
Wolfgang Mulzer

Yeganeh Bahoo Bahareh Banyassady Stephane Durocher

University of Manitoba
Winnipeg, Canada

Freie Universität
Berlin, Germany

Prosenjit Bose

Carleton University
Ottawa, Canada

University of Manitoba
Winnipeg, Canada

Freie Universität
Berlin, Germany

Finding the k-Visibility Region of a Point in a Simple
Polygon in the Memory-Constrained Model



k-visibility region

q

p

From a given point q 2 P , a point p 2 P is k-visible i↵ the segment pq
properly intersects @P at most k times.



k-visibility region

q

From a given point q 2 P , a point p 2 P is k-visible i↵ the segment pq
properly intersects @P at most k times.

For a given polygon P and a given point q 2 P , the set of k-visible
points of P from q is called the k-visibility region of q within P , and
is denoted by Vk(P, q).



Model

input memory

working memory

output memory

read-only

read/write

write-only

n words

O(s) words

word = O(log n) bits



k-visibility region in constrained-memory model

Input: A simple polygon P in a read-only array, a point q 2 P and a
constant k 2 N.
Output: A representation of Vk(P, q).

• O(1) space: O(cn+ kn) time
• O(n) space: O(n log n) time

Theorem:
For a given simple polygon P , a given point q 2 P and k 2 N, we can
report Vk(P, q) in O((cn+ kn)/s+ n log s) time using O(s) workspace.



Known results

Space Running time Authors

0-visibility O(n)
Joe & B. Simpson
BIT Nume. Math. 1987

O(n)

O(n2
)

k-visibility

O(nr̄)O(1)

O(nr/2s + n log

2 r)

O(nr/2s + n log r)
expected time

O(s)
s 2 O(log r)

Barba, Korman,
Langerman & I. Silveira
JoCG 2014

Bajuelos, et al.
J. UCS 2012

O(s) O((c+ k)n/s+ n log s)

Bahoo, Banyassady,
Droucher, Bose, Mulzer.
EuroCG 2016.

O(cn+ kn)O(1)

O(n2
)



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q
r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q

r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q

r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .

Critical vertex
Non-critical vertex



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q

r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .

Critical vertex
Non-critical vertex

If it is k-visible

Window: the segment on r✓ between
e✓(k + 2) and e✓(k + 3) (if they exist)
is an edge of @Vk(P, q).

q

q



Properties of Vk(P, q)

@Vk(P, q) consists of
• part of @P
• windows: some chords inside P

q

r✓

Suppose r✓ is a ray from q in direction ✓:
• Only the first k + 1 intersections of

r✓ \ @P are k-visible from q.
• The list of intersecting edges of r✓

changes only if r✓ stabs a vertex of P .

Critical vertex
Non-critical vertex

Given P and the set of
windows, Wk(P, q), we can
uniquely report @Vk(P, q) .

If it is k-visible

Window: the segment on r✓ between
e✓(k + 2) and e✓(k + 3) (if they exist)
is an edge of @Vk(P, q).

q

q



Computing Vk(P, q) in O(1) space –Overview

• Select v0, the critical vertex with smallest angle.
• Find e0(k + 1) using the k-selection algorithm.
• If v0 is k-visible then find the window of qv0.

• Find v1, next critical vertex with smallest angle.
• Find e1(k + 1) using e0(k + 1).
• If v1 is k-visible then find the window of qv1.

• Repeat the last three steps for all critical vertices.

! O(n)
! O(kn)
! O(n)

! O(n)
! O(n)
! O(n)

O(c) times

Running time: O(kn+ cn)

q
v0



Computing Vk(P, q) in O(1) space –Overview

• Select v0, the critical vertex with smallest angle.
• Find e0(k + 1) using the k-selection algorithm.
• If v0 is k-visible then find the window of qv0.

• Find v1, next critical vertex with smallest angle.
• Find e1(k + 1) using e0(k + 1).
• If v1 is k-visible then find the window of qv1.

• Repeat the last three steps for all critical vertices.

! O(n)
! O(kn)
! O(n)

! O(n)
! O(n)
! O(n)

O(c) times

Running time: O(kn+ cn)

q
v0

v1



Computing Vk(P, q) in O(s) space –Overview

• Select v0, find e0(k + 1) and the
window of qv0.

• Find the next s critical vertex with
smallest angle, v1, v2, . . . , vs, and
insert them in a BST .

• ?
• Repeat for the next s critical vertices.

! O(n+ k � selection)
.
! O(n+ s log s)
.
.
! O(?)

O(c/s) times

Running time: O(c/s(n+ s log s+?) + kn/s)



Computing Vk(P, q) in O(s) space –Overview

• Select v0, find e0(k + 1) and the
window of qv0.

• Find the next s critical vertex with
smallest angle, v1, v2, . . . , vs, and
insert them in a BST .

• ?
• Repeat for the next s critical vertices.

! O(n+ k � selection)
.
! O(n+ s log s)
.
.
! O(?)

O(c/s) times

Running time: O(c/s(n+ s log s+?) + kn/s)

There is an algorithm that finds
the s smallest element in a
read-only array of size n, in O(n)
time using O(s) workspace.

M. Chan & Y. Chen. DCG 2007



Computing Vk(P, q) in O(s) space –Overview

• Select v0, find e0(k + 1) and the
window of qv0.

• Find the next s critical vertex with
smallest angle, v1, v2, . . . , vs, and
insert them in a BST .

• ?
• Repeat for the next s critical vertices.

! O(n+ k � selection)
.
! O(n+ s log s)
.
.
! O(?)

O(c/s) times

Running time: O(c/s(n+ s log s+?) + kn/s)

There is an algorithm that finds
the s smallest element in a
read-only array of size n, in O(n)
time using O(s) workspace.

M. Chan & Y. Chen. DCG 2007

There is an algorithm that finds
the kth smallest element in a
read-only array array of size n in
O(dk/sen) time using O(s)
workspace.



Computing Vk(P, q) in O(s) space –Overview

• Find 2s intersecting edges to the right/left of
e0(k + 1) on qv0 and sort them in memory.

• For each edge in T determine the larger
angle of its endpoints, and insert them in T✓.

• For vi2{1,2,...,s}, find ei(k + 1) and the
window of qvi using ei�1(k + 1) and T .

• Update T and T✓.
• Repeat for the s critical vertices.

! O(n+ s log s)
.
! O(s log s)
.
! O(1)

.
! O(ci log s)

O(s) times

Running time: O(n+ s log s+ s(ci log s))

q

v1

. . .
vs

v0

v2



Summary

Theorem: For a given simple polygon P in a read-only array, a point
q 2 P and a constant k 2 N, we can report Wk(P, q)
using O(s) workspace in O((cn+ kn)/s+ n log s) time.



Summary

Theorem: For a given simple polygon P in a read-only array, a point
q 2 P and a constant k 2 N, we can report Wk(P, q) and @Vk(P, q)
using O(s) workspace in O((cn+ kn)/s+ n log s) time.



Summary

Theorem: For a given simple polygon P in a read-only array, a point
q 2 P and a constant k 2 N, we can report Wk(P, q) and @Vk(P, q)
using O(s) workspace in O((cn+ kn)/s+ n log s) time.

non-simple polygon
set of segments



Summary

Theorem: For a given simple polygon P in a read-only array, a point
q 2 P and a constant k 2 N, we can report Wk(P, q) and @Vk(P, q)
using O(s) workspace in O((cn+ kn)/s+ n log s) time.

non-simple polygon
set of segments

QUESTIONS


