest source code (including discovering the source code, which is not always

linked to the built artifact), rebuild it (possibly developing build scripts along the way, if they’re not part

of the source code), make any post-build modifications (e.g. signing), cache the rebuilt artifact, and

advertise the internally-rebuilt version’s existence to other teams in the organization. One other

Melba-Lopez

Melba-Lopez
This seems to contradict what is discussed earlier about not needing an internal repo/mirror of OSS

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez
define “trusted”

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

potential method is the use of multiple third parties to build and come to consensus on a ‘correct’

artifact (e.g. Reproducible Builds).

Practice 8: Fix It + Upstream

I can privately patch, build, and deploy any external artifact within 3 days of harm notification and

confidentially contribute the fix to the upstream maintainer.

Sample threat scenarios addressed by this job:

• A team has taken a dependency on a package; the package is later discovered to have a critical

vulnerability and the maintainer needs help/more time to fix the issue

When To Use This: This is intended to be used only in extreme scenarios and for temporary risk

mitigation. It should only be used when the upstream maintainer is unable to provide a public fix within

an acceptable time for your Organization’s risk tolerance. The first action any organization should take is

to confidentially report the vulnerability to the upstream maintainer AND help suggest a fix.

Once we can rebuild any artifact used in the software supply chain, the final step is to be able to

privately fix it while confidentially disclosing the vulnerability to the upstream maintainer. Assuming that

the team that ingested the source and rebuilt the artifact has allowed PRs to their forked copy of the

source and set up CI builds appropriately, then anyone needing to private fix a component can use the

normal PR workflow. The only additional work needed is the ability to distribute the private fix as widely

within the organization as is needed.

Related to the note below, the implemented fix should be confidentially contributed to the upstream

maintainer to give back to the community.

Important Note

The Fix It + Upstream practice should not be perceived as being at odds with supporting communities and

projects. If an organization chooses to take a dependency on open source, they should also find ways to

give back to the community. Microsoft suggests a number of different ways to contribute:

• Financial support and participating in foundations or even individual projects: GitHub Sponsors,
OpenCollective, etc.

• Bounty programs (such as SOS Rewards) and sharing best practices and tools with projects
around security

• Being present and participating in key open source projects to share fixes or expertise

• See Microsoft’s approach toward contributing to open source for more ideas Microsoft’s Open

Source Program | Microsoft Open Source

https://reproducible-builds.org/
https://github.com/sponsors
https://opencollective.com/become-a-sponsor
https://sos.dev/
https://opensource.microsoft.com/program#program-contributing
https://opensource.microsoft.com/program#program-contributing
Melba-Lopez

Melba-Lopez

Melba-Lopez

The Secure Supply Chain Consumption Framework Implementation
Guide

Target Audience
This section details a maturity model, which splits the practices in the previous section into 4 levels to

achieve. There is also a list of tools your organization can implement to meet each security level in the

framework. The guidance is useful to software developers, Continuous Integration and Continuous

Development (CI/CD) administrators, and security practitioners.

Secure Supply Chain Consumption Framework Levels of Maturity
When the S2C2F was first developed, the strategy to secure our OSS supply chain was comprised of 8

practices.

Since all 8 practices cannot be reasonably implemented at the same time, the following maturity model

organizes the requirements from each of the 8 practices into 4 different levels. It allows an organization

to make incremental progress from their existing set of security capabilities toward a more secure

defensive posture. Additionally, the maturity model considers different threats and themes at each

Maturity Level.

Depending on the projects and their criteria, you may have a mix of framework levels implemented

across projects. Additionally, Level 4 of the Maturity Model has a high estimated cost to implement

compared to the risk/reward, and therefore should be considered as an aspirational north star vision for

your organization. While it is difficult to implement Level 4 at scale across your organization, it is feasible

to implement Level 4 on your most critical dependencies for your most critical projects.

Melba-Lopez

Melba-Lopez

Level 1 – Using a package caching solution, performing an OSS inventory, plus scanning and updating OSS
represents the most common set of OSS security capabilities across the software industry today.

Level 2 – This maturity level focuses on shifting security further left by improving ingestion configuration
security, decreasing MTTR to patch OSS vulnerabilities, and responding to incidents. The SaltStack
vulnerability in 2020 showed us that adversaries were able to start exploiting CVE-2020-11651 within 3
days of it being announced. Even though a patch was available, organizations were not able to patch their
systems fast enough. Thus, a key component of this level leverages automation to help developers keep
their OSS hygiene healthy and updated. The ideal goal is for organizations to be able to patch faster than
attackers can operate.

Level 3 – Proactively performing security analysis on your organization’s most used OSS components and
reducing risk to consume malicious packages are the themes of this maturity level. Scanning for malware
in OSS before the package is downloaded is key toward preventing compromise. Then, to perform
proactive security reviews of OSS requires that an organization can clone the source code to an internal
location. Proactive security reviews help you look for the not-yet-discovered vulnerabilities, as well as
identifying other threat categories such as detecting backdoors.

Level 4 – This level is considered aspirational in most cases. Rebuilding OSS on trusted build infrastructure
is a defensive step to ensure that the OSS was not compromised at build time. Build time attacks are
performed by the most sophisticated adversaries and do not occur very frequently. Thus, this level of
maturity is what’s required to defend against the most sophisticated adversaries. Additionally, rebuilding
OSS has many subtle technical challenges such as what to name the package to prevent collisions with
upstream? How to make sure all developers use the internal package instead of the external? Rebuilding
also enables you to implement fixes (if needed) and deploy them at scale across your organization.

Melba-Lopez
I like that there are 4 levels; potentially SCIWG can come up with a holistic 1-4 Levels based on SLSA, S2C2F+ OTHERS

Melba-Lopez
Scan for end of life is not always achievable; need some requirement on SRC maintainers to properly tag/eol their releases

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez
Contradicts earlier statement about limiting overhead

Melba-Lopez
aspirational as in the definition? or should be a goal that everyone should aspire to?

Melba-Lopez
should say MAY not occur freqently; we don’t know if it does/does not happen frequently (until someone actually finds out about it)

Melba-Lopez
Starting to feel that L4 feels like a big overlap go into SLSA; perhaps we can go in a different direction with verbiage. maybe lead into SLSA as next steps for the trusted build infra… but other items can still be within S2C2F control

Melba-Lopez

Melba-Lopez

Melba-Lopez

Melba-Lopez

How to Assess Where Your Organization is in the Maturity Model?
Any maturity assessment should be done at the Organization level, so that it assesses multiple different

OSS consumption processes from across different development teams. Some teams may have more

mature processes than others, even within a single organization, so it’s best to perform a company-wide

assessment to determine OSS consumption practices across a diverse set of software development

teams. The steps to perform a Maturity Assessment are below:

1) Prepare for Assessment. The first step is to understand the concepts behind the S2C2F so you feel
comfortable engaging with developers and engineers to inquire about their existing tools, capabilities,
and workflows. Next, identify a good sample size of diverse development teams from across the
company to interview.

2) Perform the Assessment. This is where you assess the organization’s degree of maturity in software
developer OSS management, security, and consumption processes. Here are a set of example
questions that you can ask:

a. What type of OSS do you consume in your project? (e.g. native C/C++, NuGet, PyPI, npm, etc.)
b. How are you consuming your OSS into your project? (e.g. Using a Package Cache solution such

as Azure Artifacts, commands such as curl or git clone, checking in the OSS into the repo, etc.)
c. Where do you consume your OSS from? (e.g. NuGet.org, npmjs.com, pypi.org, etc.)
d. Do you use a mix of internal-only packages and external packages? (This can make you

susceptible to Dependency Confusion attacks)
e. Does your package source file (e.g. nuget.config, pom.xml, pip.conf, etc.) contain multiple

feeds in its configuration? (This can make you susceptible to Dependency Confusion attacks)
f. Do you do anything custom with how you consume OSS? (e.g. consuming private forks of

projects, putting Golang components into a NuGet, etc.)
g. Does your project use package lock files? (e.g. packages.lock.json for NuGet, package-

lock.json for NPM, etc.)
h. How does your team inventory the use of OSS within your project? What tools are used?
i. How is your team made aware when a vulnerability exists in an OSS component? What tool is

used?
j. At what point in the Software Development Lifecycle (SDLC) are OSS vulnerabilities surfaced?

(e.g. after release? During build? As comments in PRs?)
k. How fast is OSS updated to address known vulnerabilities? (e.g. what is the Mean Time To

Remediate)
l. Is updating OSS a manual or automated process? (e.g. using Dependabot)
m. Do you perform integration tests of how your software interfaces with the dependencies you

have to validate that there are no breaking changes?
n. Do you scan OSS for malware prior to use?
o. Is your team able to block ingestion of a known-bad/malicious package?
p. Does your team clone open source code internally?
q. Does your team perform any sort of security reviews or scans of OSS before using?
r. Does your team contribute bug fixes back to the upstream OSS maintainer?
s. Do you rebuild any of the open source internally?
t. Do you have an incident response plan or playbook for reacting to an incident of consuming

a malicious OSS component?
3) Plan for Improvements. Based on the interviews and answers you received from across your

organization, you should be able to determine where you fall within the S2C2F Maturity Levels. It’s
possible that some teams may be ahead of others, so your focus should be on elevating all

https://devblogs.microsoft.com/nuget/enable-repeatable-package-restores-using-a-lock-file/
https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v7/configuring-npm/package-lock-json

development teams to a specific Maturity Level. It’s suggested that you accomplish this by driving
standardization in both process and tooling across your software development teams for consuming
OSS.

The S2C2F categorizes its requirements into maturity levels to better help you prioritize investments
in improvements. Additionally, the S2C2F recommends tooling with specific capabilities that mitigates
against the known supply chain threats, but you probably should make business decisions about which
set of tools are right for your business and your security goals.

Secure Supply Chain Consumption Framework Requirements
Below is a table of the requirements mapped to the 8 different practices. Two of the requirements have

prerequisites identified that are outside the scope of this document to list as requirements.

Practice Requirement
ID

Maturity
Level

Requirement Title Benefit

Ingest it ING-1 L1 Use package managers
trusted by your
organization

Your organization benefits
from the inherent security
provided by the package
manager

ING-2 L1 Use an OSS binary
repository manager
solution

Caches a local copy of the OSS
artifact and protects against
left-pad incidents, enabling
developers to continue to
build even if upstream
resources are unavailable

ING-3 L3 Have a Deny List capability
to block known malicious
OSS from being consumed

Prevents ingestion of known
malware by blocking ingestion
as soon as a critically
vulnerable OSS component is
identified, such as colors v
1.4.1, or if an OSS component
is deemed malicious

ING-4 L3 Mirror a copy of all OSS
source code to an internal
location

Business Continuity and
Disaster Recovery (BCDR)
scenarios. Also enables
proactive security scanning, fix
it scenarios, and ability to
rebuild OSS in a trusted build
environment.

Scan It SCA-1 L1 Scan OSS for known
vulnerabilities (i.e. CVEs,
GitHub Advisories, etc.)

Able to update OSS to reduce
risks

SCA-2 L1 Scan OSS for licenses Ensure your organization
remains in compliance with
the software license

SCA-3 L2 Scan OSS to determine if
its end-of-life

For security purposes, no
organization should take a
dependency on software that
is no longer receiving updates

SCA-4 L3 Scan OSS for malware Able to prevent ingestion of
malware into your CI/CD
environment

SCA-5 L3 Perform proactive security
review of OSS

Identify zero-day
vulnerabilities and
confidentially contribute fixes

https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://security.snyk.io/vuln/SNYK-JS-COLORS-2331906
https://security.snyk.io/vuln/SNYK-JS-COLORS-2331906

back to the upstream
maintainer

Inventory It INV-1 L1 Maintain an automated
inventory of all OSS used
in development

Able to respond to incidents
by knowing who is using what
OSS where. This can also be
accomplished by generating
SBOMs for your software.

INV-2 L2 Have an OSS Incident
Response Plan

This is a defined, repeatable
process that enables your
organization to quickly
respond to reported OSS
incidents

Update It UPD-1 L1 Update vulnerable OSS
manually

Ability to resolve
vulnerabilities

UPD-2 L2 Enable automated OSS
updates

Improve MTTR to patch faster
than adversaries can operate

UPD-3 L2 Display OSS vulnerabilities
as comments in Pull
Requests (PRs)
• Prerequisite: Two-

person PR reviews are
enforced.

PR reviewer doesn’t want to
approve knowing that there
are unaddressed
vulnerabilities.

Audit It AUD-1 L3 Verify the provenance of
your OSS

Able to track that a given OSS
package traces back to a repo

AUD-2 L2 Audit that developers are
consuming OSS through
the approved ingestion
method

Detect when developers
consume OSS that isn’t
detected by your inventory or
scan tools

AUD-3 L2 Validate integrity of the
OSS that you consume
into your build

Validate digital signature or
hash match for each
component

AUD-4 L4 Validate SBOMs of OSS
that you consume into
your build

Validate SBOM for
provenance data,
dependencies, and its digital
signature for SBOM integrity

Enforce It ENF-1 L2 Securely configure your
package source files (i.e.
nuget.config, .npmrc,
pip.conf, pom.xml, etc.)

By using NuGet package
source mapping, or a single
upstream feed, or using
version pinning and lock files,
you can protect yourself from
race conditions and
Dependency Confusion
attacks

ENF-2 L3 Enforce usage of a curated
OSS feed that enhances
the trust of your OSS

Curated OSS feeds can be
systems that scan OSS for
malware, validate claims-
metadata about the

component, or systems that
enforce an allow/deny list.
Developers should not be
allowed to consume OSS
outside of the curated OSS
feed

Rebuild It REB-1 L4 Rebuild the OSS in a
trusted build
environment, or validate
that it is reproducibly built
• Prerequisite: Sufficient

build integrity measures
are in place to establish
a trusted build
environment.

Mitigates against build-time
attacks such as those seen on
CCleaner and SolarWinds.
Open Source developers could
introduce scripts or code that
aren’t present in the
repository into the build
process or be building in a
compromised environment.

REB-2 L4 Digitally sign the OSS you
rebuild

Protect the integrity of the
OSS you use.

REB-3 L4 Generate SBOMs for OSS
that you rebuild

Captures the supply chain
information for each package
to enable you to better
maintain your dependencies,
auditability, and blast radius
assessments

REB-4 L4 Digitally sign the SBOMs
you produce

Ensures that consumers of
your SBOMs can trust that the
contents have not been
tampered with

Fix It +
Upstream

FIX-1 L4 Implement a change in the
code to address a zero-
day vulnerability, rebuild,
deploy to your
organization, and
confidentially contribute
the fix to the upstream
maintainer

To be used only in extreme
circumstances when the risk is
too great and to be used
temporarily until the
upstream maintainer issues a
fix.

Secure Supply Chain Consumption Framework Tooling Availability
Comprehensive Tooling available in v1.0 of the S2C2F:

The guidance and tooling in this document are a combination of paid and free tools from both Microsoft

and across the industry.

Tooling available in future iterations of the S2C2F:

In the future, Microsoft plans on releasing more tools to help organizations secure their software supply

chain end-to-end.

Melba-Lopez

Melba-Lopez

Implementing the Supply Chain Consumption Framework by Level
Below is a table of the S2C2F requirements with example tools from across the industry or detailed instructions to implement them, sorted by

maturity level. Many of the tools referenced below are freely available and are listed as such. Some tools that are individually listed are available

through a bundled offering, such as GitHub Advanced Security (GHAS). We aren’t specifically endorsing any tool or service, as they each have

different strengths or weaknesses. We recommend performing a thorough evaluation before deciding on a specific solution, including tools not

referenced in this document.

This table maps each Framework requirement to corresponding level and Framework practice. To see the full list of requirements and their

benefits, please see the Secure Supply Chain Consumption Framework Requirements earlier in this document.

https://docs.github.com/en/enterprise-server@3.4/get-started/learning-about-github/about-github-advanced-security

Practice name L1 L2 L3 L4

Ingest it – save a local
copy of artifacts and
source code

[ING-1] Use package

managers trusted by your

organization

[ING-2] Saving a local

copy of the OSS artifact

can be done by adopting

an integrated package

caching solution into your

CI/CD infrastructure.

All developers across your

organization should

standardize their

consumption methods

(using governed

workflows) so that

security policy can be

enforced.

Free Tools: VCPKG for
C/C++ OSS, Pulp

Paid Tools: Artifacts,
GitHub Packages, Azure
Container Registry,
PackageCloud

 [ING-3] Having a Deny List

capability to block

ingestion of vulnerable

and malicious OSS

components is a required

defensive tool in incident

response situations.

Having an incident

response team that can

rapidly respond and

update the deny list is

also critical.

Paid Tool: Nexus Firewall

[ING-4] Saving a local
copy of the OSS source
code

Free Tool: Duplicating a
repo

Scan It - for vulnerabilities
and malware

[SCA-1] It is required to

scan for known

vulnerabilities of your

dependencies. Choosing a

tool that gets

vulnerabilities from more

[SCA-3] Scanning OSS to
determine if it is end of
life is crucial to ensure
that you are not taking
dependencies on OSS that
is no longer updated.

[SCA-4] Given the rise in

malicious OSS packages

over the years, it is critical

that OSS be scanned for

malware prior to

consumption.

https://github.com/Microsoft/vcpkg
https://github.com/Microsoft/vcpkg
https://pulpproject.org/
https://docs.microsoft.com/en-us/azure/devops/artifacts/start-using-azure-artifacts?view=azure-devops
https://github.com/features/packages
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://packagecloud.io/
https://www.sonatype.com/products/firewall
https://docs.github.com/en/repositories/creating-and-managing-repositories/duplicating-a-repository
https://docs.github.com/en/repositories/creating-and-managing-repositories/duplicating-a-repository
Melba-Lopez

places than just CVEs is

important to ensure that

you are being informed

from across multiple

vulnerability sources.

Free Tool: GitHub
Dependency Graph

Paid Tool: Snyk Open
Source, Mend SCA

[SCA-2] In addition to
scanning for
vulnerabilities, OSS
should be scanned for
software licenses.

Free Tool: ScanCode

Free Tool: OpenSSF
Scorecard

Free Tool: Mend Supply
Chain Defender, OpenSSF
Package Analysis

Paid Tool: Nexus Firewall,
Checkmarx SCA

[SCA-5] Without doing

proactive security analysis

to look for zero-day

vulnerabilities, there

would be entire threat

categories that would go

unmitigated, such as

back-doors.

Free Tools: OSSGadget,
DevSkim, Attack Surface
Analyzer, Application
Inspector, CodeQL,
OneFuzz, RESTler

Paid Tool: Semgrep

Inventory It - OSS usage
and deployment

[INV-1] Establishing an

inventory of all developer

OSS dependencies is

critical when responding

to an incident as an

ingested malicious

component would need

to be deleted from the

developer’s desktop, the

package caching solution,

[INV-2] Have an incident
response plan that
leverages your inventory
and your deny list.

Free Tool: Incident
Response Reference
Guide

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/open-source-security-management/
https://www.mend.io/sca/
https://github.com/nexB/scancode-toolkit
https://github.com/ossf/scorecard
https://github.com/ossf/scorecard
https://www.mend.io/mend-supply-chain-defender/
https://www.mend.io/mend-supply-chain-defender/
https://github.com/ossf/package-analysis
https://github.com/ossf/package-analysis
https://www.sonatype.com/products/firewall
https://checkmarx.com/resource/documents/en/34965-19105-preventing-supply-chain-attacks.html
https://github.com/microsoft/OSSGadget
https://github.com/microsoft/DevSkim
https://github.com/microsoft/AttackSurfaceAnalyzer
https://github.com/microsoft/AttackSurfaceAnalyzer
https://github.com/microsoft/ApplicationInspector
https://github.com/microsoft/ApplicationInspector
https://codeql.github.com/
https://github.com/microsoft/onefuzz
https://github.com/microsoft/restler-fuzzer
https://semgrep.dev/
https://www.microsoft.com/en-us/download/details.aspx?id=103148
https://www.microsoft.com/en-us/download/details.aspx?id=103148
https://www.microsoft.com/en-us/download/details.aspx?id=103148

and the software/service

that in production that

consumed the package.

Knowing which projects

are using which OSS

components and their

versions across your

enterprise is vital toward

supporting rapid Incident

Response.

Free Tool: Component
Detection, SBOM
Generator for 1st party
code, Syft, Tern, SCA
tooling

Paid Tool: Dependency
Graph w/ Insights via
GHAS

Update It [UPD-1] Update
vulnerable OSS manually.

[UPD-2] Automating
patching OSS
dependencies to address
known vulnerabilities in a
timely manner.

Free Tool: Dependabot,
Renovate

[UPD-3] Display OSS
vulnerabilities as
comments in Pull
Requests.

https://github.com/microsoft/component-detection
https://github.com/microsoft/component-detection
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://github.com/anchore/syft
https://github.com/tern-tools/tern
https://github.com/bureado/awesome-software-supply-chain-security#sca-and-sbom
https://github.com/bureado/awesome-software-supply-chain-security#sca-and-sbom
https://docs.github.com/en/organizations/collaborating-with-groups-in-organizations/viewing-insights-for-your-organization#viewing-organization-dependency-insights
https://docs.github.com/en/organizations/collaborating-with-groups-in-organizations/viewing-insights-for-your-organization#viewing-organization-dependency-insights
https://docs.github.com/en/enterprise-server@3.4/get-started/learning-about-github/about-github-advanced-security
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://github.com/renovatebot/renovate

Paid Tool: Dependency
Review via GHAS

Audit It - provenance and
consumption workflows

 [AUD-2] Audit that
developers are
consuming OSS through
the approved ingestion
method. You can search
for binaries that are
checked into the repo.

Free Guide: Searching
Code

[AUD-3] Validate integrity

of the OSS that you

consume into your build.

Free Tool: NuGet CLI
verify command

[AUD-1] Verify the
provenance of all OSS
components to ensure
they come through the
official supply chain.

Paid Tool: Nexus Firewall

[AUD-4] Validate the
SBOMs of OSS that you
consume into your build.

Free Tool: Community
Attestation Service

Enforce It - OSS
consumption meets
security policy

 [ENF-1] Securing the
configuration of how
build pipelines consume
OSS components.

Free Tools: NuGet
Package Source Mapping,
Version pinning and Lock
Files

[ENF-2] Enforcing teams

to only consume

packages from a curated

feed is the goal of this

Framework.

Paid Tool: Nexus Firewall

Rebuild It - from source [REB-1] Rebuilding from

source in a trusted build

environment removes the

risk of consuming a

package that may have

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-dependency-review
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-dependency-review
https://docs.github.com/en/enterprise-server@3.4/get-started/learning-about-github/about-github-advanced-security
https://docs.github.com/en/search-github/searching-on-github/searching-code
https://docs.github.com/en/search-github/searching-on-github/searching-code
https://docs.microsoft.com/en-us/nuget/reference/cli-reference/cli-ref-verify
https://docs.microsoft.com/en-us/nuget/reference/cli-reference/cli-ref-verify
https://www.sonatype.com/products/firewall
https://cas.codenotary.com/
https://cas.codenotary.com/
https://docs.microsoft.com/en-us/nuget/consume-packages/package-source-mapping
https://docs.microsoft.com/en-us/nuget/consume-packages/package-source-mapping
https://azure.microsoft.com/mediahandler/files/resourcefiles/3-ways-to-mitigate-risk-using-private-package-feeds/3%20Ways%20to%20Mitigate%20Risk%20When%20Using%20Private%20Package%20Feeds%20-%20v1.0.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/3-ways-to-mitigate-risk-using-private-package-feeds/3%20Ways%20to%20Mitigate%20Risk%20When%20Using%20Private%20Package%20Feeds%20-%20v1.0.pdf
https://www.sonatype.com/products/firewall

been victim to a

CCleaner/SolarWinds style

build-time attack.

Free Tools: Oryx,
DotNet.ReproducibleBuilds,
Reproducible-Builds.org,
OSS Reproducible,
rebuilderd

[REB-2] Digitally sign the
OSS you rebuild.

Tool: Notary, SigStore

[REB-3] If you are

rebuilding the OSS yourself,

you can automate Software

Bill of Material (SBOM)

generation at build time.

This helps capture the

supply chain information

for each package to enable

you to better maintain

auditability and blast radius

assessments.

Free Tool: SBOM
Generator on rebuilt 3rd
party code

[REB-4] Digitally sign the
SBOMs you produce.

https://github.com/microsoft/oryx
https://www.nuget.org/packages/DotNet.ReproducibleBuilds/
https://reproducible-builds.org/
https://github.com/microsoft/OSSGadget/tree/main/src/oss-reproducible
https://github.com/kpcyrd/rebuilderd
http://notaryproject.dev/
https://www.sigstore.dev/
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool

Free Tool: Notary

Fix It + Upstream

 [FIX-1] In extreme cases,

when a newly discovered

vulnerability is so severe

and you cannot wait for an

upstream maintainer to

implement a fix, you should

implement a change in the

code to address a zero-day

vulnerability, rebuild,

deploy to your

organization, and

confidentially contribute

the fix to the upstream

maintainer.

Free Tool: Follow
confidential disclosure
guidelines

http://notaryproject.dev/
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities

Conclusion

The goal of this paper is to provide a simple framework for the pragmatic inclusion of secure OSS

consumption practices in the software development process. It outlines a series of discrete, non-

proprietary security development activities that when joined with effective process automation and

maturation levels represent the steps necessary for an organization to objectively claim compliance with

the S2C2F as defined by the requirements identified in Level 3 of the S2C2F Maturity Model.

Appendix: Relation to SCITT

The Supply Chain Integrity, Transparency, and Trust initiative, or SCITT, is a set of proposed industry

standards for managing the compliance of goods and services across end-to-end supply chains. In the

future, we expect teams to output "attestations of conformance" to the S2C2F requirements and store it

in SCITT. The format of such attestations is to be determined.

Appendix: Mapping Secure Supply Chain Consumption Framework
Requirements to Other Specifications

There are many other security frameworks, guides, and controls. This section maps the S2C2F

requirements to other relevant specifications including NIST SP 800-161, NIST SP 800-218, CIS Software

Supply Chain Security Guide, OWASP Software Component Verification Standard, SLSA, and the CNCF

Software Supply Chain Best Practices.

Requirement
ID

Requirement Title References

ING-1 Use package
managers trusted
by your
organization

CIS SSC SG: 3.1.5
OWASP SCVS: 1.2
CNCF SSC: Define and prioritize trusted package managers and
repositories

ING-2 Use an OSS binary
repository manager
solution

OWASP SCVS: 4.1
CNCF SSC: Define and prioritize trusted package managers and
repositories

ING-3 Have a Deny List
capability to block
known malicious
OSS from being
consumed

ING-4 Mirror a copy of all
OSS source code to
an internal location

CNCF SSC: Build libraries based upon source code

SCA-1 Scan OSS for known
vulnerabilities

SP800218: RV.1.1
SP800161: SA-10, SR-3, SR-4
CIS SSC SG: 1.5.5, 3.2.2
OWASP SCVS: 5.4
CNCF SSC: Verify third party artefacts and open source libraries,
Scan software for vulnerabilities, Run software composition
analysis on ingested software

SCA-2 Scan OSS for
licenses

CIS SSC SG: 1.5.6, 3.2.3
OWASP SCVS: 5.12
CNCF SSC: Scan software for license implications

SCA-3 Scan OSS to
determine if its
end-of-life

SP800218: PW.4.1
SP800161: SA-4, SA-5, SA-8(3), SA-10(6), SR-3, SR-4
OWASP SCVS: 5.8

SCA-4 Scan OSS for
malware

https://github.com/ietf-scitt

SCA-5 Perform proactive
security review of
OSS

SP800218: PW.4.4
SP800161: SA-4, SA-8, SA-9, SA-9(3), SR-3, SR-4, SR-4(3), SR-4(4)
OWASP SCVS: 5.2, 5.3,

INV-1 Maintain an
automated
inventory of all OSS
used in
development

OWASP SCVS: 1.1, 1.3, 1.8, 5.11
CNCF SSC: Track dependencies between open source
components

INV-2 Have an OSS
Incident Response
Plan

SP800218: RV.2.2
SP800161: SA-5, SA-8, SA-10, SA-11, SA-15(7)

UPD-1 Update vulnerable
OSS manually

UPD-2 Enable automated
OSS updates

UPD-3 Display OSS
vulnerabilities as
comments in Pull
Requests (PRs)

AUD-1 Verify the
provenance of your
OSS

CIS SSC SG: 3.2.4
OWASP SCVS: 1.10, 6.1
SLSA: Provenance – Dependencies complete

AUD-2 Audit that
developers are
consuming OSS
through the
approved ingestion
method

CIS SSC SG: 4.3.3

AUD-3 Validate integrity of
the OSS that you
consume into your
build

CIS SSC SG: 2.4.3
OWASP SCVS: 4.12
CNCF SSC: Verify third party artefacts and open source libraries

AUD-4 Validate SBOMs of
OSS that you
consume into your
build

CNCF SSC: Require SBOM from third party supplier

ENF-1 Securely configure
your package
source files (i.e.
nuget.config,
.npmrc, pip.conf,
pom.xml, etc.)

SP800218: PO.5.2
CIS SSC SG: 2.4.2, 3.1.7, 4.3.4, 4.4.2

ENF-2 Enforce usage of a
curated OSS feed
that enhances the
trust of your OSS

SP800218: PO.5.2
CIS SSC SG: 2.4.3, 3.1.1, 3.1.3

REB-1 Rebuild the OSS in
a trusted build
environment, or
validate that it is
reproducibly built

CIS SSC SG: 2.4.4
SLSA: Build - Reproducible

REB-2 Digitally sign the
OSS you rebuild

SP800218: PS.2.1

REB-3 Generate SBOMs
for OSS that you
rebuild

SP800218: PS.3.2
SP800161: SA-8, SR-3, SR-4
CIS SSC SG: 2.4.5
OWASP SCVS: 1.4, 1.7
CNCF SSC: Generate an immutable SBOM of the code

REB-4 Digitally sign the
SBOMs you
produce

CIS SSC SG : 2.4.6

FIX-1 Implement a
change in the code
to address a zero-
day vulnerability,
rebuild, deploy to
your organization,
and confidentially
contribute the fix
to the upstream
maintainer

Appendix: References

Here is a list of hyperlinks for documents mentioned within this paper:

• The Free Software Definition

• The Open Source Definition

• Supply Chain Risk Management Practices for Federal Information Systems and Organizations
(nist.gov)

• Secure Software Development Framework (SSDF) Version 1.1: Recommendations for Mitigating
the Risk of Software Vulnerabilities (nist.gov)

• CIS WorkBench / Benchmarks (cisecurity.org)

• OWASP Software Component Verification Standard | OWASP Foundation

• SLSA • Supply-chain Levels for Software Artifacts

• tag-security/CNCF_SSCP_v1.pdf at main · cncf/tag-security (github.com)

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf
https://workbench.cisecurity.org/benchmarks/7555
https://owasp.org/www-project-software-component-verification-standard/
https://slsa.dev/
https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf

