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From a given point q 2 P , a point p 2 P is k-visible i↵ the segment pq
properly intersects @P at most k times.

For a given polygon P and a given point q 2 P , the set of k-visible
points of P from q is called the k-visibility region of q within P , and
is denoted by Vk(P, q).
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k-visibility region in constrained-memory model

Input: A simple polygon P in a read-only array, a point q 2 P and a
constant k 2 N.
Output: A representation of Vk(P, q).

• O(1) space: O(cn+ kn) time
• O(n) space: O(n log n) time

Theorem:
For a given simple polygon P , a given point q 2 P and k 2 N, we can
report Vk(P, q) in O((cn+ kn)/s+ n log s) time using O(s) workspace.



Known results

Space Running time Authors

0-visibility O(n)
Joe & B. Simpson
BIT Nume. Math. 1987

O(n)

O(n2
)

k-visibility

O(nr̄)O(1)

O(nr/2s + n log

2 r)

O(nr/2s + n log r)
expected time

O(s)
s 2 O(log r)

Barba, Korman,
Langerman & I. Silveira
JoCG 2014

Bajuelos, et al.
J. UCS 2012

O(s) O((c+ k)n/s+ n log s)

Bahoo, Banyassady,
Droucher, Bose, Mulzer.
EuroCG 2016.
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• windows: some chords inside P
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changes only if r✓ stabs a vertex of P .



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q
r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q

r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q

r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .

Critical vertex
Non-critical vertex



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q

r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .

Critical vertex
Non-critical vertex

If it is k-visible

Window: the segment on r✓ between
e✓(k + 2) and e✓(k + 3) (if they exist)
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@Vk(P, q) consists of
• part of @P
• windows: some chords inside P
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r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .

Critical vertex
Non-critical vertex

Given P and the set of
windows, Wk(P, q), we can
uniquely report @Vk(P, q) .

If it is k-visible

Window: the segment on r✓ between
e✓(k + 2) and e✓(k + 3) (if they exist)
is an edge of @Vk(P, q).
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Computing Vk(P, q) in O(1) space –Overview

• Select v0, the critical vertex with smallest angle.
• Find e0(k + 1) using the k-selection algorithm.
• If v0 is k-visible then find the window of qv0.

• Find v1, next critical vertex with smallest angle.
• Find e1(k + 1) using e0(k + 1).
• If v1 is k-visible then find the window of qv1.

• Repeat the last three steps for all critical vertices.

! O(n)
! O(kn)
! O(n)

! O(n)
! O(n)
! O(n)

O(c) times

Running time: O(kn+ cn)

q
v0
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Computing Vk(P, q) in O(s) space –Overview

• Select v0, find e0(k + 1) and the
window of qv0.

• Find the next s critical vertex with
smallest angle, v1, v2, . . . , vs, and
insert them in a BST .

• ?
• Repeat for the next s critical vertices.

! O(n+ k � selection)
.
! O(n+ s log s)
.
.
! O(?)

O(c/s) times

Running time: O(c/s(n+ s log s+?) + kn/s)
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• Select v0, find e0(k + 1) and the
window of qv0.

• Find the next s critical vertex with
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There is an algorithm that finds
the s smallest element in a
read-only array of size n, in O(n)
time using O(s) workspace.

M. Chan & Y. Chen. DCG 2007

There is an algorithm that finds
the kth smallest element in a
read-only array array of size n in
O(dk/sen) time using O(s)
workspace.



Computing Vk(P, q) in O(s) space –Overview

• Find 2s intersecting edges to the right/left of
e0(k + 1) on qv0 and sort them in memory.

• For each edge in T determine the larger
angle of its endpoints, and insert them in T✓.

• For vi2{1,2,...,s}, find ei(k + 1) and the
window of qvi using ei�1(k + 1) and T .

• Update T and T✓.
• Repeat for the s critical vertices.

! O(n+ s log s)
.
! O(s log s)
.
! O(1)

.
! O(ci log s)

O(s) times

Running time: O(n+ s log s+ s(ci log s))

q

v1

. . .
vs

v0

v2



Summary

Theorem: For a given simple polygon P in a read-only array, a point
q 2 P and a constant k 2 N, we can report Wk(P, q)
using O(s) workspace in O((cn+ kn)/s+ n log s) time.
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QUESTIONS


