Dead Cats and
Lightning Lines

As I write this, the wifé, the kid, and I are in the throes of yet another lightning-quick
transcontinental mov me to Redmond, Washington, to work for You Know
Who. Moving is neve n, but what makes it worse for us is the pets. Getting them
into kennels and to ghe airport is hard; there’s always the possibility that they might
not be allowed to fl{/because of the weather; and, worst of all, they might not make it.
Animals don’t usually end up injured or dead, but it does happen.

ccessful) effort to cheer me up about the prospect of shipping
my animals, a friend, told me the following story, which he swears actually happened
to a friend of his. I don’t know—to me, it has the ring of an urban legend, which is to
say it makes a good story, but you can never track down the person it really happened
to; it’s always a friend of a friend. But maybe it is true, and anyway, it’s a good story.

This friend of a friend (henceforth referred to as FOF), worked in an airfreight
terminal. Consequently, he handled a lot of animals, which was fine by him, because he
liked animals; in fact, he had quite a few cats at home. You can imagine his dismay when,
one day, he took a kennel off the plane to find that the cat it carried was quite thoroughly
dead. (No, it wasn’t resting, nor pining for the fjords; this cat was bloody deceased.)

FOF knew how upset the owner would be, and came up with a plan to make every-
thing better. At home, he had a cat of the same size, shape, and markings. He would

697

substitute that cat, and since all cats treat all humans with equal disdain, the owner
would never know the difference, and would never suffer the trauma of the loss of
her cat. So FOF drove home, got his cat, put it in the kennel, and waited for the
owner to show up—at which point, she took one look at the kennel and said, “This
isn’t my cat. My cat is dead.”

As it turned out, she had shipped her recently deceased feline home to be buried.
History does not record how our FOF dug himself out of this one.

Okay, but what’s the point? The point is, if it isn’t broken, don’t fix it. And if it is
broken, maybe that’s all right, too. Which brings us, neat as a pin, to the topic of
drawing lines in a serious hurry.

Fast Run-Length Slice Line Drawing

In the last chapter, we examined the principles of run-length slice line drawing, which
draws lines a run at a time rather than a pixel at a time, a run being a series of pixels
along the major (longer) axis. It’s time to turn theory into useful practice by devel-
oping a fast assembly version. Listing 37.1 is the assembly version, in a form that’s
plug-compatible with the C code from the previous chapter.

LISTING 37.1 L37-1.ASM

; Fast run-length slice line drawing implementation for mode 0x13, the VGA's
; 320x200 256-color mode.

; Draws a line between the specified endpoints in color Color.

; C near-callable as:

; void LineDraw(int XStart, int YStart, int XEnd, int YEnd, int Color)

; Tested with TASM

SCREEN_WIDTH equ 320
SCREEN_SEGMENT equ 0al00h
.model small
.code

; Parameters to call.
parms struc

dw ? ;pushed BP
dw ? ;pushed return address
XStart dw ? ;X start coordinate of line
YStart dw ? ;Y start coordinate of line
XEnd dw ? ;X end coordinate of line
YEnd dw ? ;Y end coordinate of line
Color db ? ;color in which to draw Tine
db ? ;dummy byte because Color is really a word

parms ends

; Local variables.

Adjup equ -2 ;error term adjust up on each advance

AdjDown equ -4 ;error term adjust down when error term turns over
WholeStep equ -6 ;minimum run tength

XAdvance equ -8 ;1 or -1, for direction in which X advances
LOCAL_SIZE equ 8

public _LineDraw

698 Chapter 37

_LineDraw proc near

cld

push bp ;preserve caller's stack frame

mov bp,sp ;point to our stack frame

sub sp, LOCAL_SIZE ;allocate space for local variables
push si ;preserve C register variables

push di

push ds ;preserve caller's DS

; We'll draw top to bottom, to reduce the number of cases we have to handle,
; and to make 1ines between the same endpoints always draw the same pixels.

mov ax,[bpl.YStart
cmp ax,[bpl.YEnd
jle LineIsTopToBottom
xchg [bpl.YEnd,ax ;swap endpoints
mov [bpl.YStart,ax
mov bx,[bpl.XStart
xchg [bp].XEnd,bx
mov [bp]l.XStart,bx
LinelsTopToBottom:
; Point DI to the first pixel to draw.
mov dx,SCREEN_WIDTH
mul dx ' ;YStart * SCREEN_WIDTH
moyv si,[bpl.XStart
mov di,si
add di,ax ;DI = YStart * SCREEN_WIDTH + XStart

; = offset of initial pixel
; Figure out how far we're going vertically (guaranteed to be positive).
mov cx,[bpl.YEnd
sub cx,[bpl.YStart ;X = YDelta
: Figure out whether we're going left or right, and how far we're going
; horizontally. In the process, special-case vertical Tines, for speed and
; to avoid nasty boundary conditions and division by 0.

mov dx,[bp].XEnd
sub dx,si ;XDelta
jnz NotVerticallLine ;XDelta == 0 means vertical line
;it is a vertical line
;yes, special case vertical line
mov ax,SCREEN_SEGMENT
mov ds,ax ;point DS:DI to the first byte to draw
mov al,[bpl.Color
Vioop:
mov [di],al
add di,SCREEN_WIDTH
dec cX
jns VLoop
jmp Done
. Special-case code for horizontal lines.
align 2
IsHorizontalLine:
mov ax,SCREEN_SEGMENT
mov es,ax ;point ES:DI to the first byte to draw
mov al,[bpl.Color
mov ah,al ;duplicate in high byte for word access
and bx, bx ;left to right?
jns DirSet ;yes
sub di,dx ;currently right to left, point to left

; end so we can go left to right
; (avoids unpleasantness withright to
; left REP STOSW)

Dead Cats and Lightning Lines

699

DirSet:
mov
inc
shr
rep
adc
rep
jmp

; Special-case code for diagonal Tlines.

align
IsDiagonallLine:
mov
mov
mov
add
DLoop:
mov
add
dec
jns
jmp

align
NotVerticallLine:
mov

jns

neg

neg
LeftToRight:

cx,dx
(33
cx,1
stosw
€X,CX
stosh
Done

2

ax,SCREEN_SEGMENT
ds,ax
al,[bp].Color
bx,SCREEN_WIDTH

[di],al
di,bx
cx
DLoop
Done

2
bx,1
LeftToRight

bx
dx

; Special-case horizontal lines.

and
Jjz

CX,CX

IsHorizontalline

; Special-case diagonal lines.

cmp
iz

cx,dx
IsDiagonalline

i# of pixels to draw
:# of words to draw
;do as many words as possible

;do the odd byte, if there is one

;point DS:DI to the first byte to draw

;advance distance from one pixel to next

;assume left to right, so XAdvance = 1
;*¥**leaves flags unchanged***

;left to right, all set

;right to left, so XAdvance = -1

;| XDelta|

;YDelta == 07
iyes

;YDelta == XDelta?
syes

; Determine whether the 1ine is X or Y major, and handle accordingly.

cmp
jae
Jmp

dx,cx
XMajor
YMajor

; X-major (more horizontal than vertical) line.

align
XMajor:
mov
mov
and
jns
std
DFSet:
mov
sub
div

mov
add
mov

mov

700 Chapter 37

2

ax,SCREEN_SEGMENT
es,ax
bx,bx
DFSet

ax,dx
dx,dx
[33

bx,dx
bx,bx
[bpl.AdjUp,bx

si,cx

;point ES:DI to the first byte to draw
;left to right?

;yes, CLD is already set

;right to left, so draw backwards

;XDelta

;prepare for division

;AX = XDelta/YDelta

; (minimum # of pixels in a run in this 1ine)
;0X = XDelta % YDelta

;error term adjust each time Y steps by 1;

; used to tell when one extra pixel should be
; drawn as part of a run, to account for

; fractional steps along the X axis per

; 1-pixel steps along Y

;error term adjust when the error term turns

add si,si ; over, used to factor out the X step made at

mov [bpl.AdjDown,si ; that time
Initial error term; reflects an initial step of 0.5 along the Y axis.
sub dx,si ;(XDelta % YDelta) - (YDelta * 2)

;DX = initial error term
The initial and last runs are partial, because Y advances only 0.5 for
these runs, rather than 1. Divide one full run, plus the initial pixel,
between the initial and last runs.

mov si,ex ;SI = YDelta

mov CX,ax ;whole step (minimum run Tength)

shr cx,1

inc cx ;initial pixel count = (whole step / 2) + 1;

; (may be adjusted Tater). This is also the
; final run pixel count
push (3 ;remember final run pixel count for later

If the basic run length is even and there's no fractional advance, we have

one pixel that could go to either the initial or Tast partial run, which

we'll arbitrarily allocate to the last run.

If there is an odd number of pixels per run, we have one pixel that can't

be allocated to either the initial or last partial run, so we'll add 0.5 to

the error term so this pixel will be handled by the normal full-run loop.

add dx,si ;assume odd length, add YDelta to error term
; (add 0.5 of a pixel to the error term)
test al,1 ;is run length even?
jnz XMajorAdjustDone ;no, already did work for odd case, all set
sub dx,si ;length is even, undo odd stuff we just did
and bx,bx ;is the adjust up equal to 07
jnz XMajorAdjustDone ;no (don't need to check for odd length,
; because of the above test)
dec cX ;both conditions met; make initial run 1
; shorter
XMajorAdjustDone:
mov [bp].WholeStep,ax;:whole step (minimum run length)
mov al,[bpl.Color ;AL = drawing color
; Draw the first, partial run of pixels.
rep stosb ;draw the final run
add di,SCREEN_WIDTH ;advance along the minor axis (Y)
; Draw all full runs.
cmp si,1 ;are there more than 2 scans, so there are
; some full runs? (SI = # scans - 1)
jna XMajorDrawlLast :no, no full runs
dec dx ;adjust error term by -1 so we can use
; carry test
shr si,1 ;convert from scan to scan-pair count
jnc XMajorFullRunsOddEntry ;if there is an odd number of scans,

; do the odd scan now

XMajorFullRunsLoop:

mov cx,[bpl.WholeStep;run is at least this Tong
add dx,bx ;advance the error term and add an extra
jnc XMajorNoExtra ; pixel if the error term so indicates
inc cx ;one extra pixel in run
sub dx,.[bpl.AdjDown ireset the error term
XMajorNoExtra:
rep stosbh ;draw this scan line's run
add di,SCREEN_WIDTH ;advance along the minor axis (Y)
XMajorFullRunsOddEntry: ;enter loop here if there is an odd number
; of full runs
mov cx,[bp]l.WholeStep;run is at Teast this long
add dx, bx ;advance the error term and add an extra
jnc XMajorNoExtra2 ; pixel if the error term so indicates

Dead Cats and Lightning Lines

701

inc cX ;one extra pixel in run

sub dx,[bp]l.AdjDown ;reset the error term
XMajorNoExtra2:
rep stosb ;draw this scan 1ine’s run
add di,SCREEN_WIDTH ;advance along the minor axis (Y)
dec si
Jjnz XMajorFul1RunsLoop
; Draw the final run of pixels.
XMajorDrawLast:
pop cX ;get back the final run pixel length
rep stosb ;draw the final run
cld ;restore normal direction flag
jmp Done
; Y-major (more vertical than horizontal) line.
align 2
YMajor:
mov [bpl.XAdvance,bx ;remember which way X advances
mov ax,SCREEN_SEGMENT
mov ds,ax ;point DS:DI to the first byte to draw
mov ax,cx ;YDelta
mov cXx,dx ;XDelta
sub dx,dx ;prepare for division
div cX ;AX = YDelta/XDelta

; (minimum # of pixels in a run in this line)
;DX = YDelta % XDelta

mov bx,dx ;error term adjust each time X steps by 1;
add bx, bx ; used to tell when one extra pixel should be
mov [bp].AdjUp,bx ; drawn as part of a run, to account for

; fractional steps along the Y axis per
; 1-pixel steps along X

mov si,cx ;error term adjust when the error term turns
add si,si ; over, used to factor out the Y step made at
mov [bpl.AdjDown,si ; that time

Initial error term: reflects an initial step of 0.5 along the X axis.
sub dx,si ;(YDelta % XDelta) - (XDelta * 2)
;DX = initial error term
The initial and last runs are partial, because X advances only 0.5 for
these runs, rather than 1. Divide one full run, plus the initial pixel,
between the initial and last runs.

mov si,cx ;SI = XDelta

mov cX,ax ;whole step (minimum run length)

shr cx,1

inc cX ;initial pixel count = (whole step / 2) + 1;
; (may be adjusted later)

push cX ;remember final run pixel count for later

; If the basic run length is even and there's no fractional advance, we have
; one pixel that could go to either the initial or last partial run, which

; we'll arbitrarily allocate to the last run.

; If there is an odd number of pixels per run, we have one pixel that can't

; be allocated to either the initial or last partial run, so we'll add 0.5 to
; the error term so this pixel will be handled by the normal full-run Toop.

add dx,si ;assume odd length, add XDelta to error term
test al,1 ;is run length even?

Jjnz YMajorAdjustDone ;no, already did work for odd case, all set
sub dx,si ;length is even, undo odd stuff we just did
and bx,bx ;is the adjust up equal to 07

702 Chapter 37

Jjnz

dec
YMajorAdjustDone:

mov

mov
mov

; Draw the first, partial run of pixels.

YMajorFirstLoop:
mov
add
dec
jnz
add

YMajorAdjustDone

cX

[bpl.WholeStep,ax
al,[bp].Color
bx,[bpJ.XAdvance

[di],al
di,SCREEN_WIDTH
[53
YMajorfirstLoop
di, bx

; Draw all full runs.

cmp si,1
Jjna YMajorDrawlast
dec dx
shr si,1
jnc YMajorfFullRunsOddEntry
YMajorFuliRunsLoop:
mov cx,[bp].WholeStep
add dx,[bp].Adjup
jnc YMajorNoExtra
inc X
sub dx,[bp].AdjDown
YMajorNoExtra:
;draw the run
YMajorRunloop:
mov [dil.al
add di,SCREEN_WIDTH
dec cX
jnz YMajorRunlLoop
add di,bx

YMajorFul1RunsOddEntry:

mov

add

jnc

inc

sub
YMajorNoExtra2:
;draw the run
YMajorRunlLoop?2:

mov

add

dec

jnz

add

dec
Jnz
; Draw the final
YMajorDrawlLast:
pop

cx,[bp].WholeStep
dx,[bpl.AdjUp
YMajorNoExtra2

(33
dx,[bpl.AdjDown

[di],al
di,SCREEN_WIDTH
cx
YMajorRunLoop2
di,bx

si
YMajorFuliRunsLoop
run of pixels.

CcX

:no (don‘t need to check for odd length,
; because of the above test)

;both conditions met; make initial run 1
; shorter

;whole step (minimum run length)
;AL = drawing color
;which way X advances

;draw the pixel
;advance along the major axis (Y)

;advance along the minor axis (X)

;# of full runs. Are there more than 2

; columns, so there are some full runs?

; (ST = # columns - 1)

;no, no full runs

;adjust error term by -1 so we can use

; carry test

;convert from column to column-pair count
;if there is an odd number of

3 columns, do the odd column now

srun is at least this long

;advance the error term and add an extra
; pixel if the error term so indicates
;one extra pixel in run

;reset the error term

;draw the pixel
;advance along the major axis (Y)

;advance along the minor axis (X)

;enter 1oop here if there is an odd number
3 of full runs

;run is at least this Tong

;advance the error term and add an extra

; pixel if the error term so indicates
;one extra pixel in run

;reset the error term

;draw the pixel

;advance along the major axis (Y)

;advance along the minor axis (X)

;get back the final run pixel length

Dead Cats and Lightning Lines

703

YMajorLastlLoop:

mov {dil.al ;draw the pixel
add di,SCREEN_WIDTH ;advance along the major axis (Y)
dec cx
jnz YMajorLastlLoop

Done:
pop ds ;restore caller's DS
pop di
pop si ;restore C register variables
mov sp.bp ;deallocate local variables
pop bp ;restore caller's stack frame
ret

_LineDraw endp

end

How Fast Is Faste

Your first question is likely to be the following: Just how fast is Listing 37.1? Is it
optimized to the hilt or just pretty fast? The quick answer is: It’s fast. Listing 37.1
draws lines at a rate of nearly 1 million pixels per second on my 486/33, and is
capable of still faster drawing, as I'll discuss shortly. (The heavily optimized AutoCAD
line-drawing code that I mentioned in the last chapter drew 150,000 pixels per sec-
ond on an EGA in a 386/16, and I thought I had died and gone to Heaven. Such is
progress.) The full answer is a more complicated one, and ties in to the principle
that if it is broken, maybe that’s okay—and to the principle of looking before you
leap, also known as profiling before you optimize.

When I went to speed up run-length slice lines, I initially manually converted the last
chapter’s C code into assembly. Then I streamlined the register usage and used REP
STOS wherever possible. Listing 37.1 is that code. At that point, line drawing was
surely faster, although I didn’t know exactly how much faster. Equally surely, there
were significant optimizations yet to be made, and I was itching to get on to them,
for they were bound to be a lot more interesting than a basic C-to-assembly port.

Ego intervened at this point, however. I wanted to know how much of a speed-up I
had already gotten, so I timed the performance of the C code and compared it to the
assembly code. To my horror, I found that I had not gotten even a two-times im-
provement! I couldn’t understand how that could be—the C code was decidedly
unoptimized—until I hit on the idea of measuring the maximum memory speed of
the VGA to which I was drawing.

Bingo. The Paradise VGA in my 486/33 is fast for a single display-memory write,
because it buffers the data, lets the CPU go on its merry way, and finishes the write
when display memory is ready. However, the maximum rate at which data can be
written to the adapter turns out to be no more than one byte every microsecond. Put
another way, you can only write one byte to this adapter every 33 clock cycles on a
486/33. Therefore, no matter how fast I made the line-drawing code, it could never
draw more than 1,000,000 pixels per second in 256-color mode in my system. The C
code was already drawing at about half that rate, so the potential speed-up for the

704 Chapter 37

assembly code was limited to a maximum of two times, which is pretty close to what
Listing 37.1 did, in fact, achieve. When I compared the C and assembly implementa-
tions drawing to normal system (nondisplay) memory, I found that the assembly
code was actually four times as fast as the C code.

’p In fact, Listing 37.1 draws VGA lines at about 92 percent of the maximum possible
rate in my system—that is, it draws very nearly as fast as the VGA hardware will
allow. All the optimization in the world would get me less than 10 percent faster

line drawing—and only if I eliminated all overhead, an unlikely proposition at
best. The code isn 't fully optimized, but so what?

Now it’s true that faster line-drawing code would likely be more beneficial on faster
VGAs, especially local-bus VGAs, and in slower systems. For that reason, I'll list a
variety of potential optimizations to Listing 37.1. On the other hand, it’s also true
that Listing 37.1 is capable of drawing lines at a rate of 2.2 million pixels per second
on a 486/ 33, given fast enough VGA memory, so it should be able to drive almost
any non-local-bus VGA at nearly full speed. In short, Listing 37.1 is very fast, and, in
many systems, further optimization is basically a waste of time.

Profile before you optimize.

Further Optimizations

Following is a quick tour of some of the many possible further optimizations to
Listing 37.1.

The run-handling loops could be unrolled more than the current two times. How-
ever, bear in mind that a two-times unrolling gets more than half the maximum
unrolling benefit with less overhead than a more heavily unrolled loop.

BX could be freed up in the ¥major code by breaking out separate loops for X
advances of 1 and —1. DX could be freed up by using AH as the counter for the run
loops, although this would limit the maximum line length that could be handled.
The freed registers could be used to keep more of the whole-step and error variables
in registers. Alternatively, the freed registers could be used to implement more eso-
teric approaches like unrolling the Ymajor inner loop; such unrolling could take
advantage of the knowledge that only two run lengths are possible for any given line.
Strangely enough, on the 486 it might also be worth unrolling the X-major inner
loop, which consists of REP STOSB, because of the slow start-up time of REP relative
to the speed of branching on that processor.

Special code could be implemented for lines with integral slopes, because all runs
are exactly the same length in such lines. Also, the X-major code could try to write an
aligned word at a time to display memory whenever possible; this would improve the
maximum possible performance on some 16-bit VGAs.

Dead Cats and Lightning Lines 705

One weakness of Listing 37.1 is that for lines with slopes between 0.5 and 2, the
average run length is less than two, rendering run-length slicing ineffective. This can
be remedied by viewing lines in that range as being composed of diagonal, rather
than horizontal or vertical runs. I haven’t space to take this idea any further in this
book, but it’s not very complicated, and it guarantees a minimum run length of 2,
which renders run drawing considerably more efficient, and makes techniques such
as unrolling the inner run-drawing loops more attractive.

Finally, be aware that run-length slice drawing is best for long lines, because it has
more and slower setup than a standard Bresenham’s line draw, including a divide.
Run-length slice is great for 100-pixel lines, but not necessarily for 20-pixel lines, and
it’s a sure thing that it’s not terrific for 3-pixel lines. Both approaches will work, but
if line-drawing performance is critical, whether you’ll want to use run-length slice or
standard Bresenham’s depends on the typical lengths of the lines you'll be drawing.
For lines of widely varying lengths, you might want to implement both approaches,
and choose the best one for each line, depending on the line length—assuming, of
course, that your display memory is fast enough and your application demanding
enough to make that level of optimization worthwhile.

If your code looks broken from a performance perspective, think before you fix it;
that particular cat may be dead for a perfectly good reason. I'll say it again: Profile
before you optimize.

706 Chapter 37

	previous:
	home:
	next:

