

Finding the k-Visibility Region of a Point in a Simple Polygon in the Memory-Constrained Model

Yeganeh Bahoo University of Manitoba Winnipeg, Canada

Bahareh Banyassady

Freie Universität Berlin, Germany

Stephane Durocher

University of Manitoba Winnipeg, Canada

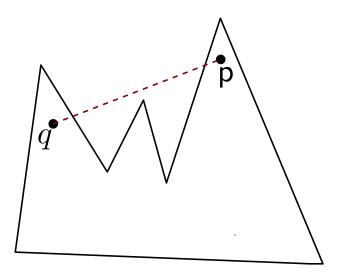
Prosenjit Bose Carleton University Ottawa, Canada

Wolfgang Mulzer

Freie Universität Berlin, Germany

k-visibility region

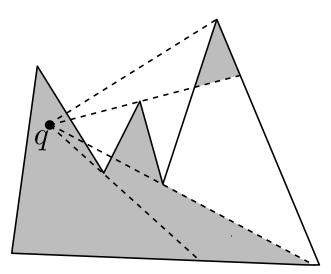
From a given point $q \in P$, a point $p \in P$ is *k*-visible iff the segment pq properly intersects ∂P at most *k* times.



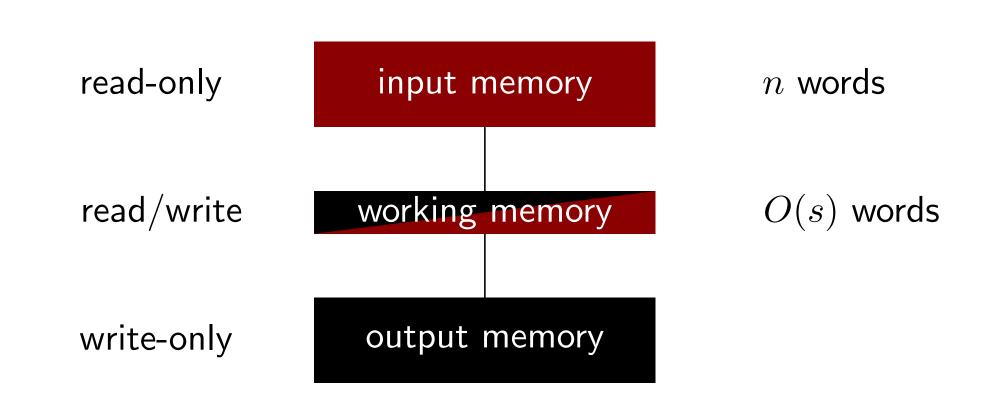
k-visibility region

From a given point $q \in P$, a point $p \in P$ is *k*-visible iff the segment pq properly intersects ∂P at most *k* times.

For a given polygon P and a given point $q \in P$, the set of k-visible points of P from q is called the k-visibility region of q within P, and is denoted by $V_k(P,q)$.



Model



word = $O(\log n)$ bits

k-visibility region in constrained-memory model

Input: A simple polygon P in a read-only array, a point $q \in P$ and a constant $k \in \mathbb{N}$. **Output:** A representation of $V_k(P,q)$.

Theorem:

For a given simple polygon P, a given point $q \in P$ and $k \in \mathbb{N}$, we can report $V_k(P,q)$ in $O((cn + kn)/s + n \log s)$ time using O(s) workspace.

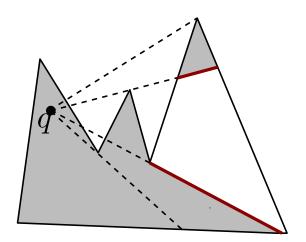
O(1) space: O(cn + kn) time
O(n) space: O(n log n) time

Known results

	Space	Running time	Authors
0-visibility	O(n)	O(n)	Joe & B. Simpson BIT Nume. Math. 1987
	O(1)	$O(n\overline{r})$	Barba, Korman,
	$O(s)$ $s \in O(\log r)$	$O(nr/2^s + n\log^2 r)$	Langerman & I. Silveira JoCG 2014
	$s \in O(\log r)$	$O(nr/2^s + n\log r)$ expected time	
<i>k</i> -visibility	$O(n^2)$	$O(n^2)$	Bajuelos, et al. J. UCS 2012
	O(1)	O(cn+kn)	Bahoo, Banyassady, Droucher, Bose, Mulzer. EuroCG 2016.
	O(s)	$O((c+k)n/s + n\log s)$	

 $\partial V_k(P,q)$ consists of

- part of ∂P
- $\bullet\,$ windows: some chords inside P

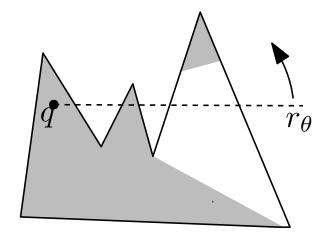


 $\partial V_k(P,q)$ consists of

- part of ∂P
- $\bullet\,$ windows: some chords inside P

Suppose r_{θ} is a ray from q in direction θ :

- Only the first k + 1 intersections of $r_{\theta} \cap \partial P$ are k-visible from q.
- The list of intersecting edges of r_{θ} changes only if r_{θ} stabs a vertex of P.

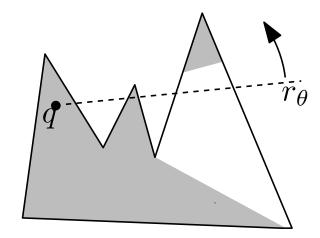


 $\partial V_k(P,q)$ consists of

- part of ∂P
- $\bullet\,$ windows: some chords inside P

Suppose r_{θ} is a ray from q in direction θ :

- Only the first k + 1 intersections of $r_{\theta} \cap \partial P$ are k-visible from q.
- The list of intersecting edges of r_{θ} changes only if r_{θ} stabs a vertex of P.

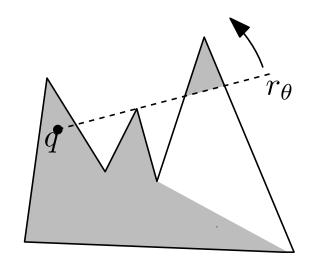


 $\partial V_k(P,q)$ consists of

- part of ∂P
- $\bullet\,$ windows: some chords inside P

Suppose r_{θ} is a ray from q in direction θ :

- Only the first k + 1 intersections of $r_{\theta} \cap \partial P$ are k-visible from q.
- The list of intersecting edges of r_{θ} changes only if r_{θ} stabs a vertex of P.



 $\partial V_k(P,q)$ consists of

- part of ∂P
- $\bullet\,$ windows: some chords inside P

Suppose r_{θ} is a ray from q in direction θ :

- Only the first k + 1 intersections of $r_{\theta} \cap \partial P$ are k-visible from q.
- The list of intersecting edges of r_{θ} changes only if r_{θ} stabs a vertex of P.

Non-critical vertex
Critical vertex

${ ilde r}_ heta$
\backslash

$\partial V_k(P,q)$ consists of

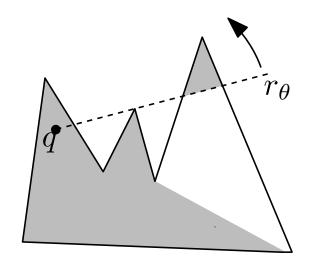
- part of ∂P
- \bullet windows: some chords inside P

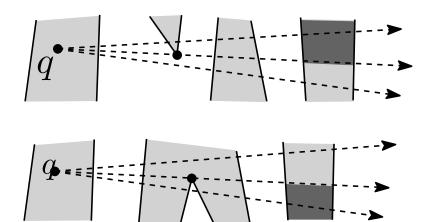
Suppose r_{θ} is a ray from q in direction θ :

- Only the first k + 1 intersections of $r_{\theta} \cap \partial P$ are k-visible from q.
- The list of intersecting edges of r_{θ} changes only if r_{θ} stabs a vertex of P.

Non-critical vertex \leftarrow Critical vertex \leftarrow If it is k-visible

Window: the segment on r_{θ} between $e_{\theta}(k+2)$ and $e_{\theta}(k+3)$ (if they exist) is an edge of $\partial V_k(P,q)$.





$\partial V_k(P,q)$ consists of

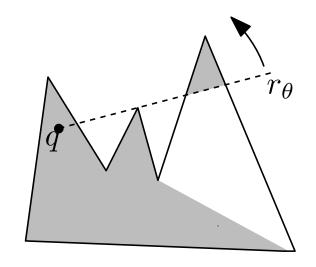
- part of ∂P
- \bullet windows: some chords inside P

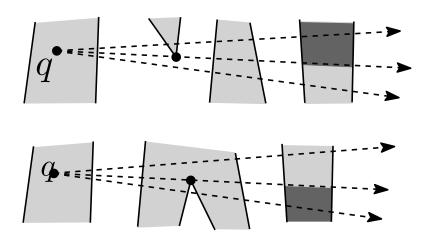
Suppose r_{θ} is a ray from q in direction θ :

- Only the first k + 1 intersections of $r_{\theta} \cap \partial P$ are k-visible from q.
- The list of intersecting edges of r_{θ} changes only if r_{θ} stabs a vertex of P.

Non-critical vertex \leftarrow Critical vertex \leftarrow If it is k-visible

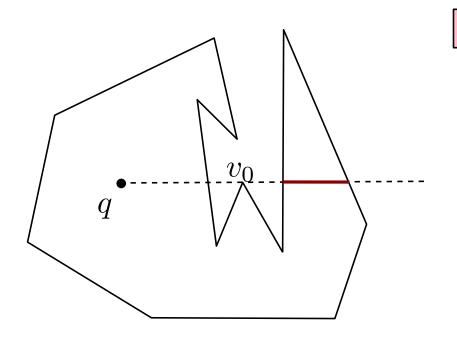
Window: the segment on r_{θ} between $e_{\theta}(k+2)$ and $e_{\theta}(k+3)$ (if they exist) is an edge of $\partial V_k(P,q)$.





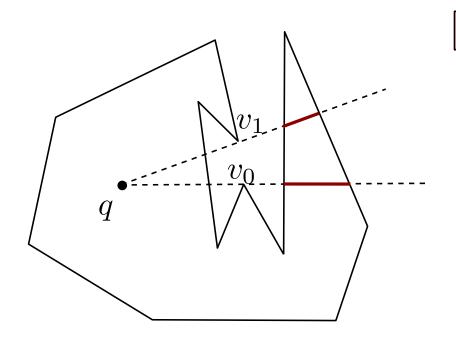
Given P and the set of windows, $W_k(P,q),$ we can uniquely report $\partial V_k(P,q)$.

- Select v_0 , the critical vertex with smallest angle. $\rightarrow O(n)$
- Find $e_0(k+1)$ using the k-selection algorithm. $\rightarrow O(kn)$
- If v_0 is k-visible then find the window of qv_0 . $\rightarrow O(n)$
- Find v_1 , next critical vertex with smallest angle. $\rightarrow O(n)$
- Find e₁(k + 1) using e₀(k + 1). → O(n) > O(c) times
 If v₁ is k-visible then find the window of qv₁. → O(n) > O(c) ↓
- Repeat the last three steps for all critical vertices. -



Running time: O(kn + cn)

- Select v_0 , the critical vertex with smallest angle. $\rightarrow O(n)$
- Find $e_0(k+1)$ using the k-selection algorithm. $\rightarrow O(kn)$
- If v_0 is k-visible then find the window of qv_0 . $\rightarrow O(n)$
- Find v_1 , next critical vertex with smallest angle. $\rightarrow O(n)$
- Find $e_1(k+1)$ using $e_0(k+1)$.
- Find e₁(k + 1) using e₀(k + 1). → O(n) > O(c) times
 If v₁ is k-visible then find the window of qv₁. → O(n) > O(c) times
- Repeat the last three steps for all critical vertices. -



Running time: O(kn + cn)

- Select v_0 , find $e_0(k+1)$ and the $\rightarrow O(n+k-selection)$ window of qv_0 .
- Find the next s critical vertex with → O(n + s log s) smallest angle, v₁, v₂, ..., v_s, and insert them in a BST.
 ? → O(?) → O(?)
- Repeat for the next s critical vertices. —

Running time: $O(c/s(n + s \log s + ?) + kn/s)$

- Select v_0 , find $e_0(k+1)$ and the $\rightarrow O(n+k-selection)$ window of qv_0 .
- Find the next s critical vertex with $\rightarrow O(n + s \log s)$ $\rangle O(c/s)$ times smallest angle, v_1, v_2, \ldots, v_s , and $\rightarrow O(?)$ insert them in a BST.
- Repeat for the next s critical vertices. —

7

Running time: $O(c/s(n+s\log s+?)+kn/s)$

There is an algorithm that finds the s smallest element in a read-only array of size n, in O(n)time using O(s) workspace.

M. Chan & Y. Chen. DCG 2007

- Select v_0 , find $e_0(k+1)$ and the $\rightarrow O(n+k-selection)$ window of qv_0 .
- Find the next s critical vertex with $\rightarrow O(n + s \log s)$ smallest angle, v_1, v_2, \ldots, v_s , and $\rangle O(c/s)$ times $\rightarrow O(?)$ insert them in a BST.
- Repeat for the next s critical vertices. –

?

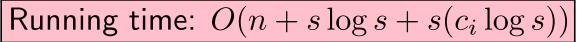
Running time: $O(c/s(n+s\log s+?)+kn/s)$

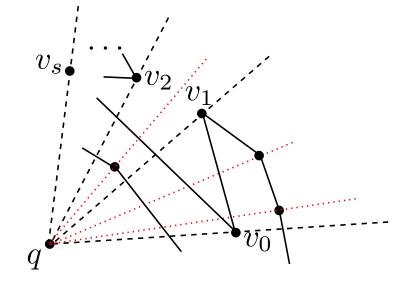
There is an algorithm that finds the s smallest element in a read-only array of size n, in O(n)time using O(s) workspace.

M. Chan & Y. Chen. DCG 2007

There is an algorithm that finds the k^{th} smallest element in a read-only array array of size n in $O(\lceil k/s \rceil n)$ time using O(s)workspace.

- Find 2s intersecting edges to the right/left of $\rightarrow O(n + s \log s)$ $e_0(k+1)$ on qv_0 and sort them in memory.
- For each edge in T determine the larger $\rightarrow O(s \log s)$ angle of its endpoints, and insert them in T_{θ} .
- For $v_{i \in \{1,2,\dots,s\}}$, find $e_i(k+1)$ and the window of qv_i using $e_{i-1}(k+1)$ and T. Update T and T_{θ} . $O(c_i \log s) \qquad \rightarrow O(c_i \log s)$
- Repeat for the s critical vertices.





Theorem: For a given simple polygon P in a read-only array, a point $q \in P$ and a constant $k \in \mathbb{N}$, we can report $W_k(P,q)$ using O(s) workspace in $O((cn + kn)/s + n \log s)$ time.

Theorem: For a given simple polygon P in a read-only array, a point $q \in P$ and a constant $k \in \mathbb{N}$, we can report $W_k(P,q)$ and $\partial V_k(P,q)$ using O(s) workspace in $O((cn + kn)/s + n \log s)$ time.

non-simple polygon
 set of segments

Theorem: For a given simple polygon P in a read-only array, a point $q \in P$ and a constant $k \in \mathbb{N}$, we can report $W_k(P,q)$ and $\partial V_k(P,q)$ using O(s) workspace in $O((cn + kn)/s + n \log s)$ time.

non-simple polygon
 set of segments

Theorem: For a given simple polygon P in a read-only array, a point $q \in P$ and a constant $k \in \mathbb{N}$, we can report $W_k(P,q)$ and $\partial V_k(P,q)$ using O(s) workspace in $O((cn + kn)/s + n \log s)$ time.

QUESTIONS