
Software Fingerprinting for
Supply Chain Security
—
Ted Habeck
Jiyong Jang
Dhilung Kirat
Ian Molloy
JR Rao
Doug Schales

Secure Software Supply Chain © 2022 IBM Corporation

IBM Research Security

Supply Chain Attacks

– SolarWinds (2019-2021) est. cost > $100B

• Malicious code (backdoor) pushed out through updates

– Dependency confusion (Feb 2021)

• Private vs public packages (npm, PyPi, RubyGems)

– Codecov (Apr 2021)

• DevOps tool. Vulnerability in CI. Bash uploader modified

– Kaseya (Jul 2021) ransom $70M

• IT solutions, including VSA (remote monitoring and
management software) to deliver REvil ransomware

– Protestware (Mar 2022)

• Popular NPM package wiped files in Russia and Belarus

Secure Software Supply Chain © 2022 IBM Corporation 2

Supply Chain Security
Industry approach to protecting CI/CD pipelines

Secure Software Supply Chain © 2022 IBM Corporation

Developer

Release Deploy

User
CISO

Develop Source
code

Distributed
code

Compiled
code

author
open source

proprietary code

Provenance
(list of components)

SBOM

Integrity
(reproducible CI)

Security
(vulnerability)

Build

3

Proposal: Software Fingerprints for Software Assurance

Secure Software Supply Chain © 2022 IBM Corporation

Ken Thompson’s Reflections on Trusting Trust

– There is a need to verify code and binary integrity and identity

– Sourced from multiple distributions, compilers, and optimizations

– Identify and verify legacy software in deployments

– Verify software version or backported patches, or code functionality

ssdeep 2.14

– 1536:HIbwMHxpJjkCt4RxeRGVXE3jETfgx1VH6CT
M:HwqJ4Ejgx1VH6CTM

– 768:n5fTRlHCcCaMR+F75fwBcVEpqgnfuAxhXHYj
vriZRTqI33oF5Wf+lqhmunaEYcu/:n5tXN4/MufH
XHmvrkqII5Q

– 768:XXqchVhVlpGPCNazQSA8W5ie12QSN6CDvrs9
1c:nqilhszQSUtclQEvrIi

Continuity across package repositories

Stability across versions

Robustness for legacy

– Hashing (e.g., SHA2) verifies exact matches in files

– One-bit changes result in large differences

– Signatures verify integrity assuming root of trust

– Requires full trust in signer

– Fuzzy Hashing (e.g., ssdeep) provides partial matches to known files

– Handles minor syntactic differences but lacks file semantics

4

User
CISO

Supply Chain Security
Open security issues and residual risks

Secure Software Supply Chain © 2022 IBM Corporation

Developer

Release DeployDevelop Source
code

Distributed
code

Compiled
code

author
open source

proprietary code

Provenance
(list of components)

SBOM

Integrity
(reproducible CI)

Security
(vulnerability)

Build

How easy to replicate
10yr old dev environment?

Security of toolchain? (XCodeGhost)Compromise dev
(SolarWinds hack)

bug

Compromised/stolen
certificate? revocation?
(NVIDIA leak)

How to verify the
completeness/correctness?

How to inspect
closed/legacy code?

Where else the code or
library deployed?
(broader dependency
analysis, e.g., log4j)

SLSAv4 requires
significant human
resources

5

Code Genome: Semantically meaningful fingerprint

Same Genome 6

• Across multiple architectures (x86, ARM, …)
• Across multiple compilers (gcc, clang, …)
• Across multiple optimization levels
• Handling obfuscation

Secure Software Supply Chain © 2022 IBM Corporation

Key Idea: Code Genome construction

Secure Software Supply Chain © 2022 IBM Corporation

Compile

Lift

Canonicalize

bitcode

Convert

Genomemachine-code “raw” IR

canonical IR

Convertsource code
(optional)

Embedding

7

Genome can be constructed from closed-source/legacy code
where source code is not easily available.

Use Case 1: Finding Log4j
Legacy Software Discovery

– Software deployments are a turducken

• zip, tar, container image, jar, etc.

• Dependencies often wrapped up

– No good provenance or CMDB

– Can’t rely on standard directories, filenames, or
hashes

– Code can be repackaged

– Applies across the board: CICD, DevSecOps and
Legacy

Secure Software Supply Chain © 2022 IBM Corporation 8

User
CISO

Use Case 2: SBOM Verification

Secure Software Supply Chain © 2022 IBM Corporation

Developer

Release DeployDevelop Source
code

Distributed
code

Compiled
code

author
open source

proprietary code

Provenance
(list of components)

SBOM

Integrity
(reproducible CI)

Security
(vulnerability)

Build

How easy to replicate
10yr old dev environment?

Security of toolchain? (XCodeGhost)Compromise dev
(SolarWinds hack)

bug

Compromised/stolen
certificate? revocation?
(NVIDIA leak)

How to verify the
completeness/correctness?

How to inspect
closed/legacy code?

Where else the code or
library deployed?
(broader dependency
analysis, e.g., log4j)

SLSAv4 requires
significant human
resources

– Problem

• Each vendor creates SBOM of their own software including open-source
and closed-source components. How can we verify its correctness
(containing incorrect library mistakenly/maliciously) and completeness
(missing library)?

– Value

• Given software, we can verify (generate) SBOM

• Support closed-source and legacy software without requiring source
code access

• Help developers generate correct SBOM

• Vet software before integrating/deploying into a product

9

Trust but Verify SBOM: Metadata vs. Code

Secure Software Supply Chain © 2022 IBM Corporation

$ sbom generation tools

“Unfortunately, some images – such as
the official node image on Docker Hub –
incorrectly report the version of OpenSSL
that's used by the Node.js runtime.”

https://www.chainguard.dev/unchained/mitigating-critical-openssl-vulnerability-with-chainguard

10

https://hub.docker.com/_/node

Demo: Verifying wget

Secure Software Supply Chain © 2022 IBM Corporation 11

UI of POC

Secure Software Supply Chain © 2022 IBM Corporation 12

Status and Roadmap

Current Status

– Several techniques for computing genes

– Support for binaries, packages, bytecode

– Cloud native application / processing engine

– Currently performing large-scale evaluation

– Additional features and capabilities in
development

Plans for Release:

– A version of genome generation

– Service demonstrating technology

– Utilities for handling genomes and querying
service

Requests:

– Welcome feedback, support and collaboration

– Insights on capabilities and use cases

– How to complement existing OpenSSF projects

Secure Software Supply Chain © 2022 IBM Corporation 13

