
Software Fingerprinting for 
Supply Chain Security 
—
Ted Habeck
Jiyong Jang
Dhilung Kirat
Ian Molloy
JR Rao
Doug Schales

Secure Software Supply Chain © 2022 IBM Corporation

IBM Research Security



Supply Chain Attacks

– SolarWinds (2019-2021) est. cost > $100B

• Malicious code (backdoor) pushed out through updates

– Dependency confusion (Feb 2021)

• Private vs public packages (npm, PyPi, RubyGems)

– Codecov (Apr 2021)

• DevOps tool. Vulnerability in CI. Bash uploader modified

– Kaseya (Jul 2021) ransom $70M

• IT solutions, including VSA (remote monitoring and 
management software) to deliver REvil ransomware

– Protestware (Mar 2022) 

• Popular NPM package wiped files in Russia and Belarus
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Supply Chain Security
Industry approach to protecting CI/CD pipelines
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Proposal: Software Fingerprints for Software Assurance

Secure Software Supply Chain © 2022 IBM Corporation

Ken Thompson’s Reflections on Trusting Trust

– There is a need to verify code and binary integrity and identity

– Sourced from multiple distributions, compilers, and optimizations

– Identify and verify legacy software in deployments

– Verify software version or backported patches, or code functionality

ssdeep 2.14

– 1536:HIbwMHxpJjkCt4RxeRGVXE3jETfgx1VH6CT
M:HwqJ4Ejgx1VH6CTM

– 768:n5fTRlHCcCaMR+F75fwBcVEpqgnfuAxhXHYj
vriZRTqI33oF5Wf+lqhmunaEYcu/:n5tXN4/MufH
XHmvrkqII5Q

– 768:XXqchVhVlpGPCNazQSA8W5ie12QSN6CDvrs9
1c:nqilhszQSUtclQEvrIi

Continuity across package repositories

Stability across versions

Robustness for legacy

– Hashing (e.g., SHA2) verifies exact matches in files

– One-bit changes result in large differences

– Signatures verify integrity assuming root of trust

– Requires full trust in signer

– Fuzzy Hashing (e.g., ssdeep) provides partial matches to known files

– Handles minor syntactic differences but lacks file semantics
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User
CISO

Supply Chain Security
Open security issues and residual risks
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Code Genome: Semantically meaningful fingerprint

Same Genome 6

• Across multiple architectures (x86, ARM, …)
• Across multiple compilers (gcc, clang, …)
• Across multiple optimization levels
• Handling obfuscation
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Key Idea: Code Genome construction
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Genome can be constructed from closed-source/legacy code 
where source code is not easily available.



Use Case 1: Finding Log4j
Legacy Software Discovery

– Software deployments are a turducken

• zip, tar, container image, jar, etc.

• Dependencies often wrapped up

– No good provenance or CMDB

– Can’t rely on standard directories, filenames, or 
hashes

– Code can be repackaged

– Applies across the board: CICD, DevSecOps and 
Legacy
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User
CISO

Use Case 2: SBOM Verification
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– Problem

• Each vendor creates SBOM of their own software including open-source 
and closed-source components. How can we verify its correctness 
(containing incorrect library mistakenly/maliciously) and completeness 
(missing library)?

– Value

• Given software, we can verify (generate) SBOM

• Support closed-source and legacy software without requiring source 
code access

• Help developers generate correct SBOM

• Vet software before integrating/deploying into a product
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Trust but Verify SBOM: Metadata vs. Code
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$ sbom generation tools

“Unfortunately, some images – such as 
the official node image on Docker Hub –
incorrectly report the version of OpenSSL 
that's used by the Node.js runtime.”

https://www.chainguard.dev/unchained/mitigating-critical-openssl-vulnerability-with-chainguard

10

https://hub.docker.com/_/node


Demo: Verifying wget
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UI of POC
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Status and Roadmap

Current Status

– Several techniques for computing genes

– Support for binaries, packages, bytecode

– Cloud native application / processing engine

– Currently performing large-scale evaluation

– Additional features and capabilities in 
development

Plans for Release:

– A version of genome generation

– Service demonstrating technology

– Utilities for handling genomes and querying 
service

Requests:

– Welcome feedback, support and collaboration

– Insights on capabilities and use cases

– How to complement existing OpenSSF projects
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