
	

i	

Overture	Technical	Report	Series	
No.	TR-001	

????	2017	

VDM-10	Language	Manual	

by	

Peter	Gorm	Larsen	
Kenneth	Lausdahl	

Nick	Battle	
John	Fitzgerald	
Sune	Wolff	
Shin	Sahara	

Marcel	Verhoef	
Peter	W.	V.	Tran-Jørgensen	

Tomohiro	Oda	
Paul	Chisholm	

	
Document	history	

	

Deleted: September

Deleted: 6

	

ii	

VDM-10	Language	Manual	

Month	 Year	 Version	 Version	of	
Overture.exe	

Comment	

April	 2010	 	 0.2	 	

May	 2010	 1	 0.2	 	

February	 2011	 2	 1.0.0	 	

July	 2012	 3	 1.2.2	 	

April	 2013	 4	 2.0.0	 	

March	 2014	 5	 2.0.4	 Includes	RMs	#16,	#17,	#18,	#20	
November	 2014	 6	 2.1.2	 Includes	RMs	#25,	#26,	#29	
August	 2015	 7	 2.3.0	 Includes	RMs	#27	
April	 2016	 8	 2.3.4	 Review	inputs	from	Paul	

Chisholm	
September	 2016	 9	 2.4.0	 RMs	#35,	#36	
????	 2017	 10	 2.5.0	 RM	#39	

ii	
	

	

3	

CHAPTER	6.	 EXPRESSIONS	

	

Chapter	3	

Data	Type	Definitions	

3.1	 Basic	Data	Types	
In	the	following	a	number	of	basic	types	will	be	presented.	Each	of	them	will	contain:	

• Name	of	the	construct.	

• Symbol	for	the	construct.	

• Special	values	belonging	to	the	data	type.	

• Built-in	operators	for	values	belonging	to	the	type.	

• Semantics	of	the	built-in	operators.	
• Examples	illustrating	how	the	built-in	operators	can	be	used.1	

For	each	of	the	built-in	operators	the	name,	the	symbol	used	and	the	type	of	the	operator	will	be	given	together	
with	a	description	of	its	semantics	(except	that	the	semantics	of	Equality	and	Inequality	is	not	described,	since	
it	follows	the	usual	semantics).	In	the	semantics	description	identifiers	refer	to	those	used	in	the	corresponding	
definition	of	operator	type,	e.g.	a,	b,	x,	y	etc.	

The	basic	types	are	the	types	defined	by	the	 language	with	distinct	values	that	cannot	be	analysed	 into	
simpler	values.	There	are	five	fundamental	basic	types:	booleans,	numeric	types,	characters,	tokens	and	quote	
types.	

3.2	 Compound	Types	 	

3.2.5	 Composite	Types	
Composite	 types	 correspond	 to	 record	 types	 in	 programming	 languages.	 Thus,	 elements	 of	 this	 type	 are	
somewhat	similar	to	the	tuples	described	in	the	section	about	product	types	above.	The	difference	between	
the	record	type	and	the	product	type	is	that	the	different	components	of	a	record	can	be	directly	selected	by	
means	of	corresponding	selector	functions.	In	addition	records	are	tagged	with	an	identifier	which	must	be	
used	when	manipulating	the	record.	The	only	way	to	tag	a	type	is	by	defining	it	as	a	record.	 It	 is	therefore	
common	usage	to	define	records	with	only	one	field	in	order	to	give	it	a	tag.	This	is	another	difference	to	tuples	
as	a	tuple	must	have	at	least	two	entries	whereas	records	can	be	empty.	

																																																								
1	In	these	examples	the	Meta	symbol	‘≡’	will	be	used	to	indicate	what	the	given	example	is	equivalent	to.	

Deleted: 	The	basic	types	will	be	explained	one	by	one	in	the	
following.

	

4	

VDM-10	Language	Manual	

In	VDM	languages,	 is	 	is	a	 reserved	prefix	 for	names	and	 it	 is	used	 in	an	 is	expression.	This	 is	a	built-in	
operator	 which	 is	 used	 to	 determine	 which	 record	 type	 a	 record	 value	 belongs	 to.	 It	 is	 often	 used	 to	
discriminate	between	the	subtypes	of	a	union	type	and	will	therefore	be	explained	further	in	section	3.2.6.	In	
addition	to	record	types	the	is	 	operator	can	also	determine	if	a	value	is	of	one	of	the	basic	types.	

In	the	following	this	convention	will	be	used:	A	is	a	record	type,	A1,	...,	Am	are	arbitrary	types,	r,	r1,	and	r2	
are	record	values,	i1,	...,	im	are	selectors	from	the	r	record	value	(and	these	must	be	unique	entrances	inside	
one	record	definition),	e1,	...,	em	are	arbitrary	expressions.	

Syntax:	type	=	composite	type	|	...	;	

composite	type	=	‘compose’,	identifier,	‘of’,	field	list,	‘end’	;	field	list	=	{	field	

}	;	

	 field	=	 [identifier,	‘:’],	type	
	 |	 [identifier,	‘:-’],	type	;	

or	the	shorthand	notation	composite	type	=	 identifier,	‘::’,	field	

list	;	where	identifier	denotes	both	the	type	name	and	the	tag	name.	

Equation:	

	

	 		 	

or	
	

	 		 	

or	
	

	 		 	

In	 the	 second	 notation,	 an	 equality	 abstraction	 field	 is	 used	 for	 the	 second	 field	 selsec.	 The	minus	
indicates	that	such	a	field	 is	 ignored	when	comparing	records	using	the	equality	operator.	 In	the	 last	

	
	 	 	 	

	
	 	 	 	

	

	

5	

CHAPTER	6.	 EXPRESSIONS	

notation	the	fields	of	A	can	only	be	accessed	by	pattern	matching	(like	it	is	done	for	tuples)	as	the	fields	
have	not	been	named.	

The	shorthand	notation	::	used	in	the	two	previous	examples	where	the	tag	name	equals	the	type	name,	
is	the	notation	most	used.	The	more	general	compose	notation	is	typically	used	if	a	composite	type	has	
to	be	specified	directly	as	a	component	of	a	more	complex	type:	
	

	 		 	

It	should	be	noted	however	that	composite	types	can	only	be	used	in	type	definitions,	and	not	e.g.	in	
signatures	to	functions	or	operations.	
Typically	composite	types	are	used	as	alternatives	in	a	union	type	definition	(see	section	3.2.6)	such	as:	

	

can	be	used	to	distinguish	the	alternatives.	

Constructors:	The	record	constructor:	mkA(a,	b)	where	a	belongs	to	the	type	A1	and	b	belongs	to	the	type	
A2.	
The	syntax	and	semantics	for	all	record	expressions	are	given	in	section	6.11.	

Operators:	
Operator	 Name	 Type	
r.i	 Field	select	 A	*	Id	→	Ai	
r1	=	r2	 Equality	 A	*	A	→	bool	
r1	<>	r2	 Inequality	 A	*	A	→	bool	
isA(r1)	 Is	 Id	*	MasterA	→	bool	

Semantics	of	Operators:	
Operator	Name	 Semantics	Description	
Field	select	 yields	the	value	of	the	field	with	fieldname	i	 in	the	

record	value	r.	r	must	have	a	field	with	name	i.	
Equality2	 Structural	equality	over	the	record.	That	is,	field-by-

field	 equality,	 recursively	 applying	 equality	 to	 the	
constituent	fields.		

																																																								
2	This	equality	is	implicitly	provided	with	the	type.	It	is	possible	to	override	the	primitive	
equality	–	see	section	3.4.	

	

				

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	

6	

VDM-10	Language	Manual	

	
and	let	
sc1	=	mkScore	(<France>,	3,	0,	0,	9),	sc2	=	mkScore	(<Denmark>,	1,	1,	
1,	4),	sc3	=	mkScore	(<SouthAfrica>,	0,	2,	1,	2)	and	sc4	=	mkScore	
(<SaudiArabia>,	0,	1,	2,	1).	

Then	
sc1.team	 <France>	sc4.points	

sc2.points	>	sc3.points	 ≡	 true	
isScore(sc4)	 ≡	 true	
isbool(sc3)	 ≡	 false	
isint(sc1.won)	 ≡	 true	
sc4	=	sc1	 ≡	 false	
sc4	<>	sc2	 ≡	 true	

The	equality	abstraction	field,	written	using	‘:-’	instead	of	‘:’,	may	be	useful,	for	example,	when	
working	 with	 lower	 level	 models	 of	 an	 abstract	 syntax	 of	 a	 programming	 language.	 For	
example,	one	may	wish	 to	add	a	position	 information	 field	 to	a	 type	of	 identifiers	without	
affecting	the	true	identity	of	identifiers:	
	

	 		 	

The	effect	of	this	will	be	that	the	pos	field	is	ignored	in	equality	comparisons,	e.g.	the	following	would	
evaluate	to	true:	

				

In	
particular	this	can	be	useful	when	looking	up	in	an	environment	which	is	typically	modelled	as	a	
map	of	the	following	form:	

	 	 	 		

			
		 	
	 	

	 	 	
	 	 	

				 	

	 	
	 	

	

	

7	

CHAPTER	6.	 EXPRESSIONS	

	

	 		 	

Such	a	map	will	contain	at	most	one	index	for	a	specific	identifier,	and	a	map	lookup	will	be	independent	
of	the	pos	field.	

Moreover,	the	equality	abstraction	field	will	affect	set	expressions.	For	example,	
	

	 		 	

will	be	equal	to	
	

	 		 	

where	the	question	mark	stands	for	7	or	9.	
Finally,	note	 that	 for	equality	abstraction	 fields	valid	patterns	are	 limited	to	don’t	care	and	
identifier	patterns.	Since	equality	abstraction	fields	are	ignored	when	comparing	two	values,	
it	does	not	make	sense	to	use	more	complicated	patterns.	

3.3	 Invariants	
If	the	data	types	specified	by	means	of	equations	as	described	above	contain	values	which	should	not	
be	allowed,	then	it	is	possible	to	restrict	the	values	in	a	type	by	means	of	an	invariant.	The	result	is	that	
the	type	is	restricted	to	a	subset	of	 its	original	values.	Thus,	by	means	of	a	predicate	the	acceptable	
values	of	the	defined	type	are	limited	to	those	where	this	expression	is	true.	The	general	scheme	for	
using	invariants	looks	like	this:	
		 	

where	 pat	 is	 a	 pattern	matching	 the	 values	 belonging	 to	 the	 type	 Id,	 and	 expr	 is	 a	 truth-valued	
expression,	involving	some	or	all	of	the	identifiers	from	the	pattern	pat.	If	an	invariant	is	defined,	a	
new	(total)	function	is	implicitly	created	with	the	signature:	
	

		 	

This	function	can	be	used	within	other	invariant,	function	or	operation	definitions.	

	 	 	 	 	

	 	 	

	 	 	

	
	 	

	 	

	

8	

VDM-10	Language	Manual	

For	instance,	recall	the	record	type	Score	defined	on	page	25.	We	can	ensure	that	the	number	of	
points	 awarded	 is	 consistent	 with	 the	 number	 of	 games	 won	 and	 drawn	 using	 an	 invariant:

	
The	invariant	function	implicitly	created	for	this	type	is:	
	

		 	

	

3.4	 Equality	
Every	type	defined	in	VDM,	both	basic	and	compound	types,		is	provided	with	an	equality	relation	by	default	as	
described	earlier.	The	primitive	equality	 is	not	always	that	which	 is	desired.	 If	 the	values	of	a	data	type	are	
normalised	then	structural	equality	is	adequate,	but	this	is	not	always	the	case.	Consider	for	example	a	data	
type	 that	 represents	 times	 and	 includes	 time	 zones.	 The	 same	 point	 in	 time	 is	 represented	 differently	 in	
different	time	zones.	
	
A	type	definition	allows	an	equality	relation	to	be	defined	explicitly	for	a	type.	In	such	a	case	the	explicit	
equality	relation	is	employed	when	comparing	values	of	the	type	in	preference	to	the	primitive	equality.	
	
The	general	scheme	for	defining	an	equality	relation	is:	
	

Id = Type
eq pat1 = pat2 == expr

	
or	
	

Id :: fields
eq pat1 = pat2 == expr

	

	

			
		 	
	 	

	 	 	
	 	

	 	 	 				 	

	 	
	

	 	 	

	

9	

CHAPTER	6.	 EXPRESSIONS	

pat1	and	pat2	are	patterns	for	two	values	of	the	type	(or	composite	type),	and	expr	 is	a	boolean	
expression	that	is	true	exactly	when	the	expressions	represented	by	pat1	and	pat2	are	equal.	
	
When	defined,	the	explicit	equality	relation	is	also	employed	for	inequality	comparison	with	<>.	
	
If	an	eq	clause	is	defined,	a	new	(total)	function	is	created	implicitly	with	the	signature:	

	
eq_T : T * T +> bool
	

such	that	eq_T(t1,t2)	denotes	the	same	value	as	t1 = t2.	
	

Example:	Flight	matching	
	

Flight :: id : seq1 of char
 departure : seq1 of char
 depTime : DateTime
 destination: seq1 of char
eq mk_Flight(i1,d1,dt1,a1) = mk_Flight(i2,d2,dt2,a2) ==
 i1 = i2 and d1 = d2 and a1 = a2 and
 within(dt1, dt2, mk_Minute(10));

	
A	simplified	definition	of	a	flight	consisting	of	an	identifier,	departure	location,	departure	date/time,	and	
destination	 location.	 Two	 records	 refer	 to	 the	 same	 flight	 if	 they	 have	 the	 same	 identifier,	 same	
departure	location,	same	destination	location,	and	a	departure	time	within	10	minutes	of	each	other;	it	
is	the	last	item	that	renders	structural	equality	inadequate.3	
	
Given	

f1	=	mk_Flight(“QF5”,	”YSSY”,	’17-04-01	12:20’,	”WSSS”)	
f2	=	mk_Flight(“QF5”,	”YSSY”,	’17-04-01	12:28’,	”WSSS”)	
f3	=	mk_Flight(“VOZ42”,	”YSSY”,	’16-12-25	02:21’,	”YBBN”)	
f4	=	mk_Flight(“VOZ42”,	”YSSY”,	’16-12-24	02:21’,	”YBBN”)	
f5	=	mk_Flight(“VOZ42”,	”YSSY”,	’16-12-24	02:21’,	”YMML”)	
	

We	have	
	

f1	=	f2	 	 	 ≡	 true	
f3	=	f4	 	 	 ≡	 false	

																																																								
3	We	assume	a	type	DateTime,	a	type	Minute,	and	a	function	within.	

	

10	

VDM-10	Language	Manual	

f1	=	f3	 	 	 ≡	 false	
f2	<>	f4		 	 ≡	 true	
eq_Flight(f4,	f5)	 ≡	 false	

	

3.5	 Order	
Numeric	types	(section	3.1.2)	have	a	primitive	order	relation.	An	order	relation	can	be	defined	
explicitly	for	other	types	as	part	of	the	type	definition.	
	
The	general	scheme	for	defining	an	order	(less	than)	relation	is:	

Id = Type
ord pat1 < pat2 == expr

	
or	
	

Id :: fields
ord pat1 < pat2 == expr
	

pat1	and	pat2	are	patterns	for	two	values	of	the	type	(or	composite	type),	and	expr	 is	a	boolean	
expression	that	 is	true	exactly	when	the	expression	represented	by	pat1	 is	 less	than	the	expression	
represented	by	pat2	in	the	required	order	relation.	

	
If	an	ord	clause	is	defined,	three	new	(total)	functions	are	created	implicitly	with	the	signatures:	

	
ord_T : T * T +> bool
max_T : T * T +> T
min_T : T * T +> T

	
such	that	

	
ord_T(t1,t2) = t1 < t2
max_T(t1,t2) = t2, if ord_T(t1,t2) or t1 = t2
min_T(t1,t2) = t1, if ord_T(t1,t2) or t1 = t2

	
If	an	ord	clause	is	defined	for	a	type,	then	the	infix	operators	<.	<=,	>	and	>=	can	be	employed	with	expressions	
of	that	type.	The	equality	relation	for	a	type	is	defined	(either	explicitly	or	implicitly),	and	if	the	order	relation	
for	a	type	is	also	defined	(explicitly),	we	have	

	
x	<=	y		<=>	x	<	y	or	x	=	y	

	

11	

CHAPTER	6.	 EXPRESSIONS	

x	>	y		<=>	y	<	x	
x	>=	y		<=>	x	>	y	or	x	=	y	

	
Example:	Score	revisited	

	
Score :: team : Team
 won : nat
 drawn : nat
 lost : nat
 points : nat
inv sc == sc.points = 3 * sc.won + sc.drawn
ord mk_Score(t1,w1,-,-,p1) < mk_Score(t2,w2,-,-,p2) ==
 p1 < p2 or p1 = p2 and w1 < w2 or
 p1 = p2 and w1 = w2 and t1 < t2;

	
In	this	case	the	order	is	as	might	be	presented	in	a	league	table	(with	greatest	element	at	top):	
• Most	points	first	
• If	equal	on	points,	most	wins	first	
• Otherwise	alphabetic	ordering	of	team	name	(not	defined	here)	

	
Given	

sc1	=	mk_Score	(<France>,	2,	2,	0,	8)	
sc2	=	mk_Score	(<Scotland>,	3,	0,	0,	9)	
sc3	=	mk_Score	(<SouthAfrica>,	0,	3,	0,	3)	
sc4	=	mk_Score	(<SaudiArabia>,	1,	0,	2,	3).	

	
We	have	

	
sc1	<	sc2	 	 ≡	 true	
sc1	<=	sc3	 	 ≡	 false	
sc2	>	sc3	 	 ≡	 true	
sc4	>=	sc3	 	 ≡	 true	
sc4	<	sc3	 	 ≡	 false	
ord_Score(sc1,	sc2)	 ≡	 true	

	
	

	 	

	

12	

INDEX	
ISBN	978-90-9023705-3	

Appendix	A	

The	Syntax	of	the	VDM	Languages	

A.4	 Definitions	
A.4.1	 Type	Definitions	
	 type	definitions	=	 ‘types’,	[access	type	definition]	,	

{	‘;’,	access	type	definition	},	[‘;’]	;	

	 access	type	definition	=	 ([access],	[‘static’])	|	([‘static’],	[access]),	
type	definition	;	

The	access	part	is	only	possible	in	VDM++	and	VDM-RT.	

	 access	=	 ‘public’	
	 |	 ‘private’	
	 |	 ‘protected’	;	

	 type	definition	=identifier,	‘=’,	type,	[invariant],	[eq	clause],	[ord	clause]	
	 |identifier,	‘::’,	field	list,	[invariant],	[eq	clause],	[ord	clause]		;	

	 type	=	 bracketed	type	
	 |	 basic	type	
	 |	 quote	type	
	 |	 composite	type	
	 |	 union	type	
	 |	 product	type	
	 |	 optional	type	
	 |	 set	type	
	 |	 seq	type	
	 |	 map	type	
	 |	 partial	function	type	
	 |	 type	name	

|	 type	variable	;	bracketed	type	=	 ‘(’,	type,	‘)’	;	

	 basic	type	=	 ‘bool’	|	‘nat’	|	‘nat1’	|	‘int’	|	‘rat’	

	

13	

INDEX	
|	‘real’	|	‘char’	|	‘token’	;	quote	type	=	quote	literal	;	composite	type	=

	 ‘compose’,	identifier,	‘of’,	field	list,	‘end’	;	field	list	=	{	field	}	;	

	 field	=	 [identifier,	‘:’],	type	
|	 [identifier,	‘:-’],	type	;	union	type	=	 type,	‘|’,	type,	{	‘|’,	type	}	

;	product	type	=	 type,	‘*’,	type,	{	‘*’,	type	}	;	optional	type	=	 ‘[’,	type,	‘]’	

;	

	 set	type	=	 set0	type	
	 |	 set1	type	;	

set0	type	=	 ‘set	of’,	type	;	set1	type	=	 ‘set1	of’,	type	;	

	 seq	type	=	 seq0	type	
|	 seq1	type	;	seq0	type	=	 ‘seq	of’,	type	;	

seq1	type	=	 ‘seq1	of’,	type	;	

	 map	type	=	 general	map	type	
|	 injective	map	type	;	general	map	type	=	 ‘map’,	type,	‘to’,	

type	;	injective	map	type	=	 ‘inmap’,	type,	‘to’,	type	;	

	 function	type	=	 partial	function	type	
	 |	 total	function	type	;	

partial	function	type	=	 discretionary	 type,	 ‘->’,	 type	 ;	 total	 function	 type	 =

	 discretionary	type,	‘+>’,	type	;	

	 discretionary	type	=	 type	
	 |	 ‘(’,	‘)’	;	

	 type	name	=	 name	;	

type	variable	=	 type	variable	identifier	;	invariant	=	 ‘inv’,	invariant	initial	

function	;	

eq	clause	=	‘eq’,	pattern,	‘=’,	pattern,	‘==’,	expression;	

	

14	

VDM-10	Language	Manual	
ord	clause	=	‘ord’,	pattern,	‘<’,	pattern,	‘==’,	expression;	

invariant	initial	function	=	 pattern,	‘==’,	expression	;	

	

Appendix	B	

Lexical	Specification	

B.2	 Symbols	
The	following	kinds	of	symbols	exist:	keywords,	delimiters,	symbolic	literals,	and	comments.	The	
transformation	from	characters	to	symbols	is	given	by	the	following	rules;	these	use	the	same	
notation	as	the	syntax	definition	but	differ	in	meaning	in	that	no	separators	may	appear	between	
adjacent	terminals.	Where	ambiguity	 is	possible	otherwise,	two	consecutive	symbols	must	be	
separated	by	a	separator.	

	 keyword	=	 ‘#act’	|	‘#active’	|	‘#fin’	|	‘#req’	|	‘#waiting’	|	‘abs’	
|	 ‘all’	|	‘always’	|	‘and’	|	‘as’	|	‘async’	|	‘atomic’	|	‘be’	|
	 ‘bool’	|	‘by’	|	‘card’	|	‘cases’	|	‘char’	|	‘class’	

	 |	 ‘comp’	|	‘compose’	|	‘conc’	|	‘cycles’	|	‘dcl’	|	‘def’	
	 |	 ‘definitions’	|	‘dinter’	|	‘div’	|	‘dlmodule’	|	‘do’	
	 |	 ‘dom’	|	‘dunion’	|	‘duration’	|	‘elems’	|	‘else’	|	‘elseif’	
	 |	 ‘end’	|	‘eq’	|	‘error’	|	‘errs’	|	‘exists’	|	‘exists1’	|	‘exit’	
	 |	 ‘exports’	|	‘ext’	|	‘false’	|	‘floor’	
	 |	 ‘for’	|	‘forall’	|	‘from’	|	‘functions’	|	‘hd’	|	‘if’	|	‘in’	
	 |	 ‘inds’	|	‘inmap’	|	‘instance’	|	‘int’	|	‘inter’	
	 |	 ‘imports’	|	‘init’	|	‘inv’	|	‘inverse’	|	‘iota’	|	‘is’	
	 |	 ‘isofbaseclass’	|	‘isofclass’	|	‘lambda’	|	‘len’	|	‘let’	
	 |	 ‘map’	|	‘measure’	|	‘merge’	|	‘mod’	|	‘module’	|	‘mu’	
	 |	 ‘munion’	|	‘mutex’	|	‘nat’	|	‘nat1’	|	‘new’	|	‘nil’	|	‘not’	|	‘of’	
	 |	 ‘operations’	|	‘or’	|	‘ord’	|	‘others’	|	‘per’	|	‘periodic’	|	‘post’	
	 |	 ‘power’	|	‘pre’	|	‘private’	|	‘protected’	|	‘psubset’	
	 |	 ‘public’	|	‘pure’	|	‘rat’	|	‘rd’	|	‘real’	|	‘rem’	|	‘renamed’	

	

15	

INDEX	
	 |	 ‘responsibility’	|	‘return’	|	‘reverse’	|	‘rng’	
	 |	 ‘samebaseclass’	|	‘sameclass’	|	‘self’	|	‘seq’	|	‘seq1’	
	 |	 ‘set’	|	‘set1’	|	‘skip’	|	‘specified’	|	‘sporadic’	|	‘st’	|	‘start’	
	 |	 ‘startlist’	|	‘state’	|	‘stop’	|	‘stoplist’	
	 |	 ‘struct’	|	‘subclass’	|	‘subset’	|	‘sync’	
	 |	 ‘system’	|	‘then’	|	‘thread’	|	‘threadid’	|	‘time’	|	‘tixe’	
	 |	 ‘tl’	|	‘to’	|	‘token’	|	‘traces’	|	‘trap’	|	‘true’	|	‘types’	
	 |	 ‘undefined’	|	‘union’	|	‘uselib’	|	‘values’	
	 |	 ‘variables’	|	‘while’	|	‘with’	|	‘wr’	|	‘yet’	|	‘RESULT’	;	

	 identifier	=	 initial	letter,	{	following	letter	}	;	

	

	

